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Abstract: Accurately predicting ambient dust plays a crucial role in air quality management and 

hazard mitigation. This study explores the accuracy of Artificial Intelligence (AI) models: adaptive-

network-based fuzzy inference system (ANFIS) and multi-layered perceptron artificial neural net-

work (mlp-NN) over the southwestern United States (SWUS) based on the observed dust data from 

IMPROVE stations. The ambient fine dust (PM2.5) and coarse dust (PM10) concentrations at 

monthly and seasonal timescale from 1990-2020 are modeled using average daily maximum wind 

speed (W), average precipitation (P), and average air temperature (T) available from North Ameri-

can Regional Reanalysis (NARR). The model’s performance is measured using correlation (r), root 

mean square error (RMSE), and percentage bias (% BISA). ANFIS model generally performs better 

than mlp-NN model in predicting regional dustiness over the SWUS region with r of 0.77 and 0.83 

for monthly and seasonal fine dust respectively. AI models perform better in predicting regional 

dustiness at a seasonal timescale than the monthly timescale for both fine dust and coarse dust. AI 

models better predict fine dust than coarse dust at both monthly and seasonal timescales. Compared 

to precipitation, the near-surface average temperature is the more important predictor of the re-

gional dustiness at both monthly and seasonal timescale. However, compared to the monthly time-

scale, air temperature is less more important predictor than precipitation at the seasonal timescale 

for PM2.5 and vice versa for PM10. The findings of this study demonstrate that the AI models have 

a good potential to predict monthly and seasonal fine and coarse dust at acceptable accuracy based 

on basic climatic data.  
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1. Introduction 

Aeolian dust storms degrade visibility and cause several health problems including 

traffic accidents, degradation in industrial machinery, cardiovascular diseases, and lung 

cancers (Domínguez-Rodríguez et al. 2021; Achakulwisut et al. 2019; Al-Hemoud et al. 

2019; Bhattachan et al. 2019). Fine dust (soil dust with particle matter <= 2.5 µm) contrib-

utes about 20 – 50 % of total fine particulate matter (PM2.5) in the western United States 

(WUS) (Hand et al. 2017). Dust particles also play an important role in the global climate 

system and regional and local climate and environment primarily by absorbing and scat-

tering both solar and terrestrial radiation (Evans et al. 2020, 2019; Saidou et al. 2020; Mallet 

et al. 2009). For example, aeolian dust on snow increases the snow albedo and accelerates 

snowmelt in the Colorado River (Painter et al. 2018), and alters the North American mon-

soon by heating the lower troposphere (Zhao et al. 2012). 

The dust emission, transport, and deposition are influenced by complex land-atmos-

pheric interactions, mainly high wind speed, land erodibility and bareness, and humidity, 

among other influencing factors (Csavina et al 2014). Studies show that ambient dustiness 

over dust-prone regions heavily depends on the regional drought (Javadian et al. 2019; 

Achakulwisut et al. 2018; Nabavi et al. 2016). Nabavi et al. (2016) demonstrated that 2007 

– 2008 Winter and Spring (October to May) dust in Western Asia were associated with 
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severe precipitation deficit. Intermodal spread in CMIP6 simulated dust emission is ex-

plained by the differences in the models’ drought sensitivity to dust emission (Aryal and 

Evans 2021). Therefore, understanding the predictability of regional dustiness based on 

the regional hydroclimate is an interesting research topic. 

Few previous studies have analyzed the predictability of western US dust. For exam-

ple, Bing Pu used the linear regression technique to predict the Spring season's high con-

centration coarse dust event frequency based on wind speed, precipitation, and surface 

bareness. Aryal (2022) showed that machine learning models better predict fine dust than 

coarse dust at a monthly timescale. Temperature strongly depends on the monthly time-

scale while precipitation is important to explain the long-term variability of ambient dust 

(Aryal 2022; Namdari et al. 2018). Earth system models heavily underestimate coarse dust 

(Kok et al. 2018). However, much less effort has been made to compare the predictability 

of fine and coarse dust at different temporal scales based on climatic data. 

The specific objectives of this work are 1) To predict the aeolian dust using Adaptive 

Neuro-Fuzzy Inference Systems (ANFIS) and multi-layered perceptron Artificial Neural 

Networks (mlp-ANN) models and 2) To compare the models’ performance for fine dust 

(particle diameter ≤ 2.5 µm; PM2.5) and coarse dust (particle diameter 2.5–10 µm; PM10) 

at monthly and seasonal timescales.  

2. Materials and Methods 

2.1. Study Area and Data 

The southwestern US is a major dust source in the USA (Ginoux et al. 2012). The 

Chihuahuan Desert, the Colorado River, and the High Plains are well-known dust sources 

in the region. The Interagency Monitoring of Protected Visual Environments (IMPROVE) 

network provides the observed near-surface dust concentration over the region (DeBell et 

al. 2006; available online: https://views.cira.colostate.edu/fed/Express/ImproveData.aspx 

(accessed on 10 April 2022)). The location of the observation stations over the study region 

is shown in Figure 1. The 24-hour dust concentration was measured every Saturday and 

Wednesday before 2001 and after that observations are done every third day. The total 

precipitation (P), average 2 m air temperature (T), and monthly average daily maximum 

10 m wind speed (W) were taken from the North American Regional Reanalysis (NARR) 

at 0.3 deg resolution( Mesinger et al. 2006 available online: https://psl.noaa.gov/data/grid-

ded/data.narr.monolevel.html (accessed on 10 April 2022)), at 0.3 × 0.3 resolution. The 

analysis is done on a regional scale (Figure 1). Data from1988 to 2010 are used as training 

data and those from 2011 to 2020 as test data. The model performance results are shown 

for the test data. 
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Figure 1. Location of the IMPROVE stations across the US. The Black box in the top right corner 

indicates the study region of this study. 

2.2. Artificial Intelligence (AI) Models 

The performance of two widely used AI models: adaptive-network-based fuzzy in-

ference system (ANFIS) and multi-layered perceptron artificial neural network (mlp-NN) 

are examined. All computations are done in R (R Core Team 2013).  

2.2.1. Adaptive Neuro-Fuzzy Inference System (ANFIS) 

The ANFIS model, proposed by Jiang (1993), combines fuzzy logic and neural net-

work. The layered structure (Figure 2) in the ANFIS model adds fuzzy logic to the artificial 

neural networks.  
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Figure 2. (a) Fuzzy inference system and (b) equivalent ANFIS architecture. 

The fuzzy interference system uses the hybrid learning algorithm to identify the sys-

tem parameters and teach the model (Rehman and Mohandes 2008). For two inputs (x,y) 

and output (f), the fuzzy if-then rules from Takagi and Sugeno (1983) are as follows 

1.  �� � �� ����� � �� ��, �ℎ�� �� = ��� + ��� + �� 

2.  �� � �� ����� � �� ��, �ℎ�� �� = ��� + ��� + �� 

The five-layer architecture of ANFIS (Nayak et al. 2004; Tabari et al. 2012; Karandish 

and Šimůnek 2016), shown in figure 2, is as follows: 

Layer 1: This is the input layer. In this fuzzy layer, each node in the layer is the degree 

of membership function ����,  ���(�)� from the input. The output of the first layer is the 

membership values of each input for specific MFs. The shape of the MFs can be any ap-

propriate functions that are continuous and piecewise differentiable such as Gaussian, 

generalized bell-shaped, trapezoidal-shaped and triangular-shaped functions (Talpur et 

al. 2017). In this study the Gaussian MF is used that is defined as: 
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Layer 2: This layer multiplies the input values from the incoming signal. The AND 

fuzzy operator is applied to get the weight (firing strength). For example, for the first 

node, 

�� = ���(�) ∗  ���(�), � = 1,2 

where, 

��  is the firing strength of the ith rule 

���(�) is the degree of membership function fuzzy sets �� 

���(�) is the degree of membership function fuzzy sets ��  

Layer 3: The circle nodes in this layer normalize the firing strength. The normalized 

weight is the ratio of the firing strength of ith rule to the sum of all firing strength 

������ =
��

∑ ��
�
���

,    � = 1,2, … , � 

where n is the number of nodes in each layer. 

Layer 4: This is a de-fuzzy layer and each node is called an adaptive node. In this 

layer terms are the results of operation on input signals: 
�� = ������ �� =  ������ (��� + ��� + ��)  
where, ��, ��, ��� �� are the consequent parameters 

Layer 5: The overall output calculated in this output layer as the summation of all 

incoming signals from previous layers 

������� ������ = � ���

�

���

�� 

2.2.2. Multilayer perceptron neural network (MLP-NN) 

The mlp-ANN is the most widely used feed-forward neural network. The basic struc-

ture of the mlp-NN with two hidden layers is shown in Figure 3. A detailed explanation 

of MLP-NN is given in Schalkoff (1997) and Hanoon et al. (2021).  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 July 2022                   doi:10.20944/preprints202207.0115.v1

https://doi.org/10.20944/preprints202207.0115.v1


 

   

Figure 3. mlp-NN architecture with two hidden layers. 

The neurons in the input layer work as a buffer for the distribution of input signals 

to the hidden layers. Any hidden neuron � sum up the signals from the input layers �� 

based on the strength of connection ���. Then the output �� of any neuron � is calcu-

lated as the function of sums up as follows: 

�� = � �� ��� ∗ ��� 

where, function F can be radial bias function (RBF), hyperbolic tangent, a sigmoidal 

or simple threshold function. The backpropagation and gradient descent is the most com-

mon training algorithms in Multilayer perceptron. The change in connection weights be-

tween neurons i and j are: 

∆��� = ����� 

where, � is known as the learning rate and � depends on whether � is input or 

hidden neuron.    

For hidden neurons: 

�� = �
��

�����
� � ��� ∗  ��  

A variation of a desired and factual output of neurons in hidden layers j which are 

replaced via weighted sums of δq term previously achieved for neuron q connecting to 

the output of j. 

For output neuron: 

�� = �
��

�����
� ���� − ���  

���� is an overall weighted total of signals in the input layer. ���  is the goal output 

for neurons j 
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2.3. Uncertainty analysis. 

The prediction uncertainty of the AI models was quantified using the d-factor as in 

Mohsenzadeh et al. (2020).  

� − ������ =  
��̅

��
 

where, σ is the standard deviation and  ��̅ is the average distance between the up-

per and lower bands 

��̅ =  
1

�
� �� − ��

�

�

 

3. Results and discussions 

The performance of ANFIS and mlp-NN models in predicting fine dust and coarse 

dust at monthly and seasonal timescales are shown in Figures 4 -7 and Table 1 - 2. The 

results from this case study show that the ANFIS model performs better than the mlp-NN 

model to predict aeolian dust at both monthly and seasonal timescales. The correlation 

(r), root mean square error (RMSE), and percentage bias (% Bias) for monthly fine dust 

prediction (ANFIS model) is 0.7, 0.45 µg/m3 and 40.64 % respectively. The models’ per-

formance is generally better to predict seasonal dust than monthly dust. At seasonal time-

scale r, RMSE, and % BIAS (ANFIS model, fine dust) are 0.83, 0.31 µg/m3, and 28.30 % 

respectively.  Hanoon et al. (2021) also showed that AI models better predict the temper-

ature and relative humidity at (longer) monthly timescale than (shorter) daily timescale. 

This might be attributed to the nonstationary spurious internal variability of the climate 

system that is difficult to capture by the models (Shi et al. 2018). The results demonstrate 

that AI models based on the climatic data only predict Southwestern US dust with similar 

skill as the models using land surface conditions. Long-term climatic data are more readily 

available than long-term land surface conditions data.  
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Figure 4. AI models for fine dust (PM2.5, µg/m3) at a monthly timescale. 

As shown in Figures 4 – 7 and Tables 1-2, same month/or season predict skills are 

better than one month/or season lead prediction skills. This highlights that ambient dust-

iness over the region depends more on the same month/or season climate than the previ-

ous month/or season climate. Pu et al. (2019) also noted that spring Season dust in the 

western US depends more on the Spring climatic and surface condition than the Winter 

climate and land conditions. 

Comparing Figures 1-2 with Figures 3-4, the correlation for fine dust is better than 

the correlation for coarse dust at both monthly and seasonal timescales (Aryal 2022). The 

IMPROVE stations are located on federal lands and national parks at some distance from 

the dust source (DeBell et al. 2006). The coarse dust has a short transport distance and air 

retention time. Therefore, observation stations are more likely to miss coarse dust than 

fine dust. Therefore, the regional climate has difficulty explaining coarse dust variability.   
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Figure 5. AI models for fine soil (PM2.5, µg/m3) at the seasonal timescale. 

However, if we look at the % BIAS (comparing Tables 1 and 2) the results on the 

accuracy of predicting fine dust and coarse dust are not consistent. This highlights that 

different statistical indices should be examined to confirm the effectiveness of the exam-

ined models (Hanoon et al. 2021).  

The relative importance of precipitation and temperature to predict dust over the 

region is further examined. A previous study showed that temperature is a more im-

portant predictor followed by precipitation to predict monthly dust over the SWUS region 

(Aryal 2022). This study compares the relative importance of temperature and precipita-

tion predicting dust at monthly and seasonal timescales. Table 3 shows the results from 

the ANFIS model. % BIAS is lower for the prediction based on T and W than the model 

based on P and W for predicting fine dust and coarse dust at  
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Figure 6. AI models for coarse dust (PM10, µg/m3) at a monthly timescale. 

Both monthly and seasonal dust implying the relative importance of temperature in 

predicting dust over the SWUS. This is consistent with the previous study, Aryal (2022), 

on a monthly timescale. On the shorter timescale (i.e., monthly to seasonal timescale) dust 

emission quickly responds to the warming due to the soil moisture variability in the sur-

face soil layer. On the other hand, the impacts of precipitation on dust emissions are 

strongly detected on a longer timescale (i.e., annual to decadal) due to changes in vegeta-

tion cover (Namdari et al. 2018). Comparing the relative importance of precipitation and 

temperature, the difference between the relative importance of temperature and precipi-

tation is larger at the monthly timescale for fine dust prediction (Table 3a difference in % 

BIAS; -23.4 Vs -14.85). For the coarse dust prediction, the difference between the relative 

importance of temperature and precipitation is larger at seasonal timescale (Table 3b dif-

ference in % BIAS; -8.35 Vs -22.59). 
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Figure 7. AI models for coarse dust (PM10 µg/m3) at seasonal timescale. 

Table 1. Performance of ANFIS model to predict fine dust (PM2.5) during testing phase (2010-

2020). 

Inputs Output 
RMSE 

(µg/m3) 
% BIAS Change in % BIAS   

P(m),T(m),W(m) Dm 0.455 40.640     

P(m),W(m) Dm 0.561 78.90 -38.26   

T(m),W(m) Dm 0.448 55.50 -14.86 -23.40 

P(s), T(s), W(s) Ds 0.308 28.304     

P(s),W(s) Ds 0.401 44.45 -16.14   

T(s),W(s) Ds 0.310 29.60 -1.30 -14.85 

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 July 2022                   doi:10.20944/preprints202207.0115.v1

https://doi.org/10.20944/preprints202207.0115.v1


 

Table 2. Performance of ANFIS model to predict coarse dust (PM10) during testing phase (2010-

2020). 

Inputs  Output 
RMSE 

(µg/m3) 

% 

BIAS  
Change in % BIAS   

P(m),T(m),W(m) Dm 2.57 42.08     

P(m),W(m) Dm 2.62 50.57 -8.49   

T(m),W(m) Dm 2.59 42.22 -0.14 -8.35 

P(s), T(s), W(s) Ds 1.96 27.82     

P(s),W(s) Ds 2.95 50.73 -22.92   

T(s),W(s) Ds 1.98 28.14 -0.32 -22.59 

The results from the uncertainty analysis are given in Table 3. The d-factor of both 

fine and coarse dustiness is low implying the reasonable accuracy of the model for pre-

dicting regional dustiness.  

Table 3. d-factor for ANFIS mode 

  d-factor 

PM2.5   

Monthly  0.002 

Seasonal 0.00035 

PM10   

Monthly  0.1 

Seasonal 0.067 

4. Conclusions 

In this study, the performance of artificial intelligence (AI) models: adaptive-net-

work-based fuzzy inference system (ANFIS) and multi-layered perceptron neural net-

work (mlp-NN) are investigated to predict aeolian dust over the southwestern US. The 

ambient dust data was taken from the Interagency Monitoring of Protected Visual Envi-

ronments (IMPROVE) network while the regional meteorology data (precipitation, tem-

perature, wind speed) were retrieved from North American Regional Reanalysis (NARR). 

The models’ performances for fine dust and coarse dust at monthly and seasonal time-

scales are compared.  

- AI models better predict regional dustiness at seasonal timescale than monthly 

timescale.    

- ANFIS model works better than mlp-NN model in predicting regional dustiness at 

both monthly and seasonal timescales. 

- The ambient dustiness over the region is better predicted by the same month (or 

season) climatic condition than using the precious month (or season) climatic condition.  

- Compared to precipitation, the temperature is the more important predictor of the 

regional dustiness at both monthly and seasonal timescales. However, compared to the 

seasonal timescale, the difference between the relative importance of temperature and 

precipitation is larger at the monthly timescale for fine dust prediction and vice versa for 

coarse dust. 
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