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Abstract

In this work we introduce a novel approach to generate lower and upper L2
estimates for solution derivatives of arbitrary order to a general class of dissipative
systems in the case that such estimates are available for the solutions themselves.
Our method also works in reverse order: from the L? estimates of solution deriva-
tives of some (arbitrary) order we can derive lower and upper L? estimates for the
solutions and then to their derivatives of any order. This procedure is based on
very simple monotonicity properties combined with standard energy estimates in
physical space, following previous ideas of Kreiss, Hagstrom, Lorenz and Zingano.
For simplicity, it is applied here in the context of algebraic rates, but the method
can be used in other contexts as well (exponential, logarithm, and so forth).
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Summary and Conclusions

Section 0. Upper and lower estimates for dissipative systems
Monotonicity properties of H™ norms can be used to very easily produce new upper

and lower bounds for solutions of dissipative systems out of previous estimates.

Example 1. Heat equation
[lustration of the method begins for simplicity with the familiar linear heat equation.

Example 2. Advection-diffusion equations (n = 1)

Advection-diffusion equations on R are not so easy due to the slow solution decay.

Example 3. Advection-diffusion equations in higher dimensions

Advection-diffusion equations in R™ (n > 2) are easier due to the faster solution decay.

Example 4. Incompressible Navier-Stokes equations (2 < n < 4)
Old and new results are obtained for Leray solutions of the Navier-Stokes equations.

Example 5. Incompressible MHD equations (2 < n < 4)
Old and new results are obtained for Leray solutions of the MHD equations in R™.

Example 6. Incompressible micropolar flows (n = 2, 3)
Old and new results are obtained (or announced) for micropolar fluid flows in R™

Example 7. Inverse Wiegner’s theorem for the Navier-Stokes equations
A simple proof of WIEGNER’S INVERSE THEOREM for the NS equations in R" (n > 2).
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Upper and lower H™ estimates for solutions of parabolic equations

R. H. GUTERRES, C. J. NicHE, C. F. PERUSATO AND P. R. ZINGANO

Porto Alegre, April 25, 2021

Consider the equation
u; + G(u) = vAu + f, reR™ t>0 (0.1)
(where v > 0 is constant, and w = u(z,t), w = (uy,us,...,un), f= (fi1, fo, ..., fn), etc),

with some global weak solution w(-,t) € Cy([0,00), L*(R™)) which, together with f, be-
comes eventually smooth:

f,ue CC(R" x(t,,0)), (0.2a)
Ft),ul-,t) € C%((te, 00), HM(R™)™), ¥V m >0, (0.20)

for some ¢, > 0. Let || - || = | - ||L2(Rn). Assume that we have
fu(t)]| < Cot™™ Vi>Ty (H1)

for some constants Cy, Ty, o > 0. We also assume that we have, for some m > 1:

Z /(DE---DZ w(z,t), D, D, G(u(x,t)) ) dz | < g,,(t) || D" u(-,t) 1> Vit>m,
1 m 1 m

Ot VR (12)

for some 7, > t,, for every 0 < m < m, where the sum is over all indices 1 < ¢4,....¢,, < n

(no sum implied if m = 0), where g,,(t) — 0 as t — 0o, and where (-, -) denotes the inner

product of R". Finally, when f is present (i.e., f #0), we must additionally assume that

| D"f(-, )] < Ent™?~™%  VYit>o, (H3)

for some 8 > 0 (specified in the results below) and some F},, ,, > 0, for each 0 < m < m.

For the main results (THEOREM B and THEOREM C), it will be also necessary to assume
|w(-, )] > c(0)t™ YV t>ty (H4)

for some positive constants ¢(0), ¢y, n given (with 7 satisfying, by (H1) above: n > «).
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Notation. || - || denotes L? norm, so that

N

lu@®)|? = Ju(.0)2 =Y / lui(a,1)? d. (0.30)

i=1"7R"
Similarly,

I Du®)|]* = || Du(- 1) |* = Z Z / | Djuy(x,t)|* da, (0.30)

i=175=1

| D*u(t)||? = | D*u(-,t)|]? = Z Z Z / | D;D,u;(z,t)|? d, (0.3¢)

i=1j5j=14=

and so forth, where D; = 0/0x;, D; D, = 0*/dx;0z,, etc.

Here is a quick overview of the basic properties shown in the text (the main results
being THEOREM B and THEOREM C):

Theorem A (upper estimates for derivatives).
Assume (H1), (H2) and (H3) above, with § > a+ 1. Then we have, for every 1 < m <

| D™ u(-,t)|| < Cprv~™2t=e"™2 Y it>T, (0.4)

for some constants C,, > 0, T;, > t,. Moreover, C,, can be chosen to depend only on m, «
and Cy if > a+ 1, and on m, a, v,Cy and { F;: 0 < ¢ <m} if = a+ 1; T, depends
on all these and 3, Fy,, {77, 00: 0 < £ < m}, as well as on the functions g,, 0 < £ < m.

Theorem B (lower estimates for derivatives: the case n = «).
Assume (H1), (H2), (H3) and (H4), with n = o and 8 > a+1. Then, for every 1 < m < mu:

| D™ (- t)|| > c(m)y~ ™2t "™ Y it>t, (0.5)

for some constants ¢(m) > 0, t,, > t.. Moreover, ¢(m) can be chosen to depend only on m,
a, ¢(0) and Cy, while t,, depends on m, «, 8, v, ¢(0), Co, t., to, To, { Fo, 7¢,00: 0 < L < m}
and the functions 9ps 0<?<m.

Remark 0.1: THEOREM A is basically known (see [4], 9], [15] 22], 23]), although not generally
stated in the present form. It is included for completeness, because of its role in the deriva-
tion of the main results (THEOREMs B and C) and also for the similarities in their proofs.
In fact, THEOREM A can be shown in the same way as THEOREM B if f= 0 or if LEmMmMA 0.1
is available. As this is not the case, we followed an alternative route (adapted from [9]).

2
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Remark 0.2: THEOREM A is also valid in the case a = 0, as it will become clear from
its derivation. Other generalizations are clearly possible: for example, if instead of (H1)
it is assumed that || w(t) || = o(t~*) as t — oo (for some a > 0), then repeating the proof
below it will be obtained that, as t — oco: || D™u(-,t) || = o(t~*~™/2) for every 1 < m < .

Remark 0.3: THEOREM B has the following generalization, which seems particularly use-
ful in the case f = 0 or if 7 is not too large (as, for example: m =1 or 1 = 2):

Theorem C (lower estimates for derivatives: the case n > «).
Assume (H1), (H2), (H3) and (H4), with » > « and § given in (H3) satisfying

5>2n—a+(ﬁ—1)m+1. (0.6a)
Q
Then, setting ¢ = n/a, we have, for every 1 < m <7n:

| D™ (- t)|| > c(m)y=™2t=n-ma2 >t (0.6b)

for some ¢(m)> 0, t,, > t.. Moreover, ¢(m) can be chosen to depend only on m, «, ¢(0)
and Cjy, while t,, depends on m, a, n, 8, v, ¢(0), Co, t., to, To,{ Fo, 70, 0¢: 0 < £ < m} and
the functions 95 0<?t<m.

Remark 0.4: There are three basic ingredients in the proof of THEOREMS B and C: (1)
use of energy estimates for || D™ u(-,t) ||, (i) availability of lower and upper estimates
for || D™ (-, t)||, and (44) monotonicity results for || D™wu(-, )|l (LEMMA 0.1).

Remark 0.5: The estimates (0.4), (0.5) above show that we gain an extra factor (vt)~'/2
each time the derivative order is increased by one unit. In THEOREM A and THEOREM B
the starting point was an initial estimate for || (-, )|, given in (H1) or (H4), but a similar
result would have been obtained if we had begun with some higher derivative instead.
For example, knowing that || D*u(-,t) || < C,t~ if ¢t > Ty, say, for some k > 1, it would
have followed that || D™u(-,t)|| < Gy, v~ M =k)/2¢=a=m=R)/2 for every k < m <, t > 1.
Under appropriate conditions, we can also go backwards, as the following results illustrate.

Theorem D (upper estimates from higher derivatives).

Let (H2) be valid with m = 0, and assume that the solution of (0.1) considered satisfies
tlim |u(-,t)|| = 0 and

— 00

|Du(-t)|| < CLo~ Y2t Vi>T) (0.7a)

for some C1, aq,T7 > 0. Then we have:
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(7) If oy >1/2 and (H3) holds with m = 0 for some 5 > oy + 1/2, then
lu(, )] < Cot ™+ Vi>T, (0.7b)

where Cy > 0 depends on Cy, o, 3, 09, Fy and || w(a.) || only, with a, given in (0.9) below,
and Ty depends on i, T1, au, 8, 70, 00, Fo, v, a. and the function g,

(i) If oy >1/2 and (H3) holds with m = 0 for § = a; + 1/2, then, for every ¢ > 0:
lu( )| < Cole) t=+2He V¢ > T (0.7¢)

where Cy(e) >0 depends on ¢, Cy, aq, 3, 0o, Fy and || u(a,) || only, with a, given in (0.9),
and Ty depends on t,, T, ax, (3, To, 00, Fo, v, @ and the function g,, but not on e.

Theorem E (lower estimates from higher derivatives).
Let (H2) be valid with m = 0, and assume that the solution of (0.1) considered satisfies

(0.7a) for some vy > 1/2. Assume also that tlim |u(-,t)|| = 0 and
— 00
| Du(-,t)|| > c()v~ 2t Vi>t (0.8a)

for some ¢(1), ¢, > 0. Then, if (H3) holds with m = 0 and some 8 > «a; + 1/2, we have
lu( )] > c0)t= 2 vt >1, (0.8b)

with ¢(0) = ¢(1)/(2y/a1 — 1/2 ), where t, depends on t,, ¢(1), Cy, t1, Ty, 70, 00, Fo, a1, 8
V, @y, ||u(a.) || and the function g, given in (H2), with a, defined in (0.9) below.

Remark 0.6: Regarding the condition on || u(-,t)]|| that appears in THEOREMS D and E,

it will become clear from the derivation of (0.7b), (0.7¢) and (0.8b) given later that only the

fact that litm inf || w(t) || = 0is actually needed (and used) there. However, using a Gronwall-
— 00

type argument (see REMARK 0.11 below) it can be shown that, for some a,>> 1 (depending
in general on t,, 7o, ¥ and the function g,), we have

fu@®)]] < [lu(a)] +/||f(7)||d7 Vi>az>a.. (0.9)

Since 3 > 1, it follows that || f(-) || € L'(a, 00); this then gives, in view of (0.9) above, that

limsup || w(t) || < liminf || w(t)||. That is, the limit lim ||w(t)]|| does exist.
t— o0 t— 00 t— o0
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Remark 0.7: THEOREMS A-E above have, of course, simpler statements when f = 0, i.e.,
in the case of the equation

u; + G(u) = vAu, reR" t>0, (0.10)

with solutions w(-, t) satisfying (0.2). Here, as before, the term G(u) is assumed to satisfy
the condition (H2), for some 7 > 1. For convenience, the corresponding statements are
reproduced below (THEOREMs A’-E’). Results for the solutions of (0.10) can be obtained,
of course, as direct corollaries of the theorems above, but sometimes it will be more advan-
tageous to derive them from the proofs. This was the case, for example, of THEOREM D’
ann THEOREM E’ (see below). In the latter, the condition that ||w(t)| — 0 (as t — o0)
was dropped because it is simply not needed when f= 0. (The condition on || u(t) || is
necessary in THEOREM E because the upper estimate (0.7b) is needed in the proof there.)
The same goes when applying the results above to particular equations: it may be better
sometimes to obtain the results from the proofs and not from the statements given above.
For example, consider the situation of obtaining (0.7b) from the estimate (0.7a) when we
have, say, f > 2a;. This stronger assumption eliminates the need to bootstrap on the esti-
mate (0.19a), leading to a neater expression for the constant Cy in this case (namely, Cp=
20, /\/a1—1/2'). Additional examples are given in ExaMPLEs 1-4 at the end of the text.

Theorem A’ (upper estimates for derivatives: f = 0).
Let u(-,t) be a solution to (0.10). If (H1) and (H2) are valid, then, for every 1 < m < mu

| D™ u(-,t)|| < Cprv~™2t=a"™2 Y it>T, (0.11)

for some constants C,, > 0, T}, > t,. Moreover, C,,, can be chosen to depend only on m, «,
and Cjy, while T,,, depends on m, o, Cy and also on v, {7,: 0 < ¢ < m} and the functions
9,,0 < ¢ <'m, given in (H2).

Theorem B’ (lower estimates for derivatives: the case n = «, f = 0).
Let u(-,t) be a solution to (0.10). Assuming (H1), (H2) and (H4), with n = «, then we
have, for every 1 < m < m:

| D™ (- t)|| > c(m)y~ ™2t "™ Y it>t, (0.12)
for some constants ¢(m) > 0, t,, > t.. Moreover, ¢(m) can be chosen to depend only on

m, «, ¢(0) and Cy, while t,, depends on m, «, ¢(0), Cy, t., to, To, v, {7¢: 0 < £ < m} and
the functions g,,0 < £ <m.
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Theorem C’ (lower estimates for derivatives: the case n > «a, f = 0).
Let wu(-,t) be a solution to (0.10). Assuming (H1), (H2) and (H4) with n > «, and letting
q = n/a, we have, for every 1 < m <

| D™ (- t)|| > c(m)y~™2t=n-ma2 >t (0.13)

for some constants ¢(m) > 0, t,, > t.. Moreover, ¢(m) can be chosen to depend only on
m, a, ¢(0) and Cy, while t,, depends onm, a, ¢(0), Cy, t., to, To, v, n, {70: 0 < £ < m} and
the functions 9,,0 < {<m.

Theorem D’ (upper estimates from higher derivatives: f = 0).
Let u(+,t) be a solution to (0.10). Assuming (H2) with m = 0, and that tliglo |u(-,t)|| =0
and

| Du(-,t)|| < Civ~ Y2t Vi>T (0.14a)

for some constants Cy, Ty > 0 and a; >1/2, then
lu(, )] < Cot @+ Vi>T, (0.14b)

with Cy = v/2 O/ (ay — 1/2)"/? and Ty depending on t,, T}, Ty, 0o, ¥ and the function Yo-

Theorem E’ (lower estimates from higher derivatives: f = 0).
Let u(-,t) be a solution to (0.10). Let (H2) with m = 0 and (0.14a) above be both valid,
where aq > 1/2. If

| Du(-,t)|| > ¢()v~ 2t Vi>t (0.15a)
for some ¢(1),t; > 0, then
|w(-,t)|| > c(0)t— Y2V t>t (0.15b)

with ¢(0) = ¢(1)/v/2a1—1 and t, depending on t,,t;, 7, v and the function g,.

Remark 0.8: As will be seem from the proofs of THEOREMD and THEOREME (and also
of THEOREM D’ and THEOREM E’), when trying to obtain estimates proceeding from higher
derivatives to lower derivatives it is in general easier to do it for the case of lower estimates
than it is for upper estimates.
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Proof of Theorem A (adapted from [9]):

Let v > 2« be given (fixed from now on), and let a > max {1, t., Ty, 79, 0o }. We get, taking
the dot product of the equation (0.1) with 2(t —a)”u(z,t) and integrating on R™x (a, t),

(t—a) u@®)|* + 21// (r—a)7 | Du(r)||* dr =

3 [ =ap P dr + 2 [ (7= [ (ule,), £ - Gw)) dodr
< o[ o ar + 2 (r=a {Ju@ 110+ 001Dl } dr

t
< Co(vCoy + 2F0a_5)/(7 —a)'7*  dr + 2/ (7 —a)" g,(7) || Du(r) H2 dt

a

for all ¢ > a, using (H1)-(H3), where 6 = 8 — (a+1). Because g,(co) = 0, we then obtain,

increasing a if necessary,

(t—a) u@®|* + V/ (r—a)" | Du(r)||* dr < Eo(t—a)’"*

a

for all ¢ > a, where Ey = Cy(vCo + 2Fya°) /(v — 2a). This gives, in particular,
t
/ (r—a)"||Du(r)||*dr < Eqv™ ' (t —a)’™** (0.16a)

for all £ > a, and any a > max {1,%,, Ty, 7o, 00} sufficiently large (depending on g,,v). Now,
differentiating the equation (0.1) with respect to z,, multiplying (dot product) the result
by 2(t—a)"*' D,u(z,t) and integrating on R"x (a,t), we similarly obtain, summing over
and increasing a if necessary (so that, in particular, a > max{1, t., Ty, 70, 71, 00, 01}),

(t—a)™ || Du@®)|? + 1// (1 —a)"* || D*u(r) || dr < (0.16b)

t t
< (4D [ (r= P | Du(n)|Pdr + 2 (= " | Dulr)| | DF) | dr
forall t > a. If 8 = a+ 1, we then have

(t—a)" [ Du()|* + V/ (r—a) [ D?u(r) || dr < 0,160

< <v+1+u>/<T—am|Du<T>n2dT n / (r — a)™*? | Df (r) || dr

7
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while, if 5 > « + 1, we obtain from (0.16b) that
t
(t— a7 | Du®)|® + v / (r —a)* || DPulr) |2 dr <
t ‘ t
< (y+2) / (r —a) || Du(r) | dr + / (r — a2 | DF(r) | dr
at ‘ t
< (v+ 2)/ (1 —a)” || Du(r)||*dr + F? a—”/ (1 —a) "2 Ydr

by (H3) with m = 1, where 6 =  — (a+ 1). Therefore, in the case > a + 1, we obtain,
using (0.16a) above and increasing a if necessary,

t
(15—@)74'1 ||Du(t)||2 + 1// (7‘—a)7+1 ||D2’u,(7')||2d7' < E; V_l(t—a)V_Qo‘ (0.16d)

for all ¢ > a, with F; depending only on Cy, say: E; = (y+ 2)*C¢. This shows (0.4) with
m = 1 and also gives that

t
/ (r — ) | D2u(r) |2 dr < Byv2(t—a)—20 (0.16¢)

for all £ > a, from which we can go to the next level (m = 2), repeating the analysis, etc.
If 5 = a+ 1, we proceed similarly from (0.16¢) to obtain (0.4) for m = 1, then moving to
the next level, and so on. Keep going this way, we prove (0.4) for all m <, as claimed. O

The proof of (0.5) and (0.6b) requires the upper estimates given in THEOREM A and the
following monotonicity property, which extends a similar result in [3] (see [3], THEOREM B):

Lemma 0.1 (monotonicity lemma).
Assume (H1), (H2) and (H3) above, with § > a+ 1. Then we have, for every 0 < m < 7

d

D a2 + Kn(e, By to7m 0 L <00 Viza,  (047)
where K,,(«, ) = 2C,, F/(a+ B +m — 1), with a,, > t. depending only on the values
of m, Ton, T, Om, v and the funtion g,, given in (H2). (The constants C,,, F},, referred to
here are those given in (H1), (H3) and THEOREM A above.)

Remark 0.9: If f = 0, it follows from (0.17) above that || D™ w(-,t) || is monotonically
decreasing in the interval (a,,,00), since in this case we have K, = 0 (because F,,, = 0).

This property also follows very easily from the proof of LEMMA 0.1 given next.
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Proof of Lemma 0.1:

Let a = max{t,,To, 79, 00}, and let ¢t > a. From the energy identity
t t
lu®) | + 20 [ | Du(r)|?dr = lu@)* + 2 [(u(@ ), fe.r) - Gw) dedr
a a R"
we obtain, by (H2),

%\I’u(t)l\2 + 20| Du(®)||* = 2/<U(ﬂr,t>, fla,t) = G(u)) du

R

< 2 u®) | 1F@)1 + 2g,(0) | Du(t) ||
so that we have, increasing a if necessary,
d 2 2 —a—p
2 @™ + v [ Du)|” < 2CoFo t

for all ¢ > a, by (H1) and (H3). This gives (0.17) when m = 0. For general 1 < m < m,
we proceed in a similar way: taking a = max{t., Ty, Tm, o }, we have, by (H2),

% D™ u@®)||* + 2v [ D™ u@®)|* < 2| D™ u@®) | | D"F@O) + 29, () | D™ u(t) |*
for all £ > a. Increasing a if necessary, we then obtain

NP () |? < 2 D u(e) || DFW)] € 20 Fut 0 Wi,
by (H3) and THEOREM A. This estimate gives (0.17), and the proof is now complete. O

Remark 0.10: From the proof of LEMMA 0.1 above, we see that: in the case m = 0 it
is sufficient that «, 8 be nonnegative reals satisfying o + > 1. In any case, LEmMA 0.1
will only be needed (in the proof of THEOREM B and THEOREM C) for 1 < m < 7.

Observing the expression (0.17), it will be convenient in the sequel to introduce the
function z,,(t) defined by

() = | D™u(t)||* + Knp(a,B)t= > PmH ¢ >q, (0.18)

where the constant K,,(«, ) is given in LEMMA 0.1. According to this lemma, if 5 > a+1
the function z,, is smooth and monotonically decreasing in the interval (a,,, c0).
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Proof of Theorem B:

Let m =1 first. Recalling (0.2), (0.17) and (H1)-(H4), let ¢; = max {t., to, 70, 00, a1, To }
and let t > ¢;. Given T'= M t, where M > 1 will be chosen later, we obtain, from (0.1),

() |2 + 2u/ | Du(r) |Pdr = [u()]? + 2/ /<u<m>,f<x,7> ~ G(w)) dzdr.
t

t “R"

By (H2) with m = 0, we have

Ju(r) 20 1D 2 )2 [ (o) 1)+ ) Do) )

Increasing #; (if needed) so that g(7) < v for all 7 > ¢, we get, by (H1), (H3) and (H4),

T

1y /t | Du(r)|Pdr > [u(t)|? — [|u(T)|? - 2 / Ju(r) | 1 £(r) || dr

t
> {c(o)2 — CEM %>~ /iot_‘s}t_m

where kg = 2Cy Fo /(e + 5 —1)and 6 = f —a—1 > 0. Choosing M = (200/0(0))1/a
and increasing ¢, (if necessary) so that g t; ° < ¢(0)?/4, this gives, by LEMMA 0.1,

T T
AdvTz(t) > 4u/z1(7') dr > 4V/ | Du(r)||*dr > 2t 2
4 4

where ¢? = ¢(0)?/2. Therefore, 2, (t) > ¢/ (4v) T~ 1t 2= */(4Mv) ¢t~ 2>~ if t > ty, or

2

c _ 1,24
|Du@) | = {57 - K@, Byve? fytim2e

for all ¢ > ¢,. Increasing t; if needed, this gives || Du(t) | > c¢(1)v=2t=*= V2 for ¢ > ty,
where, say, ¢(1) = ¢(0) M ~'/2/3. This shows the result for m = 1. If 1h = 1, we are done;
otherwise, we proceed with m = 2 in a similar way. Setting t, = max{t, 11, 01, as, T1 },
let t >ty and T = Mt, where M = (2C,/c(1))"/*. Increasing t, if necessary, we then get,
from the equation (0.1) and the assumption (H2),

o 10w i = D = DI = 2Dt 1D

t

2
> {6(1)2_012]\/[—2a—1_ Klyl/Qt—é}y—lt—mx—l > C(2l)y—1t—2a—1

by (H3), THEOREM A and the previous case, where k1= 2C1 Fy/(a+ ) and § = f—a—1.
Now, introducing zy(t) > || D*u(t)||? given in LEMMA 0.1 and repeating the steps above,
we obtain (0.5) for m = 2 as well. We then keep going in this way until m is reached. O

10
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Proof of Theorem C:

Let ¢ = n/a. Recalling (0.2), (0.17) and (H1)-(H4), let ¢, = max{t., to, 70, 00, a1, To },
and let t > t;. Given T'= M t% where M > 1 will be chosen later, we have, as before,

() |2 + 2u/ | Du(r) |Pdr = ()] + 2/ /<u<m>,f<x,7> ~ G(w)) dz dr.
t

t “R"

By (H2) with m = 0, we obtain

lu(T)]* +2V/||Du )P dr > [lu(t) |~ /{Ilu HF) I+ go(7) [ Du(r) || } dr.

Increasing ¢, (if needed) so that g,(7) < v for all 7> ¢;, we have, by (H1), (H3) and (H4),

4V/t [ Du(r)|[*dr > [|u(®) || = [uw(D)]" - 2/t [w(m) [ | F(7) [l dr
> {c(O)2 — CEM %>~ mot_51}t_2”

where kg = 2Cy Fy/(a+p—1) and §; = 5—(2n—a+1) > 0. Choosing M = (QCO/C(O))I/Q
and increasing t; (if necessary) so that o t; ° < ¢(0)%/4, this gives, by LEMMA 0.1,

T T
LuTa(t) > 4V/21(T) ir > 4u/ | Du(r)|[2dr > 2420
t t

where ¢? = ¢(0)?/2. Therefore, 2, (t) > ¢/ (4v)T~1t721= 2/ (4Mv)t=27"1if t > {y, or

2

| Du®)|? = {57 = Kl Bvemet ot 720

for all t > t;, where ¢ = — (27— a+ q) > 0. Hence, increasing t; if necessary, we
have || Du(t)|| > (1) v=Y2¢=779/2 for t > t,, with ¢(1) = ¢(0) M~1/2/3. This shows the
result for m = 1. If m = 1, the proof of THEOREM C is complete; otherwise, we proceed
with m = 2 in a similar way. Setting to = max {t1, 11, 01, as, T1 }, let t > to and T'= M ¢4,
where M = (2C}/c(1))Y/®. As before, increasing t, if necessary, we then obtain, from the
equation (0.1) and the assumption (H2) with m =1,

T
4w / | D*u(r) P dr > || Du(t)|* — || Du(T)|? — 2 / | Du(r) || | DF(r) || dr
t
> {0(1)2— C2M2e1 g 2 4o 52}V—1t—2n—q

by (H3) and THEOREM A (both applied with m = 1) and the previous case above, where

11
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k1= 2C1 Fi/(a+ B) and 2= — (2n — a+¢) > 0. Increasing ¢, if necessary so that
we have ky v'/2t; %2 < ¢(1)?/4, this gives, recalling LEMMA 0.1,
T T
AvTz(t) > 41//2@(7) dr > 41// | D?u(r)||*dr > vt 2171
t t
for all ¢t > ty, where ¢? = ¢(1)?/2. Therefore, zo(t) > ¢/ (4v?) T~ t72779 or
2

4M

| D2u(t)|? > { ~ Ks(a, B) y2t‘€2}v‘2t‘2’7‘2‘1

for all ¢ > t5, where e = f— (2n —a+2(q¢—1) + 1) > 0. Thus, increasing ¢, if needed,
we have || D?u(t) || > c(2)v=1t="~9 for all ¢t > t,, with ¢(2) = ¢(1) M ~/2?/3. This com-
pletes the derivation of THEOREM C if m = 2. Otherwise, with m > 3, we continue to the

next level by considering the energy estimate for || D*w(t) ||,

T
I D*u(T) ||I* + 2V/ I D%u(r) || dr = || D*u(t)||* +
t

+2) ) /t /Rn< D;D,u(z,7), D;D, f(z,7) — D;D,G(u)) dz dr

j=1¢=1

for t > t3 = max {ty, T, 02, as, To}, where T = M 1%, M = (2C,/¢(2))"/?, repeating the
steps above to obtain (0.6b) for m = 3 as well. Because of the condition (0.6a) upon g,

we can proceed in this way up to a last level, given by the energy estimate for m = m—1,
T
| D™ u(T) ||* + 2V/ I D™ u(r) |2 dr = || D™u(t)|]* +

t
+ 2 Z Z Z /t /Rn( DelDeg' --Dem'u,(ac, T), DEIDEQ- --Dem{f(a:, 7)— G(u) } ) dx dr

l1=140=1 {,=1

for ¢ >ty =ty = Mmax {tm, Tm, Om, Gmi1, T}, where T = Mt M = (2C,,/c(m))/*:
using (H2), (H3), THEOREM A and LEMMA 0.1 as before, we then obtain

T
AvTzp(t) > 4y/ | D™ u(r) |2 dr > {c(m)Q— CEHM*M—mmum/%*%}fmf?ﬂ*mq
t

where 6,5 = — (277 —a+(g—1)ym-+ 1) > (. Increasing t;, if necessary, this gives that
Za(t) > c(m)?/(8M) v~ ¢=21=™4 for all t > ty, or, in terms of || D™wu(t) ||, by (0.17):

ID™ u(t)||* = {c(m)2/(8M) — Kp(a, B) t_%} S

for all t > ¢y, where ¢;, = 8— (2n—a+ (¢—1)m +1). Since, by (0.6a), we have e > 0,
this shows the estimate (0.60) for 1 as well, which completes the proof of THEOREM C. [J
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Proof of Theorem D:

Let Ty = max {1, t., 79, 00,11}, and let T'> t > Ty. From the equation (0.1), we obtain

lu(T)[* + 2v [ | Du(r)|*dr = |u(t)|” + 2/ (u(z,7), f(z,7) = G(u)) drdr,
t t

so that, by (H2), we have (increasing Tj if necessary, depending on v and the function g,

lw(T)[I* + 4v [ [ Du(r)|]* dr > [lu(t)]* — 2/ lw(r) [ {1£(m) ] dr.
t t

Using the hypothesis (0.7a) and letting 7" — oo, this gives, recalling that || u(T)| — 0,

4C%
lu@®)|I* < 5—

ot [l £(0) | dr
t

for all t > Ty. If f = 0, we are done. Otherwise, from the assumption on f, we have

402 o)
|u(t)]? < —it“ml + 2F0/ 72 () || dr (0.19a)
2061 1 t

if t > Ty. From this estimate, (0.7b) can be obtained by bootstrapping. By (0.9), we have,
for some a. > 1 (depending on t,, 79, ¥ and the function g,), that

lu®)] < Mo = [u(a)| + [ ) ar ¥ e>a. (0.190)
and so we redefine Ty to be: Ty = max {1, t., 70, 00, 11, a. }. Taking (0.190) into (0.19a),
we get )

4C 2 Fy M,
Ju)? < 5o e

for all t>Tp. If (6—1)/2 > a3 — 1/2, we are done; otherwise, we obtain
|uw®)] < M t2=9 v ¢>1T, (0.19¢)

with ¢, = 1/2 and My = {4C¢/(201— 1)+ 2F,My/ (5 — D2 Let 0 = (a;—1/2)/(B—1).
Assuming that we have

|w®)| < Mt%=5  vi>T, (0.194)

for some ¢, € [0, #), we obtain, taking (0.19d) into (0.19a),

2
46T ey ZEOMe L aigna-p) (0.19¢)

Ie®I” < o-1 a1
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for all t>Tg. Let ¢, = (1+gq,)/2. If ¢, ,(B—1) > a1—1/2, we are done; if not, we have
lu()]| < Mgpatat=P v > T, (0.19f)

where Mk+1 = {4012/(2@1—1) + FoMk/(
The numbers ¢, are given recursively by

Gy, (B—1))}'/2, and we go to the next iteration.

1

qk+1 = 5(1+qk)’ k > 0,

with ¢,= 0, so that ¢,= 1— 2~*. Now, in the case (i), we have 6§ < 1 (since 8 > a;+1/2),
and there will exist k, > 0 such that ¢, (8—1) < a1 —1/2 and ¢, (8—1) > a1 —1/2.
For such k, (0.19¢) gives that

Ju(t) | < My oy =12 (0.19)

for all ¢t > Ty, showing (0.7b), as claimed. Finally, in the case (ii), where § = 1, because
2a;—=1> (1+¢,)(B8—1) for all k, the second term on the right hand side of (0.19¢) will
always decay slower than the first term. However, given € > 0, we have (1+¢,)(8—1) >
201 — 1 — 2€ for large k, and so the bootstrap iteration can stop there to give (0.7¢). O

Remark 0.11: For completeness, let us show (0.9). Recalling (0.2) and the assumptions
(H2) and (H3) with m = 0, let a,= max{t.,79}. Given t > a > a., we have, from the
equation (0.1),

(1 + 20 [ 1Dutr) 2 dr = u@I? + 2 [ [ (ute ), for) - G) dedr
a a Jgn
so that, increasing a, (if necessary) so as to have g (7) < v for all 7 > a,, we obtain
lu@®* < [u(a)|® + 2/:HU(T)H I £ ()| dr,
I

or, in terms of v(t) = || u(t)

v(t) = v(a) + 2 / ()2 || £(r) | dr.

Now, let w € C*([a, 00)) be given by: w'(t) = 2w(t)"/?| f(t)|| for t > a, and w(a) = v(a),
that is,

¢
W@ = lluta)| + [ 1£)] dr.
Since || u(t)| = v(t)"/? < w(t)'/?, we have obtained (0.9), as claimed. O
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Proof of Theorem E:

Let ty = max {1, t., 7o, 00, t1,Tp }, where T is given in (0.7b), and let T' > t > to. From

the equation (0.1), we have

|u(T) | + 2v/ | Du(r) 2 dr = [Jult)|? + 2 / (ule, ), Fz,7) — G(w)) de dr,
t t

so that, by (H2), we get (increasing t if necessary, depending on v and the function g,)

lu(T)I* + v | Du(r)|*dr < [[u(t)]* + 2/ [u(m) [ F() ] dr.
t t

Hence, we have
T T
lu) = v 1Du@) | dr - 2 [ Ju(m)] 170)]
t t
so that, letting T'— oo,
lu®? = v [ D) dr = 2 [ )| 156 dr
t t
for all ¢ > t;. Using (0.7b), (0.8a) and the assumption (H3) with m = 0, this gives

2
Ju 2 > D e 2GR0 sz
2a;— 1 B+ an—3/2
1

> - 12—20Ft*5}t1*2“1
- 2()61—1{(:() 0-0

for all ¢ > ¢y, where 6 = 8 — (ay+1/2). Since § > 0, increasing t (if necessary) we obtain

6(1)2/4 (-2

lu)|? > =

for all t > to. This is (0.8b), and the proof of THEOREM E is now complete. O

In the sequel we will illustrate the theory with six typical examples, ranging from
the simple, familiar heat equation and some of its natural extensions to more complex
problems like the Navier-Stokes equations, the MHD (magnetohydrodynamics) equations
and incompressible micropolar flows. The discussion of these systems is brief and is meant
for illustration only, providing a quick, unified derivation of properties that are basically
widely known already, but not without some exceptions. Future works will concentrate
in applying the theory to generate new results (for the most past, not announced here).
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Example 1 (linear heat equation).

Given ug € L*(R"), let u(-,t) be the (unique) solution in the space C([0,00), L?(R™)) of

the initial value problem

w = vAu,  u(-,0) = up, (1.1)

which is given by u(-,t) = e"?*uy. It is well known that u(-,t) satisfies (0.2) with ¢, = 0,
and also that ||u(-,t)]| = 0 as t — oo, and, more generally, for every m > 0:

ID™u(-, ) || = o(t™™/?) (1.2)

as t — 0o, and many other properties. In the case of the equation (1.1), we have G = 0
and f = 0, so that only (H1) and (H4) remain to be checked for any particular solution.
Beginning with (H1), let us consider that we have

lu(- )| < Cot™ YV t> T (1.3)
for some «, Cy, Ty > 0. Having (1.3), using the Fourier transform it is very easy to obtain
| D™u(-,t)|| < Crov~ ™2t 2"m2 Y t>1 (1.4)

for every m > 1, where (), depends only on m, a and Cj, as predicted by THEOREM A'.
Lower estimates, on the other hand, are a different matter and are not so easily derived,
even for the seemingly trivial equation (1.1) above. Still, assuming (1.3) and that

fu(- )] = c(0)t™"  VE>t (1.5)
for some ¢(0), ty > 0, and some 7 > «, from THEOREMS B’ and C’ we immediately obtain
| D™ u(-,t)|| > c(m)y=™/2 ¢t 1-m4Y2 Y ] (1.6)

for every m > 1, where ¢ = n/«, and where ¢(m) > 0 depends only on m, «, ¢(0) and C.
Moreover, the approach given in this work shows that obtaining (1.6) from (1.3) and (1.5)
is actually almost as easy as obtaining (1.4) from (1.3).

For the heat equation with spatially constant advection, that is,
ur + b(t)-Vu = vAu, (1.7)
with a given velocity field b(t), the results are the same. This becomes clear if we change

16


https://doi.org/10.20944/preprints202207.0137.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 July 2022 d0i:10.20944/preprints202207.0137.v1

the space variable to £ = x — B(t), where B'(t) = b(t), or we can apply THEOREMS A'-E/
directly, with G(u) = b(¢) - Vu in this case. Observing that, for every ¢ > 0, we have

/u(a:,t) -G(u(z,t))de = 0 (1.8a)
RTL
and, for each m > 0,

/DZI---DEmu(:v,t)-Del---Dsz(u(:v,t)) dr = 0 (1.80)
RTL
for any 1 < 0,4y, ..., 0, < n, we see that (H2) is clearly satisfied for all m, with 7, = 0.
Hence, for the equation (1.7) we will have again (1.4) following from (1.3), for every m,
as well as having (1.6) as consequence of (1.3) and (1.5), for any m, and so forth.
In the case of the inhomogeneous problem
uy + b(t)-Vu = vAu + f,  u(-,0) = up € L*(R"), (1.9)
with f satisfying (H3) for all m concerned, we proceed similarly, using THEOREMS A-E.

For example, if u(-,t) satisfies (1.3) and (1.5) with n = «, and if (H3) holds valid for all
m with some S > a + 1, then we have, for every m:

| D™u(-,t)|| > e(m)y=™2¢t=e=™2 ¥ i1 (1.10)
for some ¢(m) > 0 depending only on m and on «, ¢(0), Cy given in (1.3) and (1.5) above.
Or, if the property (H3) is satisfied for m = 0 and m = 1, for some § > a + 1, and if
n=gqawith 1 < ¢ < (a+05)/(2a+1), we will then get, from (1.3) and (1.5) above, that

| Du(-,t)|| > c() v~ V2t =92 ¥i>1 (1.11)
for some ¢(1) > 0 depending only on «, ¢(0) and Cy (by THEOREM C), etc.
The more interesting (and much more challenging) problem
uy + b(t,u)-Vu = vAu+ f,  u(-,0) = ug € L*(R") (1.12)
will be taken up in EXAMPLE 2 (n = 1) and EXAMPLE 3 (n > 2) below. It is sufficient to

consider the basic case where b = b(u) does not depend explicitly on ¢, since the analysis
in the more general setting (1.12), i.e., when b = b(¢, u), turns out to be entirely similar.
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Example 2 (advection-diffusion equations: n = 1).

Given b € C*(R) and ug € L*(R"), let u(-,t) € C([0,00), L*(R)) N L2

loc

((0,00), L*(R))
be a solution to the problem

u + b(u)uy = vug,  u(-,0) = up. (2.1)

Under the above conditions, it is known that ||u(-,#)|| — 0 and /4| u(-,t) HLOO(R)—> 0 as
t — oo (see [2], THEOREM 3.3), as well as the general supnorm estimate

)y < Noll™ 4477 v £ >0 22

(see [2], THEOREM 3.2). Moreover, (0.2) holds with ¢, = 0, so that there only remains to
check whether the condition (H2) is satisfied, where G(u) = b(u) u, for the equation (2.1).
If m = 0 this is clearly the case, since

/ () b(w)uy do — / (%E(u(x,t))dx — 0 (2.3)

for any ¢ > 0, where E(u) = [} vb(v) dv, recalling the fact that u(-,t) € L*(R")NL>®(R").

For m > 1, checking (H2) is more involved. It will be more convenient to work with
G(u) := bu)u,,  b(u) := b(u)—b(0). (2.4a)

Clearly, for any given m: (H2) is valid for G(u) and such m if and only if it is valid for
G(u) and the same value of m. We will be considering G(u) from now on, with t > 7,
where 7> 0 is chosen so that, say: [|u(-,t) <1 for all t > 7 (cf. (2.2) above). Note

that, setting D = 0/0«z,

G(u) = D[B(u)], B(u) = /ug(v) dv, (2.4b)
0
so that (H2) is valid (for some given m) if we show that
ID"B(u(- )| < gm(®) | D™ rul- )| Vi>7 (2.5)
with ¢,,(t) = 0 as t — 0o. A straightforward computation gives that, for any m > 2:

D™ B(u) = b(u) D™ + Z_ (mj_1>Dj[b(u)]iju (2.6a)

j=1
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for all ue H™(R). Similarly, we have

Dib(u) = ¥/ u+2(€ 1)Dﬂ [b'(w)] D' (2.6b)
j=1
for all u € HY(R), and any £ > 2. It also follows from these expressions that, if F'€ C™(R)
and u € W™P(R) for some 1 < p < oo, then F(u) € W™P(R) and
| D™ F(u)

< K(m,p; F, M) || D™ul| (2.7)

LP(R) LP(R)

where the constant K depends on m, p and the quantities F, = max { | FOM)|: |v] < M},
1 <¢<m, where M = ||u||LOO(R).
dimensions, was originally obtained by Moser [see ([14], p.273) or ([10], Lemma 5.1,
p.70)].

The estimate (2.7), together with extensions to higher

2.1. The case b’(0) =0

This is the simplest situation, in which the condition (H2) for G(u) holds true for all m.
To show this fact, we recall the following SNG (Sobolev-Nirenberg-Gagliardo) inequalities:
given u € H™(R), we have

”DKHH < Hu”(m—é-i-l)/(m-‘rl) HDm-HuHK/(m-H) (28)

and

||D£u|| < ||u||(m—£+1/2)/(m+1) I|Dm+1u||(£+1/2)/(m+1) (29)

L= (R)
for all 0 < ¢ < m. (For both (2.8) and (2.9), the multiplicative constants on the right hand
side have been ommitted for the sake of simplicity, as they are not greater than 1.)

Remark 2.1. The estimate (2.8), which is also valid in higher dimensions, is easily shown
using Fourier transform. The inequality (2.9) follows from (2.8) and the elementary fact
that ||v||LOO ® S |vIII| Dv| (for any v € HY(R)).

In particular, given u € H%(R), we obtain, because b'(0) = 0,

IDB() | = [[b(w) Dul < [|b(u) | Du| < Kiflu|?

o 1 DUl < KifJul]? || D?ul|
L (R)

[y

by (2.8) and (2.9), where K; = max {|b"(v)]|: [v]| < |lu ||L°° R) }/2. Considering u = u(-, t),
this shows (2.5) for m = 1 (since we have [[u(-,¢)|| — 0 as t — 00), which implies (H2)
with m = 1. Similarly, the derivation of (H2) for m = 2 follows from
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| DB < 1500) [l g | D0l + 60 |y | D0l | D

< Killu|} [Dull < Kslfu*[[ D]

2wl D2l + 25 u]

| Du]|

by (2.8) and (2.9), where Ky = 3 K. More generally, the validity of (H2) for (any) m >3
follows from (2.10) below, which is similarly obtained using (2.6), (2.7), (2.8) and (2.9).

Lemma 2.1. Given m > 3, let ue H™*(R) and b € C™ }(R). If '(0) = 0, then
ID"Bu)|| < Kulluw|?| D™ ul (2.10)

where K, > 0 depends only on m and the values B, = max {|[b¥)(v)|: |v]| < |u ”L‘X’(R)}’
2</l<m.

Hence, THEOREMS A-E and THEOREMS A’-E’ all apply to the problem (2.1) when '(0) = 0.

2.2. The case b’(0) # 0

In this case, the condition (H2) holds for m = 0, but not (in general) for m > 1, unless
additional assumptions be made. We can still adapt the proofs of THEOREMS A-E, A'-E’
and get some partial results in this case, but it seems better to recall that in applications
of (2.1) the solution u(-,t) is usually the density of some physical quantity, whose total

value (or mass) is conserved in time and given by

M = /Ru(a:,t) dx = 41;0(3‘;) dx. (2.11)

Hence, it is natural for (2.1) to assume that we have ug € L'(R), with the solution sought
in the class u(-,t) € C([0,00), L'(R)) N LS

loc

satisfied by solutions are that, for all £ > 0,

((0,00), L>*(R)). Some well known properties

1) gy < 0l (212)
and the asymptotic property
Jimn [Ju,0) ], = 12 (2.13)

(see [28], THEOREM 3.4). Moreover, recalling that, if ug € L'(R), we have

)l oy < Mol g™ 272 ¥ £>0 (2.14)
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(see e.g. ([2], THEOREM 3.2) or ([I8], THEOREM 2.1)), it follows form (2.12) that
lul ) oy < lluoll g vtV >0, (2.15)
In particular, regarding the condition
l|u(-,t) ||L2(R) < Cot™* YV it>1T (2.16)

(for some o > 0, Ty > 0), only the case o > 1/4 needs to be considered if uy € L'(R).
Writing the equation (2.1) in the form

up + Gl(u) + GQ(U) = VUgy, (2.17(1)

Gi(u) = ¥'(0)uu,, Ga(u) = (b(u) — V' (0)u)u,, (2.17b)

we know from the previous case that G(u) satisfies the condition (H2) for every m > 0.
Hence, whether or not (H2) is satisfied for some (any) given m in the case of the equation
(2.1) depends entirely on the term Gy (u) alone.

Lemma 2.2. Given ug € L'(R), let u(-,¢) € C([0,00), L'(R)) N L2 ((0,00), L=(R)) be
a solution to problem (2.1) satisfying (2.16) above. If a > 1/4, or if @« = 1/4 and M = 0,
then Gy (u) satisfies (H2) for all m > 0.

Remark 2.2. If (2.16) holds for some v > 1/4, then it follows from ([29], THEOREM 2)
that the solution mass is necessarily zero, i.e., M = 0 in this case.

Proof of Lemma 2.2: Recalling that || v , < |[|v ||1/2 [ v [}/, we get, from (2.8) and

(2.9) above, for any m > 0:

I DA oy < Iy D Db | 2 e/ (2180)
and
| DAl gy < [lll 22 | Dt b | D872 (2.180)

for all 0 < ¢ < m. This gives that, for any m > 0,

Dm+l

| DD ], <l ul (2.19)

Ll (R) “ L2 (]R)

for all 0 < 57 < m. Observing that
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[6(0)]
2

< D™ () I D™ [u(-, )] |

/ D™u(z,t) - D™ Gy (u(x, 1)) da

< LD )| Y (1) 1Dt ) - Dt

2 A
we then obtain, from (2.19), that
D"u(x,t) - D"Gq(u(x,t))de | < (0] 2" | u(-, )| | D™ lu(- 4)]]%, . (2.20)
: ) ) = 2 PN LYR) PN L2(R)

This shows that (H2) is valid for G;(u), for any m, since || u(-,t) —0ast— o0 O

Hence, THEOREMS A-E and THEOREMs A’-E’ all apply to the problem (2.1) when uy € L*(R)
has zero mass. For m > 1, from (2.13), (2.20) and the proofs of THEOREMS A-E and A’-E’
we see that the 10 theorems will also be valid for nonzero mass solutions of (2.1) for those

values of m such that
27 | M| |b'(0)] < 2v (2.21)

where M is the solution mass, see (2.11). If condition (2.21) is violated, it appears that
lower estimates for || D™u(-,t)||, m > 1, are not in general valid, even though we have

lul )| gy = cO) ™4 V>0 (2.22)

for some ¢(0) > 0 if M # 0 [this follows from ([28], THEOREM 3.3) and ([29], THEOREM 2) |.
However, we can still obtain upper estimates for || D™u(-,t)||,2(r) by adapting the proofs
of THEOREMs A and A’, as the following results illustrate.

Theorem 2.1. Let up € L'(R) have nonzero mass. Then the solutions of (2.1) satisfy

| D™ (-, t) < Kl uo ||L1(R) po YA s A2y s (2.23)

for all m > 0, where 1 = max {v, v*2/0'(0)?}. Here, the constant K, depends only on m,
and T;, depends on m, v, [[ug |, ®) and the function b(-) given.

Theorem 2.2. Let ug € L?(R) be arbitrary. Then, for every m > 0, we necessarily have

: m/4 m, (. —
tlglgot | D" u(-,t) 0. (2.24)

HL2(R)
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Example 3 (advection-diffusion equations: n > 2).

Given a smooth function b = (by, by, ..., b,) € C*(R) and an arbitrary state ug € L*(R"),
let u(-,t) € C([0,00), L2(R™)) N L2 ((0,00), L=(R™)) be a solution to the problem

loc

ur + bu)-Vu = vAu,  u(-,0) = up. (3.1)

Under the above conditions, it is known that || u(-,¢) || — 0 and t"/*| u(-,t) HLOO(RH)—> 0
as t — oo (see e.g. [2], THEOREM 3.3), as well as the general supnorm estimate

)y < Fallwoll o=/ 47 ¥ 450 (32)

for some constant K,, depending only on n (cf. [2], THEOREM 3.2, or [18], THEOREM 2.1).
Moreover, (0.2) is valid with ¢, = 0, so that there only remains to verify whether the
condition (H2) is also satisfied, where G(u) = b(u) - Vu here. For m = 0 this is clearly

the case, since

/u(m,t) b(u)-Vudr = /V~D(u(x7t)) de =0 (3.3)
R™ R"
for any ¢ > 0, where D(u) = [;'vb(v) dv, because u(-,t) € L*(R") N L>(R"). For m > 1,
checking (H2) is more involved. We begin by recalling a few basic lemmas.

Lemma 3.1 (J. Moser, 1966).
Let m > 1, Fe C™(R), with F'(0) =0, and let 1 < p < oo and u € W™P(R")N L>*(R").
Then F(u) € W™P(R™) and

|| DmF(u) HLP(R") S K(m7 n7p> H Dmu HLP(R") (34)
where K > 0 depends only on m, n, p and the values F, = sup { | FOW): |v] < |lu HLOO(]R”)}
for 1 < ¢ < m, where F) denotes the derivative of order ¢ of the function F.

Proof: See ([14], p.273), or ([10], Lemma 5.1, p. 70). O

Given u € R, it will be convenient in the sequel to define b(u), B(u) € R" given by

b(u) := b(u) — b(0), B(u) = / (b(v) — b(0)) dv. (3.5)

and also

G(u) == (b(u) — b(0)) - Vu = G(u) — b(0)-Vu = V- B(u), (3.5b)
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where u = u(x,t) is the solution of (3.1) under consideration. Observing that, for any m,
(H2) is valid for G(u) [for such m] if and only it is valid for G(u) [for that given m], we

will from now consider G(u) instead. The next lemma is obtained by direct computation:

Lemma 3.2.
Let v be a smooth scalar function in R", and let D, = 9/9z,. Then ZDZB(U) = E(U)Dﬁv
and, for m > 2:

m—1 a(m,j) o i
D,D,+D, B) = b0, D00 + X { X Dhbe) D0} 30
7j=1 k=1

where a(m, j) = (m—1)!/(j!(m—1—4)!) and, for each k, ID)(jk): D D, D, and ]DD(mk)_J =
1 R 7
kit kj+.2“ ka (Wlth {]{Zl, /{?2,..., m} = {81722,...,67,1}).
Lemma 3.3.
Let n > 2, m > 1, and let F, G € C™(R) with F'(0) =0, G(0) = 0. Let A;, Ay € Z" be
(nonnegative) multi-indices such that |A;]| + [Az| = Then for any v € H™TH(R") N
H"=2(R") N L*=(R"), we have DM F(v) - D*G(v) € (]R") and

| DMF()-D¥GW)] o < Clmon) [0

n—2 1/2 m+
gy < Clmm) 102 D" 221D

L%(R™)

gl (3.7)

L2 Rn)
where C'(m, n) depends only on m, n and the values F, = sup { | FOR)|:|v] < v ||L°°(]R")}
and G, = sup {|GOE)|: |v] < v HLOO(R,L)} for 1 < ¢ < m. Here, F)(-) and G(-) denote
the /th-order derivatives of the functions F' and G, respectively.

Remark 3.1. The assumption that v € L>°(R"™) in LEMMA 3.3 is needed when n = 4 and
m = 1, but is redundant in the other cases, since the inclusion H™(R")N H"~?(R") C

L*>(RR™) holds for m > 1 except in the single case m = 1, n = 4.

Proof: This is shown similarly to ([3], LEMMA 3.1), using (3.4), standard SNG inequalities
(see e.g. [6], THEOREM 9.3) and the Moser supnorm estimates

19 ey € K IDH A2 DR 12 (3.80)
if n = 2k, and
ko ||1/2 k1 1/2
1Vl ey < K IDMV IR, DRV H2 (3.80)
if n =2k + 1, see e.g. ([24], Ch.13, PROPOSITION 3.8). O
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Lemma 3.4.
Let u(-,t) € C([0,00), L*(R")) N L

loc

((0,00), L°(R™)) solve the problem (3.1). Then, for
every m > 1, there exists K(m,n,v) constant, depending only on m, n, v, the function b
and the size of [|u(-,t)||Le(®n) at t =1 (say), such that

D™ 8) gy € K)ol ¥ > . (39
Proof: From the equation (3.1), we have
t

lut) [I* + 27// I Du(r)[|*dr = [uol? (3.10a)

for all t > 0. In particular, / | Du(7)||*dr < (2v) ! ||ugl|% so that there exists a; € (0,1)
such that

1 -
IDu(an) [I* < 5 lluoll* v~ (3.100)
This gives, from the equation (3.1),
t t _
I Du(t)||* + QV/ I D*u(r) |*dr < || Du(ar)||* + 2/||DZU(T)|| ID[B(u)]|ldr
for all t> a;. Applying (3.4), LEMMA 3.1, we then get
IDu() v D% P < [Dutel + 5 [I1u Par 100
for t > a,. Recalling (3.10a) and (3.100), this shows (3.9) with m = 1, and also gives that
¢
/||D2u(7) |12dr < C(n,v)||uol? (3.10d)
1

for all ¢ > 1, and some constant C(n,v) > 0 that depends also on b and [|u(-, 1) || oo ®n).
In particular, we can find ay € (1,2) such that

I D*u(az) | < C(n,v)|luoll” (3.10e)
from which we can consider the energy estimate
t t _
I D*u(t)]* + 21// I D*u(r) || dr < || D*ulaz) |I* + 2/ | D*u(r) ||| D*[B(u)] || dr

and proceed in a similar way to obtain (3.9) with m = 2, and then m = 3, and so on. O
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Theorem 3.1.
Let n > 2. Then, for the solutions of (3.1), the condition (H2) is satisfied for all m > 0.

Proof: In fact, given t > 1, m > 1, and ¢y, 05, ....0,, € {1,2,...,n}, we have, from (3.5),
] / DD, 1) - DD, Glulw ) d | < [ D™l | | D [BluC )]
< Clmyn) |u( ) IV D" 2ul ) |2 D™ (1) |12
using (3.6), LEMMA 3.2, and (3.7), LEMMA 3.3. (Here, C'(m,n) denotes some constant that
depends on m,n and the values by = max {|b(v)|: |v| < ||u(-,1) lLemmy }, 1 <4 <m.)
From LEmMA 3.4, this gives the result. 0
Therefore, assuming that we have

lu(- )| < Cot™ @ Vit>T (3.11)
for some constants «, Cy, Ty > 0, the following result can be obtained from THEOREM A:
Theorem 3.2 (upper estimates for derivatives).

If (3.11) holds, then: for every m > 0, there exists C,, > 0 (depending only on m, «, Cy)
such that

| D™ u(-t)|| < Cp v~ ™2t m/2 Vit>T, (3.12)
for some T, > T, that can be chosen to depend only on m, v, Cy, Ty and «.
Next, consider the reverse condition
|u(-,t) ]| = c(0)t™" Vi>t (3.13)
for some constants ¢(0), to, 7 > 0. We then obtain (from THEorREM B’ and THEOREM C'):
Theorem 3.3 (lower estimates for derivatives).
Let (3.11) and (3.13) be valid, for some given 0 < o < . Then, for every m > 0, there
exists ¢(m) > 0 (depending only on m, «, ¢(0) and Cp) such that, setting ¢ = n/a:
| D™ u(-,t)|| > c(m)y—™/2¢=n-ma/2 Vt>tn, (3.14)

for some t,, > ty that can be chosen to depend only on m, v, to, Ty, ¢(0), Co, o and n.
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Example 4 (incompressible Navier-Stokes equations).

Let 2 < n < 4. Given uy € L2(R"), let u(-, ) € Cy([0, 00), L2(R™)) N L2((0, 00), H (R™))

be any given Leray solution to the Navier-Stokes equations

uw, + u-Vu + Vp = vAu, (4.1a)

V-u =0, (4.1b)

with w(-,0) = ug. The existence of such solutions was originally shown by J. Leray in
his 1934 seminal paper (see [12], p. 241), together with the property (0.2) as well ([12],
p. 246). The validity of the condition (H2) for every m follows from ([3], LEMMA 3.1).
Therefore, assuming that we have

|u(-, )] < Cot™@ Vit>T (4.2)
for some constants «, Cy, Ty > 0, the following result can be obtained from THEOREM A:

Theorem 4.1 (upper estimates for derivatives).
If (4.2) holds, then: for every m > 0, there exists C,, > 0 (depending only on m, «, Cy)
such that

| D™ u(-,t)|| < Cp v ™2™ Vit>T, (4.3)

for some T, > Tj sufficiently large. Moreover, T, can be chosen to depend only on m, v,
Co, Ty and a. If n =3 or 4, T,, can also be chosen to depend only on m, v, Ty and || ug ||.

Now, consider the reverse condition
|w(-,t)]| > c(0)¢t™" V>t (4.4)
for some constants ¢(0), to, n > 0. We then obtain (from THEOREM B’ and THEOREM C’):

Theorem 4.2 (lower estimates for derivatives).
Let (4.2) and (4.4) be valid, for some given 0 < a < 7. Then, for every m > 0, there
exists ¢(m) > 0 (depending only on m, «, ¢(0) and Cp) such that, setting g = n/a:

| D™ (-, t)|| > c(m) vy~ ™2t n-ma/2 Vt>t, (4.5)

for some t,, > ty sufficiently large. Moreover, t,, can be chosen to depend only on m, v,
to, To, ¢(0), Cy, a and 7.
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Other results can be similarly obtained. For example, rewriting the equation (4.1) as
u; = vAu + f, f=—u-Vu — Vp, (4.6)

we have, by (4.3), that f satisfies the assumption (H3) for all m with § = 2a+ (n+2)/4.
We then have the following result (from THEOREM B and THEOREM C):

Theorem 4.3 (lower componentwise estimates: n = «).

Let the solution w = (uy, ug, ..., u,) satisfy the condition (4.2) above for some a > 0. If
lu D) = Ot Yt 1, (47a)

for some 1 <i < n (and some ¢(0),%, > 0), then: for every m > 1, there exists ¢(m) > 0
(depending only on m, «,¢(0) and Cj) such that

| D™u; (-, t) || > e(m)v=™2t="™2 Y it>t, (4.70)
with t,, depending only on m, «, v, t,, ty, ¢(0), Cy and Tp.
Likewise, assuming (4.2) and that we had || (u;,u;)(-,t) || > ¢(0)t~“ instead of (4.7a),

it would have been obtained that || D™ (u;, uj)(-,t) || > c(m)vy=™/2 t==™/2 for t > t,,,
for all m, applying THEOREM B again.

Theorem 4.4 (lower componentwise estimates: n > «).
Let the solution w = (uy,us, ..., u,) satisfy (4.2) for some « > 0, and let n = g, where
I1<qg<@Ba+n/4+1/2)/2a+1). If

lw( )] = c(0)t™ V>t (4.80)

for some 1 <1i < n (and some ¢(0), ty > 0), then there is some ¢(1) > 0 (depending only
on «a, ¢(0) and Cy) such that

| Du;(-, )] > e()v= V2 m=92 v > (4.8b)
with ¢; depending only on ¢, «, v, L4, to, ¢(0), Cy and Tp.
By TueOREM C, we similarly have: if ¢ < (3a+n/4+3/2)/(2cc + 2), then (4.2) and

(4.8a) will give (4.8b) and also that || D?u;(-,t) || > ¢(2)v=1 t=779 for all t > 1 large,
and so forth.
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As we already mentioned, upper and lower bounds can be pushed both ways, depend-
ing on what is available. Illustrating with the present case of the Navier-Stokes, equations,
this is illustrated by the following results, which can be derived as with THEOREMS A-E:

Theorem 4.5. Let 2 <n <4, a> 0, and let u(-,¢)be any given Leray solution to (4.1).
(i) If, as t — oo, we have || D*u(-,t)||p2@ny = O(t~*~%2) for some ¢ > 0, then
we actually have || D™uw(-,t)||z2@ny = O(t~*~™/2) for all m >0 (and ¢ > 1).

(i) If || D*u(-,t) ||r2@ny= o(t~*~%?) as t — oo for some ¢ > 0, then
we will have, as ¢ — oo, that || D™u(-,t)| 2@y = o(t~*~™/2) for all m > 0.

Theorem 4.6. Let 2 <n <4, a>0,c>0,and u(-,t)any given Leray solution to (4.1).

(1) If we have, for ¢ > 1, that || D'u(-,t) ||p2@n) > ¢t~ %2 for some ¢ > 0, then
we will also have || D™wu(-,t) ||p2gn) > ¢t~ ™2 for every 0 < m < ¢ (and t>> 1),
for some appropriate constants ¢, > 0.

(i) If, for ¢ > 1, || D*u(-,t) || p2mn) = O(t=2=*/2) and || D'u(-,t) | L2mny > ct—et?
for some particular pair k, ¢/ > 0, then we will have, as t — oo:

| D™ (-, t) || z2gny > €mt =™/ for all m > 0 (for some appropriate constants c,, > 0).

In a similar way, other classes of decay can be studied using the methods in this report,
by easily adapting the argument. In the case of exponential decay, for example, we can
derive the following results in much the same way as THEOREMS 4.5 and 4.6 above.

Theorem 4.7. Let 2 <n <4, x> 0,and u(-,t)any Leray solution to the system (4.1).
(¢) If, as t — oo, we have || D‘u(-,t)||z2@n) = O (e ") for some ¢ > 0, then
we actually have || D™wu(-,t) | r2@n = O(e™ ") for all m >0 (and t> 1).

(#) If || D u(-,t) || r2@ny= o(e™ ") as t — oo for some £ > 0, then
we will also have, ast — oo, that || D™u(-,t) | 2@ = o(e™ ") for all m > 0.

Theorem 4.8. Let 2 <n <4, k>0, c>0,and u(-,t)any given Leray solution to (4.1).
(4) If, for t > 1, we have || D*u(-,t)||r2gn) > c e ** for some ¢ > 0, then, for ¢ > 1:

we will have || D™wu(-,t) || r2@n) > ¢ne” " for every 0 < m < ¢, with constants ¢, > 0.
(#4) If we have, for t>> 1: || D*u(-,t) || 2@y = O(e™"") and || Du(-,t) | r2mn) > ce™ "
for some particular pair k, £ > 0, then we will have (for ¢t > 1):

| D™ w(-,t) || L2mny > Cpe” " for all m > 0, for some appropriate constants ¢, > 0.
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Example 5 (incompressible MHD equations).

Let 2 <n < 4.Given ug € L2(R") and by € L2(R"), let (u,b)(-,t) € Cy([0,0), L2(R™))
N L2((0,00), H'(R™)) be any given Leray solution to the MHD equations

u; + w-Vu + Vp = pAu + b-Vb, V-u = 0, (5.1a)
by + u-Vb = vAb + b-Vu, V-b =0, (5.1b)
with w(-,0) = wg, b(-,0) = bg. In (5.1), we have f =0 and

& ) u-Vu +Vp —b-Vb 52)
u,b) = , 5.2
u-Vb—-b-Vu

so that (H2) is valid for every m, by (]3], LEMMAa 3.1). Therefore, assuming that we have
[(u,b)( )| < Cot™*  Vit>T, (5-3)

for some «, Cy, Ty > 0, the following result can be obtained from THEOREMS A and A’:

Theorem 5.1 (upper estimates for derivatives).
If (5.3) is valid, then: for every m > 0, there exists C,,, > 0 constant (depending only on
m, a and Cj) such that

| D™ u(-,t)|| < Cpp~ ™2t m/2 Vit>T, (5.4a)
and

| D™b(-,t)|| < Cpprv ™2 ¢ m/2 Vit>T, (5.4b)
for some T,, > 0 that depends on m, o, u, v, Cy and Tj.
Proof: From the proof of THEOREM A’ we obtain, from (5.1) and (5.3) above,
ID™ (w,b)(- )| < Cpy ™2™ V> T

for all m, where v = min {y, v}, for some constants C], (depending on m, «, Cy) and T/
(depending on m, «, p, v, Cy,Tp). Therefore, by (5.1a), we can write

u; = pAu + f, f=b-Vb—u-Vu —Vp

where f satisfies (H3) for all m with 8 = 2a + (n + 2)/4. Hence, recalling THEOREM A,
we obtain (5.4a) above. Proceeding similarly with the equation (5.1b), we get (5.4b). O
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Now, consider the reverse conditions
|w(,t)|| > c(0)t=7 and ||b(-, )] > ¢0)t™" Vt>t (5.5)

for some given ¢(0), ¢(0), to, n > 0. The following result is a consequence of THEOREM A’
(or THEOREM 5.1) and THEOREM B above.

Theorem 5.2 (lower estimates for derivatives: the case n = «).
Let (5.3) and (5.5) be valid with 7 = @ > 0. Then, for every m > 0, there exist ¢(m) > 0
(depending only on m, a, ¢(0), Cy) and é(m) > 0 (depending only on m, «, ¢(0), Cp) such
that

| D™ (- t)|| > c(m)p=™?t-om/2 Vt>t, (5.6a)

and
| D™b(-,t)|| > é(m) ™2 e m2 Vt>t, (5.6b)

for some t,, > 0 that depends on m, a, p, v, ¢(0), ¢(0), Co, to and Tp.

Proof: From (5.1) and THEOREM A’ (or THEOREM 5.1), we can write
u = pAu + f, f=bVb—-u-Vu— Vp, (5.7a)
b: = vAb + g, g=>5bVu—u-Vb, (5.7b)

where f and g satisfy (H3) for all m with § = 2a + (n + 2)/4. From THEOREM B above,
we then get (5.6a) and (5.60), as claimed. O

Remark 5.1: Writing (5.1) in the form (5.7) brings out more clearly the basic decoupling
between the equations (5.1a) and (5.1b) for ¢ > 1. Thus, for example, assuming (5.3) and
that

|u(-,t)]| > c(0)t™° YVt >t (5.8)

only (i.e., no lower estimate assumed for || b(-,t)||), for some given ¢(0), to > 0, from (5.7a)
we still get that the lower estimate (5.6a) for D™ u(-,t) will hold for any m, and so forth.
A similar decoupling is seen on the individual components of u(-,t) or b(-,t) as well. Thus,

for example, if we have (5.3) and, say, only that
[0 )] = e(0)t™ V>t (5.9)

for some particular value of 7, then we get from (5.7b) that (5.6b) will be valid for b;(-, ).
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Applying THEOREM C to (5.7) gives additional results, as illustrated by THEOREM 5.3.

Theorem 5.3 (lower estimates for derivatives: the case n > «).
Let (5.3) and (5.5) be valid with n = ga, where 1 < ¢ < (3a+ (n+2)/4)/(2a+1). Then,
there exist ¢(1) > 0 (depending on «, ¢(0),Cy) and ¢(1) > 0 (depending on «, ¢(0), Cp)
such that

| Du(-,t)|| > c(1)p= 2 t=n-9/2 Vi>t (5.10a)

and
| Db(-,t)|| > &)y~ V2¢n-a/2 Vi>t (5.100)

for some t; > 0 that depends on «, ¢, p, v, ¢(0), ¢(0), Co, to and Tp.

Finally, we look at the MHD equations in the form (5.1), that is, for the coupled solu-
tion pair (u,b)(-,t), assuming (5.3) above and the jointly condition

| (w,b)(-, t)|| > c(0)t~" YVt >t (5.11)

for some constants ¢(0), tg, n > 0. The following result is a consequence of THEOREM C’

(or, more precisely, of its proof):

Theorem 5.4 (lower estimates for derivatives: n > «).
Let (5.3) and (5.11) hold with 0 < a < 7. Then, for every m > 0, there exists ¢(m) > 0
(depending only on m, a, ¢(0) and Cy) such that, setting ¢ = n/a:

| D™ (w,b)(-, 1) || > c(m)~~ ™2t n-ma/2 Vt>t, (5.12)

for some t,, > to, where v = max {u, v}, with t,, depending on m, «, ¢, , v, ¢(0), Cy, to, To.

Moreover, results similar to THEOREMS 4.5-4.8 above can be obtained for the MHD

equations as well, as illustrated by the next result.

Theorem 5.5. Let 2 <n <4, o> 0,and (u,b)(-,t) any given Leray solution to (5.1).

(i) If, as t — oo, we have || D (u,b)(,t) || 2@ = O(t~*~%?) for some ¢ > 0, then
we actually have || D™ (w,b)(,t)||z2@ny = O(t~*~™/2) for all m >0 (and ¢ > 1).

(#7) If, as t — oo, we have || D*(u,b)(-, 1) r2®n) = O(t~*~*/?) for some k > 0, and also
| D*(w, b) (-, t) || n2(rny > ¢t =~ */2 for some £ > 0, and some constant ¢, > 0, then we will
have: || D™(w,b) (-, t) ||r2@n) > ¢t~ ™2 for all m >0 (and some constants c,, > 0).
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Example 6 (incompressible micropolar flows in R™, 2 < n < 3).
Consider the micropolar equations for w = (uy, us, uz) and w = (wy, wo, w3) in R3:
u + u-Vu + Vp = (u+x)Au + 2x VAW, V-u =0, (6.1a)
w; + u-Vw = vAw 4+ V(V-w) — 4xw + 2y VAu, (6.1b)

where pu, x, v are positive constants [5, [13]. Given wuy € L2(R?), wo € L*(R?), let (u,w)
be (any) Leray solution of (6.1a)-(6.1b) having wg, wy as initial data, and let

1
e(x,t) = w(x,t) — §V/\u(:v,t), (6.2)
so that the equation (6.1a) can be written as
u; + v-Vu + Vp = plAu + f, f=2xVae. (6.3)

For the system (6.1)-(6.2), as well as for the equation (6.3), the validity of condition (H2)
for every m follows again from ([3], LEMMA 6.1). Assuming that we have

lu(,t)| < Cot™® YV it>T, (6.4)

for some constants Cjy, Ty, @ > 0 (and no further assumption on w(-,t)), it follows from
the proof of THEOREM A’ that

[w(- )| < Cot= " Vi>T (6.5)

for some Cj, Tp that depend on u, x, v, Co, with Ty also depending on 7. (The bound (6.5)
was originally obtained in [7, [I7].) It then follows the estimates (6.6) given below (as in
the proof of THEOREMS A or A’), see also [4, 7, 17].

Theorem 6.1 (upper estimates for derivatives).
If (6.4) holds, then: for every m > 0, there exists C,, > 0 (depending on m, «, Co, i, X, V)
such that, setting v = min {y, v},

| D™ u(-t)|| < Cpy ™2t~ ™2 Y t>T,, (6.6a)

| D™w(-,t)|| < Cpy Y2-m/2gmast2=mi2 g s (6.6b)

for some T, > 0 that depends on m, u, x, v, a, Cy, Tp.
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This result can be improved by considering the equation (6.3). From (6.1b) and (6.6)
it can be shown (see [§]) that, if w(-,t) satisfies (6.4) for some «a > 0, then

D" f(- 1) < Fpt= @~ m+9/2 v s g (6.7)

for all m > 0, with F,,, depending on m, a and Cj, while o,,, depends on all the parameters.
Therefore, by THEOREM A, we obtain the following result.

Theorem 6.1’ (upper estimates for derivatives).
If (6.4) holds, then: for every m > 0, there exists C,, > 0 (depending on m, «, Cy) such
that

| D™ (- t)|| < Cpp~™2t="™2 YV t>T,, (6.8a)
| D™ w(-,t)|| < Cppu V2 m/2-at/2=m/2 > (6.8b)
for some T, > 0 that depends on m, u, x, v, o, Co, Tp.
Now, consider the reverse condition
fu( )| = (0t Vix>t (6.9)

for some constants ¢(0), to, n > 0. (Again, no conditions need to be imposed on || w(-, %) ||.)

The following result can then be obtained by applying THEOREM B to the equation (6.3).

Theorem 6.2 (lower estimates for derivatives: n = «).
Ley (6.4) and (6.9) be valid, where n = a. Then, for every m > 0, there exists ¢(m) > 0
(depending on m, «, ¢(0) and Cj) such that

| D™ (-, t)|| > clm)p— ™2 ¢t-o"m/2 YVt > ty, (6.10a)
| D™ w(-,t)|| > c(m)p=V/2-m/2g-a-1/2-m/2 Vot >y, (6.10b)
for some t,, > to that depends on m, u, x, v, a, ¢(0), to, Co, Tp.

In a similar way, we can apply THEOREM C to the equation (6.3) and derive lower
bound estimates (under the assumptions (6.4) and (6.9)) in the case n > «, or we can use
THEOREMS D and/or E to generate results similar to THEOREMS 4.5 and 4.6, and so forth.
However, due to the special features of the equations (6.1), these and other properties
will be better left to a separated treatment in a future work [8].
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Example 7 (inverse Wiegner’s theorem: Navier-Stokes equations, n > 2).

Let u(-,t) € Cy([0,00), L2(R™)) N L2((0, 00), H'(R™)) be any given Leray solution to the

Navier-Stokes equations

u + u-Vu + Vp = Au, (7.1a)
V-u(-,t) =0, (7.1b)
u(-,0) = ug € LZ(R") (7.1c)

(in dimension n > 2), and let v(-, ) be the solution in the space C([0, c0), L?(R™)) of the
associated Stokes problem

vy = Av, v(-,0) = wuy (7.2)

where ug € L?(R") is given in (7.1c) above. Our goal is to show the following result:

Theorem 7.1 (INVERSE WIEGNER). If ||u(-, 1)
y= O(t—%).

|2y = Ot™%) with 0 < @ < (n+2)/4,

then we also have ||v(-,t) ||L2(R"

This result in the case n > 3 is an almost immediate corollary of the (direct) WIEGNER’S
THEOREM (given in [25], p. 305), which says: if we have ||v(-, 1) 2@n = O(¢t~F) for some
0 < B < (n+2)/4, then we will also have ||u(-,t)]|;2gn) = O(t~7) and, in addition:

O(t=28-n=2/4) ge 0 < B <1
[l ) = 0 Ol = { O log ) se 5=} r3)

O(t—(n+2)/4) se

Remark 7.1: In dimension n = 2, 3, an alternative proof of WIEGNER’s (direct) THEOREM
was found independently in [I1), 26]. The derivation in [11, 26] is actually much simpler
than Wiegner’s original proof. The INVERSE WIEGNER’S THEOREM above was first obtained
by Z. Skalék in dimension n = 3 (see [20], THEOREM 3.1) using a very elaborated argument.
The proof of THEOREM 7.1 given here is much simpler and is based on monotonicity ideas
if n = 2. For n > 3, THEOREM 7.1 is a trivial consequence of (7.3), cf. discussion below.
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Letting 0(-,t):= u(-,t) — v(-,t), we have that (-, t) satisfies: 6(-,0) = 0 and
0, = A0 — F(-,1), (7.4a)
f,t) = u(-,t)-Vu(-,t) + Vp(-,t) = Pylu(-,t) - Vu(-,t)] (7.4b)

(where Pg: L*(R") — L2(R"™) denotes the LERAY-HELMHOLTZ PROJECTOR).

Let then ug € L2(R?) be given such that the corresponding Leray solution of (7.1) [which,
in dimension n = 2, is regular for ¢ > 0 (and unique)| satisfies

[0y = O() (7.5)

for some 0 < o < (n+2)/4 =1 (or, equivalently, that we have: ||u(-, )| = O(1+1t)~).
Recalling THEOREM A, it follows from (7.5) that

| Du(-,t) = Ot~ 2). (7.6)

||L2 (RQ)
Before proceeding, it will be convenient to recall the estimates (7.7) next:
Lemma 7.1. For every s > 0, we have, letting Q(-,t) = Py[u(-,t) - Vu(-,1)]:

and

| A0IQC5) ey < o (=) 1l 1, (7.75)

for every t > s, where K, = (8m)"Y? and K,= (4me)~ /2

Proof: This follows directly from HEAT KERNEL properties (see e.g. [19], THEOREM 3, p. 4) or,
if preferred, using the FOURIER TRANSFORM (se e.g. [11], p. 236, or [26], p. 1227). O

Remark 7.2: Lemma 7.1 has a version for n = 3 or 4 as well, but for s € (0,00) \ E,
where . C R is a bounded set of zero measure. However, this lemma will only be needed
(for the proof of WIEGNER’S INVERSE THEOREM given here) in case of dimension n = 2.
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Going back to (7.4) above, we then have
t
u(-,t) —v(-t) = —/ et =) [PH[U'VU,](',S)} ds
0

_ _/tIPH[eNt—S)[u-vU](-,s)}ds,

so that
t
Hu(.,t)—v(.,t)HLQ(RQ) §/ [[DH[ A(t—s)[u-Vu](-,S)] L2(R2)d8
/H [u-Vul(,s) L2(R2)
t/2
= H eAlt—s ) [u-Vul( HL2 E2) ds —i—/ H e [u Vul(,, HLQ(RQ ds

t/2
lt_s ). HP(ds+/< )2 ) g | D) ] g

t/2
for every t > 0, where in the last step LEmMMA 7.1 was used. Hence, by (7.5) and (7.6):

t/2

| w(-,t) — v(.,t)HLQ(RQ): O(tl)/ (14 5s)"*ds + O(t2a§)/ (t—s)"?ds (7.8)

t/2

In the case 0 < a < 1/2, it follows from (7.8) that
() = () [ o ey = Ot ™V (1+1)72H 4 O(t~2-2)¢/2 = O(t™2*), (7.9q)
so that
108 gy < 10+ 18) = 08
= Ot ) + Ot 2 = O(t™*) (7.9b)
if @ € (0,1/2). In the case a = 1/2, we get from (7.8) that
|u(-,t) —v(-t) ||L2(R2): Ot Ylog (1+4t) + Ot~ 2)tV2 = O(t~ ") log (1+t) (7.10a)

and so

” ’U(-,t) ||L2(R2) < || u('7t) ||L2(]R2) + || u('7t) - ’U(-, t) ||L2(]R2

)
1
2

= Ot 2) + Ot Nlog(1+1t) = Ot 2) (7.10b)
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if @« =1/2. Finally, in the remaining case 1/2 < a < (n+2)/4 =1, (7.8) gives
|u(-,t) — v(-,t)||L2(R2)— Ot~ + Ot~ 2) Y% = O(t™Y), (7.11a)
so that
100 gy < ) g + (e 8) = 08
= Ot ™) + 0™ = 0@t (7.11b)

if 1/2 < a < 1. Therefore, for all values 0 < o < 1 it has been true that || v(-,t)||r2(r2)
= O(t™ %), as claimed, and we had (by (7.9a), (7.10a) and (7.11a) above):

O(t=2e~=2/1) jf 0<a<i

Ju(-,t) —v( 1) =< O "D/ logt) if a=1 (7.12)
O(t~(n+2)/4) if $<a<nd2

(in accordance with (7.3)).

Remark 7.3: The key ingredient of the argument above was the validity of (7.6), which
turns out to be an immediate consequence of the assumption (7.5) in view of THEOREM A.
A direct derivation of (7.6) from (7.5) in the spirit of SEcTION 0 (THEOREMS A-E), that is,
exploring simple monotonicity properties of the relevant L? norms involved, is very easy to
provide, due to the the well known monotonicity of || Du(:,t)||2(r2) in the interval (0, co).
The following argument is adapted from ([11], p. 235): from the basic energy inequality
(which is actually an equality if n = 2) satisfied by the solution wu(-,t), we have

—

1)
. > .
lul /D12, 2 DI, + 2/ | Dut D), . dr

t/2

AV
5
IS
Q

t/2 L2 ]RZ
2 .
> 2||Du(-, )||L2(R2)/t/21 dr [ by monotonicity ]
for every t > 0, that is,
2 —2a
DU D12, < 22, < K1+ 1/2) by (75)]
for some fixed constant K > 0 (by (7.5)), which shows (7.6), as claimed. O
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We now consider the case n = 3: assuming that we have

() gy = O) (7.13)

(for some 0 < o < (n+ 2)/4 =5/4), let us then show that we will also have

loC D] 20y = O (7.14)

(where v(-,t) is the solution to problem (7.2)). Since ||v(-,t)||r2®s)= o(1), we can apply
(7.3) with 8 = 0 to obtain

_1
[ 8) = (1) o) = O, (7.15)
In particular,
H ’U(': t) ||L2(R3) < H u('? t) ||L2(R3) + || u('v t) - ’U(-, t) ||L2(]R3)

= O(t™™) + O(t™ 1) = O(t™) (7.16)

where v = min{«, 1/4}. If &« < 1/4, then (7.14) already follows; the remaining cases for
a will be considered in the sequel below.

Case I: 1/4 < a < 1/2.

In this case, by (7.16) it follows that ||v(-,t)| r2ms) = O(t~1), so that (7.3) gives (with
n=3,0=1/4):

J(1) = 0(, 1) || gy = O ). (3.17a)

In particular,
H ’U(': t) ||L2(R3) < H U’('? t) ||L2(R3) + || 'u’('v t) - ’U(-, t) ||L2(R3)

= O(t™™) + Ot~ 1) = O(t™). (3.17b)

Remark 7.4: applying (17.3) means that we are using WIEGNER’S (direct) THEOREM to
obtain the INVERSE WIEGNER'S THEOREM as a consequence of the former.
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Case II: o = 1/2.

In this case, by (7.16) it follows that ||v(-, )| r2m®s) = O(t™1), so that, by (7.3) again, we
obtain

_3
||’U,(',t) - 'U(',t) ||L2(R3) = O(t 4)' (718&)
In particular,
H ’U(-, t) HLz(Rs) < || u(~, t) ||L2(R3) + || u('7 t) - ’U(‘, t) ||L2(R3)

— O(t72) + Ot~ 1) = O(t™2). (7.18)

Case I1I: 1/2 < a < 5/4.

Since, in particular, we have || wu(-,t) ||L2r3) = O(t™2) in this case, it then follows from
Cask IT above that ||v(-,1)|[z2rs) = O(t~2). Hence, by (1.3) with 3 = 5, we have:

_s
(1) = 0, 1), = Ot log). (7.190)
In particular,
H ’U(-, t) HL2(R3) < || u(~, t) ||L2(R3) + || u('7 t) - ’U(‘, t) ||L2(R3)
= O(t™®) + O(t ilogt) = O(t™®). (7.19b)
CASE IV: a = 5/4.

Since, in particular, we have ||w(-,t) || z2®s) = O(¢ ') in this case, it follows from Casg III
that ||v(-,t)| 2@ = O(t™1), so that, by (7.3) with 8 = 1, we have:

(1) = 0(, 1) || gy = O ). (7.200)

In particular,
1000y < 1000y + 125) = 00,0 g
= Ot~ 1) + Ot~ 1) = O(t™1), (7.200)
which completes the proof of (7.14). O
Remark 7.5: as we can see from the argument above, there was no real need to consider

the cases 1/4 < a < 1/2 and a = 1/2 separately.
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Having || w(-,t)||r2@sy = O(t~*) for some 0 < o < (n+2)/4 = 3/2, using (7.3) with
B =0 en =4 we obtain, observing that (n —2)/4 =1/2,

(1) = 0 1) ey = O 2). (7.21)

In particular,

” ’U(-,t) ||L2(R4) < H u('7t) ||L2(]R4) + || u('7t) - ’U(-, t) ||L2(R4)

N|=

= O(t™) + O(t™%) = O(t™) (7.22)

where v = min{a, 1/2}. Hence, in the case o < 1/2 we have ||v(-,t) | 2ms) = O(t™
and the result is obtained. For a > 1/2, then it is at least known that ||v(-,t) ||2s) =

O(t~%/?), so that we have, by (7.3):

||U(,t) - ’U(',f) HL2(R4) = O(t73/2 lOg t)u (723)

and so
|| ’U(-,t) ||L2(R4) < || u(~,t) ||L2(R4) + || 'u,(~,t) - U('7t) ||L2(R4)
= O(t™*) + O(t™ 2 logt). (7.24)
Casel: 1/2 < a < 3/2.

Having o < 3/2, it follows directly from (7.24) that ||v(-, ) [[z2@®s) = O(t7%), as was to
be shown.

Case II: a = 3/2.

In this case, it follows from (7.24) that || v(-,t)||;2®s) = O(t~'). From (7.3) with 3 =1
and n = 4, we get ||u(-,t) — v(-, )| p2®s = O(t~%?), so that

H ’U(',f) ||L2(R4) < H 'U,(',t) ||L2(R4) + ” u('vt) - U('7t) HLQ(R4)

e

= Ot 2) + Ot~ 2) = Ot ?). (7.25)
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Having || w(-,t)||r2@n) = O(t~%) for some 0 < a < (n + 2)/4, using (7.3) with 5 =10
and n > 5 we obtain

1) — of- - —(n—2)/4
(1) = 00, 0)]] 2 g, = O ). (7.26)
In particular,
= O(t™™) + Ot~ "T) = O(t™) (7.27)

where 7 = min{a, (n—2)/4}. Thus, in the case a < (n—2)/4, we have that || v(-, ) || L2rn)
= O(t~?), as was to be shown. If a > (n —2)/4, it follows from (7.27) that

—2

[0y = O ). (7.28)
Since (n —2)/4 > 1/2, applying (7.3) with 8 = (n — 2)/4 we obtain, in this case,

so that

= Ot~ + Ot~ "i) = O(t™ ). (7.30)

This completes the proof of THEOREM 7.1. In a similar way, we can prove the following
generalization to Leray solutions of the Navier-Stokes equations with external forces,

u +u-Vu +Vp = Au + f(-,1), V-u(.,t)=0 (7.31)

(in dimension n > 2), with f(-,¢) € L*((0,00), L2(R")) satisfying the condition

+2

L gy < CrO 07 e ) gy < Kut ™25 (732)

for all ¢ > 0 (and some 0 < a < (n + 2)/4). The associated linear problem is now v; =
Av + f(-,t), with v(-,0) = u(-,0) € L2(R™), and WIEGNER’S INVERSE THEOREM reads
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Theorem 7.2 (INVERSE WIEGNER). If || w(-,?)

then we will also have || v(-,t)

HL2(Rn): O(t=®) with 0 < a < (n+2)/4,

||L2(R") = O(t~ ), provided that f(-,t) satisfies (7.32).

The proof is similar to the derivation of THEOREM 7.1 given above.
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