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Abstract

In this work we introduce a novel approach to generate lower and upper L2

estimates for solution derivatives of arbitrary order to a general class of dissipative

systems in the case that such estimates are available for the solutions themselves.

Our method also works in reverse order: from the L2 estimates of solution deriva-

tives of some (arbitrary) order we can derive lower and upper L2 estimates for the

solutions and then to their derivatives of any order. This procedure is based on

very simple monotonicity properties combined with standard energy estimates in

physical space, following previous ideas of Kreiss, Hagstrom, Lorenz and Zingano.

For simplicity, it is applied here in the context of algebraic rates, but the method

can be used in other contexts as well (exponential, logarithm, and so forth).
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Summary and Conclusions

Section 0. Upper and lower estimates for dissipative systems

Monotonicity properties of Ḣm norms can be used to very easily produce new upper

and lower bounds for solutions of dissipative systems out of previous estimates.

Example 1. Heat equation

Illustration of the method begins for simplicity with the familiar linear heat equation.

Example 2. Advection-diffusion equations (n = 1)

Advection-diffusion equations on R are not so easy due to the slow solution decay.

Example 3. Advection-diffusion equations in higher dimensions

Advection-diffusion equations in Rn (n ≥ 2) are easier due to the faster solution decay.

Example 4. Incompressible Navier-Stokes equations (2 ≤ n ≤ 4)

Old and new results are obtained for Leray solutions of the Navier-Stokes equations.

Example 5. Incompressible MHD equations (2 ≤ n ≤ 4)

Old and new results are obtained for Leray solutions of the MHD equations in Rn.

Example 6. Incompressible micropolar flows (n = 2, 3)

Old and new results are obtained (or announced) for micropolar fluid flows in Rn.

Example 7. Inverse Wiegner’s theorem for the Navier-Stokes equations

A simple proof of Wiegner’s inverse theorem for the NS equations in Rn (n ≥ 2).
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Upper and lower Ḣm estimates for solutions of parabolic equations

R. H. Guterres, C. J. Niche, C. F. Perusato and P. R. Zingano

Porto Alegre, April 25, 2021

Consider the equation

ut + G(u) = ν∆u + f , x ∈ Rn, t > 0 (0.1)

(where ν > 0 is constant, and u = u(x, t), u = (u1, u2, ..., uN), f = (f1, f2, ..., fN), etc),

with some global weak solution u(·, t) ∈ Cw([ 0,∞), L2(Rn)) which, together with f , be-

comes eventually smooth:

f, u ∈ C∞(Rn×(t∗,∞)), (0.2a)

f(·, t), u(·, t) ∈ C0((t∗,∞), Hm(Rn)N), ∀ m ≥ 0, (0.2b)

for some t∗> 0. Let ‖ · ‖ = ‖ · ‖
L2(Rn)

. Assume that we have

‖u(·, t)‖ ≤ C0 t
−α ∀ t > T0 (H1)

for some constants C0, T0, α > 0. We also assume that we have, for some m̂≥ 1:∣∣∣∣∣ ∑
`1,...,`m

∫
Rn

〈D
`1
···D

`m
u(x, t), D

`1
···D

`m
G(u(x, t)) 〉 dx

∣∣∣∣∣ ≤ gm(t) ‖Dm+1u(·, t)‖2 ∀ t > τm

(H2)

for some τm> t∗, for every 0 ≤ m ≤ m̂, where the sum is over all indices 1 ≤ `1,..., `m ≤ n

(no sum implied if m = 0), where gm(t)→ 0 as t→∞, and where 〈 ·, · 〉 denotes the inner

product of RN. Finally, when f is present (i.e.,f 6≡ 0), we must additionally assume that

‖Dmf(·, t)‖ ≤ Fm t
−β−m/2 ∀ t > σm (H3)

for some β > 0 (specified in the results below) and some Fm, σm > 0, for each 0 ≤ m ≤ m̂.

For the main results (Theorem B and Theorem C), it will be also necessary to assume

‖u(·, t)‖ ≥ c(0) t−η ∀ t > t0 (H4)

for some positive constants c(0), t0, η given (with η satisfying, by (H1) above: η ≥ α).
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Notation. ‖ · ‖ denotes L2 norm, so that

‖u(t)‖2 ≡ ‖u(·, t)‖2 =
N∑
i= 1

∫
Rn

|ui(x, t) |2 dx. (0.3a)

Similarly,

‖Du(t)‖2 ≡ ‖Du(·, t)‖2 =
N∑
i= 1

n∑
j= 1

∫
Rn

|Djui(x, t) |2 dx, (0.3b)

‖D2u(t)‖2 ≡ ‖D2u(·, t)‖2 =
N∑
i= 1

n∑
j= 1

n∑
`= 1

∫
Rn

|DjD`ui(x, t) |
2 dx, (0.3c)

and so forth, where Dj = ∂/∂xj, Dj D̀ = ∂2/∂xj∂x̀ , etc.

Here is a quick overview of the basic properties shown in the text (the main results

being Theorem B and Theorem C):

Theorem A (upper estimates for derivatives).

Assume (H1), (H2) and (H3) above, with β ≥ α+ 1. Then we have, for every 1 ≤ m ≤ m̂:

‖Dmu(·, t)‖ ≤ Cm ν
−m/2 t−α−m/2 ∀ t > Tm (0.4)

for some constants Cm> 0, Tm> t∗. Moreover, Cm can be chosen to depend only on m,α

and C0 if β > α + 1, and on m, α, ν, C0 and {F` : 0 ≤ ` < m} if β = α + 1; Tm depends

on all these and β, Fm, {τ`, σ` : 0 ≤ ` ≤ m}, as well as on the functions g
`
, 0 ≤ ` ≤ m.

Theorem B (lower estimates for derivatives : the case η = α).

Assume (H1), (H2), (H3) and (H4), with η = α and β > α+1. Then, for every 1≤ m≤ m̂:

‖Dmu(·, t)‖ ≥ c(m) ν−m/2 t−α−m/2 ∀ t > tm (0.5)

for some constants c(m)> 0, tm> t∗. Moreover, c(m) can be chosen to depend only on m,

α, c(0) and C0, while tm depends on m, α, β, ν, c(0), C0, t∗, t0, T0, {F`, τ`, σ` : 0 ≤ ` ≤ m}
and the functions g

`
, 0 ≤ ` ≤ m.

Remark 0.1: Theorem A is basically known (see [4, 9, 15, 22, 23]), although not generally

stated in the present form. It is included for completeness, because of its role in the deriva-

tion of the main results (Theorems B and C) and also for the similarities in their proofs.

In fact, Theorem A can be shown in the same way as Theorem B if f= 0 or if Lemma 0.1

is available. As this is not the case, we followed an alternative route (adapted from [9]).
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Remark 0.2: Theorem A is also valid in the case α = 0, as it will become clear from

its derivation. Other generalizations are clearly possible: for example, if instead of (H1)

it is assumed that ‖u(t)‖ = o(t−α) as t→∞ (for some α ≥ 0), then repeating the proof

below it will be obtained that, as t→∞: ‖Dmu(·, t)‖= o(t−α−m/2) for every 1≤m≤ m̂.

Remark 0.3: Theorem B has the following generalization, which seems particularly use-

ful in the case f = 0 or if m̂ is not too large (as, for example: m̂ = 1 or m̂ = 2):

Theorem C (lower estimates for derivatives : the case η > α).

Assume (H1), (H2), (H3) and (H4), with η > α and β given in (H3) satisfying

β > 2η − α +
( η
α
− 1

)
m̂ + 1. (0.6a)

Then, setting q = η/α, we have, for every 1≤ m≤ m̂:

‖Dmu(·, t)‖ ≥ c(m) ν−m/2 t− η−mq/2 ∀ t > tm (0.6b)

for some c(m)> 0, tm> t∗. Moreover, c(m) can be chosen to depend only on m, α, c(0)

and C0, while tm depends on m, α, η, β, ν, c(0), C0, t∗, t0, T0, {F`, τ`, σ` : 0 ≤ ` ≤ m} and

the functions g
`
, 0 ≤ ` ≤ m.

Remark 0.4: There are three basic ingredients in the proof of Theorems B and C: (i)

use of energy estimates for ‖Dm−1u(·, t)‖, (ii) availability of lower and upper estimates

for ‖Dm−1u(·, t)‖, and (iii) monotonicity results for ‖Dmu(·, t)‖ (Lemma 0.1).

Remark 0.5: The estimates (0.4), (0.5) above show that we gain an extra factor (νt)−1/2

each time the derivative order is increased by one unit. In Theorem A and Theorem B

the starting point was an initial estimate for ‖u(·, t)‖, given in (H1) or (H4), but a similar

result would have been obtained if we had begun with some higher derivative instead.

For example, knowing that ‖Dku(·, t) ‖ ≤ Ck t
−α if t > Tk, say, for some k ≥ 1, it would

have followed that ‖Dmu(·, t)‖ ≤ Cm ν
−(m−k)/2 t−α−(m−k)/2 for every k ≤ m ≤ m̂, t� 1.

Under appropriate conditions, we can also go backwards, as the following results illustrate.

Theorem D (upper estimates from higher derivatives).

Let (H2) be valid with m = 0, and assume that the solution of (0.1) considered satisfies

lim
t→∞

‖u(·, t)‖ = 0 and

‖Du(·, t)‖ ≤ C1 ν
−1/2 t−α1 ∀ t > T1 (0.7a)

for some C1, α1, T1 > 0. Then we have:
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(i) If α1> 1/2 and (H3) holds with m = 0 for some β > α1 + 1/2, then

‖u(·, t)‖ ≤ C0 t
−α1 +1/2 ∀ t > T0 (0.7b)

where C0> 0 depends on C1, α1, β, σ0, F0 and ‖u(a∗)‖ only, with a∗ given in (0.9) below,

and T0 depends on t∗, T1, α1, β, τ0, σ0, F0, ν, a∗ and the function g
0
.

(ii) If α1> 1/2 and (H3) holds with m = 0 for β = α1 + 1/2, then, for every ε > 0:

‖u(·, t)‖ ≤ C0(ε) t−α1 +1/2 + ε ∀ t > T0 (0.7c)

where C0(ε)> 0 depends on ε, C1, α1, β, σ0, F0 and ‖u(a∗)‖ only, with a∗ given in (0.9),

and T0 depends on t∗, T1, α1, β, τ0, σ0, F0, ν, a∗ and the function g
0
, but not on ε.

Theorem E (lower estimates from higher derivatives).

Let (H2) be valid with m = 0, and assume that the solution of (0.1) considered satisfies

(0.7a) for some α1> 1/2. Assume also that lim
t→∞

‖u(·, t)‖ = 0 and

‖Du(·, t)‖ ≥ c(1) ν−1/2 t−α1 ∀ t > t1 (0.8a)

for some c(1), t1 > 0. Then, if (H3) holds with m = 0 and some β > α1 + 1/2, we have

‖u(·, t)‖ ≥ c(0) t−α1 +1/2 ∀ t > t0 (0.8b)

with c(0) = c(1)/(2
√
α1− 1/2 ), where t0 depends on t∗, c(1), C1, t1, T1, τ0, σ0, F0, α1, β

ν, a∗, ‖u(a∗)‖ and the function g
0

given in (H2), with a∗ defined in (0.9) below.

Remark 0.6: Regarding the condition on ‖u(·, t)‖ that appears in Theorems D and E,

it will become clear from the derivation of (0.7b), (0.7c) and (0.8b) given later that only the

fact that lim inf
t→∞

‖u(t)‖= 0 is actually needed (and used) there. However, using a Gronwall-

type argument (see Remark 0.11 below) it can be shown that, for some a∗� 1 (depending

in general on t∗, τ0, ν and the function g
0
), we have

‖u(t)‖ ≤ ‖u(a)‖ +

∫ t

a

‖f(τ)‖ dτ ∀ t > a ≥ a∗. (0.9)

Since β > 1, it follows that ‖f(·)‖ ∈ L1(a,∞); this then gives, in view of (0.9) above, that

lim sup
t→∞

‖u(t)‖ ≤ lim inf
t→∞

‖u(t)‖. That is, the limit lim
t→∞

‖u(t)‖ does exist.
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Remark 0.7: Theorems A-E above have, of course, simpler statements when f = 0, i.e.,

in the case of the equation

ut + G(u) = ν∆u, x ∈ Rn, t > 0, (0.10)

with solutions u(·, t) satisfying (0.2). Here, as before, the term G(u) is assumed to satisfy

the condition (H2), for some m̂ ≥ 1. For convenience, the corresponding statements are

reproduced below (Theorems A′ -E′). Results for the solutions of (0.10) can be obtained,

of course, as direct corollaries of the theorems above, but sometimes it will be more advan-

tageous to derive them from the proofs. This was the case, for example, of Theorem D′

ann Theorem E′ (see below). In the latter, the condition that ‖u(t) ‖ → 0 (as t→ ∞)

was dropped because it is simply not needed when f = 0. (The condition on ‖u(t) ‖ is

necessary in Theorem E because the upper estimate (0.7b) is needed in the proof there.)

The same goes when applying the results above to particular equations: it may be better

sometimes to obtain the results from the proofs and not from the statements given above.

For example, consider the situation of obtaining (0.7b) from the estimate (0.7a) when we

have, say, β > 2α1. This stronger assumption eliminates the need to bootstrap on the esti-

mate (0.19a), leading to a neater expression for the constant C0 in this case (namely, C0 =

2C1/
√
α1− 1/2 ). Additional examples are given in Examples 1-4 at the end of the text.

Theorem A′ (upper estimates for derivatives : f = 0).

Let u(·, t) be a solution to (0.10). If (H1) and (H2) are valid, then, for every 1 ≤ m ≤ m̂:

‖Dmu(·, t)‖ ≤ Cm ν
−m/2 t−α−m/2 ∀ t > Tm (0.11)

for some constants Cm> 0, Tm> t∗. Moreover, Cm can be chosen to depend only on m,α,

and C0, while Tm depends on m, α, C0 and also on ν, {τ` : 0 ≤ ` ≤ m} and the functions

g
`
, 0 ≤ ` ≤ m, given in (H2).

Theorem B′ (lower estimates for derivatives : the case η = α, f = 0).

Let u(·, t) be a solution to (0.10). Assuming (H1), (H2) and (H4), with η = α, then we

have, for every 1≤ m≤ m̂:

‖Dmu(·, t)‖ ≥ c(m) ν−m/2 t−α−m/2 ∀ t > tm (0.12)

for some constants c(m)> 0, tm> t∗. Moreover, c(m) can be chosen to depend only on

m, α, c(0) and C0, while tm depends on m, α, c(0), C0, t∗, t0, T0, ν, {τ` : 0 ≤ ` ≤ m} and

the functions g
`
, 0 ≤ ` ≤ m.
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Theorem C ′ (lower estimates for derivatives : the case η > α, f = 0).

Let u(·, t) be a solution to (0.10). Assuming (H1), (H2) and (H4) with η > α, and letting

q = η/α, we have, for every 1≤ m≤ m̂:

‖Dmu(·, t)‖ ≥ c(m) ν−m/2 t− η−mq/2 ∀ t > tm (0.13)

for some constants c(m) > 0, tm > t∗. Moreover, c(m) can be chosen to depend only on

m, α, c(0) and C0, while tm depends onm, α, c(0), C0, t∗, t0, T0, ν, η, {τ` : 0 ≤ ` ≤ m} and

the functions g
`
, 0 ≤ ` ≤ m.

Theorem D′ (upper estimates from higher derivatives : f = 0).

Let u(·, t) be a solution to (0.10). Assuming (H2) with m = 0, and that lim
t→∞

‖u(·, t)‖ = 0

and

‖Du(·, t)‖ ≤ C1 ν
−1/2 t−α1 ∀ t > T1 (0.14a)

for some constants C1, T1 > 0 and α1> 1/2, then

‖u(·, t)‖ ≤ C0 t
−α1 +1/2 ∀ t > T0 (0.14b)

with C0 =
√

2 C1/(α1− 1/2)1/2 and T0 depending on t∗, T1, τ0, σ0, ν and the function g
0
.

Theorem E′ (lower estimates from higher derivatives : f = 0).

Let u(·, t) be a solution to (0.10). Let (H2) with m = 0 and (0.14a) above be both valid,

where α1> 1/2. If

‖Du(·, t)‖ ≥ c(1) ν−1/2 t−α1 ∀ t > t1 (0.15a)

for some c(1), t1 > 0, then

‖u(·, t)‖ ≥ c(0) t−α1 +1/2 ∀ t > t0 (0.15b)

with c(0) = c(1)/
√

2α1− 1 and t0 depending on t∗, t1, τ0, ν and the function g
0
.

Remark 0.8: As will be seem from the proofs of TheoremD and TheoremE (and also

of Theorem D′ and Theorem E′), when trying to obtain estimates proceeding from higher

derivatives to lower derivatives it is in general easier to do it for the case of lower estimates

than it is for upper estimates.

6

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 July 2022                   doi:10.20944/preprints202207.0137.v1

https://doi.org/10.20944/preprints202207.0137.v1


Proof of Theorem A (adapted from [9]):

Let γ > 2α be given (fixed from now on), and let a≥ max {1, t∗,T0, τ0, σ0}. We get, taking

the dot product of the equation (0.1) with 2(t− a)γu(x, t) and integrating on Rn×(a, t),

(t− a)γ ‖u(t)‖2 + 2ν

∫ t

a

(τ − a)γ ‖Du(τ)‖2 dτ =

= γ

∫ t

a

(τ − a)γ−1 ‖u(τ)‖2 dτ + 2

∫ t

a

(τ − a)γ
∫
Rn

〈 u(x, τ), f(x, τ)−G(u) 〉 dx dτ

≤ γ

∫ t

a

(τ − a)γ−1 ‖u(τ)‖2 dτ + 2

∫ t

a

(τ − a)γ
{
‖u(τ)‖ ‖f(τ)‖ + g

0
(τ)‖Du(τ)‖2

}
dτ

≤ C0 (γC0 + 2F0a
−δ)

∫ t

a

(τ − a)γ−2α−1 dτ + 2

∫ t

a

(τ − a)γ g
0
(τ) ‖Du(τ)‖2 dτ

for all t > a, using (H1)-(H3), where δ = β− (α+1). Because g
0
(∞) = 0, we then obtain,

increasing a if necessary,

(t− a)γ ‖u(t)‖2 + ν

∫ t

a

(τ − a)γ ‖Du(τ)‖2 dτ ≤ E0 (t− a)γ−2α

for all t > a, where E0 = C0 (γ C0 + 2F0a
−δ)/(γ− 2α). This gives, in particular,∫ t

a

(τ − a)γ ‖Du(τ)‖2 dτ ≤ E0 ν
−1 (t− a)γ−2α (0.16a)

for all t > a, and any a≥ max {1, t∗, T0, τ0,σ0} sufficiently large (depending on g
0
,ν). Now,

differentiating the equation (0.1) with respect to x`, multiplying (dot product) the result

by 2(t−a)γ+1D̀ u(x, t) and integrating on Rn×(a, t), we similarly obtain, summing over `

and increasing a if necessary (so that, in particular, a ≥ max {1, t∗, T0, τ0, τ1, σ0, σ1}),

(t− a)γ+1 ‖Du(t)‖2 + ν

∫ t

a

(τ − a)γ+1 ‖D2u(τ)‖2 dτ ≤
(0.16b)

≤ (γ + 1)

∫ t

a

(τ − a)γ ‖Du(τ)‖2 dτ + 2

∫ t

a

(τ − a)γ+1 ‖Du(τ)‖ ‖Df(τ)‖ dτ

for all t > a. If β = α + 1, we then have

(t− a)γ+1 ‖Du(t)‖2 + ν

∫ t

a

(τ − a)γ+1 ‖D2u(τ)‖2 dτ ≤
(0.16c)

≤ (γ + 1 + ν)

∫ t

a

(τ − a)γ ‖Du(τ)‖2 dτ + ν−1

∫ t

a

(τ − a)γ+2 ‖Df(τ)‖2 dτ
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while, if β > α + 1, we obtain from (0.16b) that

(t− a)γ+1 ‖Du(t)‖2 + ν

∫ t

a

(τ − a)γ+1 ‖D2u(τ)‖2 dτ ≤

≤ (γ + 2)

∫ t

a

(τ − a)γ ‖Du(τ)‖2 dτ +

∫ t

a

(τ − a)γ+2 ‖Df(τ)‖2 dτ

≤ (γ + 2)

∫ t

a

(τ − a)γ ‖Du(τ)‖2 dτ + F 2
1 a
−2δ

∫ t

a

(τ − a)γ−2α−1 dτ

by (H3) with m = 1, where δ = β − (α+ 1). Therefore, in the case β > α+ 1, we obtain,

using (0.16a) above and increasing a if necessary,

(t− a)γ+1 ‖Du(t)‖2 + ν

∫ t

a

(τ − a)γ+1 ‖D2u(τ)‖2 dτ ≤ E1 ν
−1 (t− a)γ−2α (0.16d)

for all t > a, with E1 depending only on C0, say: E1 = (γ + 2)2C 2
0 . This shows (0.4) with

m = 1 and also gives that∫ t

a

(τ − a)γ+1 ‖D2u(τ)‖2 dτ ≤ E1 ν
−2 (t− a)γ−2α (0.16e)

for all t > a, from which we can go to the next level (m = 2), repeating the analysis, etc.

If β = α+ 1, we proceed similarly from (0.16c) to obtain (0.4) for m = 1, then moving to

the next level, and so on. Keep going this way, we prove (0.4) for all m ≤ m̂, as claimed. �

The proof of (0.5) and (0.6b) requires the upper estimates given in Theorem A and the

following monotonicity property, which extends a similar result in [3] (see [3],Theorem B):

Lemma 0.1 (monotonicity lemma).

Assume (H1), (H2) and (H3) above, with β ≥ α+ 1. Then we have, for every 0 ≤ m ≤ m̂:

d

dt

{
‖Dmu(·, t)‖2 + Km(α, β) t−α−β−m+1

}
≤ 0 ∀ t > am (0.17)

where Km(α, β) = 2CmFm/(α + β +m− 1), with am> t∗ depending only on the values

of m, Tm, τm, σm, ν and the funtion gm given in (H2). (The constants Cm, Fm referred to

here are those given in (H1), (H3) and Theorem A above.)

Remark 0.9: If f = 0, it follows from (0.17) above that ‖Dmu(·, t) ‖ is monotonically

decreasing in the interval (am,∞), since in this case we have Km = 0 (because Fm = 0).

This property also follows very easily from the proof of Lemma 0.1 given next.
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Proof of Lemma 0.1:

Let a = max{ t∗, T 0, τ0, σ0}, and let t > a. From the energy identity

‖u(t)‖2 + 2ν

∫ t

a

‖Du(τ)‖2 dτ = ‖u(a)‖2 + 2

∫ t

a

∫
Rn

〈 u(x, τ), f(x, τ)−G(u) 〉 dx dτ

we obtain, by (H2),

d

dt
‖u(t)‖2 + 2ν ‖Du(t)‖2 = 2

∫
Rn

〈 u(x, t), f(x, t)−G(u) 〉 dx

≤ 2 ‖u(t)‖ ‖f(t)‖ + 2 g
0
(t)‖Du(t)‖2

so that we have, increasing a if necessary,

d

dt
‖u(t)‖2 + ν ‖Du(t)‖2 ≤ 2C0F0 t

−α−β

for all t > a, by (H1) and (H3). This gives (0.17) when m = 0. For general 1 ≤ m ≤ m̂,

we proceed in a similar way: taking a = max{ t∗, Tm, τm, σm}, we have, by (H2),

d

dt
‖Dmu(t)‖2 + 2ν ‖Dm+1u(t)‖2 ≤ 2 ‖Dmu(t)‖ ‖Dmf(t)‖ + 2 gm(t)‖Dm+1u(t)‖2

for all t > a. Increasing a if necessary, we then obtain

d

dt
‖Dmu(t)‖2 ≤ 2 ‖Dmu(t)‖ ‖Dmf(t)‖ ≤ 2 CmFm t

−α−β−m ∀ t > a,

by (H3) and Theorem A. This estimate gives (0.17), and the proof is now complete. �

Remark 0.10: From the proof of Lemma 0.1 above, we see that: in the case m = 0 it

is sufficient that α, β be nonnegative reals satisfying α + β > 1. In any case, Lemma 0.1

will only be needed (in the proof of Theorem B and Theorem C) for 1 ≤ m ≤ m̂.

Observing the expression (0.17), it will be convenient in the sequel to introduce the

function zm(t) defined by

zm(t) = ‖Dmu(·, t)‖2 + Km(α, β) t−α−β−m+1, t > am (0.18)

where the constant Km(α, β) is given in Lemma 0.1. According to this lemma, if β ≥ α+1

the function zm is smooth and monotonically decreasing in the interval (am,∞).
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Proof of Theorem B:

Let m = 1 first. Recalling (0.2), (0.17) and (H1)-(H4), let t1 = max { t∗, t0, τ0, σ0, a1, T0}
and let t > t1. Given T =M t, where M > 1 will be chosen later, we obtain, from (0.1),

‖u(T )‖2 + 2ν

∫ T

t

‖Du(τ)‖2 dτ = ‖u(t)‖2 + 2

∫ T

t

∫
Rn

〈 u(x, τ), f(x, τ)− G(u) 〉 dx dτ.

By (H2) with m = 0, we have

‖u(T )‖2 + 2ν

∫ T

t

‖Du(τ)‖2 dτ ≥ ‖u(t)‖2− 2

∫ T

t

{
‖u(τ)‖ ‖f(τ)‖+ g

0
(τ) ‖Du(τ)‖2

}
dτ.

Increasing t1 (if needed) so that g
0
(τ) < ν for all τ > t1, we get, by (H1), (H3) and (H4),

4ν

∫ T

t

‖Du(τ)‖2 dτ ≥ ‖u(t)‖2 − ‖u(T )‖2 − 2

∫ T

t

‖u(τ)‖ ‖f(τ)‖ dτ

≥
{
c(0)2 − C 2

0 M
−2α− κ0 t

−δ
}
t−2α

where κ0 = 2C0F0 /(α + β − 1) and δ = β − α − 1 > 0. Choosing M =
(

2C0/c(0)
)1/α

and increasing t1 (if necessary) so that κ0 t
−δ
1 ≤ c(0)2/4, this gives, by Lemma 0.1,

4 ν T z1(t) ≥ 4ν

∫ T

t

z1(τ) dτ ≥ 4ν

∫ T

t

‖Du(τ)‖2 dτ ≥ c2 t−2α

where c2 = c(0)2/2. Therefore, z1(t) ≥ c2/(4ν )T −1 t−2α = c2/(4Mν ) t−2α−1 if t> t1, or

‖Du(t)‖2 ≥
{ c2

4M
− K1(α, β) ν t−δ

}
ν−1 t−2α−1

for all t > t1. Increasing t1 if needed, this gives ‖Du(t)‖ ≥ c(1) ν−1/2 t−α−1/2 for t > t1,

where, say, c(1) = c(0)M−1/2/3. This shows the result for m = 1. If m̂ = 1, we are done;

otherwise, we proceed with m = 2 in a similar way. Setting t2 = max { t1, τ1, σ1, a2, T1},
let t > t2 and T =Mt, where M = (2C1/c(1))1/α. Increasing t2 if necessary, we then get,

from the equation (0.1) and the assumption (H2),

4ν

∫ T

t

‖D2u(τ)‖2 dτ ≥ ‖Du(t)‖2 − ‖Du(T )‖2 − 2

∫ T

t

‖Du(τ)‖ ‖Df(τ)‖ dτ

≥
{
c(1)2 − C 2

1 M
−2α−1− κ1 ν

1/2 t−δ
}
ν−1 t−2α−1 ≥ c(1)2

2
ν−1 t−2α−1

by (H3), Theorem A and the previous case, where κ1 = 2C1F1/(α+β) and δ = β−α−1.

Now, introducing z2(t)≥ ‖D2u(t)‖2 given in Lemma 0.1 and repeating the steps above,

we obtain (0.5) for m = 2 as well. We then keep going in this way until m̂ is reached. �
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Proof of Theorem C:

Let q = η/α. Recalling (0.2), (0.17) and (H1)-(H4), let t1 = max { t∗, t0, τ0, σ0, a1, T0},
and let t > t1. Given T =M tq, where M > 1 will be chosen later, we have, as before,

‖u(T )‖2 + 2ν

∫ T

t

‖Du(τ)‖2 dτ = ‖u(t)‖2 + 2

∫ T

t

∫
Rn

〈 u(x, τ), f(x, τ)− G(u) 〉 dx dτ.

By (H2) with m = 0, we obtain

‖u(T )‖2 + 2ν

∫ T

t

‖Du(τ)‖2 dτ ≥ ‖u(t)‖2− 2

∫ T

t

{
‖u(τ)‖ ‖f(τ)‖+ g

0
(τ) ‖Du(τ)‖2

}
dτ.

Increasing t1 (if needed) so that g
0
(τ)< ν for all τ > t1, we have, by (H1), (H3) and (H4),

4ν

∫ T

t

‖Du(τ)‖2 dτ ≥ ‖u(t)‖2 − ‖u(T )‖2 − 2

∫ T

t

‖u(τ)‖ ‖f(τ)‖ dτ

≥
{
c(0)2 − C 2

0 M
−2α− κ0 t

−δ1
}
t−2η

where κ0 = 2C0F0/(α+β−1) and δ1 = β−(2η−α+1)> 0. Choosing M =
(
2C0/c(0)

)1/α
and increasing t1 (if necessary) so that κ0 t

−δ1
1 ≤ c(0)2/4, this gives, by Lemma 0.1,

4 ν T z1(t) ≥ 4ν

∫ T

t

z1(τ) dτ ≥ 4ν

∫ T

t

‖Du(τ)‖2 dτ ≥ c2 t−2η

where c2 = c(0)2/2. Therefore, z1(t) ≥ c2/(4ν )T −1 t−2η = c2/(4Mν ) t−2η−q if t> t1, or

‖Du(t)‖2 ≥
{ c2

4M
− K1(α, β) ν t−ε1

}
ν−1 t−2η−q

for all t > t1, where ε1 = β − ( 2 η − α + q ) > 0. Hence, increasing t1 if necessary, we

have ‖Du(t)‖ ≥ c(1) ν−1/2 t−η−q/2 for t > t1, with c(1) = c(0)M−1/2/3. This shows the

result for m = 1. If m̂ = 1, the proof of Theorem C is complete; otherwise, we proceed

with m = 2 in a similar way. Setting t2 = max { t1, τ1, σ1, a2, T1}, let t> t2 and T =Mtq,

where M = (2C1/c(1))1/α. As before, increasing t2 if necessary, we then obtain, from the

equation (0.1) and the assumption (H2) with m = 1,

4ν

∫ T

t

‖D2u(τ)‖2 dτ ≥ ‖Du(t)‖2 − ‖Du(T )‖2 − 2

∫ T

t

‖Du(τ)‖ ‖Df(τ)‖ dτ

≥
{
c(1)2 − C 2

1 M
−2α−1− κ1 ν

1/2 t−δ2
}
ν−1 t−2η−q

by (H3) and Theorem A (both applied with m = 1) and the previous case above, where
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κ1 = 2C1F1/(α + β) and δ2 = β − (2 η − α + q) > 0. Increasing t2 if necessary so that

we have κ1 ν
1/2 t−δ22 < c(1)2/4, this gives, recalling Lemma 0.1,

4 ν T z2(t) ≥ 4ν

∫ T

t

z2(τ) dτ ≥ 4ν

∫ T

t

‖D2u(τ)‖2 dτ ≥ c2 ν−1 t−2η−q

for all t > t2, where c2 = c(1)2/2. Therefore, z2(t) ≥ c2/(4ν2)T −1 t−2η−q, or

‖D2u(t)‖2 ≥
{ c2

4M
− K2(α, β) ν2 t−ε2

}
ν−2 t−2η− 2q

for all t > t2, where ε2 = β − (2η − α+ 2(q − 1) + 1)> 0. Thus, increasing t2 if needed,

we have ‖D2u(t)‖ ≥ c(2) ν−1 t−η− q for all t > t2, with c(2) = c(1)M−1/2/3. This com-

pletes the derivation of Theorem C if m̂ = 2. Otherwise, with m̂ ≥ 3, we continue to the

next level by considering the energy estimate for ‖D2u(t)‖,

‖D2u(T )‖2 + 2ν

∫ T

t

‖D3u(τ)‖2 dτ = ‖D2u(t)‖2 +

+ 2
n∑

j= 1

n∑
`= 1

∫ T

t

∫
Rn

〈DjD`u(x, τ), DjD`f(x, τ)− DjD`G(u) 〉 dx dτ

for t > t3 = max { t2, τ2, σ2, a3, T2}, where T = M tq, M = (2C2/c(2))1/α, repeating the

steps above to obtain (0.6b) for m = 3 as well. Because of the condition (0.6a) upon β,

we can proceed in this way up to a last level, given by the energy estimate for m = m̂−1,

‖Dmu(T )‖2 + 2ν

∫ T

t

‖Dm+1u(τ)‖2 dτ = ‖Dmu(t)‖2 +

+ 2
n∑

`1 = 1

n∑
`2 = 1

· · ·
n∑

`m = 1

∫ T

t

∫
Rn

〈D
`1
D
`2
· · ·D

`m
u(x, τ), D

`1
D
`2
· · ·D

`m

{
f(x, τ)−G(u)

}
〉 dx dτ

for t > tm̂ = tm+1 = max { tm, τm, σm, am+1, Tm}, where T =M tq, M = (2Cm/c(m))1/α:

using (H2), (H3), Theorem A and Lemma 0.1 as before, we then obtain

4 ν T zm̂(t) ≥ 4ν

∫ T

t

‖Dm̂u(τ)‖2 dτ ≥
{
c(m)2− C 2

mM
−2α− κm νm/2 t−δm̂

}
ν−m t−2η−mq

where δm̂ = β −
(
2η − α + (q − 1)m+ 1

)
> 0. Increasing tm̂ if necessary, this gives that

zm̂(t) ≥ c(m)2/(8M) ν−m̂ t−2η− m̂q for all t > tm̂, or, in terms of ‖Dm̂u(t)‖, by (0.17):

‖Dm̂u(t)‖2 ≥
{
c(m)2/(8M) −Km̂(α, β) t−εm̂

}
ν−m̂ t−2η− m̂q

for all t > tm̂, where εm̂ = β− (2η−α+ (q− 1)m̂+ 1). Since, by (0.6a), we have εm̂> 0,

this shows the estimate (0.6b) for m̂ as well, which completes the proof of Theorem C. �
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Proof of Theorem D:

Let T0 = max {1, t∗, τ0, σ0, T1}, and let T > t > T0. From the equation (0.1), we obtain

‖u(T )‖2 + 2ν

∫ T

t

‖Du(τ)‖2 dτ = ‖u(t)‖2 + 2

∫ T

t

〈 u(x, τ), f(x, τ)−G(u) 〉 dx dτ,

so that, by (H2), we have (increasing T0 if necessary, depending on ν and the function g
0
)

‖u(T )‖2 + 4ν

∫ T

t

‖Du(τ)‖2 dτ ≥ ‖u(t)‖2 − 2

∫ T

t

‖u(τ)‖ ‖f(τ)‖ dτ.

Using the hypothesis (0.7a) and letting T → ∞, this gives, recalling that ‖u(T )‖→ 0,

‖u(t)‖2 ≤ 4C 2
1

2α1− 1
t1−2α1 + 2

∫ ∞
t

‖u(τ)‖ ‖f(τ)‖ dτ

for all t > T0. If f = 0, we are done. Otherwise, from the assumption on f, we have

‖u(t)‖2 ≤ 4C 2
1

2α1− 1
t1− 2α1 + 2F0

∫ ∞
t

τ−β ‖u(τ)‖ dτ (0.19a)

if t > T0. From this estimate, (0.7b) can be obtained by bootstrapping. By (0.9), we have,

for some a∗� 1 (depending on t∗, τ0, ν and the function g
0
), that

‖u(t)‖ ≤ M0 = ‖u(a∗)‖ +

∫ ∞
a∗

‖f(τ)‖ dτ ∀ t > a∗, (0.19b)

and so we redefine T0 to be: T0 = max {1, t∗, τ0, σ0, T1, a∗}. Taking (0.19b) into (0.19a),

we get

‖u(t)‖2 ≤ 4C 2
1

2α1 − 1
t1− 2α1 +

2F0M0

β − 1
t1−β

for all t> T0. If (β− 1)/2 ≥ α1− 1/2, we are done; otherwise, we obtain

‖u(t)‖ ≤ M1 t
q1(1−β) ∀ t > T0 (0.19c)

with q
1
= 1/2 and M1 = {4C 2

1 /(2α1− 1) + 2F0M0/(β− 1)}1/2. Let θ = (α1− 1/2)/(β− 1).

Assuming that we have

‖u(t)‖ ≤ Mk t
q
k
(1−β) ∀ t > T0 (0.19d)

for some q
k
∈ [0, θ), we obtain, taking (0.19d) into (0.19a),

‖u(t)‖2 ≤ 4C 2
1

2α1− 1
t1− 2α1 +

2F0Mk

(1 + qk)(β− 1)
t(1+qk)(1−β) (0.19e)
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for all t> T0. Let q
k+1

= (1 + q
k
)/2. If q

k+1
(β−1)≥ α1−1/2, we are done; if not, we have

‖u(t)‖ ≤ Mk+1 t
q
k+1

(1−β) ∀ t > T0 (0.19f)

where Mk+1 = {4C 2
1 /(2α1−1) + F0Mk/(qk+1

(β−1))}1/2, and we go to the next iteration.

The numbers q
k

are given recursively by

q
k+1

=
1

2
(1 + q

k
), k ≥ 0,

with q
0
= 0, so that q

k
= 1− 2−k. Now, in the case (i), we have θ < 1 (since β > α1 + 1/2),

and there will exist k∗≥ 0 such that q
k∗

(β−1) < α1− 1/2 and q
k∗+1

(β−1) ≥ α1− 1/2.

For such k, (0.19e) gives that

‖u(t)‖ ≤ Mk∗+1 t
−α1+1/2 (0.19g)

for all t > T0, showing (0.7b), as claimed. Finally, in the case (ii), where θ = 1, because

2α1−1 > (1 + q
k
)(β−1) for all k, the second term on the right hand side of (0.19e) will

always decay slower than the first term. However, given ε > 0, we have (1 + q
k
)(β−1) >

2α1−1− 2ε for large k, and so the bootstrap iteration can stop there to give (0.7c). �

Remark 0.11: For completeness, let us show (0.9). Recalling (0.2) and the assumptions

(H2) and (H3) with m = 0, let a∗= max { t∗, τ0}. Given t > a > a∗, we have, from the

equation (0.1),

‖u(t)‖2 + 2ν

∫ t

a

‖Du(τ)‖2 dτ = ‖u(a)‖2 + 2

∫ t

a

∫
Rn

〈 u(x, τ), f(x, τ)−G(u) 〉 dx dτ

so that, increasing a∗ (if necessary) so as to have g
0
(τ)≤ ν for all τ > a∗, we obtain

‖u(t)‖2 ≤ ‖u(a)‖2 + 2

∫ t

a

‖u(τ)‖ ‖f(τ)‖ dτ,

or, in terms of v(t) = ‖u(t)‖2 :

v(t) = v(a) + 2

∫ t

a

v(τ)1/2 ‖f(τ)‖ dτ.

Now, let w∈ C1([a,∞)) be given by: w′(t) = 2w(t)1/2 ‖f(t)‖ for t > a, and w(a) = v(a),

that is,

w(t)1/2 = ‖u(a)‖ +

∫ t

a

‖f(τ)‖ dτ.

Since ‖u(t)‖ = v(t)1/2 ≤ w(t)1/2, we have obtained (0.9), as claimed. �
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Proof of Theorem E:

Let t0 = max {1, t∗, τ0, σ0, t1, T0 }, where T0 is given in (0.7b), and let T > t > t0. From

the equation (0.1), we have

‖u(T )‖2 + 2ν

∫ T

t

‖Du(τ)‖2 dτ = ‖u(t)‖2 + 2

∫ T

t

〈 u(x, τ), f(x, τ)−G(u) 〉 dx dτ,

so that, by (H2), we get (increasing t0 if necessary, depending on ν and the function g
0
)

‖u(T )‖2 + ν

∫ T

t

‖Du(τ)‖2 dτ ≤ ‖u(t)‖2 + 2

∫ T

t

‖u(τ)‖ ‖f(τ)‖ dτ.

Hence, we have

‖u(t)‖2 ≥ ν

∫ T

t

‖Du(τ)‖2 dτ − 2

∫ T

t

‖u(τ)‖ ‖f(τ)‖ dτ,

so that, letting T →∞,

‖u(t)‖2 ≥ ν

∫ ∞
t

‖Du(τ)‖2 dτ − 2

∫ ∞
t

‖u(τ)‖ ‖f(τ)‖ dτ

for all t > t0. Using (0.7b), (0.8a) and the assumption (H3) with m = 0, this gives

‖u(t)‖2 ≥ c(1)2

2α1− 1
t1−2α1 − 2C0F0

β + α1− 3/2
t3/2−β−α1

≥ 1

2α1− 1

{
c(1)2 − 2C0F0 t

−δ
}
t1−2α1

for all t > t0, where δ = β− (α1+1/2). Since δ > 0, increasing t0 (if necessary) we obtain

‖u(t)‖2 ≥ c(1)2/4

α1− 1/2
t1−2α1

for all t > t0. This is (0.8b), and the proof of Theorem E is now complete. �

In the sequel we will illustrate the theory with six typical examples, ranging from

the simple, familiar heat equation and some of its natural extensions to more complex

problems like the Navier-Stokes equations, the MHD (magnetohydrodynamics) equations

and incompressible micropolar flows. The discussion of these systems is brief and is meant

for illustration only, providing a quick, unified derivation of properties that are basically

widely known already, but not without some exceptions. Future works will concentrate

in applying the theory to generate new results (for the most past, not announced here).
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Example 1 (linear heat equation).

Given u0 ∈ L2(Rn), let u(·, t) be the (unique) solution in the space C([0,∞), L2(Rn)) of

the initial value problem

ut = ν∆u, u(·, 0) = u0, (1.1)

which is given by u(·, t) = eν∆tu0. It is well known that u(·, t) satisfies (0.2) with t∗= 0,

and also that ‖u(·, t)‖→ 0 as t→∞, and, more generally, for every m ≥ 0:

‖Dmu(·, t)‖ = o(t−m/2) (1.2)

as t→∞, and many other properties. In the case of the equation (1.1), we have G = 0

and f = 0, so that only (H1) and (H4) remain to be checked for any particular solution.

Beginning with (H1), let us consider that we have

‖u(·, t)‖ ≤ C0 t
−α ∀ t > T0 (1.3)

for some α,C0, T0 > 0. Having (1.3), using the Fourier transform it is very easy to obtain

‖Dmu(·, t)‖ ≤ Cm ν
−m/2 t−α−m/2 ∀ t� 1 (1.4)

for every m ≥ 1, where Cm depends only on m, α and C0, as predicted by Theorem A′.

Lower estimates, on the other hand, are a different matter and are not so easily derived,

even for the seemingly trivial equation (1.1) above. Still, assuming (1.3) and that

‖u(·, t)‖ ≥ c(0) t−η ∀ t > t0 (1.5)

for some c(0), t0 > 0, and some η ≥ α, from Theorems B′ and C′ we immediately obtain

‖Dmu(·, t)‖ ≥ c(m) ν−m/2 t−η−mq/2 ∀ t� 1 (1.6)

for every m ≥ 1, where q = η/α, and where c(m)> 0 depends only on m, α, c(0) and C0.

Moreover, the approach given in this work shows that obtaining (1.6) from (1.3) and (1.5)

is actually almost as easy as obtaining (1.4) from (1.3).

For the heat equation with spatially constant advection, that is,

ut + b(t) · ∇u = ν∆u, (1.7)

with a given velocity field b(t), the results are the same. This becomes clear if we change
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the space variable to ξ = x−B(t), where B′(t) = b(t), or we can apply Theorems A′-E′

directly, with G(u) = b(t) · ∇u in this case. Observing that, for every t > 0, we have∫
Rn

u(x, t) ·G(u(x, t)) dx = 0 (1.8a)

and, for each m > 0, ∫
Rn

D
`1
···D

`m
u(x, t) ·D

`1
···D

`m
G(u(x, t)) dx = 0 (1.8b)

for any 1 ≤ `1, `2, ..., `m ≤ n, we see that (H2) is clearly satisfied for all m, with τm = 0.

Hence, for the equation (1.7) we will have again (1.4) following from (1.3), for every m,

as well as having (1.6) as consequence of (1.3) and (1.5), for any m, and so forth.

In the case of the inhomogeneous problem

ut + b(t) · ∇u = ν∆u + f, u(·, 0) = u0 ∈ L2(Rn), (1.9)

with f satisfying (H3) for all m concerned, we proceed similarly, using Theorems A-E.

For example, if u(·, t) satisfies (1.3) and (1.5) with η = α, and if (H3) holds valid for all

m with some β > α + 1, then we have, for every m:

‖Dmu(·, t)‖ ≥ c(m) ν−m/2 t−α−m/2 ∀ t� 1 (1.10)

for some c(m)> 0 depending only on m and on α, c(0), C0 given in (1.3) and (1.5) above.

Or, if the property (H3) is satisfied for m = 0 and m = 1, for some β > α + 1, and if

η = qα with 1 < q < (α+ β)/(2α+ 1), we will then get, from (1.3) and (1.5) above, that

‖Du(·, t)‖ ≥ c(1) ν−1/2 t−η− q/2 ∀ t� 1 (1.11)

for some c(1)> 0 depending only on α, c(0) and C0 (by Theorem C), etc.

The more interesting (and much more challenging) problem

ut + b(t, u) · ∇u = ν∆u + f, u(·, 0) = u0 ∈ L2(Rn) (1.12)

will be taken up in Example 2 (n = 1) and Example 3 (n ≥ 2) below. It is sufficient to

consider the basic case where b = b(u) does not depend explicitly on t, since the analysis

in the more general setting (1.12), i.e., when b = b(t, u), turns out to be entirely similar.
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Example 2 (advection-diffusion equations : n = 1).

Given b ∈ C∞(R) and u0 ∈ L2(Rn), let u(·, t) ∈ C([ 0,∞), L2(R)) ∩ L∞loc((0,∞), L∞(R))

be a solution to the problem

ut + b(u)ux = ν uxx u(·, 0) = u0. (2.1)

Under the above conditions, it is known that ‖u(·, t)‖→ 0 and t1/4 ‖u(·, t)‖
L∞(R)

→ 0 as

t→∞ (see [2], Theorem 3.3), as well as the general supnorm estimate

‖u(·, t)‖
L∞(R)

≤ ‖u0 ‖ ν−1/4 t−1/4 ∀ t > 0 (2.2)

(see [2], Theorem 3.2). Moreover, (0.2) holds with t∗ = 0, so that there only remains to

check whether the condition (H2) is satisfied, where G(u) = b(u)ux for the equation (2.1).

If m = 0 this is clearly the case, since∫
R

u(x, t) b(u)ux dx =

∫
R

∂

∂x
E(u(x, t)) dx = 0 (2.3)

for any t > 0, where E(u) =
∫ u

0
v b(v) dv, recalling the fact that u(·, t) ∈ L2(Rn)∩L∞(Rn).

For m ≥ 1, checking (H2) is more involved. It will be more convenient to work with

G̃(u) := b̃(u)ux, b̃(u) := b(u)− b(0). (2.4a)

Clearly, for any given m: (H2) is valid for G(u) and such m if and only if it is valid for

G̃(u) and the same value of m. We will be considering G̃(u) from now on, with t > τ ,

where τ > 0 is chosen so that, say: ‖u(·, t)‖
L∞(R)

≤ 1 for all t > τ (cf. (2.2) above). Note

that, setting D = ∂/∂x,

G̃(u) = D [B̃(u) ], B̃(u) =

∫ u

0

b̃(v) dv, (2.4b)

so that (H2) is valid (for some given m) if we show that

‖DmB̃(u(·, t))‖ ≤ gm(t) ‖Dm+1u(·, t)‖ ∀ t > τ (2.5)

with gm(t)→ 0 as t→∞. A straightforward computation gives that, for any m ≥ 2:

DmB̃(u) = b̃(u)Dmu +
m−1∑
j= 1

(
m−1

j

)
Dj [ b(u) ]Dm−ju (2.6a)
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for all u ∈Hm(R). Similarly, we have

D` b(u) = b′(u)D`u +
`−1∑
j= 1

(
`−1

j

)
Dj [ b′(u) ]D`−ju (2.6b)

for all u ∈H `(R), and any `≥ 2. It also follows from these expressions that, if F ∈ Cm(R)

and u ∈ Wm,p(R) for some 1≤ p ≤ ∞, then F (u) ∈ Wm,p(R) and

‖DmF (u)‖
Lp(R)

≤ K(m, p;F,M) ‖Dmu‖
Lp(R)

(2.7)

where the constant K depends on m, p and the quantities F̀ = max {|F (`)(v) |: |v | < M },
1 ≤ ` ≤ m, where M = ‖u‖

L∞(R)
. The estimate (2.7), together with extensions to higher

dimensions, was originally obtained by Moser [ see ([14], p. 273) or ([10], Lemma 5.1,

p. 70) ].

2.1. The case b′(0) = 0

This is the simplest situation, in which the condition (H2) for G(u) holds true for all m.

To show this fact, we recall the following SNG (Sobolev-Nirenberg-Gagliardo) inequalities:

given u ∈Hm+1(R), we have

‖D`u‖ ≤ ‖u‖(m−`+1)/(m+1) ‖Dm+1u‖`/(m+1) (2.8)

and

‖D`u‖
L∞(R)

≤ ‖u‖(m−`+1/2)/(m+1) ‖Dm+1u‖(`+1/2)/(m+1) (2.9)

for all 0 ≤ ` ≤ m. (For both (2.8) and (2.9), the multiplicative constants on the right hand

side have been ommitted for the sake of simplicity, as they are not greater than 1.)

Remark 2.1. The estimate (2.8), which is also valid in higher dimensions, is easily shown

using Fourier transform. The inequality (2.9) follows from (2.8) and the elementary fact

that ‖v‖
L∞(R)

≤ ‖v‖‖Dv‖ (for any v ∈H1(R)).

In particular, given u ∈H 2(R), we obtain, because b′(0) = 0,

‖DB̃(u)‖ = ‖ b̃(u)Du‖ ≤ ‖ b̃(u)‖
L∞(R)

‖Du‖ ≤ K1‖u‖2

L∞(R)
‖Du‖ ≤ K1‖u‖2 ‖D2u‖

by (2.8) and (2.9), where K1 = max {| b′′(v) |: |v | ≤ ‖u‖
L∞(R)

}/2. Considering u = u(·, t),
this shows (2.5) for m = 1 (since we have ‖u(·, t)‖ → 0 as t→∞), which implies (H2)

with m = 1. Similarly, the derivation of (H2) for m = 2 follows from
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‖D2B̃(u)‖ ≤ ‖ b̃(u)‖
L∞(R)

‖D2u‖ + ‖ b ′(u)‖
L∞(R)

‖Du‖
L∞(R)

‖Du‖

≤ K1‖u‖2

L∞(R)
‖D2u‖ + 2K1 ‖u‖

L∞(R)
‖Du‖

L∞(R)
‖Du‖ ≤ K2 ‖u‖2 ‖D3u‖

by (2.8) and (2.9), where K2 = 3K1. More generally, the validity of (H2) for (any) m ≥ 3

follows from (2.10) below, which is similarly obtained using (2.6), (2.7), (2.8) and (2.9).

Lemma 2.1. Given m ≥ 3, let u ∈Hm+1(R) and b ∈ Cm−1(R). If b ′(0) = 0, then

‖DmB̃(u)‖ ≤ Km ‖ u ‖2‖Dm+1u‖ (2.10)

where Km> 0 depends only on m and the values B` = max { | b(`)(v) |: |v | ≤ ‖u‖
L∞(R)

},
2 ≤ ` < m.

Hence,Theorems A-E and TheoremsA′-E′ all apply to the problem (2.1) when b′(0) = 0.

2.2. The case b′(0) 6= 0

In this case, the condition (H2) holds for m = 0, but not (in general) for m ≥ 1, unless

additional assumptions be made. We can still adapt the proofs of Theorems A-E, A′-E′

and get some partial results in this case, but it seems better to recall that in applications

of (2.1) the solution u(·, t) is usually the density of some physical quantity, whose total

value (or mass) is conserved in time and given by

M =

∫
R

u(x, t) dx =

∫
R

u0(x) dx. (2.11)

Hence, it is natural for (2.1) to assume that we have u0 ∈ L1(R), with the solution sought

in the class u(·, t) ∈ C([0,∞), L1(R))∩L∞loc((0,∞), L∞(R)). Some well known properties

satisfied by solutions are that, for all t > 0,

‖u(·, t)‖
L1(R)

≤ ‖u0 ‖L1(R)
(2.12)

and the asymptotic property

lim
t→∞

‖u(·, t)‖
L1(R)

= |M | (2.13)

(see [28], Theorem 3.4). Moreover, recalling that, if u0 ∈ L1(R), we have

‖u(·, t)‖
L∞(R)

≤ ‖u0 ‖L1(R)
ν−1/2 t−1/2 ∀ t > 0 (2.14)
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(see e.g. ([2], Theorem 3.2) or ([18], Theorem 2.1)), it follows form (2.12) that

‖u(·, t)‖
L2(R)

≤ ‖u0 ‖L1(R)
ν−1/4 t−1/4 ∀ t > 0. (2.15)

In particular, regarding the condition

‖u(·, t)‖
L2(R)

≤ C0 t
−α ∀ t > T0 (2.16)

(for some α > 0, T0 ≥ 0), only the case α ≥ 1/4 needs to be considered if u0 ∈ L1(R).

Writing the equation (2.1) in the form

ut + G1(u) + G2(u) = ν uxx, (2.17a)

G1(u) = b′(0)u ux, G2(u) = (b(u)− b′(0)u)ux, (2.17b)

we know from the previous case that G2(u) satisfies the condition (H2) for every m ≥ 0.

Hence, whether or not (H2) is satisfied for some (any) given m in the case of the equation

(2.1) depends entirely on the term G1(u) alone.

Lemma 2.2. Given u0 ∈ L1(R), let u(·, t) ∈ C([ 0,∞), L1(R)) ∩ L∞loc((0,∞), L∞(R)) be

a solution to problem (2.1) satisfying (2.16) above. If α > 1/4, or if α = 1/4 and M = 0,

then G1(u) satisfies (H2) for all m ≥ 0.

Remark 2.2. If (2.16) holds for some α > 1/4, then it follows from ([29], Theorem 2)

that the solution mass is necessarily zero, i.e., M = 0 in this case.

Proof of Lemma 2.2: Recalling that ‖ v ‖
L2 ≤ ‖ v ‖1/2

L1
‖ v ‖1/2

L∞
, we get, from (2.8) and

(2.9) above, for any m ≥ 0:

‖D`u‖
L2(R)

≤ ‖u‖(m−`+1)/(m+3/2)

L1(R)
‖Dm+1u‖(`+1/2)/(m+3/2)

L2(R)
(2.18a)

and

‖D`u‖
L∞(R)

≤ ‖u‖(m−`+1/2)/(m+3/2)

L1(R)
‖Dm+1u‖(`+1)/(m+3/2)

L2(R)
(2.18b)

for all 0 ≤ ` ≤ m. This gives that, for any m ≥ 0,

‖Dju ·Dm−ju‖
L2(R)

≤ ‖ u ‖
L1(R)

‖Dm+1u ‖
L2(R)

(2.19)

for all 0 ≤ j ≤ m. Observing that
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∣∣∣∣ ∫
R

Dmu(x, t) ·DmG1(u(x, t)) dx

∣∣∣∣ ≤ | b′(0) |
2
‖Dm+1u(·, t)‖ ‖Dm [u(·, t)2 ]‖

≤ | b
′(0) |
2

‖Dm+1u(·, t)‖
m∑
j= 0

(
m

j

)
‖Dju(·, t) ·Dm−ju(·, t)‖,

we then obtain, from (2.19), that∣∣∣∣ ∫
R

Dmu(x, t) ·DmG1(u(x, t)) dx

∣∣∣∣ ≤ | b′(0) |
2

2m ‖u(·, t)‖
L1(R)

‖Dm+1u(·, t)‖2

L2(R)
. (2.20)

This shows that (H2) is valid for G1(u), for any m, since ‖u(·, t)‖
L1(R)
→ 0 as t→∞. �

Hence,Theorems A-E and TheoremsA′-E′ all apply to the problem (2.1) when u0∈ L1(R)

has zero mass. For m ≥ 1, from (2.13), (2.20) and the proofs of Theorems A-E and A′-E′

we see that the 10 theorems will also be valid for nonzero mass solutions of (2.1) for those

values of m such that

2m |M | | b′(0) | < 2ν (2.21)

where M is the solution mass, see (2.11). If condition (2.21) is violated, it appears that

lower estimates for ‖Dmu(·, t)‖, m ≥ 1, are not in general valid, even though we have

‖u(·, t)‖
L2(R)

≥ c(0) t−1/4 ∀ t > 0 (2.22)

for some c(0)> 0 if M 6= 0 [ this follows from ([28], Theorem 3.3) and ([29], Theorem 2) ].

However, we can still obtain upper estimates for ‖Dmu(·, t)‖L2(R) by adapting the proofs

of Theorems A and A′, as the following results illustrate.

Theorem 2.1. Let u0 ∈ L1(R) have nonzero mass. Then the solutions of (2.1) satisfy

‖Dmu(·, t)‖
L2(R)

≤ Km ‖u0 ‖L1(R)
ν−1/4 µ−m/2 t−1/4−m/2 ∀ t > Tm (2.23)

for all m≥ 0, where µ = max {ν, ν 5/2/b′(0)2}. Here, the constantKm depends only on m,

and Tm depends on m, ν, ‖u0 ‖L1(R)
and the function b(·) given.

Theorem 2.2. Let u0 ∈ L2(R) be arbitrary. Then, for every m ≥ 0, we necessarily have

lim
t→∞

tm/4 ‖Dmu(·, t)‖
L2(R)

= 0. (2.24)

22

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 July 2022                   doi:10.20944/preprints202207.0137.v1

https://doi.org/10.20944/preprints202207.0137.v1


Example 3 (advection-diffusion equations : n ≥ 2).

Given a smooth function b = (b1, b2, ..., bn) ∈ C∞(R) and an arbitrary state u0 ∈ L2(Rn),

let u(·, t) ∈ C([0,∞), L2(Rn)) ∩ L∞loc((0,∞), L∞(Rn)) be a solution to the problem

ut + b(u) · ∇u = ν∆u, u(·, 0) = u0. (3.1)

Under the above conditions, it is known that ‖u(·, t)‖ → 0 and tn/4 ‖u(·, t)‖
L∞(Rn)

→ 0

as t→∞ (see e.g. [2], Theorem 3.3), as well as the general supnorm estimate

‖u(·, t)‖
L∞(Rn)

≤ Kn ‖u0 ‖ ν−n/4 t−n/4 ∀ t > 0 (3.2)

for some constant Kn depending only on n (cf. [2], Theorem 3.2, or [18], Theorem 2.1).

Moreover, (0.2) is valid with t∗ = 0, so that there only remains to verify whether the

condition (H2) is also satisfied, where G(u) = b(u) · ∇u here. For m = 0 this is clearly

the case, since ∫
Rn

u(x, t) b(u) · ∇u dx =

∫
Rn

∇·D(u(x, t)) dx = 0 (3.3)

for any t > 0, where D(u) =
∫ u

0
v b(v) dv, because u(·, t) ∈ L2(Rn)∩L∞(Rn). For m ≥ 1,

checking (H2) is more involved. We begin by recalling a few basic lemmas.

Lemma 3.1 (J. Moser, 1966).

Let m ≥ 1, F ∈ Cm(R), with F (0) = 0, and let 1 ≤ p ≤ ∞ and u ∈Wm,p(Rn)∩L∞(Rn).

Then F (u)∈Wm,p(Rn) and

‖DmF (u)‖
Lp(Rn)

≤ K(m,n, p) ‖Dmu‖
Lp(Rn)

(3.4)

whereK> 0 depends only onm,n, p and the values F̀ = sup {|F (`)(v) |: | v | < ‖u‖
L∞(Rn)

}
for 1 ≤ ` ≤ m, where F (`) denotes the derivative of order ` of the function F .

Proof: See ([14], p. 273), or ([10], Lemma 5.1, p. 70). �

Given u ∈ R, it will be convenient in the sequel to define b̃(u), B̃(u)∈ Rn given by

b̃(u) := b(u)− b(0), B̃(u) :=

∫ u

0

(b(v)− b(0)) dv, (3.5a)

and also

G̃(u) := (b(u)− b(0)) · ∇u = G(u)− b(0) · ∇u = ∇ · B̃(u), (3.5b)
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where u = u(x, t) is the solution of (3.1) under consideration. Observing that, for any m,

(H2) is valid for G(u) [ for such m ] if and only it is valid for G̃(u) [ for that given m ], we

will from now consider G̃(u) instead. The next lemma is obtained by direct computation:

Lemma 3.2.

Let v be a smooth scalar function in Rn, and let D̀ = ∂/∂x
`
. Then D̀ B̃(v) = b̃(v)D̀ v

and, for m ≥ 2:

D
`1
D
`2
···D

`m
B̃(v) = b̃(v)D

`1
D
`2
···D

`m
v +

m−1∑
j= 1

{ a(m,j)∑
k= 1

Dj

(k) b̃(v) · Dm−j
(k) v

}
(3.6)

where a(m, j) = (m−1)!/(j ! (m−1− j)!) and, for each k, Dj

(k) = D
k1
D
k2
···D

kj
and Dm−j

(k) =

D
kj+1

D
kj+2
···D

km
(with {k1, k2, ..., km} = {`1, `2, ..., `m}).

Lemma 3.3.

Let n ≥ 2, m ≥ 1, and let F, G ∈ Cm(R) with F (0) = 0, G(0) = 0. Let λ1, λ2 ∈ Zn be

(nonnegative) multi-indices such that |λ1 | + |λ2 | = m. Then, for any v ∈ Hm+1(Rn) ∩
Hn−2(Rn) ∩ L∞(Rn), we have Dλ1F (v) ·Dλ2G(v) ∈ L2(Rn) and

‖Dλ1F (v) ·Dλ2G(v)‖
L2(Rn)

≤ C(m,n) ‖ v ‖1/2

L2(Rn)
‖Dn−2v‖1/2

L2(Rn)
‖Dm+1v‖

L2(Rn)
(3.7)

where C(m,n) depends only on m,n and the values F̀ = sup {|F (`)(v) |: | v | < ‖v‖
L∞(Rn)

}
and G̀ = sup {|G(`)(v) |: | v | < ‖v‖

L∞(Rn)
} for 1≤ ` ≤ m. Here,F (`)(·) and G(`)(·) denote

the `th-order derivatives of the functions F and G, respectively.

Remark 3.1. The assumption that v ∈ L∞(Rn) in Lemma 3.3 is needed when n = 4 and

m = 1, but is redundant in the other cases, since the inclusion Hm+1(Rn)∩Hn−2(Rn) ⊂
L∞(Rn) holds for m ≥ 1 except in the single case m = 1, n = 4.

Proof: This is shown similarly to ([3], Lemma 3.1), using (3.4), standard SNG inequalities

(see e.g. [6], Theorem 9.3) and the Moser supnorm estimates

‖ v ‖
L∞(Rn)

≤ K(n) ‖Dk−1v ‖1/2

L2(Rn)
‖Dk+1v ‖1/2

L2(Rn)
(3.8a)

if n = 2k, and

‖ v ‖
L∞(Rn)

≤ K(n) ‖Dkv ‖1/2

L2(Rn)
‖Dk+1v ‖1/2

L2(Rn)
(3.8b)

if n = 2k + 1, see e.g. ([24], Ch.13, Proposition 3.8). �
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Lemma 3.4.

Let u(·, t) ∈ C([0,∞), L2(Rn))∩L∞loc((0,∞), L∞(Rn)) solve the problem (3.1). Then, for

every m ≥ 1, there exists K(m,n, ν) constant, depending only on m, n, ν, the function b

and the size of ‖u(·, t)‖L∞(Rn) at t = 1 (say), such that

‖Dmu(·, t)‖
L2(Rn)

≤ K(m,n, ν) ‖u0 ‖L2(Rn)
∀ t > m. (3.9)

Proof: From the equation (3.1), we have

‖u(t)‖2 + 2ν

∫ t

0

‖Du(τ)‖2 dτ = ‖u0 ‖2 (3.10a)

for all t> 0. In particular,

∫ 1

0

‖Du(τ)‖2 dτ ≤ (2ν )−1 ‖u0‖2, so that there exists a1 ∈ (0,1)

such that

‖Du(a1)‖2 ≤ 1

2
‖u0‖2 ν−1. (3.10b)

This gives, from the equation (3.1),

‖Du(t)‖2 + 2ν

∫ t

a1

‖D2u(τ)‖2 dτ ≤ ‖Du(a1)‖2 + 2

∫ t

a1

‖D2u(τ)‖ ‖D [B̃(u) ]‖ dτ

for all t> a1. Applying (3.4), Lemma 3.1, we then get

‖Du(t)‖2 + ν

∫ t

a1

‖D2u(τ)‖2 dτ ≤ ‖Du(a1)‖2 +
K1

ν

∫ t

a1

‖Du(τ)‖2 dτ (3.10c)

for t > a1. Recalling (3.10a) and (3.10b), this shows (3.9) with m = 1, and also gives that∫ t

1

‖D2u(τ)‖2 dτ ≤ C(n, ν) ‖u0 ‖2 (3.10d)

for all t > 1, and some constant C(n, ν) > 0 that depends also on b and ‖u(·, 1)‖L∞(Rn).

In particular, we can find a2 ∈ (1, 2) such that

‖D2u(a2)‖2 ≤ C(n, ν) ‖u0 ‖2 (3.10e)

from which we can consider the energy estimate

‖D2u(t)‖2 + 2ν

∫ t

a2

‖D3u(τ)‖2 dτ ≤ ‖D2u(a2)‖2 + 2

∫ t

a2

‖D3u(τ)‖ ‖D2 [B̃(u) ]‖ dτ

and proceed in a similar way to obtain (3.9) with m = 2, and then m = 3, and so on. �
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Theorem 3.1.

Let n ≥ 2. Then, for the solutions of (3.1), the condition (H2) is satisfied for all m ≥ 0.

Proof: In fact, given t≥ 1, m ≥ 1, and `1, `2, ..., `m ∈ {1, 2,..., n}, we have, from (3.5),∣∣∣∣ ∫
Rn

D
`1
···D

`m
u(x, t) · D

`1
···D

`m
G(u(x, t)) dx

∣∣∣∣ ≤ ‖Dm+1u(·, t)‖ ‖Dm [ B̃(u(·, t)) ]‖

≤ C(m,n) ‖u(·, t)‖1/2 ‖Dn−2u(·, t)‖1/2 ‖Dm+1u(·, t)‖2

using (3.6), Lemma 3.2, and (3.7), Lemma 3.3. (Here, C(m,n) denotes some constant that

depends on m,n and the values b` = max {|b(`)(v) |: | v | ≤ ‖u(·, 1)‖L∞(Rn)}, 1 ≤ ` ≤ m.)

From Lemma 3.4, this gives the result. �

Therefore, assuming that we have

‖u(·, t)‖ ≤ C0 t
−α ∀ t > T0 (3.11)

for some constants α, C0, T0 > 0, the following result can be obtained from Theorem A:

Theorem 3.2 (upper estimates for derivatives).

If (3.11) holds, then: for every m > 0, there exists Cm > 0 (depending only on m, α,C0)

such that

‖Dmu(·, t)‖ ≤ Cm ν
−m/2 t−α−m/2 ∀ t > Tm (3.12)

for some Tm> T0 that can be chosen to depend only on m, ν, C0, T0 and α.

Next, consider the reverse condition

‖u(·, t)‖ ≥ c(0) t− η ∀ t > t0 (3.13)

for some constants c(0), t0, η > 0. We then obtain (from Theorem B ′ and Theorem C ′):

Theorem 3.3 (lower estimates for derivatives).

Let (3.11) and (3.13) be valid, for some given 0 < α ≤ η. Then, for every m > 0, there

exists c(m) > 0 (depending only on m, α, c(0) and C0) such that, setting q = η/α:

‖Dmu(·, t)‖ ≥ c(m) ν−m/2 t− η−mq/2 ∀ t > tm (3.14)

for some tm> t0 that can be chosen to depend only on m, ν, t0, T0, c(0), C0, α and η.
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Example 4 (incompressible Navier-Stokes equations).

Let 2 ≤ n ≤ 4. Given u0 ∈ L2
σ(Rn), let u(·, t) ∈ Cw([0,∞), L2

σ(Rn)) ∩ L2((0,∞), Ḣ1(Rn))

be any given Leray solution to the Navier-Stokes equations

ut + u · ∇u + ∇p = ν∆u, (4.1a)

∇·u = 0, (4.1b)

with u(·, 0) = u0. The existence of such solutions was originally shown by J. Leray in

his 1934 seminal paper (see [12], p. 241), together with the property (0.2) as well ([12],

p. 246). The validity of the condition (H2) for every m follows from ([3], Lemma 3.1).

Therefore, assuming that we have

‖u(·, t)‖ ≤ C0 t
−α ∀ t > T0 (4.2)

for some constants α, C0, T0 > 0, the following result can be obtained from Theorem A:

Theorem 4.1 (upper estimates for derivatives).

If (4.2) holds, then: for every m > 0, there exists Cm > 0 (depending only on m, α,C0)

such that

‖Dmu(·, t)‖ ≤ Cm ν
−m/2 t−α−m/2 ∀ t > Tm (4.3)

for some Tm> T0 sufficiently large. Moreover, Tm can be chosen to depend only on m, ν,

C0, T0 and α. If n = 3 or 4, Tm can also be chosen to depend only on m, ν, T0 and ‖u0 ‖.

Now, consider the reverse condition

‖u(·, t)‖ ≥ c(0) t− η ∀ t > t0 (4.4)

for some constants c(0), t0, η > 0. We then obtain (from Theorem B ′ and Theorem C ′):

Theorem 4.2 (lower estimates for derivatives).

Let (4.2) and (4.4) be valid, for some given 0 < α ≤ η. Then, for every m > 0, there

exists c(m) > 0 (depending only on m, α, c(0) and C0) such that, setting q = η/α:

‖Dmu(·, t)‖ ≥ c(m) ν−m/2 t− η−mq/2 ∀ t > tm (4.5)

for some tm > t0 sufficiently large. Moreover, tm can be chosen to depend only on m, ν,

t0, T0, c(0), C0, α and η.
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Other results can be similarly obtained. For example, rewriting the equation (4.1) as

ut = ν∆u + f, f = − u · ∇u − ∇p, (4.6)

we have, by (4.3), that f satisfies the assumption (H3) for all m with β = 2α+ (n+ 2)/4.

We then have the following result (from Theorem B and Theorem C):

Theorem 4.3 (lower componentwise estimates : η = α).

Let the solution u = (u1, u2, ..., un) satisfy the condition (4.2) above for some α > 0. If

‖ui(·, t)‖ ≥ c(0) t−α ∀ t > t0 (4.7a)

for some 1 ≤ i ≤ n (and some c(0), t0 > 0), then: for every m ≥ 1, there exists c(m) > 0

(depending only on m, α, c(0) and C0) such that

‖Dmui(·, t)‖ ≥ c(m) ν−m/2 t−α−m/2 ∀ t > tm (4.7b)

with tm depending only on m, α, ν, t∗, t0, c(0), C0 and T0.

Likewise, assuming (4.2) and that we had ‖ (ui, uj)(·, t)‖ ≥ c(0) t−α instead of (4.7a),

it would have been obtained that ‖Dm(ui, uj)(·, t) ‖ ≥ c(m) ν−m/2 t−α−m/2 for t > tm,

for all m, applying Theorem B again.

Theorem 4.4 (lower componentwise estimates : η > α).

Let the solution u = (u1, u2, ..., un) satisfy (4.2) for some α > 0, and let η = q α, where

1 < q < (3α + n/4 + 1/2)/(2α + 1). If

‖ui(·, t)‖ ≥ c(0) t−η ∀ t > t0 (4.8a)

for some 1 ≤ i ≤ n (and some c(0), t0 > 0), then there is some c(1) > 0 (depending only

on α, c(0) and C0) such that

‖Dui(·, t)‖ ≥ c(1) ν−1/2 t−η− q/2 ∀ t > t1 (4.8b)

with t1 depending only on q, α, ν, t∗, t0, c(0), C0 and T0.

By Theorem C, we similarly have: if q < (3α + n/4 + 3/2)/(2α + 2), then (4.2) and

(4.8a) will give (4.8b) and also that ‖D2ui(·, t) ‖ ≥ c(2) ν−1 t−η− q for all t � 1 large,

and so forth.
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As we already mentioned, upper and lower bounds can be pushed both ways, depend-

ing on what is available. Illustrating with the present case of the Navier-Stokes, equations,

this is illustrated by the following results, which can be derived as with Theorems A-E:

Theorem 4.5. Let 2 ≤ n ≤ 4, α≥ 0, and let u(·, t)be any given Leray solution to (4.1).

(i) If , as t→∞, we have ‖D`u(·, t)‖L2(Rn) = O(t−α− `/2) for some `≥ 0, then

we actually have ‖Dmu(·, t)‖L2(Rn) = O(t−α−m/2) for all m≥ 0 (and t� 1).

(ii) If ‖D`u(·, t)‖L2(Rn) = o(t−α− `/2) as t→∞ for some `≥ 0, then

we will have, as t→∞, that ‖Dmu(·, t)‖L2(Rn) = o(t−α−m/2) for all m≥ 0.

Theorem 4.6. Let 2 ≤ n ≤ 4, α≥ 0, c > 0, and u(·, t)any given Leray solution to (4.1).

(i) If we have, for t� 1, that ‖D`u(·, t)‖L2(Rn)≥ c t−α− `/2 for some `≥ 0, then

we will also have ‖Dmu(·, t)‖L2(Rn) ≥ cm t
−α−m/2 for every 0 ≤ m ≤ ` (and t� 1),

for some appropriate constants cm> 0.

(ii) If, for t� 1, ‖Dku(·, t)‖L2(Rn) = O(t−α− k/2) and ‖D`u(·, t)‖L2(Rn)≥ c t−α− `/2

for some particular pair k, `≥ 0, then we will have, as t→∞:

‖Dmu(·, t)‖L2(Rn) ≥ cm t
−α−m/2 for all m ≥ 0 (for some appropriate constants cm> 0).

In a similar way, other classes of decay can be studied using the methods in this report,

by easily adapting the argument. In the case of exponential decay, for example, we can

derive the following results in much the same way as Theorems 4.5 and 4.6 above.

Theorem 4.7. Let 2 ≤ n ≤ 4, κ > 0, and u(·, t) any Leray solution to the system (4.1).

(i) If , as t→∞, we have ‖D`u(·, t)‖L2(Rn) = O(e−κt) for some `≥ 0, then

we actually have ‖Dmu(·, t)‖L2(Rn) = O(e−κt) for all m≥ 0 (and t� 1).

(ii) If ‖D`u(·, t)‖L2(Rn) = o(e−κt) as t→∞ for some `≥ 0, then

we will also have, as t→∞, that ‖Dmu(·, t)‖L2(Rn) = o(e−κt) for all m≥ 0.

Theorem 4.8. Let 2 ≤ n ≤ 4, κ > 0, c > 0, and u(·, t) any given Leray solution to (4.1).

(i) If , for t� 1, we have ‖D`u(·, t)‖L2(Rn)≥ c e−κt for some `≥ 0, then, for t� 1:

we will have ‖Dmu(·, t)‖L2(Rn) ≥ cm e
−κt for every 0 ≤ m ≤ `, with constants cm> 0.

(ii) If we have, for t� 1: ‖Dku(·, t)‖L2(Rn) = O(e−κt) and ‖D`u(·, t)‖L2(Rn)≥ c e−κt

for some particular pair k, `≥ 0, then we will have (for t� 1):

‖Dmu(·, t)‖L2(Rn) ≥ cm e
−κt for all m ≥ 0, for some appropriate constants cm> 0.
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Example 5 (incompressible MHD equations).

Let 2 ≤ n ≤ 4. Given u0 ∈ L2
σ(Rn) and b0 ∈ L2

σ(Rn), let (u, b)(·, t) ∈ Cw([0,∞), L2
σ(Rn))

∩L2((0,∞), Ḣ1(Rn)) be any given Leray solution to the MHD equations

ut + u · ∇u + ∇p = µ∆u + b · ∇b, ∇·u = 0, (5.1a)

bt + u · ∇b = ν∆b + b · ∇u, ∇· b = 0, (5.1b)

with u(·, 0) = u0, b(·, 0) = b0. In (5.1), we have f = 0 and

G(u, b) =

 u · ∇u + ∇p − b · ∇b

u · ∇b − b · ∇u

, (5.2)

so that (H2) is valid for every m, by ([3], Lemma 3.1). Therefore, assuming that we have

‖(u, b)(·, t)‖ ≤ C0 t
−α ∀ t > T0 (5.3)

for some α,C0, T0 > 0, the following result can be obtained from Theorems A and A′ :

Theorem 5.1 (upper estimates for derivatives).

If (5.3) is valid, then: for every m > 0, there exists Cm > 0 constant (depending only on

m, α and C0) such that

‖Dmu(·, t)‖ ≤ Cm µ
−m/2 t−α−m/2 ∀ t > Tm (5.4a)

and
‖Dmb(·, t)‖ ≤ Cm ν

−m/2 t−α−m/2 ∀ t > Tm (5.4b)

for some Tm> 0 that depends on m, α, µ, ν, C0 and T0.

Proof: From the proof of Theorem A′ we obtain, from (5.1) and (5.3) above,

‖Dm(u, b)(·, t)‖ ≤ C ′m γ
−m/2 t−α−m/2 ∀ t > T ′m

for all m, where γ = min {µ, ν}, for some constants C ′m (depending on m, α,C0) and T ′m
(depending on m, α, µ, ν, C0,T0). Therefore, by (5.1a), we can write

ut = µ∆u + f, f = b · ∇b − u · ∇u − ∇p

where f satisfies (H3) for all m with β = 2α + (n + 2)/4. Hence, recalling Theorem A,

we obtain (5.4a) above. Proceeding similarly with the equation (5.1b), we get (5.4b). �
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Now, consider the reverse conditions

‖u(·, t)‖ ≥ c(0) t− η and ‖b(·, t)‖ ≥ ĉ(0) t− η ∀ t > t0 (5.5)

for some given c(0), ĉ(0), t0, η > 0. The following result is a consequence of Theorem A′

(or Theorem 5.1) and Theorem B above.

Theorem 5.2 (lower estimates for derivatives : the case η = α).

Let (5.3) and (5.5) be valid with η = α > 0. Then, for every m > 0, there exist c(m) > 0

(depending only on m, α, c(0), C0) and ĉ(m) > 0 (depending only on m, α, ĉ(0), C0) such

that

‖Dmu(·, t)‖ ≥ c(m) µ−m/2 t−α−m/2 ∀ t > tm (5.6a)

and

‖Dmb(·, t)‖ ≥ ĉ(m) ν−m/2 t−α−m/2 ∀ t > tm (5.6b)

for some tm> 0 that depends on m, α, µ, ν, c(0), ĉ(0), C0, t0 and T0.

Proof: From (5.1) and Theorem A′ (or Theorem 5.1), we can write

ut = µ∆u + f, f = b · ∇b − u · ∇u − ∇p, (5.7a)

bt = ν∆b + g, g = b · ∇u − u · ∇b, (5.7b)

where f and g satisfy (H3) for all m with β = 2α + (n+ 2)/4. From Theorem B above,

we then get (5.6a) and (5.6b), as claimed. �

Remark 5.1: Writing (5.1) in the form (5.7) brings out more clearly the basic decoupling

between the equations (5.1a) and (5.1b) for t� 1. Thus, for example, assuming (5.3) and

that

‖u(·, t)‖ ≥ c(0) t−α ∀ t > t0 (5.8)

only (i.e., no lower estimate assumed for ‖b(·, t)‖), for some given c(0), t0> 0, from (5.7a)

we still get that the lower estimate (5.6a) for Dmu(·, t) will hold for any m, and so forth.

A similar decoupling is seen on the individual components of u(·, t) or b(·, t) as well. Thus,

for example, if we have (5.3) and, say, only that

‖ bi(·, t)‖ ≥ ĉ(0) t−α ∀ t > t0 (5.9)

for some particular value of i, then we get from (5.7b) that (5.6b) will be valid for bi(·, t).
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Applying Theorem C to (5.7) gives additional results, as illustrated by Theorem 5.3.

Theorem 5.3 (lower estimates for derivatives : the case η > α).

Let (5.3) and (5.5) be valid with η = qα, where 1 < q < (3α+ (n+ 2)/4)/(2α+ 1). Then,

there exist c(1) > 0 (depending on α, c(0), C0) and ĉ(1) > 0 (depending on α, ĉ(0), C0)

such that

‖Du(·, t)‖ ≥ c(1) µ−1/2 t− η− q/2 ∀ t > t1 (5.10a)

and

‖Db(·, t)‖ ≥ ĉ(1) ν−1/2 t− η− q/2 ∀ t > t1 (5.10b)

for some t1> 0 that depends on α, q, µ, ν, c(0), ĉ(0), C0, t0 and T0.

Finally, we look at the MHD equations in the form (5.1), that is, for the coupled solu-

tion pair (u, b)(·, t), assuming (5.3) above and the jointly condition

‖(u, b)(·, t)‖ ≥ c(0) t− η ∀ t > t0 (5.11)

for some constants c(0), t0, η > 0. The following result is a consequence of Theorem C′

(or, more precisely, of its proof):

Theorem 5.4 (lower estimates for derivatives : η ≥ α).

Let (5.3) and (5.11) hold with 0 < α ≤ η. Then, for every m > 0, there exists c(m) > 0

(depending only on m, α, c(0) and C0) such that, setting q = η/α:

‖Dm(u, b)(·, t)‖ ≥ c(m) γ−m/2 t− η−mq/2 ∀ t > tm (5.12)

for some tm> t0, where γ = max {µ, ν}, with tm depending on m,α, q, µ, ν, c(0), C0, t0,T0.

Moreover, results similar to Theorems 4.5 -4.8 above can be obtained for the MHD

equations as well, as illustrated by the next result.

Theorem 5.5. Let 2 ≤ n ≤ 4, α≥ 0, and (u, b)(·, t) any given Leray solution to (5.1).

(i) If , as t→∞, we have ‖D`(u, b)(·, t)‖L2(Rn) = O(t−α− `/2) for some `≥ 0, then

we actually have ‖Dm(u, b)(·, t)‖L2(Rn) = O(t−α−m/2) for all m≥ 0 (and t� 1).

(ii) If , as t→∞, we have ‖Dk(u, b)(·, t)‖L2(Rn) = O(t−α− k/2) for some k ≥ 0, and also

‖D`(u, b)(·, t)‖L2(Rn) ≥ c` t
−α− `/2 for some ` ≥ 0, and some constant c` > 0, then we will

have: ‖Dm(u, b)(·, t)‖L2(Rn) ≥ cm t
−α−m/2 for all m ≥ 0 (and some constants cm> 0).
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Example 6 (incompressible micropolar flows in Rn, 2 ≤ n ≤ 3).

Consider the micropolar equations for u = (u1, u2, u3) and w = (w1, w2, w3) in R3 :

ut + u · ∇u + ∇p = (µ+ χ)∆u + 2χ∇∧w, ∇ ·u = 0, (6.1a)

wt + u · ∇w = ν∆w + ∇(∇ ·w) − 4χw + 2χ∇∧u, (6.1b)

where µ, χ, ν are positive constants [5, 13]. Given u0 ∈ L2
σ(R3), w0 ∈ L2(R3), let (u,w)

be (any) Leray solution of (6.1a)-(6.1b) having u0,w0 as initial data, and let

ε(x, t) = w(x, t) − 1

2
∇∧u(x, t), (6.2)

so that the equation (6.1a) can be written as

ut + u · ∇u + ∇p = µ∆u + f , f = 2χ∇∧ ε. (6.3)

For the system (6.1)-(6.2), as well as for the equation (6.3), the validity of condition (H2)

for every m follows again from ([3], Lemma 6.1). Assuming that we have

‖u(·, t)‖ ≤ C0 t
−α ∀ t > T0 (6.4)

for some constants C0, T0, α > 0 (and no further assumption on w(·, t)), it follows from

the proof of Theorem A′ that

‖w(·, t)‖ ≤ Ĉ0 t
−α− 1/2 ∀ t > T̂0 (6.5)

for some Ĉ0, T̂0 that depend on µ, χ, ν, C0, with T̂0 also depending on T0. (The bound (6.5)

was originally obtained in [7, 17].) It then follows the estimates (6.6) given below (as in

the proof of Theorems A or A′), see also [4, 7, 17].

Theorem 6.1 (upper estimates for derivatives).

If (6.4) holds, then: for every m≥ 0, there exists Cm > 0 (depending on m,α,C0, µ, χ, ν)

such that, setting γ = min {µ, ν},

‖Dmu(·, t)‖ ≤ Cm γ
−m/2 t−α−m/2 ∀ t > Tm, (6.6a)

‖Dmw(·, t)‖ ≤ Cm γ
−1/2−m/2 t−α−1/2−m/2 ∀ t > Tm, (6.6b)

for some Tm> 0 that depends on m, µ, χ, ν, α, C0, T0.
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This result can be improved by considering the equation (6.3). From (6.1b) and (6.6)

it can be shown (see [8]) that, if u(·, t) satisfies (6.4) for some α > 0, then

‖Dmf(·, t)‖ ≤ Fm t
−α−(m+5)/2 ∀ t > σm (6.7)

for all m ≥ 0, with Fm depending on m, α and C0, while σm depends on all the parameters.

Therefore, by Theorem A, we obtain the following result.

Theorem 6.1′ (upper estimates for derivatives).

If (6.4) holds, then: for every m≥ 0, there exists Cm > 0 (depending on m,α,C0) such

that

‖Dmu(·, t)‖ ≤ Cm µ
−m/2 t−α−m/2 ∀ t > Tm, (6.8a)

‖Dmw(·, t)‖ ≤ Cm µ
−1/2−m/2 t−α−1/2−m/2 ∀ t > Tm, (6.8b)

for some Tm> 0 that depends on m, µ, χ, ν, α, C0, T0.

Now, consider the reverse condition

‖u(·, t)‖ ≥ c(0) t− η ∀ t > t0 (6.9)

for some constants c(0), t0, η > 0. (Again, no conditions need to be imposed on‖w(·, t)‖.)
The following result can then be obtained by applying Theorem B to the equation (6.3).

Theorem 6.2 (lower estimates for derivatives : η = α).

Ley (6.4) and (6.9) be valid, where η = α. Then, for every m ≥ 0, there exists c(m) > 0

(depending on m, α, c(0) and C0) such that

‖Dmu(·, t)‖ ≥ c(m) µ−m/2 t−α−m/2 ∀ t > tm, (6.10a)

‖Dmw(·, t)‖ ≥ c(m) µ−1/2−m/2 t−α−1/2−m/2 ∀ t > tm, (6.10b)

for some tm> t0 that depends on m, µ, χ, ν, α, c(0), t0, C0, T0.

In a similar way, we can apply Theorem C to the equation (6.3) and derive lower

bound estimates (under the assumptions (6.4) and (6.9)) in the case η > α, or we can use

Theorems D and/or E to generate results similar to Theorems 4.5 and 4.6, and so forth.

However, due to the special features of the equations (6.1), these and other properties

will be better left to a separated treatment in a future work [8].
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Example 7 (inverse Wiegner’s theorem: Navier-Stokes equations, n ≥ 2).

Let u(·, t) ∈ Cw([0,∞), L2(Rn)) ∩ L2((0,∞), Ḣ1(Rn)) be any given Leray solution to the

Navier-Stokes equations

ut + u · ∇u + ∇p = ∆u, (7.1a)

∇ · u(·, t) = 0, (7.1b)

u(·, 0) = u0 ∈ L2
σ(Rn) (7.1c)

(in dimension n ≥ 2), and let v(·, t) be the solution in the space C([0,∞), L2
σ(Rn)) of the

associated Stokes problem

vt = ∆v, v(·, 0) = u0 (7.2)

where u0 ∈ L2
σ(Rn) is given in (7.1c) above. Our goal is to show the following result:

Theorem 7.1 (inverse Wiegner). If ‖u(·, t)‖
L2(Rn)

= O(t−α) with 0 < α ≤ (n+2)/4,

then we also have ‖v(·, t)‖
L2(Rn)

= O(t−α).

This result in the case n ≥ 3 is an almost immediate corollary of the (direct) Wiegner’s

theorem (given in [25], p. 305), which says: if we have ‖v(·, t)‖L2(Rn)= O(t−β) for some

0 ≤ β ≤ (n+ 2)/4, then we will also have ‖u(·, t)‖L2(Rn) = O(t−β) and, in addition:

‖u(·, t)− v(·, t)‖
L2(Rn)

=


O(t−2β−(n−2)/4) se 0 ≤ β < 1

2

O(t−(n+2)/4 log t) se β = 1
2

O(t−(n+2)/4) se 1
2
< β ≤ n+2

4

(7.3)

Remark 7.1: In dimension n = 2, 3, an alternative proof of Wiegner’s (direct) theorem

was found independently in [11, 26]. The derivation in [11, 26] is actually much simpler

than Wiegner’s original proof. The inverse Wiegner’s theorem above was first obtained

by Z. Skalák in dimension n = 3 (see [20],Theorem 3.1) using a very elaborated argument.

The proof of Theorem 7.1 given here is much simpler and is based on monotonicity ideas

if n = 2. For n ≥ 3, Theorem 7.1 is a trivial consequence of (7.3), cf. discussion below.
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n = 2

Letting θ(·, t) := u(·, t)− v(·, t), we have that θ(·, t) satisfies: θ(·, 0) = 0 and

θt = ∆θ − f(·, t), (7.4a)

f(·, t) = u(·, t) · ∇u(·, t) + ∇p(·, t) = PH [u(·, t) · ∇u(·, t) ] (7.4b)

(where PH : L2(Rn) → L2
σ(Rn) denotes the Leray-Helmholtz projector).

Let then u0 ∈ L2
σ(R2) be given such that the corresponding Leray solution of (7.1) [ which,

in dimension n = 2, is regular for t > 0 (and unique) ] satisfies

‖u(·, t)‖
L2(R2)

= O(t−α) (7.5)

for some 0 < α ≤ (n+ 2)/4 = 1 (or, equivalently, that we have: ‖u(·, t)‖ = O(1 + t)−α).

Recalling Theorem A, it follows from (7.5) that

‖Du(·, t)‖
L2(R2)

= O(t−α−
1
2 ). (7.6)

Before proceeding, it will be convenient to recall the estimates (7.7) next:

Lemma 7.1. For every s > 0, we have, letting Q(·, t) = PH [u(·, t) · ∇u(·, t) ]:

‖ e∆(t− s)Q(·, s) ‖
L2(R2)

≤ K
1
(t− s)− 1/2 ‖u(·, s) ‖

L2(R2)
‖Du(·, s) ‖

L2(R2)
(7.7a)

and

‖ e∆(t− s)Q(·, s) ‖
L2(R2)

≤ K
2
(t− s)−1 ‖u(·, s) ‖2

L2(R2)
(7.7b)

for every t > s, where K
1

= (8π)− 1/2 and K
2

= (4πe)− 1/2.

Proof: This follows directly from heat kernel properties (see e.g. [19],Theorem 3, p. 4) or,

if preferred, using the Fourier transform (se e.g. [11], p. 236, or [26], p. 1227). �

Remark 7.2: Lemma 7.1 has a version for n = 3 or 4 as well, but for s ∈ (0,∞) \ E,

where E ⊂ R is a bounded set of zero measure. However, this lemma will only be needed

(for the proof of Wiegner’s inverse theorem given here) in case of dimension n = 2.
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Going back to (7.4) above, we then have

u(·, t)− v(·, t) = −
∫ t

0

e∆(t− s)
[
PH [u · ∇u ](·, s)

]
ds

= −
∫ t

0

PH
[
e∆(t− s) [u · ∇u ](·, s)

]
ds,

so that

‖u(·, t)− v(·, t)‖
L2(R2)

≤
∫ t

0

∥∥∥ PH[ e∆(t− s) [u · ∇u ](·, s)
] ∥∥∥

L2(R2)
ds

≤
∫ t

0

∥∥∥ e∆(t− s) [u · ∇u ](·, s)
∥∥∥
L2(R2)

ds

=

∫ t/2

0

∥∥ e∆(t− s) [u · ∇u ](·, s)
∥∥
L2(R2)

ds +

∫ t

t/2

∥∥ e∆(t− s) [u · ∇u ](·, s)
∥∥
L2(R2)

ds

≤
∫ t/2

0

(t− s)−1 ‖u(·, s)‖2

L2(R2)
ds +

∫ t

t/2

(t− s)−1/2 ‖u(·, s)‖
L2(R2)

‖Du(·, s)‖
L2(R2)

ds

for every t > 0, where in the last step Lemma 7.1 was used. Hence, by (7.5) and (7.6):

‖u(·, t) − v(·, t)‖
L2(R2)

= O(t−1)

∫ t/2

0

(1 + s)−2αds + O(t−2α− 1
2 )

∫ t

t/2

(t− s)−1/2 ds (7.8)

In the case 0 < α < 1/2, it follows from (7.8) that

‖u(·, t) − v(·, t)‖
L2(R2)

= O(t−1) (1 + t)−2α+1 + O(t−2α− 1
2 ) t1/2 = O(t−2α), (7.9a)

so that

‖v(·, t)‖
L2(R2)

≤ ‖u(·, t)‖
L2(R2)

+ ‖u(·, t)− v(·, t)‖
L2(R2)

= O(t−α) + O(t−2α) = O(t−α) (7.9b)

if α ∈ (0, 1/2). In the case α = 1/2, we get from (7.8) that

‖u(·, t)− v(·, t)‖
L2(R2)

= O(t−1) log (1+t) + O(t−2α− 1
2 ) t1/2 = O(t−1) log (1+t) (7.10a)

and so

‖v(·, t)‖
L2(R2)

≤ ‖u(·, t)‖
L2(R2)

+ ‖u(·, t)− v(·, t)‖
L2(R2)

= O(t−
1
2 ) + O(t−1) log (1 + t) = O(t−

1
2 ) (7.10b)
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if α = 1/2. Finally, in the remaining case 1/2 < α ≤ (n+ 2)/4 = 1, (7.8) gives

‖u(·, t) − v(·, t)‖
L2(R2)

= O(t−1) + O(t−2α− 1
2 ) t1/2 = O(t−1), (7.11a)

so that

‖v(·, t)‖
L2(R2)

≤ ‖u(·, t)‖
L2(R2)

+ ‖u(·, t)− v(·, t)‖
L2(R2)

= O(t−α) + O(t−1) = O(t−α) (7.11b)

if 1/2 < α ≤ 1. Therefore, for all values 0 < α ≤ 1 it has been true that ‖ v(·, t)‖L2(R2)

= O(t−α), as claimed, and we had (by (7.9a), (7.10a) and (7.11a) above):

‖u(·, t)− v(·, t)‖ =


O(t−2α−(n−2)/4) if 0 < α < 1

2

O(t−(n+2)/4 log t) if α = 1
2

O(t−(n+2)/4) if 1
2
< α ≤ n+2

4

(7.12)

(in accordance with (7.3)).

Remark 7.3: The key ingredient of the argument above was the validity of (7.6), which

turns out to be an immediate consequence of the assumption (7.5) in view of Theorem A.

A direct derivation of (7.6) from (7.5) in the spirit of Section 0 (Theorems A-E), that is,

exploring simple monotonicity properties of the relevantL2 norms involved, is very easy to

provide, due to the the well known monotonicity of ‖Du(·, t)‖L2(R2) in the interval (0,∞).

The following argument is adapted from ([11], p. 235): from the basic energy inequality

(which is actually an equality if n = 2) satisfied by the solution u(·, t), we have

‖u(·, t/2)‖2

L2(R2)

(1)

≥ ‖u(·, t)‖2

L2(R2)
+ 2

∫ t

t/2

‖Du(·, τ)‖2

L2(R2)
dτ

≥ 2

∫ t

t/2

‖Du(·, τ)‖2

L2(R2)
dτ

≥ 2 ‖Du(·, t)‖2

L2(R2)

∫ t

t/2

1 dτ [ by monotonicity ]

for every t > 0, that is,

t ‖Du(·, t)‖2

L2(R2)
≤ ‖u(·, t/2)‖2

L2(R2)
≤ K (1 + t/2)−2α [ by (7.5) ]

for some fixed constant K> 0 (by (7.5)), which shows (7.6), as claimed. �
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n = 3

We now consider the case n = 3: assuming that we have

‖u(·, t)‖
L2(R3)

= O(t−α) (7.13)

(for some 0 < α ≤ (n+ 2)/4 = 5/4), let us then show that we will also have

‖v(·, t)‖
L2(R3)

= O(t−α) (7.14)

(where v(·, t) is the solution to problem (7.2)). Since ‖v(·, t)‖L2(R3) = o(1), we can apply

(7.3) with β = 0 to obtain

‖u(·, t)− v(·, t)‖
L2(R3)

= O(t−
1
4 ). (7.15)

In particular,

‖v(·, t)‖
L2(R3)

≤ ‖u(·, t)‖
L2(R3)

+ ‖u(·, t)− v(·, t)‖
L2(R3)

= O(t−α) + O(t−
1
4 ) = O(t−γ) (7.16)

where γ = min{α, 1/4}. If α ≤ 1/4, then (7.14) already follows; the remaining cases for

α will be considered in the sequel below.

Case I: 1/4 < α < 1/2.

In this case, by (7.16) it follows that ‖v(·, t)‖L2(R3) = O(t−
1
4 ), so that (7.3) gives (with

n = 3, β = 1/4):

‖u(·, t)− v(·, t)‖
L2(R3)

= O(t−
3
4 ). (3.17a)

In particular,

‖v(·, t)‖
L2(R3)

≤ ‖u(·, t)‖
L2(R3)

+ ‖u(·, t)− v(·, t)‖
L2(R3)

= O(t−α) + O(t−
3
4 ) = O(t−α). (3.17b)

Remark 7.4: applying (17.3) means that we are using Wiegner’s (direct) theorem to

obtain the inverse Wiegner’s theorem as a consequence of the former.
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Case II: α = 1/2.

In this case, by (7.16) it follows that ‖v(·, t)‖L2(R3) = O(t−
1
4 ), so that, by (7.3) again, we

obtain

‖u(·, t)− v(·, t)‖
L2(R3)

= O(t−
3
4 ). (7.18a)

In particular,

‖v(·, t)‖
L2(R3)

≤ ‖u(·, t)‖
L2(R3)

+ ‖u(·, t)− v(·, t)‖
L2(R3)

= O(t−
1
2 ) + O(t−

3
4 ) = O(t−

1
2 ). (7.18b)

Case III: 1/2 < α < 5/4.

Since, in particular, we have ‖u(·, t) ‖L2(R3) = O(t−
1
2 ) in this case, it then follows from

Case II above that ‖v(·, t)‖L2(R3) = O(t−
1
2 ). Hence, by (1.3) with β = 1

2
, we have:

‖u(·, t)− v(·, t)‖
L2(R3)

= O(t−
5
4 log t). (7.19a)

In particular,

‖v(·, t)‖
L2(R3)

≤ ‖u(·, t)‖
L2(R3)

+ ‖u(·, t)− v(·, t)‖
L2(R3)

= O(t−α) + O(t−
5
4 log t) = O(t−α). (7.19b)

Case IV: α = 5/4.

Since, in particular, we have ‖u(·, t)‖L2(R3) = O(t−1) in this case, it follows from Case III

that ‖v(·, t)‖L2(R3) = O(t−1), so that, by (7.3) with β = 1, we have:

‖u(·, t)− v(·, t)‖
L2(R3)

= O(t−
5
4 ). (7.20a)

In particular,

‖v(·, t)‖
L2(R3)

≤ ‖u(·, t)‖
L2(R3)

+ ‖u(·, t)− v(·, t)‖
L2(R3)

= O(t−
5
4 ) + O(t−

5
4 ) = O(t−

5
4 ), (7.20b)

which completes the proof of (7.14). �

Remark 7.5: as we can see from the argument above, there was no real need to consider

the cases 1/4 < α < 1/2 and α = 1/2 separately.
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n = 4

Having ‖u(·, t)‖L2(R4) = O(t−α) for some 0 < α ≤ (n+ 2)/4 = 3/2, using (7.3) with

β = 0 e n = 4 we obtain, observing that (n− 2)/4 = 1/2,

‖u(·, t)− v(·, t)‖
L2(R4)

= O(t−1/2). (7.21)

In particular,

‖v(·, t)‖
L2(R4)

≤ ‖u(·, t)‖
L2(R4)

+ ‖u(·, t)− v(·, t)‖
L2(R4)

= O(t−α) + O(t−
1
2 ) = O(t−γ) (7.22)

where γ = min{α, 1/2}. Hence, in the case α ≤ 1/2 we have ‖v(·, t)‖L2(R4) = O( t−α)

and the result is obtained. For α > 1/2, then it is at least known that ‖v(·, t) ‖L2(R4) =

O(t−1/2), so that we have, by (7.3):

‖u(·, t)− v(·, t)‖
L2(R4)

= O(t−3/2 log t), (7.23)

and so

‖v(·, t)‖
L2(R4)

≤ ‖u(·, t)‖
L2(R4)

+ ‖u(·, t)− v(·, t)‖
L2(R4)

= O(t−α) + O(t−
3
2 log t). (7.24)

Case I: 1/2 < α < 3/2.

Having α < 3/2, it follows directly from (7.24) that ‖v(·, t) ‖L2(R4) = O(t−α), as was to

be shown.

Case II: α = 3/2.

In this case, it follows from (7.24) that ‖v(·, t)‖L2(R4) = O(t−1). From (7.3) with β = 1

and n = 4, we get ‖u(·, t)− v(·, t)‖L2(R4) = O(t−3/2), so that

‖v(·, t)‖
L2(R4)

≤ ‖u(·, t)‖
L2(R4)

+ ‖u(·, t)− v(·, t)‖
L2(R4)

= O(t−
3
2 ) + O(t−

3
2 ) = O(t−

3
2 ). (7.25)
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n ≥ 5

Having ‖u(·, t)‖L2(Rn) = O(t−α) for some 0 < α ≤ (n+ 2)/4, using (7.3) with β = 0

and n ≥ 5 we obtain

‖u(·, t)− v(·, t)‖
L2(Rn)

= O(t−(n−2)/4). (7.26)

In particular,

‖v(·, t)‖
L2(Rn)

≤ ‖u(·, t)‖
L2(Rn)

+ ‖u(·, t)− v(·, t)‖
L2(Rn)

= O(t−α) + O(t−
n−2
4 ) = O(t−γ) (7.27)

where γ = min{α, (n−2)/4}. Thus, in the case α ≤ (n−2)/4, we have that ‖v(·, t)‖L2(Rn)

= O(t−α), as was to be shown. If α > (n− 2)/4, it follows from (7.27) that

‖v(·, t)‖
L2(Rn)

= O(t−
n−2
4 ). (7.28)

Since (n− 2)/4 > 1/2, applying (7.3) with β = (n− 2)/4 we obtain, in this case,

‖u(·, t)− v(·, t)‖
L2(Rn)

= O(t−(n+2)/4), (7.29)

so that

‖v(·, t)‖
L2(Rn)

≤ ‖u(·, t)‖
L2(Rn)

+ ‖u(·, t)− v(·, t)‖
L2(Rn)

= O(t−α) + O(t−
n+2
4 ) = O(t−α). (7.30)

This completes the proof of Theorem 7.1. In a similar way, we can prove the following

generalization to Leray solutions of the Navier-Stokes equations with external forces,

ut + u · ∇u + ∇p = ∆u + f(·, t), ∇ · u(·, t) = 0 (7.31)

(in dimension n ≥ 2), with f(·, t) ∈ L1((0,∞), L2
σ(Rn)) satisfying the condition

‖f(·, t)‖
L2(Rn)

≤ Cf (1 + t)−α−1 e ‖f(·, t)‖
Ln(Rn)

≤ Kn t
−α− n+2

4 (7.32)

for all t > 0 (and some 0 < α ≤ (n + 2)/4). The associated linear problem is now vt =

∆v + f(·, t), with v(·, 0) = u(·, 0) ∈ L2
σ(Rn), and Wiegner’s inverse theorem reads
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Theorem 7.2 (inverse Wiegner). If ‖u(·, t)‖
L2(Rn)

= O(t−α) with 0 < α ≤ (n+ 2)/4,

then we will also have ‖v(·, t)‖
L2(Rn)

= O(t−α), provided that f(·, t) satisfies (7.32).

The proof is similar to the derivation of Theorem 7.1 given above.
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