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Abstract: This paper reports a new global Mittag-Leffler synchronization criterion with regard to
fractional-order hyper-chaotic financial systems by designing the suitable impulsive control and
the state feedback controller. The significance of this impulsive synchronization lies in the fact
that the backward economic system can synchronize asymptotically with the advanced economic
system under the effective impulse macroeconomic management means. Matlab LMI-toolbox is
utilized to deduce the feasible solution in numerical example, which shows the effectiveness of
the proposed methods. It is worth mentioning that the LMI-based criterion usually requires the
activation function of the system to be Lipschitz, but the activation function in this paper is fixed and
truly nonlinear, which cannot be assumed to be Lipschitz continuous. This is another mathematical
difficulty overcome in this paper.
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1. Introduction

Hyperchaotic financial mathematical model includes the information of average profit
margin, which simulates the actual complex and changeable financial market better, and
has attracted much attention of researchers ([1-5]). As what has been pointed out in [1,6],
an extension of fractality concepts in the investigation of economic systems has been used.
In the field of mathematical applications to physics and engineering, numerous researchers
have adopted fractional calculus as an effective method to model and simulate various
nonlinear system ([1,7,8]). For example, in [1], a fractional-order hyperchaotic financial
system was investigated and the adaptive control scheme for synchronization and chaos
suppression of the fractional-order economic systems was proposed. However, impulsive
control is not considered in [1]. In fact, impulsive control is always one of the means of
macroeconomic management ([2,3]). In [2], a synchronization criterion of hyperchaotic
financial system was derived by using impulsive control method and differential mean
value theorem. The authors in [3] utilized impulse, Lapalcian semigroup and fixed point
theorems to stabilize globally hyperchaotic financial system. But the results in [2,3] are
only applicable to integer order differential equation models, and the effective methods
used in [2,3] are not suitable to fractional-order hyperchaotic financial mathematical model.
Indeed, fractional-order financial system always involves Mittag-Leffler stability, which
is different from those of [2,3]. Besides, Riemann-Liouville fractional-order derivative
was studied in [1], and so in this paper we consider Caputo fractional-order derivative.
To overcome the above-mentioned mathematical difficulties, we shall design a suitable
controller and utilize impulsive control to achieve drive-response synchronization. The
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significance of this impulsive synchronization lies in the fact that the backward economic
system can synchronize asymptotically with the advanced economic system under the
effective impulse macroeconomic management means.

This article has the following novelties:
� This paper offers an original definition (see Definition 4) of chaotic financial systems’

synchronization, in which the boundedness of the interest rate and the investment demand
conforms to financial reality.

� Because the activation function of chaotic financial system in this paper is non-
Lipschitz continuous, many lemmas given in the previous fractional-order neural network
literature cannot be applied to this paper. The authors overcome the mathematical difficul-
ties caused by true nonlinearity and obtains the LMI-based synchronization criterion for
the first time.

� Because the LMI-based synchronization criterion of fractional-order chaotic financial
system is obtained in this paper, the mathematical methods in this paper are different from
those of existing literature involved in synchronization of fractional-order chaotic financial
systems (see,e.g. [13]).

2. Preliminaries

Generally speaking, there are three common fractional derivatives, including the
Grunwald-Letnikov fractional derivative, Riemann-Liouville fractional derivative, as well
as the Caputo fractional derivative.

In this paper, the Caputo fractional derivative is considered.

Definition 1.([9]) The fractional integral of order χ for a function u(t) ∈ C[[0,+∞),R] is
defined by

D−χu(t) =
1

Γ(χ)

∫ t

0
(t− s)χ−1u(s)ds,

where χ > 0, and Γ(χ) =
∫ +∞

0 e−ttχ−1dt.

Definition 2.([9]) The Caputo fractional derivative of order χ for a function u(t) ∈ Cn+1[[0,+∞),R]
(the set of all n-order continuous differentiable functions on [0,+∞]) is defined as

Dχu(t) =
1

Γ(n− χ)

∫ t

0
(t− s)n−χ−1u(n)(s)ds,

where χ > 0, n is the first integer greater than χ, that is, n− 1 < χ < n, and the Laplace
transform of Dχu(t) is given as

L{Dχu(t)} = sχH(s)−
n−1

∑
k=0

sχ−k−1u(k)(0),

where H(s) = L{u(t)} stands for the Laplace transform of u(t). In particular, when
0 < χ < 1, one obtains that

Dχu(t) =
1

Γ(1− χ)

∫ t

0
(t− s)−χu′(s)ds,

L{Dχu(t)} = sχH(s)− sχ−1u(0).

Definition 3.([9]) The one-parameter and the two-parameter Mittag-Leffler function are
defined as

Eχ(w) =
∞

∑
k=0

wk

Γ(χk + 1)
, χ > 0, w ∈ C,
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Eχ,β(w) =
∞

∑
k=0

wk

Γ(χk + β)
, χ > 0, β > 0, w ∈ C,

respectively, and the Laplace transform of the two-parameter Mittag-Leffler function is

L[tβ−1Eχ,β(−γtχ)] =
sχ−β

sχ + γ
, t > 0, Re(s) > |γ|

1
χ ,

where γ ∈ R and Re(s) denotes the real parts of s.

Consider the following fractional-order hyper-chaotic financial system as the drive
system: 

Dαx =− x · a + (y · x + u + z),

Dαy =1− y · b− x2,

Dαz =− z · c− x,

Dαu =− u · k− x · d · y,

(1)

which can be written in compact form

DαX(t) = AX(t) + f (X(t)), t > 0, (2)

where X = (x1, x2, x3, x4)
T = (x, y, z, u)T ,

A =


−a 0 1 1
0 −b 0 0
−1 0 −c 0
0 0 0 −k

, f (X) = ( f1(X), f2(X), f3(X), f4(X))T =


x1x2
−x2

1 + 1
0

−dx1x2,

.

(3)
and the initial value is of

X(0) = X0. (4)

Here, the parameters a, b, c, d and variables x, y, z, u can be referenced in detail in the
literature ([1-5]),

Consider the corresponding response system as follows,
DαY(t) =AY(t) + f (Y(t)) + W(t), t > 0, t 6= tk,

Y(t+k ) =Y(t−k ) + g(Y(tk)− X(tk)), k = 1, 2, · · ·
Y(0) =Y0,

(5)

where W(t) = (w1(t), w2(t), w3(t), w4(t))T , and each wi(t) is a controller to be designed.
0 < t1 < t2 < · · · , and each tk(k ∈ Z+) represents a fixed impulsive instant, and Y(t−k ) =
lim

t→t−k
Y(t) = Y(tk), Y(t+k ) = lim

t→t+k
Y(t), for all k = 1, 2, · · · . Here, Y = (y1, y2, y3, y4).

Set e(t) = Y(t)− X(t), then the systems (1) and (5) synchronization error model is
Dαe(t) =Ae(t) + F(e(t)) + W(t), t > 0, t 6= tk,

e(t+k ) =e(t−k ) + g(e(tk)), k = 1, 2, · · ·
e(0) =Y0 − X0,

(6)

where
F(e) = f (Y)− f (X). (7)

Design the following state feedback controller

W(t) = M(X(t)−Y(t)), (8)

where M is a constant matrix.
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In our study, the following assumption conditions are useful:
(H1) |xi(t)| 6 mi, and |yi(t)| 6 mi, for all i = 1, 2.
(H2) g(s) = Ls, where s ∈ R4, and L is a constant matrix.

Definition 4. The system (5) is said to achieve global Mittag-Leffler synchronization with
the system (2) if there exist two positive constants 0 < K1, K2 < 1 such that for any
initial values X0 = (x01, x02, x03, x04) and Y0 = (y01, y02, y03, y04) with |x0i| 6 Kimi and
|y0i| 6 Kimi, i = 1, 2, the null solution of the system (6) is global Mittag-Leffler stable.

The following lemma about Caputo fractional-order derivative with one-dimensional
variable is common in many literatures ([1,7,14,16,17])

Lemma 1. Let ξ(t) ∈ R1 be a continuous and derivable function. Then, for any t > 0,

1
2

Dαξ2(t) 6 ξ(t)Dαξ(t), ∀ α ∈ (0, 1).

3. Main result

In this section, we present the LMI-based synchronization criterion for chaotic financial
systems:

Theorem 1. Assume that conditions (H1)-(H2) hold. If there exists a positive definite
symmetric matrix P and positive real number ε1 such that

PA + AT P− PM−MT P + ε−1
1 I + ε1HT H < 0, (9)

(I + L)T P(I + L) < P, (10)

then the system (5) achieves global Mittag-Leffler synchronization with the system (2),
where I is the identity matrix, and

H =


m2 m1 0 0

m1 + m2 0 0 0
0 0 0 0

dm2 dm1 0 0,

.

Proof. Firstly, it follows from (H1) and (3) that

|F(e(t))| 6 H|e(t)|,

Consider the Lyapunov function as follows,

V(t, e(t)) = eT(t)Pe(t),

where P is a positive definite symmetric matrix. Below, in order to derive a common result
on Captuto fractional derive and quadratic forms, we might temporarily assume that P is a
positive definite symmetric matrix with n-dimension, and e is a vector with n-dimension.

Then there is a congruent transformation such that

Q−1PQ =


λ1 0 · · · 0 0
0 λ2 0 · · · 0

. . .
0 0 0 · · · λn

,

where Q is the n-dimensional matrix with QT = Q−1, and each λi is a positive real nember
for i = 1, 2, · · · , n.
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Hence,

P =Q


λ1 0 · · · 0 0
0 λ2 0 · · · 0

. . .
0 0 0 · · · λn

Q−1

=Q


√

λ1 0 · · · 0 0
0

√
λ2 0 · · · 0

. . .
0 0 0 · · ·

√
λn

QTQ


√

λ1 0 · · · 0 0
0

√
λ2 0 · · · 0

. . .
0 0 0 · · ·

√
λn

QT

=BT B,

where B is a a positive definite symmetric matrix with

B = Q


√

λ1 0 · · · 0 0
0

√
λ2 0 · · · 0

. . .
0 0 0 · · ·

√
λn

QT .

Let v = Be, then
V(t, e(t)) = eT(t)Pe(t) = vT(t)v(t),

where
V(t, e(t)) = (v1(t), v2(t), · · · , vn(t))T

Lemma 1 and v = Be yield

DαV(t, e(t)) =Dα

( n

∑
i=1

v2
i (t)

)

=
1

Γ(1− α)

∫ t

0

(
n
∑

i=1
v2

i (t))
′

(t− s)α

=
n

∑
i=1

1
Γ(1− α)

∫ t

0

(v2
i (t))

′

(t− s)α

=
n

∑
i=1

Dα(v2
i (t))

62eT(t)PDαe(t).

then

DαV(t, e(t)) 6eT(t)
(

PA + AT P− PM−MT P
)

e(t) + [eT(t)F(e(t)) + FT(e(t))e(t)]

6eT(t)
(

PA + AT P− PM−MT P + ε−1
1 I + ε1HT H

)
e(t)

6qV(t, e(t)), t > 0, t 6= tk,

(11)

where

q = λmax

(
PA + AT P− PM−MT P + ε−1

1 I + ε1HT H
)
< 0.
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Obviously, there exists a function ν(t, e(t)) = DαV(t, e(t)), and so there is a function
µ(t) > 0 such that

µ(t) + ν(t, e(t)) = qV(t, e(t)), t > 0, t 6= tk, (12)

Denote by ∗ the convolution operator, then it follows by taking the Laplace transform and
inverse Laplace transform of (12) that

V(t, e(t)) = V(0, e(0))Eα(qtα)− µ(s) ∗ (tα−1Eα,α(qtα)), t > 0, t 6= tk, (13)

which together with µ > 0 means

V(t, e(t)) 6 V(0, e(0))Eα(qtα), ∀ t ∈ (tk−1, tk]. (14)

On the other hand, (14) and (10) yield

V(t+k , e(t+k )) =[(I + L)e(tk)]
T P[(I + L)e(tk)]

=eT(tk)(I + L)T P(I + L)e(tk)

6eT(tk)Pe(tk) 6 V(0, e(0))Eα(qtα
k ), ∀ k = 1, 2, · · · ,

(15)

which together with (14) implies

λmin(P)‖e(t)‖2 6 V(t, e(t)) 6 V(0, e(0))Eα(qtα), ∀ t > 0,

or

‖e(t)‖ 6
√

1
λmin(P)

V(0, e(0))Eα(qtα), ∀ t > 0.

In consideration of q < 0 , the above inequality means that the null solution of System (6) is
globally Mittag-Leffler stable. This completes the proof.

Remark 1. The LMI-based synchronization criterion of Theorem 1 is different from that of
[13, Theorem 1], which illuminates that the mathematical methods used in this paper are
different from those of [13].

4. Numerical example

Below, we give a numerical example on synchronization of fractional-order (α = 0.95)
financial systems :

Example 1. Equip System (2) and System (5) with the following data

L =


−0.0111 0.0001 0 0
0.0001 −0.0112 0 0

0 0 −0.0113 0
0 0 0 −0.0111

, M =


2.11 0.0001 0 0

0.0001 2.2 0 0
0 0 2.3 0
0 0 0 2.1

.

Let a = 0.9, b = 0.2, c = 1.5, d = 0.2, k = 0.17, m1 = 8, m2 = 9, then

A =


−0.9 0 1 1

0 −0.2 0 0
−1 0 −1.5 0
0 0 0 −0.17

, f (X) = ( f1(X), f2(X), f3(X), f4(X))T =


x1x2
−x2

1 + 1
0

−0.2x1x2,

.

H =


9 8 0 0

17 0 0 0
0 0 0 0

1.8 1.6 0 0

.
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Using MATLAB LMI-toolbox to solve LMI conditions (9) and (10) results in the
following feasibility data:

P =


301.5313 0 0 0.0011

0 289.7811 0 0
0 0 313.9712 0

0.0011 0 0 276.7876

, ε1 = 0.5013

According to Theorem 1, the system (5) is global Mittag-Leffler synchronization with
the system (2) (see Fig.1-7).

x1-x2-x3-eps-converted-to.pdf

Fig. 1: 3D view synchronization for fractional-order 0.95

x2-x3-x4-eps-converted-to.pdf

Fig. 2: 3D view synchronization for fractional-order 0.95

x3-x4-x1-eps-converted-to.pdf

Fig. 3: 3D view synchronization for fractional-order 0.95
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u1-eps-converted-to.pdf

Fig. 4: Computer simulations of synchronization between x1 and y1 for fractional-order 0.95

u2-eps-converted-to.pdf

Fig. 5: Computer simulations of synchronization between x2 and y2 for fractional-order 0.95

u3-eps-converted-to.pdf

Fig. 6: Computer simulations of synchronization between x3 and y3 for fractional-order 0.95

u4-eps-converted-to.pdf

Fig. 7: Computer simulations of synchronization between x4 and y4 for fractional-order 0.95
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Remark 2. Numerical simulation shows the effectiveness of Theorem 1. Indeed, we can
see it from Fig.1-3 that System (5) is global Mittag-Leffler synchronization with System (2).
Besides, we can also see it from Fig.4-7 that |x1(t)| < 8 and |y1(t)| < 8, |x2(t)| < 9 and
|y2(t)| < 9. And hence, the condition (H1) holds.

Finally, we point out that Theorem 1 is also suitable to the case of integer order, for
example, integer order α = 1.

Example 2. Set α = 1 in the systems (5) and (2). Equip System (2) and System (5) with the
following data

L =


−0.0122 0 0 0

0 −0.0123 0 0
0 0 −0.0113 0
0 0 0 −0.0111

, M =


2.11 0 0 0

0 2.2 0 0
0 0 2.3 0
0 0 0 2.1

.

PA + AT P− PM−MT P + ε−1
1 I + ε1HT H < 0, (9)

(I + L)T P(I + L) < P, (10)

Let a = 0.6, b = 0.3, c = 0.8, d = 0.1, k = 0.11, m1 = 8, m2 = 9, then

A =


−0.6 0 1 1

0 −0.3 0 0
−1 0 −0.8 0
0 0 0 −0.11

, f (X) = ( f1(X), f2(X), f3(X), f4(X))T =


x1x2
−x2

1 + 1
0

−0.1x1x2,

.

H =


9 8 0 0

17 0 0 0
0 0 0 0

0.9 0.8 0 0

.

Using MATLAB LMI-toolbox to solve LMI conditions (9) and (10) results in the
following feasibility data:

P =


398.5313 0 0 0.0003

0 301.3316 0 0
0 0 321.8983 0

0.0003 0 0 331.9879

, ε1 = 0.4996

According to Theorem 1, the system (5) is global Mittag-Leffler synchronization with
the system (2) (see Fig.8-11).

v1-eps-converted-to.pdf

Fig. 8: Computer simulations of synchronization between x1 and y1 for α = 1
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v2-eps-converted-to.pdf

Fig. 9: Computer simulations of synchronization between x2 and y2 for α = 1

v3-eps-converted-to.pdf

Fig. 10: Computer simulations of synchronization between x3 and y3 for α = 1

v4-eps-converted-to.pdf

Fig. 11: Computer simulations of synchronization between x4 and y4 for α = 1

Remark 3. Fig.8-11 illustrate that the synchronization speeds of the financial systems in
Example 2 are faster than those in Example 1, for the data a = 0.6, b = 0.3, c = 0.8, d =
0.1, k = 0.11 are different from those of Example 1. In fact, the corresponding data in
Example 1 made financial systems chaos (see [1,3-5,13]).

5. Conclusions

Inspired by recent literature related to fractional-order models or chaotic systems
([14-19]), the authors design the suitable impulsive control and the state feedback controller
to make fractional-order hyper-chaotic financial systems global Mittag-Leffler synchroniza-
tion, and use computer Matlab LMI-toolbox to verify the effectiveness of newly-obtained
criterion. Both theoretical and numerical examples show that as long as the impulsive
macroeconomic management measures are appropriate, the backward economic system
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can gradually synchronize with the advanced economic system. Finally, the impulsive
control involving time delay and the impulsive control under trigger event mechanism
still need to be studied for the mathematical model of macroeconomics([10-12,20]). It is
an interesting problem how to establish a reasonable model in line with the principles of
Macroeconomics.
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