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Abstract: Hydrological modeling for water management in large watersheds requires accurate spa-
tially-distributed rainfall time series. In case of low coverage density of ground-based measure-
ments, satellite precipitation products (SPP) constitute an attractive alternative, the quality of which 
must nevertheless be verified. The objective of this study was to evaluate, at different time scales, 
the reliability of six SPPs against a 2-year record from a network of 14 rainfall gauges located in the 
Ankavia catchment (Madagascar). The SPPs considered in this study are the African Rainfall Esti-
mate Climatology (ARC2), the Climate Hazards group Infrared Precipitation with Station data 
(CHIRPS), the ECMWF Reanalysis (ERA5), the Integrated Multi-satellitE Retrievals for Global Pre-
cipitation Measurement (IMERG), the Precipitation Estimation from Remotely Sensed Information 
using Artificial Neural Networks (PERSIANN), and the African Rainfall Estimation (REF2) prod-
ucts. The results suggest that IMERG (R² = 0.63, slope of linear regression a = 0.96, root mean square 
error RMSE = 12 mm/day, mean absolute error MAE = 5.5 mm/day) outperforms other SPPs at the 
daily scale, followed by REF2 (R² = 0.41, a = 0.94, RMSE = 15 mm/day, MAE = 6 mm/day) and ARC2 
(R² = 0.30, a = 0.88, RMSE = 16 mm/day, MAE = 6.7 mm/day). All SPPs, with the exception of the 
ERA5, overestimate the ‘no rain’ class (0 – 0.2 mm/day). ARC2, IMERG, PERSIANN, and REF2 all 
underestimate rainfall occurrence in the 0.2 – 150 mm/day rainfall range, whilst CHIRPS and ERA5 
overestimate it. Only CHIRPS and PERSIANN could estimate extreme rainfall (>150 mm/day) sat-
isfactorily. According to the Critical Success Index (CSI) categorical statistical measure, IMERG per-
forms quite well in detecting rain events in the range 2-150 mm/day, whereas PERSIANN outper-
forms IMERG for rain events larger than 150 mm/day. Because it performs best at daily scale, only 
IMERG was evaluated for time scales other than daily. At the yearly and monthly time scales, the 
performance is good with R² = 0.97 and 0.87, respectively. At the event time scale, the probability 
distribution function PDF of rain gauge values and IMERG data show good agreement. However, 
at hourly time scale, the correlation between ground-based measurements and IMERG data be-
comes poor (R2 = 0.20). Overall, the IMERG product can be regarded as the most reliable satellite 
precipitation source at monthly, daily and event time scales for hydrological applications in the 
study area, but the poor agreement at hourly time scale and the inability to detect extreme rainfall 
>200 mm/day may nevertheless restrict its use. 

Keywords: Madagascar; GIRE SAVA, Ankavia; satellite precipitation products; IMERG 
 

1. Introduction 
Accurate precipitation data is essential for numerous theoretical and practical appli-

cations, be it for water balance calculations, flood warnings, drought monitoring, or water 
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resource management [1–3]. When properly installed and maintained, rain gauge obser-
vations provide accurate point-based precipitation measurements [4,5]. However, in case 
of low coverage density, they are poorly adapted to deal with the high spatiotemporal 
heterogeneity in precipitation. The latter can result in large errors when rain gauge data 
are interpolated to larger scales, particularly in mountainous areas with complex terrain 
[6,7]. Furthermore, the spatial distribution of rain gauges is often highly uneven in prac-
tice, with few gauges in remote areas, in less developed regions, in areas with complicated 
terrain or in forested areas [8]. As a result, in situ rain gauge data seldom matches the 
needs of applications that require precipitation data with high spatiotemporal resolution 
[8,9]. This is particularly true across vast swaths of the African continent [8,10]. 

As opposed to rain gauges, satellite-based precipitation products (SPP) have the ad-
vantage of offering wide spatial coverage [8]. There are currently a number of SPPs avail-
able, including ARC2 (African Rainfall Estimate Climatology version 2), CHIRPS (Climate 
Hazards Group Infrared Precipitation with Station Data), ERA5 (ECMWF Reanalysis), 
IMERG (Integrated Multi-satellitE Retrievals for Global Precipitation Measurement), PER-
SIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neu-
ral Networks), and REF2 (African Rainfall Estimation version 2) [2]. Recent SPPs also pro-
vide adequate spatial (< 0.1°*0.1°) and temporal (daily to sub-hourly, depending on the 
product) resolution, allowing for credible precipitation estimates in data-scarce environ-
ments or at ungauged locations [2,11,12]. They have been used in a variety of applications, 
including hydrological modeling, extreme event analysis, and water resource manage-
ment [8,9,13]. 

Since SPPs are based on indirect rainfall estimation methods, the results will be sub-
ject to uncertainty due to measurement errors, sampling, retrieval methods, and bias cor-
rection processes [14,15]. The errors depend on the number and type of sensors taking 
measurements across a certain location at a given time, as well as the strategies used to 
assimilate the available data into a coherent gridded dataset [16–18]. Furthermore, the er-
ror characteristics differ based on the type of storm system, location, topography, and 
cloud properties [19]. Therefore, the accuracy of SPPs must be thoroughly explored both 
in time and space [20,21], and quantitative statistical evaluations are useful tools for as-
sessing SPP precision [22,23]. Whereas some researchers assess SPPs based on the accu-
racy of streamflow rate predictions within hydrological modeling frameworks [22,23], 
most studies evaluate SPPs against gauge data or against estimates from ground-based 
weather radars [8,24]. 

Various studies have been undertaken to assess SPP performance at the global, con-
tinental, and regional levels during the last few decades. TRMM Multi-Satellite Precipita-
tion Analysis (TMPA) products, for example, have been assessed in various parts of Af-
rica, and the results revealed that TMPA products provide effective data in most regions 
[6,24,25]. [14] found that TMPA was the best product at daily time scale over different 
parts of Central Africa. Following that success, [22] proved that the Integrated Multi-sat-
ellite Retrievals for IMERG, which integrates observations from many satellites of the 
GPM satellite constellation, improves the quality and spatiotemporal resolution of precip-
itation data. Other investigations in eastern Africa (Zimbabwe) show that ARC2 and REF2 
predict the precipitation gauge data better than other SPPs [15]. In addition, an evaluation 
conducted by [26] in equatorial and eastern Africa showed that IMERG performed better 
for daily scales, while CHIRPS outperformed other products at monthly and annual 
scales. Overall, the reliability of SPPs appears governed by a number of factors, including 
the study scale, location, time scale and, most significantly, the availability of ground-
based data used for calibration [15,22]. 

Despite the significant efforts undertaken so far to evaluate SPPs, those products con-
tinue to require extensive validation against ground observations in order to assess their 
quality and to quantify the appropriate level of confidence in their use for various hydro-
logical applications [2]. Furthermore, [27] highlights that the choice of SPP has a signifi-
cant impact on runoff estimation, and underlines the need of rigorous assessment with in 
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situ observations to improve their confident application in water cycle research. As a re-
sult, temporal aspects and spatial distributions must not only be explored but also quan-
titatively analyzed. Nonetheless, the scale discrepancy problem persists when rain gauge 
data is used for validation. So far, the majority of existing SPP validation efforts in Africa 
have been done at large scales (country level or greater), with rain gauges separated by 
very large distances [8,28,29], and they were often performed on public datasets or GPCP-
1DD (Global Precipitation Climatology Project One-Degree Daily Precipitation) data [29]. 
Since numerous water management issues are dealt with at smaller scales, it is therefore 
of high interest to also evaluate the ability of SPPs at capturing rainfall variations across 
short distances (5-10 km) for applications in medium to large watersheds (i.e., ~10³ km²) 
[30].  

The aim of this study was therefore to evaluate, at different time scales (hourly to 
yearly), the reliability of six major SPPs (ARC2, CHIRPS, ERA5, GPM IMERG, PERSSIAN, 
and REF2) for water management applications in medium-size watersheds in Africa. 
More specifically, SPP data were evaluated against a network of rain gauges installed in 
the Ankavia watershed (1116 km²) in north-eastern Madagascar. Water-related issues 
abound in Madagascar, having strong impacts on economic development and environ-
mental conservation [31,32]. Indeed, northeastern Madagascar is characterized by heavy 
rainfall (1500 to 2500 mm/year), caused by southeasterly exchanges that start in the Indian 
Ocean anticyclone and reach the highlands of the east [33]. This, along with deforestation 
from slash and burn, logging, and firewood harvesting, contributes to some of the world's 
greatest levels of erosion and catastrophic flooding [34,35]. Furthermore, as a result of 
climate change, more powerful cyclones and increasing sea levels directly threaten coastal 
settlements and exacerbate floods and erosion in coastal areas [13]. In contrast, during the 
dry season, some rivers in the north tend to dry up and alternative ground water sources 
are not always available [33]. Previous research has shown that pressure on water re-
sources in Madagascar are increasing [36,37]. Hydrometeorological data are scarce and 
not always routinely collected, which impedes decision making for integrated water re-
sources management (IWRM), particularly at the basin scale [38,39]. Hence the use of re-
liable SPPs seems unavoidable for hydrological modeling, drought monitoring, and water 
resources management. 

2. Materials and Methods 
2.1. Study area 

This study focuses on the Ankavia watershed, located between 14°50’-15°20’S and 
49°50’-50°20’E in the SAVA region in the north-east of Madagascar (Figure 1). At a re-
gional scale, the climate is governed by the southeasterly trade winds that originate from 
the Indian Ocean anticyclone, a zone of high atmospheric pressure that seasonally changes 
its position over the ocean [38]. The northeastern coast of Madagascar is most directly 
exposed to the trade winds, and has the highest rainfall [40]. Furthermore, the region is 
regularly affected by tropical storms and cyclones [32]. The area has a subequatorial cli-
mate with two main seasons: the hot, rainy season extends from November to April (ap-
prox. 70% of total annual precipitation) and the cooler, drier season from May to October. 
Temperatures range from 18°C to 31°C [47]. 

The hydrographic network in the SAVA region is dense and highly branched [41]. 
The majority of the rivers originate in mountainous massifs and flow eastward into the 
Indian Ocean. These rivers are heavily fed throughout the year, with low flows in October 
and November. Floods are common during the rainy season and are often exacerbated in 
the coastal zone by sediment accumulation [42]. For the last 60 years, the climatic data for 
the region have been provided solely by the Antalaha weather station located close to the 
coast (Figure 1). 

The Ankavia watershed covers an area of 1116 km², i.e., roughly 5% of the total area 
of the SAVA region (Figure 1). It was chosen for this study due to its natural and social 
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context, both exerting a strain on water resources. In particular, the Ankavia river pro-
vides water to the city of Antalaha (150 000 people in 2017). Altitude in the catchment 
varies from 14 m a.m.s.l. near the outlet in the east (hilly topography) to 1469 m a.m.s.l. in 
the south-west (mountainous topography). The western part of the Ankavia watershed is 
mainly occupied by primary forests, whereas the east is composed mostly of mosaic veg-
etation including shrubs and herbaceous cover [43]. The vast majority of inhabited and 
cultivated areas are clustered around the major rivers [44].  

 
Figure 1. Location of the Ankavia watershed in northeastern Madagascar with rain gauge net-
work. 

2.2. Ground-based precipitation data 
Fourteen rain gauges and one meteorological station were established in the Ankavia 

catchment as part of the GIRE SAVA project (Gestion Integrée des Ressources en Eau in 
the SAVA region) (Figure 1). The rain gauge at the Marofinaritra climate station is a Camp-
bell Scientific® ARG100, whereas the other 13 rain gauges scattered within the basin are 
HOBO® RG3-M instruments. They are set with a recording interval of one hour. The sta-
tions are positioned 1.5 meters above the ground and their elevation ranges from 25 m to 
663 m a.m.s.l., with the majority of the stations located along the rivers at low and mid 
altitudes and 90% of the rain gauges located below 300 m (Figure 1). Because of the re-
moteness, dense vegetation and lack of roads, as well as the difficulty to ensure routine 
maintenance, no rain gauge could be installed in the high-elevation mountainous region 
(>1000 m a.m.s.l). Rainfall data, used in the current study, were collected for a 2-years 
period, from September 2018 to August 2020, thanks to regular monthly maintenance and 
data collection. 

2.3. Satellite-based precipitation data 
Six gridded SPPs were used in this study to compare with observed rain gauge data 

(Table 1). These products were chosen based on the availability of long time series, spatial 
(≤ 0.1°) and temporal (≤ daily) resolutions that make them suitable for hydrological appli-
cations at the scale of the Ankavia watershed, near-real-time availability, public domain 
and their coverage of Africa.  
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2.3.1. ARC2 
ARC2 stands for African Rainfall Estimate Climatology version 2. ARC2 was devel-

oped by the NOAA Climate Prediction Center (CPC) which offers daily rainfall data for 
Africa [2]. It uses inputs from two sources: (1) 3-hourly geostationary infrared (IR) data 
centered over Africa from the European Organization for the Exploitation of Meteorolog-
ical Satellites (EUMETSAT), and (2) quality-controlled Global Telecommunications Sys-
tem (GTS) gauge observations reporting 24 hours rainfall accumulations over Africa [45]. 
ARC2 has a spatial resolution of 0.1° for a global coverage and daily temporal resolution, 
and can be downloaded at: https://iridl.ldeo.colum-
bia.edu/SOURCES/.NOAA/.NCEP/.CPC/.FEWS/.Africa/.DAILY/.ARC2/.daily/ (accessed 
on June 2021). 

2.3.2. CHIRPS 
CHIRPS is an abbreviation for Climate Hazards group Infrared Precipitation with 

Station data. From 1981, the CHIRPS product provides daily precipitation data with a 
spatial resolution of 0.05° for a quasi-global coverage of 50°N-50°S [46]. The most recent 
product is Version 2.0, which was released in February 2015. The CHIRPS product and 
associated data can be found at: https://climateserv.servirglobal.net (accessed on June 
2021). The main datasets used for the construction of the CHIRPS product are the monthly 
precipitation climatology (CHPclim) information based on thermal infrared data archived 
from CPC and NOAA National Climate Data Center (NCDC), the Version 7 TRMM 3B42 
data, the Version 2 atmospheric model rainfall field from the NOAA Climate Forecast 
System (CFS), and rain gauge stations [47]. To begin, the cold cloud duration (CCD) data 
are calibrated with TRMM 3B42 to generate 5-day CCD-based precipitation estimates, 
which are then converted to fractions of long-term mean precipitation estimates [47,48]. 
The fractions are then multiplied by CHPclim data to remove systematic bias, and the 
resulting product is known as the CHIRP product [29]. Finally, the CHIRP product is com-
bined with data from rain gauge stations using a modified inverse distance weighting 
algorithm to generate the CHIRPS [47]. All of the preceding processing is carried out on a 
5-daily basis. Using a simple redistribution method, the CCD and CFS data are finally 
used to disaggregate the 5-daily products to daily precipitation estimates [48]. 

2.3.3. ERA5 
ERA5 is the most recent edition of global atmospheric reanalysis of the European 

Center of Medium-Range Weather Forecasts (ECMWF) from 1979 [49]. ERA5 Land was 
created by rerunning the land component of the ERA5 climate reanalysis and spans the 
same time period as ERA5, from January 1950 to near real-time (NRT) [50]. ERA5 Land is 
generated in a single simulation that is not coupled to the atmospheric module of the 
ECMWF's Integrated Forecast System. Observations have an indirect effect on the simu-
lation due to the atmospheric forcing of ERA5 [51]. This forcing is used to drive the single 
ERA5 Land simulation and was obtained by integrating observations using a 4D-Var data 
assimilation system and a Simplified Extended Kalman Filter [51]. The fields are overlain 
for all oceans and have an hourly resolution. The CDS Climate Copernicus website was 
used to download hourly total precipitation for the study period with a spatial resolution 
of approximately 0.1°*0.1° (available at https://cds.climate.copernicus.eu/cdsapp#!/da-
taset/reanalysis-era5-land?tab=overview) (accessed on June 2021). 

2.3.4. IMERG 
IMERG (Integrated Multi-satellitE Retrievals for Global Precipitation Measurement) 

is available at https://giovanni.gsfc.nasa.gov/giovanni/ (accessed on June 2021). The GPM 
project, a collaboration between the National Aeronautics and Space Administration 
(NASA) of the United States and the Japan Aerospace Exploration Agency (JAXA), began 
in 2014 to provide half-hourly global precipitation data and have 0.1° spatial resolution 
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[52]. The GPM satellite is equipped with two major sensors: the GPM Microwave Imager 
(GMI), which measures precipitation intensity, depth, and duration, and the Dual-fre-
quency Precipitation Radar (DPR), which observes storm internal structure within and 
beneath clouds [53]. The GPM Constellation provides three levels of data processing 
(IMERG products), but the most commonly used are the gridded products that combine 
GMI and DPR rainfall averages or rainfall estimates combined from data of all active and 
passive microwave instruments in the GPM Constellation [21,52]. There are three daily 
IMERG products: IMERG Day 1 Early Run (near real-time with a latency of 6 hours), 
IMERG Day 1 Late Run (reprocessed near real-time with a latency of 18 hours), and 
IMERG Day 1 Final Run (gauged-adjusted with a four-month latency) [21]. In this study, 
we selected the IMERG-v06 Final Run half-hourly products [53]. 

2.3.5. PERSIANN 
The PERSIANN (Precipitation Estimation from Remotely Sensed Information using 

Artificial Neural Networks) Cloud Classification System (CCS) provides hourly precipi-
tation estimates at the spatial resolution of 0.04° for the quasi-global coverage of 60° N–
60° S from 2003 to present [54]. PERSIANN, developed at The University of Arizona and 
now operated by the Center for Hydrometeorology and Remote Sensing (CHRS) at the 
University of California Irvine (UCI), is based on an adaptive Artificial Neural Network 
(ANN) model that estimates precipitation using IR information from geostationary satel-
lites to feed a Modified Counter Propagation ANN that has been trained with ground and 
microwave satellite estimates to give an output of rainfall intensity [55]. Such ANN clas-
sifies the input IR data plus other important information (topography, location, wind 
flow, etc.) using a pre-trained self-organized feature map (SOFM), and then maps with 
the input variables through an Input–Output Prediction Map to create an estimated rain-
fall intensity [56]. The product is available at:  http://chrsdata.eng.uci.edu/ (Accessed on 
June 2021). 

2.3.6. REF2 
Finally, REF2 (African Rainfall Estimation version 2) is produced by the NOAA-CPC. 

It is primarily designed for the Famine Early Warning Systems Network to aid in disaster 
monitoring across Africa [7]. The product estimates daily precipitation for Africa with a 
spatial resolution of 0.1°. REF2 receives data from four operational sources: (1) daily GTS 
rain-gauge data, (2) Advanced Microwave Sounding Unit (AMSU)-based rainfall esti-
mates, (3) Special Sensor Microwave Imager (SSM/I)-based estimates, and (4) the Geosta-
tionary Operational Environmental Satellite (GOES) precipitation index (GPI) calculated 
from cloud-top infrared (IR) temperatures on a half-hourly basis [7]. It is available at 
https://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.CPC/.FEWS/.Af-
rica/.DAILY/.REFv2/ (accessed on June 2021). However, the use of polar-orbiting PM and 
geostationary IR data differs between ARC and REF. ARC uses 3-hourly IR data rather 
than 30-minutes data and does not include PM estimates, whereas RFE does [7,45]. 

Table 1. Selected satellite precipitation products. 

Dataset Full name Spa-
tial  

reso-
lution 

Time-scale 
(highest reso-

lution) 

Period of avail-
ability 

Refer-
ence 

ARC2 African Rainfall Climatology version 2 0.10° Daily 1983 - Present [45] 
CHIRPS CHIRP with station data 0.05° Daily 1981 - Present [48] 

ERA5 ECMWF Reanalysis version 5 0.10° Hourly 1979 – Present [51] 
IMERG Integrated Multi-satellitE Retrievals for Global 

precipitation measurement 
0.10° Half-hourly 2000 - Present [53] 
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PER-
SIANN 

Precipitation Estimation from Remotely Sensed 
Information using Artificial Neural Networks – 

Cloud Classification System 

0.04° Hourly  2003 - Present [54] 

REF2 Climate Prediction Center (CPC) African Rainfall 
Estimates version 2 

0.10° Daily 2001 - Present [7] 

2.4. Data comparison methodology 
2.4.1. Data quality control 

Initially, the satellite product data were downloaded in files with half-hourly, hourly 
or daily time steps (depending on availability; Table 1) based on the GMT 0:00 time zone. 
Negative values were removed from the satellite datasets. When necessary, daily totals 
were generated by summing the half-hourly or hourly files. For the study area (Madagas-
car +03H00 GMT), the observed rain gauge time series data were adjusted to the GMT and 
aggregated at hourly or daily scale to be compared with the SPPs. 

2.4.2. Data processing 
Because of the scale discrepancy between SPPs and rain gauge data (Figure 2.), two 

approaches were used to assess the performance of SPPs: (i) point-to-grid, (ii) point-grid-
ded approach. Point-to-grid consists in comparing the precipitation recorded at each rain 
gauge with the precipitation from the SPP grid (0.04°, 0.05°, 0.1° respectively) that encom-
passes the rain gauge (Figure 2a). Because the location of rain gauges most often does not 
coincide with SPP grid centroids (Figure 2a), a second strategy was implemented: the 
point-gridded approach. In practice, a cell is delineated around each rain gauge (cell size 
of 0.04, 0.05, 0.1° depending on the SPP; Table 1). Then, the satellite-based rainfall in those 
new cells was estimated as the area-weighted mean (max. 4) of the SPP grid cells overlap-
ping with the new cell (Figure 2b). A third approach could have been to define an ‘area of 
influence’ (Thiessen polygon) around each rain gauge and calculate area-weighted aver-
ages for each grid, to be compared with the gridded data (‘grid-to-grid’ approach). How-
ever, such an approach leads to very different situations from one grid cell to another, 
some grids being in the area of influence of a single rain gauge while other grids are in the 
area of influence of up to 5 rain gauges. In addition, because the spatial resolution varies 
across SPPs, such an approach may introduce bias in the comparison. 

  
(a) (b) 

Figure 2. Data processing with two differents approaches: (a) point-to-grid, (b) point-gridded. 
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2.4.3. Rainfall event definition and properties 
Besides evaluation at daily and hourly time scales, the best SPP was evaluated at 

event time scale. There are numerous methods for identifying individual rainfall events 
[57]. In this study, based on a study conducted by [58] over a tropical area (Brazil), a min-
imum inter-event time interval of 6 hours and a minimum rainfall depth threshold of 2.5 
mm were chosen for the evaluation. In other words, a cumulative rainfall depth >2.5 mm 
is required to be considered as a rainfall event. The temporal resolution used to define 
rainfall events is one hour for both rain gauge and SPP data. 

2.4.4. Metrics for accuracy assessment 
Several widely used statistical indices (Table 2) were adopted to quantify the perfor-

mance of the six SPPs against rain gauge observations: Coefficient of determination (R²), 
Slope of the linear regression (a), Root Mean Square Error (RMSE), and Mean Absolute 
Error (MAE).  

In addition, we also evaluated the capability of the SPPs in reproducing the distribu-
tion of observed precipitation intensities using the Probability Distribution Function 
(PDF) of daily rainfall intensities. For this purpose, we categorized precipitation into 
twelve different classes: 0 – 0.2 mm/day, 0.2 – 0.5 mm/day, 0.5 – 1 mm/day, 1 – 2 mm/day, 
2 – 5 mm/day, 5 – 10 mm/day, 10 – 20 mm/day, 20 – 50 mm/day, 50 – 100 mm/day, 100 – 
150, 150 - 200 mm/day and >200 mm/day.  

Finally, the probability of detection (POD), false alarm ratio (FAR) and critical success 
index (CSI) were calculated to evaluate the precipitation detection ability of the six SPPs 
(Table 2). These indices aim at evaluating whether the estimated daily precipitation coin-
cides with the precipitation observed on the ground. Specifically, POD represents the frac-
tion of observed precipitation occurrences correctly detected by a given SPP. FAR corre-
sponds to the fraction of detected precipitation occurrences that are incorrectly detected 
by a given SPP while CSI measures the overall fraction of (detected and observed) precip-
itation occurrences correctly detected by a given SPP. The POD, FAR and CSI values all 
range between 0 and 1. POD and CSI have perfect scores of 1, while FAR has a perfect 
score of 0. These indices are calculated for the different daily rainfall classes defined above. 

Table 2. Statistical metrics. 

Name/Symbol Formula Optimal value 
Continuous statistical metrics 

Coefficient of determination/ 
R² 

R =
∑ [(0𝑖 − 0)(𝑃𝑖 − 𝑃)]²

∑ (𝑂𝑖 − 𝑂)²∑ (𝑃𝑖 − 𝑃)²

 1 

Slope of linear regression/ a Y=aX+b 1 

Root Mean Square Error/ 
RMSE RMSE =

∑ (𝑃𝑖 − 𝑂𝑖)²

𝑛
 0 

Mean Absolute Error/ MAE MAE =
1

𝑛
∗ |𝑂𝑖 − 𝑃𝑖| 0 

Categorical statistical metrics 

Probability of Detection/ POD POD =
𝐻𝑖𝑡𝑠

𝐻𝑖𝑡𝑠 + 𝑀𝑖𝑠𝑠𝑒𝑠
 1 

False Alarm Ratio/ FAR FAR =
𝐹𝑎𝑙𝑠𝑒𝐴𝑙𝑎𝑟𝑚

𝐻𝑖𝑡𝑠 + 𝐹𝑎𝑙𝑠𝑒𝐴𝑙𝑎𝑟𝑚
 0 

Critical Success Index/ CSI CSI =
𝐻𝑖𝑡𝑠

𝐻𝑖𝑡𝑠 + 𝐹𝑎𝑙𝑠𝑒𝐴𝑙𝑎𝑟𝑚 +𝑀𝑖𝑠𝑠𝑒𝑠
 1 

P = Satellite Products value, O = Observed (rain gauge) value, P = average value of P, 0 = average 
value of O, n = number of samples, X is the explanatory variable (O), Y is the dependent variable 
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(P), Hits denotes the number of observed precipitations correctly detected by the satellite products. 
Misses represents the number of precipitation occurences observed by the rain gauges but not de-
tected by the satellite products. False Alarm indicates the number of precipitation occurences not 
observed by the rain gauges but detected by the satellite products. 

3. Results 
3.1. Overall SPP performance at daily time-scale 

The comparison between rain gauge measurements and satellite-based rainfall esti-
mates reveals large differences among the six SPPs (Figure 3). However, all statistical met-
rics follow a similar pattern. Overall, IMERG data correlate best with the rain gauge data: 
highest R², slope of the regression closest to 1, lowest RMSE and MAE. ARC2, PERSIANN, 
and REF2 perform rather similarly, though REF2 tends to have better slope and MAE and 
PERSIANN a better R² than the two others products. ERA5 and especially CHIRPS per-
form worst. 

Overall, the statistical indices are generally similar or slightly better using the point-
gridded approach as compared to the point-to-grid approach (Figure 3). As a result, the 
point-gridded approach was used for the remainder of the analyses.  
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Figure 3. Comparison of ground-based precipitation data with six SPPs at daily time scale from 
September 2018 to August 2020 based on 4 indicators : (a) Coefficient of determination, (b) Slope of 
linear regression, (c) Root Mean Square Error, (d) Mean Absolute Error. Each box plot is based on 2 
years of data from 14 rain gauges in the Ankavia watershed. ‘A’ refers to the point-to-grid approach 
and ‘B’ to the point-gridded approach (see Figure 2). Box edges correspond to the 25th (Q1) and 75th 
(Q3) percentiles. Whiskers extend to Q1-1.5IQR (lower bound) and Q3+1.5IQR (upper bound), with 
IQR = Q3-Q1 (Inter-Quartile Range). Points outside the box are outliers. 

3.2. SPP performance at daily time scale across the watershed 
Figure 4 displays the R², slope, RMSE and MAE for each rainfall gauge at daily time 

scale across the Ankavia watershed. The greener the circle is, the closer the indicator is to 
its optimum value. In contrast, the color red means a poor performance. Overall, IMERG 
shows good and fairly uniform levels of agreement across the entire watershed for all four 
indices. The performance of PERSIANN, REF2 and ARC2 varies widely from one location 
to another. CHIRPS and ERA5 show the poorest performance across the entire watershed. 
No particular spatial trend is observable regarding the spatial distribution of the statistical 
metrics. 

 
Figure 4. Spatial distribution of the statistical evaluation metrics across the Ankavia watershed 
based on the point-gridded approach at daily time scale from September 2018 to August 2020. 

3.3. Daily rainfall probability distribution function 
PDFs computed from the six SPPs and the rain gauge data over the Ankavia catch-

ment are shown in Figure 5. Overall, all satellite PDFs follow the same general trend as 
the rain gauge PDF except for ERA5, and CHIRPS for specific ranges. ARC2, IMERG, PER-
SIANN, and REF2 tend to overestimate the precipitation class between 0 – 0.2 mm/day. 
Most SPPs tend to underestimate the precipitation class between 0.5 to 10 mm/day, while 
ERA5 overestimates frequency in that precipitation range. Furthermore, most SPPs tend 
to underestimate the frequencies in precipitation classes>150 mm/day. More specifically, 
ARC2 cannot detect precipitations events >150 mm/day. IMERG cannot detect precipita-
tion events >200 mm/day while ERA5 and REF2 can estimate it but strongly underestimate 
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this class. Only CHIRPS and PERSIANN perform well for rainfall >200 mm/day, although 
they underestimate this rainfall range. 
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Figure 5. Probability distribution function (PDF) of daily rainfal intensities based on SPP and rain 
gauge data from September 2018 to August 2020. Note logarithmic (Log10) scale for Y axis. 

3.4. Precipitation detection ability 
Figure 6 depicts the rainfall detection ability (POD, FAR, CSI) of the various SPPs. 

The results show that the POD values of ERA5 are highest among all products for the 
precipitation classes between 0 and 5 mm/day but are among the lowest for rainfall classes 
>20 mm. As a matter of fact, the POD of ERA5 decreases steadily with increasing daily 
rainfall amount. POD of ARC2, IMERG, REF2 and CHIRPS are similar (approx. 0.5 to 0.6) 
for the precipitation classes <1 mm. However, the POD of IMERG remains rather constant 
in the range of 0.2 – 100 mm/day, whereas the PODs of ARC2 and REF2 decrease steadily. 
The POD of CHIRPS first increases slightly up to 5 mm/day then decreases thereafter. 
PERSIANN performs worst of all SPPs for the lowest precipitation classes but the POD 
tends to increase with increasing rainfall. For precipitation classes >100 mm/day, only the 
PERSIANN product has a high POD value while the PODs for all other SPPs tend towards 
0. 

Between 0.2 and 20 mm/day, the FARs of all SPPs increase steadily. For rainfall clas-
ses ≤100 mm/day, IMERG shows similar or better performance than all other products. 
For daily rainfall >150 mm, only PERSIANN has a low FAR. 

Based on the CSI value, the ERA5 product performs best in detecting precipitation in 
0.2 – 2 mm/day precipitation range. IMERG performs best in detecting rainfall in the range 
2 – 100 mm/day. Only PERSIANN performs well for rainfall >150 mm/day. Both IMERG 
and PERSIANN show rather constant performance in terms of CSI in the range 0.2 – 100 
mm but IMERG outperforms PERSIANN in this range. 
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(a) (b) 

 
(c) 

Figure 6. Precipitation detection ability of the six SPPs based on daily rainfall: (a) Probability of 
detection (POD), (b) False alarm ratio (FAR), (c) Critical success index (CSI). Ground-based rain 
gauge data from September 2018 to August 2020 are used as reference. Note logarithmic (Log10) 
scale for X axis. 

3.5. Differents time scales assessment (hourly to yearly) 
For the different time scales, only the IMERG product was evaluated, using the point 

gridded approach, given that this product appeared to perform best at the daily time scale 
(§ 3.2). Figure 7 depicts the evaluation of IMERG at different time scales (hourly to yearly) 
against the gauge data over the Ankavia catchment. The coefficient of determination in-
creases with increasing aggregation time scales from hourly to yearly. Specifically, IMERG 
exhibits good correlation at the yearly time scale (R² = 0.97; Figure 7a) and at monthly time 
scale (R² = 0.87; Figure 7b), and reasonable correlation at the daily assessment (R² = 0.65; 
Figure 7c). The correlation is poor at hourly time scale (R² = 0.20; Figure 7d). Especially at 
the daily time scale, there is a tendency to underestimate the events >150 mm (Figure 7c). 
IMERG also tends to underestimate yearly and, to a lesser extent, monthly rainfall. Addi-
tionally, it is apparent that the variability in yearly (Figure 7a) and monthly (Figure 7e) 
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rainfall across the watershed is greater than the variability in IMERG rainfall data, espe-
cially for the high-rainfall months.  
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Figure 7. Comparison of ground-based precipitation data with IMERG at different time scales : (a) 
yearly, (b) monthly, (c) daily, (d) hourly, (e) barplot of monthly rainfall with standard deviation. R² 
value is determined for regression passing through (0,0). 

3.6. Event scale assessment 
Figure 8 shows the PDF plots for the rainfall event depths, durations and intensities 

over the 2-year period. Overall, the IMERG precipitation product presents a good agree-
ment with rain gauge data in terms of duration (Figure 8 a) and depth (Figure 8 b). How-
ever, the rainfall intensities between 0 – 5 mm/h are underestimated while the 5 – 10 mm/h 
rainfall intensity class is largely overestimated (Figure 8 c). 

(a) (b) 

 
(c) 

Figure 8. Probability distribution function of (a) rainfall duration, (b) rainfall depth and (c) rainfall 
intensity at event time scale for ground-based rain gauges and IMERG data from September 2018 to 
August 2020. 

4. Discussion 
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For the validation of the SPP data using ground-based rain gauges, the point-gridded 
approach performs similarly or better than the point-to-grid approach (Figure 3). Since 
the grid cell centroids rarely coincide with the rain gauge position, the point-to-grid 
method is subject to greater inaccuracy [59,60]. This inaccuracy grows in proportion to the 
spatial resolution of the satellite product [61]. In contrast, the point-gridded approach re-
duces this mismatch problem between gauge data and SPP data while preserving the res-
olution of the gridded data. Nevertheless, the point-gridded technique is rarely studied 
[61].  

At the daily time scale, among the six SPPs, IMERG performed best at our study lo-
cation (Figure 3). Its overall performance is reasonably good despite the small number of 
available rain gauges used for GPCC in Africa, especially in Madagascar [53], resulting in 
biased precipitation data at rain gauge and catchment scale. Several previous studies have 
also underlined that IMERG outperforms other SPPs in tropical areas [63,66,67,22]. This 
has been attributed to the GPM Microwave Imager (GMI) and the ability of the Ku/Ka-
band Dual-frequency Precipitation Radar (DPR) to capture precipitation more effectively 
than the Infrared (IR) sensors and/or direct passive microwave (PMW) technologies used 
by other SPPs [53]. Specifically, the GMI instrument is a conically-scanning, multi-channel 
microwave radiometer with thirteen channels ranging in frequency from 10 GHz to 183 
GHz [53]. The GMI employs a set of frequencies that have been refined over the last two 
decades to recover most ranges of precipitation, with the polarization difference of each 
channel serving as an indicator of optical thickness, water content, and precipitation sys-
tems [53]. Besides IMERG, REF2, ARC2 and PERSIANN also show satisfactory perfor-
mance (Figure 3). In contrast, CHIRPS and ERA5 perform poorly in the daily assessments. 
Some factors like gauge calibration play a significant role in the performance of SPPs [62]. 
Therefore, the fact that some products (ARC2, IMERG, PERSIANN, REF2) are gauge cal-
ibrated may explain their better performance compared to CHIRPS and ERA5. 

Table 3 summarizes the results from various studies that evaluated the performance 
of IMERG at daily time scale in broadly similar climatic environments to the present study 
(humid tropical environment). Note that almost all of those studies used a point-to-grid 
or grid-to-grid approach, hence the performance assessments are largely influenced by 
the density of the gauge network taken as reference [63–65]. In terms of correlation (r), the 
results from our study are among the highest reported so far, similar to [63]. RMSE and 
MAE values in the present study are within the range of those reported previously. FAR 
values are also within the range of previously reported values whereas POD and CSI are 
somewhat lower in the present study compared to previous studies. Nevertheless, 
IMERG's fairly high POD, CSI and low FAR suggest a good detection capability for daily 
rainfall, particularly in the range of 0 - 100 mm/day (Figure 6), even though some rainy 
days are still being missed. Precipitation events estimated by the SPP may not be detected 
by the gauges as it might rain at other locations within the grid-cell area. Furthermore, 
given their spatial resolution, SPPs will be less sensitive to short-range variations in rain-
fall, which may explain the somewhat poorer performance of IMERG in the present study 
given that many gauges are separated from each other by less than 10 km. Besides, many 
factors could influence this variation of performance across studies, including the density 
of the rain gauge network and especially the validation technique [26, 63, 70]. 

Table 3. Summary of IMERG assessment studies in tropical environments at daily time scale. 

References/ 
Study area 

Study period/ 
number of rain 

gauges for valida-
tion 

Validation  
approach 

r 
or
𝑅² 

RMSE 
mm/day 

MAE 
mm/day 

POD FAR CSI 

[26]/East Africa 2000 – 2018/ 36 grid-to-grid 0.41 12.4 7.6 0.88   
[65]/East Africa 2014/ 37 grid-to-grid 0.53   0.87 0.04  
[66]/Singapore 2014 – 2016/ 48 grid-to-grid 0.53 11.83  0.78 0.28 0.60 
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[63]/Philippines 2014 – 2017/ 55 grid-to-grid 0.81 5.66 3.74    
[67]/Bali 2015 – 2017/ 27 point-to-grid 0.32 17.19  0.84 0.54 0.44 

[68]/Vietnam 2014 – 2016/ 53 grid-to-grid 0.58   0.73 0.22 0.61 
[69]/Malaysia 2014 – 2016/ 31 point-to-grid 0.54 14.93  0.89 0.20 0.73 
[61]/Mexico 2014 – 2015/ 99 point-gridded 0.54 7.93  0.2-0.6 0.2-0.6 0.2-0.8 

Ankavia 2018 – 2020/ 14 point-gridded 0.80 12 5.5 0.5–0.6 0.2-0.4 0.4-0.5 
According to our results, the performance of IMERG is rather uniform across the wa-

tershed, i.e., there is no evidence of a spatial trend of the statistical metrics (Figure 4). 
Therefore, the negative effect of the topography, which often alters the performance of the 
precipitation satellites, is not apparent in our study area. Nevertheless, our results are 
consistent with previous findings for stations located in mid- and low-altitude, with rela-
tively mild and wet climate [70–72]. Indeed, 13 of the 14 rain gauge stations in the Ankavia 
catchment are located between 14 and 300 meters a.m.s.l. 

The PDF analyses underline that most of the SPPs show the same distribution as the 
gauges except for the ERA5 data and, to a lesser extent, the CHIRPS data. Overall, the 
results reveal an overestimation for the 0-0.2 mm/day precipitation class and an underes-
timation of the >0.2 mm/day classes (Figure 5). Other studies have, however, reported that 
IMERG slightly overestimated the frequency of rainfall events between 1 and 50 mm/day 
[67,69,66]. In addition, the findings also indicate that some SPPs underestimate the pre-
cipitation classes >150 mm/day. These poor performance of SPPs at detecting extreme 
events was also reported in other assessment studies in tropical river basins [73,66,74]. 
Specifically, since gridded products contain spatially-averaged rainfall values, larger grid 
size (0.1°*0.1°) products are more likely to smooth out the extreme rainfall values (>150 
mm/day) which are especially associated with short-duration events with limited spatial 
extent [73,75]. In contrast, CHIRPS and PERSIANN outperform all other SPPs in this range 
(>150 mm/day). Their capacities to better represent very high intensity rainfall could be 
due not only to their smaller grid size (0.05° and 0.04°, respectively), but also their ability 
to categorize cloud-patch features based on height, areal extent and variability of texture 
estimated from satellite imagery [47,76]. These classifications aid in the assignment of 
rainfall values to pixels within each cloud based on a predefined curve that describes the 
link between rain-rate and brightness temperature [54].  

With respect to the time scale of integration, the correlation between ground-based 
data and IMERG data improves with increasing summing time scales from hourly to 
yearly, which is in line with others findings. [26,67,77,66]. However, the strength of the 
correlation at yearly timescale is constrained by the short duration of study period (2 
years). In addition, IMERG data has difficulty in reproducing the spatial variability of 
rainfall within the catchment (Figure 7a, b, e). This may at least partly result from the 
spatial smoothing inherent to SPPs, daily extreme events not identified by the satellite 
(Figure 5), as well as the small number of rain gauges used as the bias correction for 
IMERG [52]. At event time scale, there is good agreement in terms of PDF of duration and 
depth (Figure 8), which is consistent to the results of [58] in Brazil. Finally, the poor per-
formance of IMERG at hourly scale have also been reported by other studies [79,80]. This 
could be due to the temporal resolution of inputs (> 1h), cited above (section 2.3.4.), used 
to calculate the IMERG product [79,52].  

5. Conclusions 
In this study, we performed a first assessment of six satellite precipitation products 

(ARC2, CHIRPS, ERA5, IMERG, PERSIANN, REF2) over the Ankavia watershed in Mad-
agascar, for a common period from September 2018 to August 2020, with 14 rainfall 
gauges taken as reference. The main findings of the study can be summarized as follows: 

 The point gridded approach is better suited than the point-to-grid approach in 
terms of continuous statistical metrics to evaluate satellite precipitations products 
against rain gauge data; 
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 At daily scale, the IMERG outperforms all other tested satellite precipitation prod-
ucts, followed by the REF2 and ARC2; 

 SPPs tend to overestimate the 0-0.2 mm/day rainfall class but underestimate the 
>0.2 mm/day ranges. Only SPPs with smaller grid sizes (0.04°, 0.05°) estimate ac-
curately the >150mm/day precipitation class;  

 IMERG is shown to perform well in detecting rain events up to 150 mm/day, but 
is surpassed by PERSIANN in detecting rain events larger than 150 mm/day. Nev-
ertheless, a substantial proportion of rainy days are not correctly predicted by 
IMERG; 

 IMERG show a good performance at monthly, daily and event time scales in our 
case study; nevertheless, its capacity to reproduce spatial variability of rainfall is 
very subpar at catchment scale. 

Overall, this SPP assessment study in north-eastern Madagascar provides evidence 
that the IMERG v06 final precipitation datasets performs satisfactorily when compared to 
rain gauge time series using the point gridded technique at a daily time scale. In addition, 
the level of performance is fairly constant across a broad range of daily rainfall values, 
except for extreme events. Therefore, IMERG is the most reliable for estimating rainfall 
characteristics in this region. However, the product should be used with caution for haz-
ard and flood assessment given its limitations for extreme rainfall events.  
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