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Abstract  

 
Cells respond to a myriad of stressors by senescing, acquiring stable growth arrest, morphologic 
and metabolic changes, and a senescence-associated-secretory-phenotype (SASP). The 
heterogeneity of senescent cells (SnCs) and their SASP is vast, yet poorly characterized. SnCs 
have diverse roles in health and disease and are therapeutically targetable, making 
characterization of SnCs and harmonization of their nomenclature a priority. The Cellular 
Senescence Network (SenNet), a NIH Common Fund initiative, will leverage emerging single cell 
and spatial-omics to identify and map SnCs in numerous organs across the lifespan of humans 
and mice. A common coordinate framework will integrate the data, using validated, standardized 
methods, creating public 4-dimensional SnC atlases. Key SenNet deliverables include 
development of innovative tools/technologies to detect SnCs, biomarker discovery, common 
annotations to describe SnCs and extensive public data sets. The goal is to comprehensively 
understand and map SnCs for diagnostic and therapeutic purposes to improve human health.  
 
Keywords 
Cellular Senescence Network, Normal Aging, Senescence, Senescence-associated secretory 
phenotype, SenNet 
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     Introduction 
 
Senescence is a cell state triggered by numerous types of cell - intrinsic and –extrinsic stress, 

including mitotic, oxidative, genotoxic, mechanical, or nutrient stress, and organelle dysfunction1. 

Senescence is driven by p53/p21CIP1 and p16INK4a/Rb tumor suppressor pathways and possibly 

other signaling events yet to be identified1-3. The senescence response is amplified by several 

mediators, including ATM, IKK/NF-κB, JAK/STAT, GATA-4, and mTOR. Senescent cells (SnCs) 

acquire diverse characteristics such as increased cell size and protein content, altered organelle 

function, evidence of chronic nuclear genotoxic stress, a robust secretome, and resistance to 

apoptosis1. One constant characteristic of SnCs is a stable cell cycle arrest, illustrating the main 

goal of senescence – to prevent a damaged cell from replicating itself, potentially leading to 

mutations and the risk of cancer.  

Multiple lines of evidence suggest that SnCs drive aging itself, and many diverse age-related 

diseases in preclinical models1,4-10. Reports suggest that interventions targeting SnCs can impact 

more than one disease of old age11. However, at least certain types of SnCs also play important 

roles in normal physiology, e.g., development and wound healing12,13. SnCs have a senescence-

associated secretory phenotype (SASP) comprised of diverse molecules, including 

proinflammatory cytokines, chemokines, growth factors, proteases, receptors, extracellular 

vesicles, and specific extracellular matrix proteins14-16. The SASP can drive the loss of tissue 

homeostasis and secondary senescence (pathological role). The SASP is also thought to be 

critical for attracting immune cells that mediate tissue regeneration and clearance of SnCs (normal 

physiology)17. Given the heterogeneity and evolving definitions of SnCs and SASP, there is a 

need to expand efforts to characterize, detect and integrate SnCs, with deeper ontology-based 

understanding and standardization of nomenclatures, as well as detection methodologies. 

In 2011, it was firmly established that genetic clearance of SnCs delays onset of multiple age-

related pathologic conditions affecting numerous tissues in transgenic mice18. In 2016 it was 

established that genetic clearance of SnCs in mice delays all-cause mortality, extending median, 

but not maximum lifespan19, thus implicating SnCs in contributing to all diseases that kill mice, 

including cancer, chronic kidney disease, and cardiomyopathy19. These genetic studies 

incentivized the development of senotherapeutics – drugs that selectively target SnCs, either 

killing them (senolytics) or suppressing markers of senescence including the SASP 

(senomorphics). The first senolytics were described in 201520. Since then, dozens of 

senotherapeutics have been described, including natural products21,22, repurposed drugs6,23, 

peptides24, proteolysis-targeted chimeras25, and CAR-T cells26. 

Senolytics have proven efficacious in pre-clinical models of frailty, cardiovascular disease, 

kidney disease, atherosclerosis, diabetes, osteoarthritis, osteoporosis, hepatic and pulmonary 

fibrosis, steatosis, obesity, depression, mortality due to acute ß-coronavirus infection, and 

Alzheimer’s disease27,28. Currently, there are numerous ongoing clinical trials testing senolytics in 

a variety of age-related diseases including frailty, idiopathic pulmonary fibrosis, Alzheimer’s 

disease, chronic kidney disease, osteoporosis, and COVID-19 in older adults. Preliminary data 

from these studies indicate that at least the senolytic cocktail, dasatinib plus quercetin, appears 

to be safe in humans, reducing SnC burden29,30.  Moreover, in mice, a short course of senolytics, 

administered intermittently, is sufficient to improve multiple measures of physical fitness even 
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when administered late in life31, highlighting the potential impact of such strategies on human 

health and healthcare costs.  

Nevertheless, despite this promise, there is a lack of information about the identity and 

heterogeneity of SnCs in human tissues and their unique characteristics. Little is known about 

where and when SnCs arise in humans across lifespan and health status, or the extent of SnC 

heterogeneity in vivo, and release of senescence factors/SASP into blood circulation. Such 

knowledge could guide therapeutic and organ-specific targeting of SnCs, improving 

senotherapeutic approaches to treating multi-morbidities associated with aging. Clearly there is a 

significant need to develop tools to map and identify the types of human SnCs with spatial and 

temporal resolution over the human lifespan. 

 

Establishment of SenNet:  The characterization of human SnCs to date has largely been 

conducted in vitro. SnC characteristics very much depend on cell-type, inducing stimulus, 

temporal dynamics, and physiological context. Such phenotypic and temporal heterogeneity 

make it challenging for the scientific community to identify and agree on biomarkers that are 

common to most SnCs. As a result, no single laboratory, grant, or approach will be adequate to 

comprehensively define cellular senescence. Yet, a detailed characterization of SnCs and the 

unique SASP associated with them is urgently needed if we are to harness knowledge about 

cellular senescence for the benefit of human health. The number of tissues, diseases and 

conditions affected by the accumulation of SnCs during aging and other physiological processes 

supports the need for a community-wide scientific effort to tackle this challenge. The Common 

Fund occupies a unique and exciting space at NIH and is specifically designed to address large 

challenges and opportunities that are of high priority for the entire NIH (all 27 institutes and 

centers) and the biomedical community broadly.   

In 2021, the NIH Common Fund launched the Senescence Network (SenNet) program with 

the goal of identifying and functionally characterizing SnCs in healthy human tissues across the 

human lifespan. The geographic spread of the tissue mapping centers (TMCs) / Technology 

Development and Application awards (TDAs) are shown in Fig.1. This vision of creating a 

comprehensive atlas of SnCs was catalyzed by several NIH-sponsored workshops engaging 

experts in senescence working across numerous disciplines who indicated a need to develop 

novel tools and technologies to identify SnCs in vivo and to harmonize data across laboratories 

to accurately characterize the heterogeneity of SnCs at single cell resolution. Model systems and 

perturbations to validate the characteristics of SnCs identified in tissues were also identified as 

needs32. While distinct from human models, murine models offer extraordinary value by enabling 

genetic and pharmacologic manipulation of SnCs and longitudinal assessments to determine 

how/when cells acquire senescence features, how those features change over time and what the 

physiologic roles may be in vivo. SenNet will incorporate mechanisms for establishing a murine 

atlas of SnCs. The SenNet is designed to have a single Consortium Organization and Data 

Coordinating Center (CODCC) to harmonize and integrate SnC characterization efforts from 

numerous sites to create an atlas of SnCs across tissues and organisms that captures information 

about the evolution of senescence in space and time (Four dimensional (4D) atlases). These 

efforts will be of immeasurable value to the broader biomedical community, while addressing 

incredible challenges that will require technological advances for the following reasons. 
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Characterization of SnCs:  The complexity of the senescence response entails kinetic 

alterations in virtually all aspects of a cell’s biology, from epigenetic remodeling of chromatin33 to 

changes in the quantity and function of organelles34. Current biomarkers used to identify SnCs 

include increased expression of the cell cycle regulators p16INK4a 35 and p21CIP1 36, increased 

lysosomal senescence-associated β-galactosidase activity (SA-βgal)37, decreased Lamin B138, 

secretion of HMGB139, and several markers of genotoxic stress. These include SADFs 

(senescence-associated DNA damage foci characterized by co-localization of γH2AX and 

53BP1), TAFs/TIFs (telomere-associated or telomere dysfunction-induced foci characterized by 

γH2AX foci at telomeres)40, SAHFs (senescence-associated heterochromatic foci characterized 

by co-localization of dense DAPI staining and modified histones) and SADS (senescence-

associated distensions of satellite DNA characterized by CENP-B foci at centromeres). In 

addition, activation of LINE-1 retrotransposable elements41,42, and cytoplasmic chromatin 

fragments43, as well as mitochondrial DNA44, have also been described as stress markers. None 

of these molecular endpoints are specific to SnCs, which suggest the need to measure multiple 

endpoints to more precisely identify senescence1,45. Most published studies to date rely on bulk 

tissue analysis or, if at single cell resolution, implement a singular approach (e.g., transcriptomics, 

CyTOF), neither of which is adequate to identify SnCs lineages with the precision necessary to 

move the field forward – particularly in the therapeutic realm. Numerous other molecules have 

been attributed to SnCs or their SASP. However, in the absence of cross-validation with 

established (yet non-specific) SnC biomarkers at the level of single cell resolution and validation 

Figure 1. Geographic distribution of 2021 SenNet Awards focused on mapping SnCs in human tissues. TMC 
= Tissue Mapping Center (RFA-RM-21-008 U54); TDA = Technology Development and Application (RFA-RM-21-009 
UG3/UH3), CODCC = Consortium Organization and Data Coordinating Center (RFA-RM-21-010 U24). Bold font 
identifies institutes of contact PIs. 
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with appropriate perturbations provoking or targeting SnCs, these molecules are only potential 

biomarkers of SnCs. Hence, there is a significant need for a creative, comprehensive, and most 

importantly united approach (in terms of cross-validation to establish rigor and reproducibility) to 

characterize SnCs at single cell resolution in tissues and in vivo.  

 

SnC Atlas:  Other challenges to creating a 4D SnC atlas include:  1) SnCs are rare in vivo; 2) 

spatial-omics is currently a nascent technology validated only for mapping of well-characterized 

cell types, implying an additional burden of validation for ill-characterized cell types such as SnCs; 

3) for any single SnC biomarker, it is not yet established whether changes in mRNA, protein or 

the epigenome (or some combination) best reflect a senescent state; 4) implementing a biomarker 

panel that includes a combination of proteins, nucleic acids, morphology markers, and measure 

of enzymatic activity endpoints limit the ability to co-localize the biomarkers at the single cell 

resolution; 5) SnCs in different tissues will likely express common as well as tissue-specific 

patterns of senescence regulators, effectors, and other features; and 6) a lack of tools to 

confidently discriminate pathological vs. physiological SnCs. In complex tissues, comprising of 

numerous cell types, both the physiological and pathological roles of SnCs may be occurring in 

close proximity (e.g., chronic tissue damage foci with adjacent areas of tissue regeneration). 

Ideally, to optimize senotherapeutics and to minimize side effects of this new class of drugs, one 

would like to distinguish between SnCs involved in these two processes and to do so using a 

biomarker measured in an easily accessed tissue or biofluid. This will require tissue mapping 

advances as well as biomarker discovery in human biofluids.  

 

SenNet Deliverables:  The expected deliverables from SenNet include a SnC atlas at single 

cell resolution for human and murine tissues, novel tools, technologies, and data sets that can be 

readily accessed, searched, and visualized to enable the broad community to query these sets to 

better define SnCs. A clear and comprehensive definition of SnCs in various tissues that will yield 

information about molecular targets unique or enriched in SnCs that could form the basis of 

selective senotherapeutics to advance the treatment of age-related multi-morbidities as well as 

diseases. Biomarkers will ideally be validated within and across tissues, ultimately enabling 

predictive modeling, optimizing SnC targeting and ensuring the safety and efficacy of 

senotherapeutics in both health maintenance and disease. Finally, it is expected that the SenNet 

program will interface with other existing cell mapping programs such as Human Bimolecular Atlas 

Program (HuBMAP), Human Cell Atlas (HCA), and the Kidney Precision Medicine Project 

(KPMP). Data integration will allow greater identification of translatable intersections as well as 

deploy common knowledge, data platforms, pipelines, tools, and technologies in an integrated 

manner to map SnCs. 

To achieve the goals of SenNet, a substantial part of the consortium effort is dedicated to 

establishing multiple TMCs. Each TMC is charged with creating 4D atlases of at least two human 

or five murine tissues at the single cell level via emerging spatial mapping techniques including 

multiplexing of imaging, proteomics, and transcriptomics in tissue sections. Collectively, the TMCs 

are currently covering 18 primary human tissues (Fig. 2). Complementing this atlas construction 

effort, SenNet also has a significant technology development component. These efforts are 

designed to explore novel techniques and/or to improve existing methods to detect and 

characterize the heterogeneity of SnCs at single cell resolution. Examples include deep 
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phenotyping of the 4D nucleome of SnCs, high throughput quantitation of TAFs, and in vivo 

detection of SnCs via PET imaging. Through SenNet, these new technologies will be applied 

broadly and collaboratively across multiple tissues that will be characterized in SenNet TMCs 

(Fig. 2).  

 

SnCs are important for normal physiology, including embryonic development, initiation, 

parturition, tissue regeneration, wound healing, as well as contribute to numerous disease 

processes. However, whether SnCs are beneficial or deleterious, as thought to occur with aging, 

is unclear. There is no doubt that a deeper, temporal understanding of SnCs will help research 

communities to develop therapies that promote the beneficial effects of SnCs while suppressing 

or removing the deleterious effects. While the current goal of SenNet is mapping of SnCs in 

“normal/healthy” human and murine tissues to generate reference atlases of SnCs, we anticipate 

that future efforts will be directed towards leveraging these data sets to study the role of SnCs in 

various age-related pathologies and diseases.  

 

Anticipated Results 

The SenNet Consortium is initially focused on advancing our knowledge of the identity and 

definition of SnCs in healthy human tissue across the age-span. Like tumorigenesis, senescence 

Figure 2. Human tissues in which SnCs will be mapped and characterized by SenNet Consortium to produce 
4D atlases of senescence across the lifespan of humans. 
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is likely not a single state, entity or phenotype. Rather, the molecular identity of any given SnC is 

ultimately determined by a combination of its cell lineage, surrounding cells and environment, the 

endogenous or exogeneous stressors driving senescence, and the purpose of that cell entering 

senescence (e.g., preventing oncogene-mediated proliferation or promoting wound healing). 

Collectively, these variables are likely to create a unique molecular fingerprint. SenNet aims to 

address the challenges in defining the heterogeneity of SnCs and their impact on their tissue 

microenvironment at a single cell resolution, which will require the implementation of an array of 

cutting-edge enabling technologies to comprehensively identify, profile, and spatially map SnCs 

across tissues in humans and mice. These technologies are broadly categorized into two groups 

– bulk/single cell omics and spatial mapping. An overview of the technologies is shown in Fig. 3. 

Technologies used by SenNet:  

Transcriptomic Approaches:  To achieve single cell resolution and overcome the scarcity 

of SnCs, high-throughput single cell and single-nucleus transcriptomic techniques have become 

mainstay tools for surveying tens of thousands of cells to identify transcriptional signatures in rare 

cell populations as low as 0.5%, enabling discovery of potential new SnC biomarkers46,47. 

Figure 3. Overview of technologies that will be implemented and developed by SenNet Consortium scientists 
to detect, characterize, and spatially map the location of SnCs.  CyTOF = Cytometry by Time-of-Flight; scCITE-
Seq = Cellular Indexing of Transcriptomes and Epitopes by Sequencing; sc/snRNA-seq = single cell or single nuclear 
RNA sequencing; snATAC-seq = single nuclear Assay for Transposase-Accessible Chromatin using sequencing; 
MiNA = Multiplexed Imaging of Nucleome Architectures; IMC = Imaging Mass Cytometry; CODEX = CO-Detection by 
inDEXing immunofluorescence; DBiT-seq = deterministic barcoding in tissue for spatial omics sequencing for co-
mapping mRNAs and proteins; RNAScope = RNA in situ hybridization visualization of single molecules; MERFISH = 
multiplexed error-robust fluorescence in situ hybridization; GeoMx = NanoString GeoMx Digital Spatial Profiling; 
Visium = Visium 10x Genomics molecular profiling; Seq-Scope = a spatial barcoding technology with spatial 
resolution comparable to optical microscopy; Pixel-Seq = Polony-indexed library sequencing. 
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Perturbations that drive or eliminate SnCs will be critical for validating SnC identity in a context-

dependent way, which will also help optimize detection methods. Incorporation of antibody-based 

targeted proteomics, such as CITE-seq48, allows for the simultaneous measurement of hundreds 

of protein markers and whole transcriptome to link cell-type information to transcriptional profiling 

to uncover cell type-specific senescence biomarkers. Aligning SenNet with HuBMAP’s Organ 

Mapping Antibody Panels (OMPAs)49, Anatomical Structures, Cell Types, plus Biomarkers 

(ASCT+B) tables50, and Affinity Reagent groups will leverage incredible experience in SOPs for 

validating antibodies and the products of that for discerning cell types.  

 

Proteomic Approaches:  SenNet investigators are further developing novel single cell 

mass spectrometry methods51, for unbiased discovery of proteomic signatures of SnCs. These 

methods can be scaled to hundreds of thousands of single cells49. These methods can be 

extended to analyzing protein modifications and covariations, which can reflect regulatory 

processes in SnCs52. SenNet investigators will also examine the epigenetic regulation that may 

drive transcriptional alterations observed in SnCs. Single cell profiling of chromatin accessibility 

using ATAC (assay for transposase-accessible chromatin) or chromatin modification using ChIP-

seq or CUT&Tag, in combination with single cell/single nucleus RNAseq, will allow for 

simultaneous profiling of the same cells/nuclei for transcriptome and epigenetic changes to define 

functional senescence signatures at the single cell level. A hallmark of SnCs is the SASP, which 

will eventually require a combinatorial approach using proteomics, metabolomics and lipidomics 

analyses, especially when characterizing SASP-associated extracellular vesicles. The SenNet 

program will employ emerging technologies to measure large panels of secreted proteins from 

single cells53, enabling the characterization of SASP in live SnCs. Caveats to characterizing SnCs 

include the fact that upregulation of cell cycle regulators in SnCs is modest at best and often 

below detection by single cell methods. SnCs also tend to be morphologically large and fragile, 

making them potentially incompatible with single cell dissociation methods. Finally, in vivo SASPs 

may be quite distinct from in vitro, which is where mouse, and other animal, models can be 

informative. 

 

Imaging approaches:  High resolution molecular and cellular imaging will be also critical 

for the study of SnCs in the tissue context and the construction of a common coordinate system 

and organ-specific two-dimensional (2D) and three dimensional (3D) atlases, which is the main 

goal of the SenNet TMCs. Static universal tissue agnostic senescence markers may not exist. 

Instead, there are likely dynamic senescence signatures (gene expression patterns anchored by 

frequent, but unobligated presence of some of the “known” markers and others yet to be 

identified), that may differ with cell type, age, and environmental stimuli. As such, it is important 

to use multiplex imaging to study the coexistence of cellular, molecular (RNA, protein, epigenetic, 

etc.), or even SASP factors as potential senescence biomarkers. SenNet will use a range of 

multiplexed imaging tools including Imaging Mass Cytometry, Co-Detection by Indexing 

(CODEX), Single-Molecule Fluorescence In Situ Hybridization (smFISH), Multiplexed Error-

Robust Fluorescence In Situ Hybridization (MERFISH), Spatial Molecular Imaging, Positron 

Emission Tomography (PET) Imaging, RNAscope, Multiplex Immunofluorescence, Super 

Resolution Microscopy, Iterative Indirect Immunofluorescence Imaging (4i), Mitochondrial 

Network Analysis (MiNA) and Lightsheet Microscopy An example of indexing of co-detection 
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imaging methods is CODEX54, which relies on DNA-conjugated antibodies and the cyclic addition 

and removal of complementary fluorescently labeled DNA probes to simultaneously visualize, at 

subcellular resolution, up to 60 markers on tissue sections.  

In parallel, SenNet investigators are developing novel technologies to image select 

epigenetic signatures in tissues by visualizing 3D nuclear architecture and open chromatin 

regions55.  Although feasible to computationally construct 3D atlases using series of 2D images 

with multiplexed staining, native 3D imaging, such as light sheet microscopy56, require much 

larger sampling volumes are required to build atlases. Another limitation of light sheet microscopy 

is the small number of detectable markers (3-5) available for each run, which would be insufficient 

for accurate SnC detection. Current efforts within and outside of SenNet are pushing for greater 

multiplexity in 3D imaging using barcoded antibodies that will ultimately expand the application of 

3D imaging in atlas building for rare, heterogeneous cells such as SnCs. These technologies 

measure a finite panel of RNA or protein targets, therefore integration with single cell multi-omics 

data will further advance our capacity to computationally incorporate genome-wide information 

using spatial molecular or cellular tissue maps. 

 

Spatial mapping approaches:  The latest advent in Next-Generation Sequencing (NGS)-

based spatial omics technologies is poised to bridge the gap to realize both genome scale and 

cellular resolution in mapping SnCs in tissue. GeoMx allows for profiling thousands of genes in 

specific regions of interest and Visium 10X Genomics can map whole transcriptome pixel-by-pixel 

in a tissue section with a spot size of 55 µm. Higher resolution Visium HD, NanoString CosMx 

and novel technologies such as Seq-Scope57 and Pixel-Seq developed within SenNet will further 

enable the mapping of SnCs with single cell or even subcellular resolution. Investigators in 

SenNet also developed the first spatial multi-omics technology to co-profile whole transcriptomes 

and hundreds of proteins via deterministic barcoding in tissue followed by NGS (DBiT-seq) with 

10 µm pixel size58. This was further expanded to spatial epigenome mapping to measure genome-

wide chromatin accessibility (spatial-ATAC-seq) or chromatin modification (spatial-CUT&Tag)59 to 

link epigenetic regulation to transcriptional or proteomic markers. Integration with high-resolution 

imaging makes spatialomics the crucial linchpin in connecting mechanistic underpinnings and 

molecular signatures with morphological features and spatial distribution, critical to construct a 

map of SnCs in the native tissue environment.  

 

Validation:  SenNet investigators will use a variety of in vitro approaches to validate 

characterization of SnCs, including differentiation of hiPSCs organoids60 and precision cut tissue 

slices (PCTS) senolytic agents61. Organoids contain structural cells, such as epithelial (stem) 

cells, fibroblasts, and endothelial cells, which can further be supplemented with immune cell 

populations. As such, organoids are useful tools to determine the autocrine and paracrine 

mechanisms of SnCs in a multi-cellular 3D assay system. PCTS, which are 300-500 µm tissue 

slices, have the advantage of allowing multicellular analyses of cells in their natural 3D 

environment with high spatiotemporal resolution. Organoids and PCTS will be subjected to the 

single cell high-content technologies described above as well as to 2D and 3D imaging 

techniques. Using these approaches, two major outcomes are anticipated:  1) the identification of 

cell- and driver-specific SnC signatures that will increase the precision and sensitivity of SnC 

detection in vivo by providing a basis for imputing perturbation-specific senescence-associated 
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gene and protein lists with the atlases generated from whole tissues; and 2) information about the 

selectivity and potential utility of senolytic agents ex vivo as well as across SnC types, 

perturbations and cell states. In this way, novel senolytic and senomorphic agents can be 

integrated into a validation pipeline.  

 

Discussion  

In recent years, advances in single cell technologies have enabled tissue mapping efforts of 

human tissues at unprecedented resolution, and the NIH Common Fund has rapidly mobilized 

such technologies for the advancement of human health. The NIH Common Fund is managed by 

the Office of Strategic Coordination within the Division of Program Coordination, Planning, and 

Strategic Coordination Office of the NIH Director. Common Fund programs must address 

emerging scientific opportunities and pressing challenges in biomedical research that are 

transformative, catalytic, synergistic, cross-cutting, and unique. Examples of these initiatives 

include the Human Biomolecular Atlas Program62, and Somatic Cell Genomic Editing63, 

4DNucelome64 and GTex65. This vision of creating a comprehensive blueprint for senescence was 

catalyzed by community input that indicated the need for development of novel tools and 

technologies to identify, trace, and track these heterogeneous populations within tissues. What 

also emerged from internal and external advisory workshop is the recognition that to achieve 

these goals new model systems and perturbation agents are necessary to validate in vitro and in 

vivo observational studies.   

Single cell technologies for imaging and deep-phenotyping SnCs have significant clinical 

and translational potential with diagnostic, monitoring, and predictive applications. 

Complementary, multi-modality characterization of SnCs will not only deepen our understanding 

of senescence biology in health but also reveals the clinical significance of SnCs in cancer, 

fibrosis, metabolic disorders, and diverse degenerative processes that are fundamental to 

disease. SnC identification, at single cell resolution, organ and whole-body, would launch 

impactful conceptual, technical, and clinically applicable advancements that prevent, diagnose 

and/or treat diverse, disease conditions.  

A key impetus for aspiring to create SnC 4D tissue atlases is the advent of relatively new 

classes of drugs and biologics termed senolytics and senomorphics, as defined earlier in this 

report. Until we can distinguish between beneficial vs detrimental senescence, and understand 

what SnC sub-types exists, the senescence field is in danger of developing interventions that can 

be deleterious or carcinogenic. Cutting-edge, emerging multi-omics and imaging tools employed 

by SenNet scientists will make critical contributions to achieving the high resolution, multi-

dimensional molecular Common Coordinate Framework (CCF) that is used in the Human 

Reference Atlas (HRA). Specifically, SenNet will add cellular atlases of SnCs from most major 

human tissue types across the lifespan and health span, serving as a valuable resource and a 

stepping stone to a new era of cellular senescence and aging research.  
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Common Coordinate Framework (CCF) and Data visualization:  The CCF consists of 

ontologies and reference object libraries, computer software (e.g., user interfaces), and training 

materials that support the efficient mapping, registration, and exploration of clinically, 

semantically, and spatially indexed human tissue data. SenNet will extend the HuBMAP CCF that 

consists of (1) a CCF Specimen Ontology, which provides CCF-relevant demographic and clinical 

metadata about the specimen and donor (the “who”); (2) a CCF Biological Structure Ontology, 

which describes “what” part of the body a tissue sample came from; and (3) a CCF Spatial 

Ontology, which indicates “where” the tissue is located in a 3D reference system. In addition, the 

CCF defines a “registration process” that makes it possible to annotate data and map it to the 3D 

reference system, as well as an “exploration process,” which facilitates query, analysis, and visual 

examination of registered tissue data and prediction of properties, e.g., what cell types are 

commonly located in a specific anatomical structure or what antibodies should be used to identify 

a desired set of protein biomarkers (Fig. 4). The CCF also provides three-dimensional 

representations of anatomy that are linked to anatomical structures, cell types, plus biomarker 

(ASCT+B) tables that provide detailed cell type level information for each organ of interest.50 Note 

that the CCF is semantically explicit (i.e., terminology for anatomical structures, cell types, and 

biomarkers link to existing ontologies, namely Uberon/FMA, CL, and HGNC) as well as spatially 

explicit (e.g., 3D reference organs are used for registration and exploration). In February 2022, 

there were ASCT+B tables for 25 organs and there were 50 associated 3D reference object sets 

(1-4 per organ, e.g., one uterus but 4 kidneys to capture left/right and male/female versions), 

which represent the size, shape, position, and spatial orientation of major anatomical structures 

in an organ-specific manner. The ASCT+B tables and associated spatial reference objects 

represent the human body in a simplified manner as a partonomy where each cell is part of an 

anatomical structure that are part of larger anatomical structures and ultimately make up the entire 

body. 

 

The SenNet CCF Atlas and SenNet CODCC Data Portal will serve as the “hub” for a hub-

and-spoke model of data coordination-integration, which will facilitate future systematic, 

standardized indexing of clinical, spatial and semantic metadata allowing harmonization amongst 

Figure 4. Integration of Common Coordinate Framework (CCF) Exploration UI  and Vitessce to enable 
seamless navigation across scales and queries against SenNet data. The CCF Exploration UI enables 
registered tissue blocks from the Registration User Interface to be explored spatially (via body browser in the left 
screenshot, center) and using ontology terms (via hierarchy in the left screenshot, on left) at anatomic scale. A click 
on a tissue dataset (left screenshot, right) leads to Vitessce (right screenshot) which supports the exploration of 
cellular and molecular scale distributions. In summary, EUI provides clinical and spatial context and ontology 
crosslinks, while Vitessce supports details on-demand at the molecular scale.    
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complementary meta data sets, such as HuBMAP. Armed with data sets from “normal” reference 

maps of senescence, along with requisite tools and technologies, one could envision studying 

senescence in relevant disease models and physiological systems along with focused studies of 

senolytics / senomorphics and other pharmacologic and biologic agents. Future extensions of the 

CCF will require closer integration of Electronic Health Record (EHR) data for characterization 

and integration into the current medical workflow. Building upon current efforts, future work would 

require integrating specimen ontology with clinical informatics and EHR-based clinical data for 

longitudinal data collections to characterize not just the state of patient when the sample was 

drawn, but the evolution of the person over their entire lifetime. This would naturally capture health 

characteristics, phenotypes and diseases in evolution, functioning as both markers for 

comorbidities as well as reference points, or even predictors, for health and disease trajectory. 

Furthermore, this may serve as an integration point for environmental factors or cumulative drug 

exposures a person may face over their lifetime within a health system. Such examples may then 

be used for interpretation of an individual’s “health” atlas using artificial intelligence platforms. 

 

Future Perspectives:  While the current vision of SenNet is to identify and functionally 

characterize the heterogeneity of senescent cells across multiple human tissues in a lifespan at 

single cell resolution, future directions could expand to apply the knowledge to better understand 

the role of SnCs in various disease states. In addition, how senolytics, senomorphs and other 

pharmacological agents can be utilized for preventative or therapeutic purposes could also be 

developed. Importantly, we envision utilizing SenNet’s emerging senescence biomarkers studies 

to monitor health, disease progression and response-to-therapeutics. Novel technologies will be 

developed and applied to characterize SnCs in human tissues, while new model systems can 

probe, perturb and validate senescence in various physiological contexts. SenNet will 

undoubtedly pave the way for exciting, limitless possibilities in the geroscience. 

 

Methods 

TMC and TDA 

Each individual often multi-site TMC or TDA center will apply their own specific technological 

measurements (detailed in Fig. 3) on the various human or murine organs. Collaborations within 

SenNet TMCs and TDAs are established throughout this work, including exchange of tissues 

between the centers. TMCs and TDAs are the foundation of the SenNet mapping initiatives and 

the data generated will coalesce into the CODCC. 

 

SenNet Biomarker Working Group 

Currently, there are three main phenotypes that characterize SnCs, with the caveat that they are 

context dependent. In general, 1) SnCs enter an essentially permanent arrest of proliferation; 2) 

become relatively resistant to cell death, and 3) develop a SASP. Ideally, an endpoint associated 

with each of the three main phenotypes should be measured to determine if a cell is senescent. 

Relying on a single endpoint is fraught with error. For example, high SA-β-Gal activity is detected 

in cultured confluent fibroblasts66,67 and certain activated macrophages68,69, whereas p16 and p21 

can be induced in a reversible manner in certain physiological contexts68-72. At present, there is 

no single, stand-alone marker to identify a SnC. Even more unclear are the markers indicate a 

cell is “destined” to senescence. As more cell types and physiological contexts are studied, a 
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senescence-specific marker may never emerge. Consequently, several groups are compiling lists 

of cell traits, mRNAs, proteins, lipids and metabolites that may be used to identify, and ultimately 

define, SnCs. These efforts are generally scientifically sound and welcome as more cell types 

and tissues are being interrogated for the presence of SnCs. However, the field should be open 

to the possibility that this effort may ultimately fail due to heterogeneity in senescence responses. 

To address this, the SenNet consortium has formed a dedicated working groups, whose overall 

goal is to curate a database of senescence-associated biomarkers. The short-term goal of this 

working group is to generate a short list of senescence-associated biomarkers currently used by 

members of the SenNet consortium. The information collected will include cell type information, 

in what combinations they occur, the associated reagents and their compatibility with 

experimental methods and tissues. We expect this list will evolve over time, with some markers 

being removed due to lack of specificity/sensitivity, and others being added as our understanding 

of the senescent phenotype improves. Ultimately, this effort will generate a compendium of 

senescence biomarkers at the tissue and cell-type level, which will be integrated with the ASCT+B 

tables in collaboration with the HuBMAP CCF and ASCT+B working group. 

 

Clinical-Medical Imaging (Fig. 5) 

The ability to detect SnCs non-invasively and longitudinally in people would substantially improve 

our ability to monitor the effects of injury, inflammation, development of carcinogenesis, 

autoimmunity and potential responsiveness to specific drugs or biologics, ultimately identifying 

those who may benefit from senotherapies. However, to date the development of imaging 

biomarkers for in vivo detection of SnCs has received surprisingly little attention. Initial reports 

describe fluorescent biomarkers for the detection of SnCs with two-photon microscopy. Vats et 

al. used quantitative liver intravital microscopy to visualize SnCs in young and aged mouse liver 

using AF488-anti-p21CIP1 antibody73. In addition, radioactive probes have been used for real-time 

in vivo tracking of SnCs with positron emission tomography (PET), integrated PET/computed 

tomography (PET/CT), microCT for mouse models, and integrated PET/MRI:  For example, 

Koslowsky et al. used 18F-labelled antisense oligonucleotide probes to monitor expression of the 

p21 in human colon carcinoma cells using PET imaging74. Krueger et al. described the detection 

of SnCs in colorectal tumors in mice with the radiotracer [18F] FPyGal (2-[Fluorine-18]Fluoro-3-

pyridinyl-β-D-galactopyranoside) and integrated PET/CT and PET/MRI75. Qiu et al. developed a 

novel near-infrared fluorescent probe to detect SA-β-Gal activity in KSL0401 cells using 

fluorescence imaging76. Furthermore, recent advances in radioluminescence imaging improved 

analyses of single cell pharmacokinetics by incorporating two scintillators instead of one, which 

increases microscope sensitivity and thereby reduces image acquisition times. Kim et al. 

performed radioluminescence imaging using a low-light microscope on MDA-MB-231 cells 

labeled with radioactive glucose analogue [18F] FDG, as a radiotracer77.  

 

 

Another marker, albeit non-specific, for SnCs is reduced cell saturation density at confluence and 

this could be measured using laser scanning cytometry, which is a microscope-based 

quantitative-image analyzer offering dual advantages of flow cytometry and image analysis as 

demonstrated by Zhao et al. in A549 cells induced to undergo senescence78. Oja. et al. performed 
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an automated image analysis using Cell Omics Morphology Explorer software on images of 

mesenchymal stromal cells acquired by using high-content screening microscope to give 

information about nine different parameters indicating cell size and shape79. Lee et al. utilized 

time-lapse imaging to illustrate how senescent tumor cells build 3D clusters, using a highly 

malignant cell line MDA-MB-23180. Confocal 3D immunostained images were acquired to look at 

the size growth of SnCs; the time-lapse images showed their emergence from their initial seeding, 

to migration and then to 3D clusters. Advances in radio imaging, fluorescence-based imaging 

approaches and imaging techniques to assess cell morphology and will enable detection and 

tracking of SnCs in vivo longitudinally. 

 

Microphysiologic Platforms 

Cellular senescence is often interrogated in vitro, which is static relative to in vivo conditions. 

Micro-physiologic platforms have overcome the deficiencies of traditional cell culture techniques 

and revolutionized the ability to culture tissues ex vivo in a manner that recapitulates the dynamic 

flow of nutrient, gas and waste exchange and tissue interactions that more closely recapitulate 

the in vivo micro-environment. Within SenNet, projects will evaluate SnCs using platforms that 

enable dynamic flow conditions to better mimic in vivo cell biology and thereby generate more 

accurate markers to identify SnCs in vivo. These micro-physiologic platforms will enable the study 

of cellular senescence in diverse modeling platforms and inform drug-testing in a more complex, 

physiologic biomimetic system. Moreover, they will allow evaluation of cell interactions, both 

Figure 5. Flowchart of Novel Imaging Biomarkers for Senescence Imaging:  1) A baseline imaging test may or 
may not show senescent cells in specific organ systems, at this stage, prospective research can investigate 
correlation between quantitative senescence imaging biomarkers and clinical outcomes; 2) the presence or absence 
of senescent cells may be dependent on genetic predisposition or lifestyle factors, 3) people with specific risk factors, 
such as advanced age or a disease diagnosis, might demonstrate a normal or abnormal imaging test. At this stage, 
prospective research can investigate correlations between quantitative senescence imaging biomarkers and clinical 
outcomes; 4) as a result of senescence imaging tests senotherapies may be used. Prospective research can 
investigate if senescence imaging biomarkers can be used to stratify patients to personalize senotherapies; 5) 
ultimately, novel senescence imaging tests might predict clinical outcomes. 
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senescent and non-senescent, to better understand bystander and/or paracrine effects driven by 

SASP.   

 

Deep Learning Method to Assess Cellular Senescence 

A deep neural network classifier, trained on nuclear morphology, can predict senescence using 

DAPI- or H&E-stained images81. This provides an automated and efficient method to characterize 

SnCs in tissues with spatial detail. U-NET, a convolutional neural network, relies on image 

segmentation to identify nuclei, which are then normalized to filter out background, standardize 

size, and mask internal structures. A collection of nuclei can then be assessed for senescence 

using several predictor models, trained on multiple forms of senescence, such as replicative, 

ischemia-reperfusion (IR), and drug-induced senescence. Applied to primary human fibroblast 

cell cultures, the predictor model showed remarkably high accuracy in detecting SnCs, which can 

now be applied to histological tissue sections. The top performing model, applicable to images of 

DAPI-stained nuclei in culture, has an f1 score of 94%, accuracy of 95%, and AUC of 0.99. The 

generalized model, based on feature reduction, had lower performance which was improved using 

a deep ensemble. Furthermore, the deep ensemble can filter ambiguous predictions by raising 

the classification threshold to restrict to higher confidence predictions. 

 

With images from several individuals, the predictor showed an age-dependent increase in SnCs 

in mice and human tissue samples. We can also apply the predictor to samples with disease to 

determine how disease affects the predicted rate of senescence, relative to age-matched healthy 

individuals. The predictor generates granular senescence scores, which can be used to compare 

groups of individuals with different characteristics.  For instance, groups of individuals with 

different gene expression profiles can be evaluated to uncover correlations with senescence. 

These novel image analytic methods can be focused on key image regions to estimate 

senescence by tissue (eventually cell) type and help determine how different regions contribute 

to overall senescence or disease. In one application, images were classified by tissue type using 

a deep learning model for image segmentation, indicating regions of adipose, connective, and 

epithelial tissue. Analyzing predicted senescence suggests that senescence develops differently 

in each region.  

 

The deep learning predictor can produce SnC scores per nucleus, the location of which can be 

tracked for spatial mapping. The spatial distribution of predicted SnCs in tissues will enable 

discovery of how senescence propagates locally. The high precision senescence score also 

enables more detailed and quantitative analysis, such as an association to other factors of the 

individual (e.g., biological, physiological, environmental, clinical) or tissue (histological 

characteristics, gene expression levels, or any other quantitative factor). While this approach has 

great potential, the development of deep learning methods to accurately identify SnCs in tissues 

based on morphology is still in its infancy and will require an in-depth characterization of the 

heterogeneity of SnCs in different tissues, which is one of the goals of SenNet. 

 

Bioinformatics approach to catalog SnC biomarkers 

Given that there is no widely agreed-upon SnC biomarker list, we leveraged existing search 

engines such as Uniprot, a protein database. Senescence markers were identified using the 
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query, “senescence” AND “reviewed:  yes” AND organism:  "Homo sapiens (Human) [9606]"). 

Data collection was focused on key words:   "senescence", "human specific", and "peer-

reviewed".  After collecting information on several senescence markers, further details were 

assembled, including protein function, subcellular location, and tissue specificity. Each individual 

marker was tagged with relevant PubMed papers documenting this information. The data were 

downloaded into excel sheets and further organized. The markers were categorized into secreted 

and non-secreted proteins using “keyword search” as well as sorting through individual markers. 

Then, the markers were further categorized into protein function and subcellular localization. Once 

these proteins are validated and integrated with data from the Biomarker and ASCT+B working 

groups, standardized, validated categories of SnC biomarkers can start to be formulated. 

 

Data Integration and Harmonization  

Given the multi-organ and multi-modal data generation envisioned as part of the SenNet program, 

a structured, cross-team data management, organization, and analysis plan is essential to the 

success of SenNet. The SenNet CODCC will manage data curation, integration, analysis, atlas 

creation, and dissemination through the SenNet Data Portal (Fig. 6). These data harmonization 

and integration efforts will be coordinated with Common Fund Data Ecosystem (CFDE) to align 

the SenNet data for integration with data sets from other Common Fund programs. Uniformly 

processed molecular and cellular data will be integrated with the CCF and will be the basis for the 

construction of an atlas of SnCs. To facilitate the development of uniform data processing and 

quality control pipelines within CODCC, and re-use by other data consumers, CODCC will 

mandate data submission using common data formats that are aligned with CCF reference atlas 

construction. Examples are the use of Azimuth for cell type annotation or OMAP-validated 

antibody panels. Uniform processing pipelines will implement state-of-the-art algorithms for the 

analysis of imaging, sequencing, and multi-omics data, which will generate standardized data 

sets that are spatially registered, segmented and annotated using CCF ASCT+B terminology and 

Figure 6. The SenNet Consortium and CODCC workflow. Data generated by the TMCs and TDAs are input into 
the CODCC along with associated metadata. The data sets are organized and de-identified (curation) then analyzed 
and integrated. The goal is to create an atlas and public database of curated data that can be searched, analyzed, 
and visualized as 3D images of organs using unified annotations. Identifying, characterizing, localizing SnCs in 
human tissues is predicted to promote multiple opportunities for improving human health. 
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hence linked to existing ontologies. Integrated and harmonized data sets will be made available 

through the data portal, along with the raw data.  

 

The SenNet Data Portal will also integrate the CCF registration and exploration user interfaces 

(known as RUI and EUI, respectively) and the Vitessce framework in support of exploratory 

visualization of existing data across levels—from the whole body to single organs to molecular 

and cellular level data sets and vice versa (Fig. 4, 7). Clinical data will also be standardized and 

shared in an extension of the CODCC / CCF efforts and will be the basis for standardized 

implementation and association with EHR clinical data in the future.  

 

 

 

  

Figure 7. Summary of SenNet Consortium Goals. High quality experimental data is needed to create a human 
reference atlas. The evolving reference atlas supports data standardization and federation, making it possible to 
integrate data from different specimen, laboratories, and assay types. The atlas characterizes the healthy human—
from the whole body down to the single cell level; it can be compared across ages and diseases to understand 
differences, advance research, and improve human health. Use case scenarios for different stakeholders 
(researchers, practitioners, students) guide atlas construction and usage but also experimental data acquisition and 
analysis.   
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