Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 July 2022 d0i:10.20944/preprints202207.0115.v1

Article

Application of Artificial Intelligence Models for Aeolian Dust
Prediction at Different Temporal Scales: A Case with Limited

Climatic Data

Yog Aryal

The State University of New York (SUNY), Buffalo, NY, USA; yogaryal@buffalo.edu

Abstract: Accurately predicting ambient dust plays a crucial role in air quality management and
hazard mitigation. This study explores the accuracy of Artificial Intelligence (AI) models: adaptive-
network-based fuzzy inference system (ANFIS) and multi-layered perceptron artificial neural net-
work (mlp-NN) over the southwestern United States (SWUS) based on the observed dust data from
IMPROVE stations. The ambient fine dust (PM2.5) and coarse dust (PM10) concentrations at
monthly and seasonal timescale from 1990-2020 are modeled using average daily maximum wind
speed (W), average precipitation (P), and average air temperature (T) available from North Ameri-
can Regional Reanalysis (NARR). The model’s performance is measured using correlation (r), root
mean square error (RMSE), and percentage bias (% BISA). ANFIS model generally performs better
than mlp-NN model in predicting regional dustiness over the SWUS region with r of 0.77 and 0.83
for monthly and seasonal fine dust respectively. AI models perform better in predicting regional
dustiness at a seasonal timescale than the monthly timescale for both fine dust and coarse dust. AI
models better predict fine dust than coarse dust at both monthly and seasonal timescales. Compared
to precipitation, the near-surface average temperature is the more important predictor of the re-
gional dustiness at both monthly and seasonal timescale. However, compared to the monthly time-
scale, air temperature is less more important predictor than precipitation at the seasonal timescale
for PM2.5 and vice versa for PM10. The findings of this study demonstrate that the Al models have
a good potential to predict monthly and seasonal fine and coarse dust at acceptable accuracy based
on basic climatic data.
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1. Introduction

Aeolian dust storms degrade visibility and cause several health problems including
traffic accidents, degradation in industrial machinery, cardiovascular diseases, and lung
cancers (Dominguez-Rodriguez et al. 2021; Achakulwisut et al. 2019; Al-Hemoud et al.
2019; Bhattachan et al. 2019). Fine dust (soil dust with particle matter <= 2.5 um) contrib-
utes about 20 — 50 % of total fine particulate matter (PM2.5) in the western United States
(WUS) (Hand et al. 2017). Dust particles also play an important role in the global climate
system and regional and local climate and environment primarily by absorbing and scat-
tering both solar and terrestrial radiation (Evans et al. 2020, 2019; Saidou et al. 2020; Mallet
et al. 2009). For example, aeolian dust on snow increases the snow albedo and accelerates
snowmelt in the Colorado River (Painter et al. 2018), and alters the North American mon-
soon by heating the lower troposphere (Zhao et al. 2012).

The dust emission, transport, and deposition are influenced by complex land-atmos-
pheric interactions, mainly high wind speed, land erodibility and bareness, and humidity,
among other influencing factors (Csavina et al 2014). Studies show that ambient dustiness
over dust-prone regions heavily depends on the regional drought (Javadian et al. 2019;
Achakulwisut et al. 2018; Nabavi et al. 2016). Nabavi et al. (2016) demonstrated that 2007
— 2008 Winter and Spring (October to May) dust in Western Asia were associated with
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severe precipitation deficit. Intermodal spread in CMIP6 simulated dust emission is ex-
plained by the differences in the models’ drought sensitivity to dust emission (Aryal and
Evans 2021). Therefore, understanding the predictability of regional dustiness based on
the regional hydroclimate is an interesting research topic.

Few previous studies have analyzed the predictability of western US dust. For exam-
ple, Bing Pu used the linear regression technique to predict the Spring season's high con-
centration coarse dust event frequency based on wind speed, precipitation, and surface
bareness. Aryal (2022) showed that machine learning models better predict fine dust than
coarse dust at a monthly timescale. Temperature strongly depends on the monthly time-
scale while precipitation is important to explain the long-term variability of ambient dust
(Aryal 2022; Namdari et al. 2018). Earth system models heavily underestimate coarse dust
(Kok et al. 2018). However, much less effort has been made to compare the predictability
of fine and coarse dust at different temporal scales based on climatic data.

The specific objectives of this work are 1) To predict the aeolian dust using Adaptive
Neuro-Fuzzy Inference Systems (ANFIS) and multi-layered perceptron Artificial Neural
Networks (mlp-ANN) models and 2) To compare the models” performance for fine dust
(particle diameter < 2.5 um; PM2.5) and coarse dust (particle diameter 2.5-10 um; PM10)
at monthly and seasonal timescales.

2. Materials and Methods
2.1. Study Area and Data

The southwestern US is a major dust source in the USA (Ginoux et al. 2012). The
Chihuahuan Desert, the Colorado River, and the High Plains are well-known dust sources
in the region. The Interagency Monitoring of Protected Visual Environments (IMPROVE)
network provides the observed near-surface dust concentration over the region (DeBell et
al. 2006; available online: https://views.cira.colostate.edu/fed/Express/ImproveData.aspx
(accessed on 10 April 2022)). The location of the observation stations over the study region
is shown in Figure 1. The 24-hour dust concentration was measured every Saturday and
Wednesday before 2001 and after that observations are done every third day. The total
precipitation (P), average 2 m air temperature (T), and monthly average daily maximum
10 m wind speed (W) were taken from the North American Regional Reanalysis (NARR)
at 0.3 deg resolution( Mesinger et al. 2006 available online: https://psl.noaa.gov/data/grid-
ded/data.narr.monolevel.html (accessed on 10 April 2022)), at 0.3 x 0.3 resolution. The
analysis is done on a regional scale (Figure 1). Data from1988 to 2010 are used as training
data and those from 2011 to 2020 as test data. The model performance results are shown
for the test data.
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Figure 1. Location of the IMPROVE stations across the US. The Black box in the top right corner
indicates the study region of this study.

2.2. Artificial Intelligence (Al) Models

The performance of two widely used Al models: adaptive-network-based fuzzy in-
ference system (ANFIS) and multi-layered perceptron artificial neural network (mlp-NN)
are examined. All computations are done in R (R Core Team 2013).

2.2.1. Adaptive Neuro-Fuzzy Inference System (ANFIS)

The ANFIS model, proposed by Jiang (1993), combines fuzzy logic and neural net-
work. The layered structure (Figure 2) in the ANFIS model adds fuzzy logic to the artificial
neural networks.
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Figure 2. (a) Fuzzy inference system and (b) equivalent ANFIS architecture.

The fuzzy interference system uses the hybrid learning algorithm to identify the sys-
tem parameters and teach the model (Rehman and Mohandes 2008). For two inputs (x,y)
and output (f), the fuzzy if-then rules from Takagi and Sugeno (1983) are as follows

1. if xis Ajand y is By, then f; = ayx + b1y + 1y
2. if xis Ayand y is By, then f, = a,x + b,y + 1,

The five-layer architecture of ANFIS (Nayak et al. 2004; Tabari et al. 2012; Karandish
and Simtmek 2016), shown in figure 2, is as follows:

Layer 1: This is the input layer. In this fuzzy layer, each node in the layer is the degree
of membership function (MFs, py;(x)) from the input. The output of the first layer is the
membership values of each input for specific MFs. The shape of the MFs can be any ap-
propriate functions that are continuous and piecewise differentiable such as Gaussian,
generalized bell-shaped, trapezoidal-shaped and triangular-shaped functions (Talpur et
al. 2017). In this study the Gaussian MF is used that is defined as:
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Layer 2: This layer multiplies the input values from the incoming signal. The AND
fuzzy operator is applied to get the weight (firing strength). For example, for the first
node,

Wi = pai(x) * ppi(x),i=1,2

where,
w; is the firing strength of the ith rule
Uai(x) is the degree of membership function fuzzy sets A4;
Upi(x) is the degree of membership function fuzzy sets B;
Layer 3: The circle nodes in this layer normalize the firing strength. The normalized
weight is the ratio of the firing strength of ith rule to the sum of all firing strength
— W1

W=l i=12,..,n
i=1 Wi

where n is the number of nodes in each layer.

Layer 4: This is a de-fuzzy layer and each node is called an adaptive node. In this
layer terms are the results of operation on input signals:

Zy=wi fr = Wy (px+quy +11)

where, p;,qq,and r; are the consequent parameters

Layer 5: The overall output calculated in this output layer as the summation of all
incoming signals from previous layers

n
Overall output = z w; f;
i=1
2.2.2. Multilayer perceptron neural network (MLP-NN)

The mlp-ANN is the most widely used feed-forward neural network. The basic struc-
ture of the mlp-NN with two hidden layers is shown in Figure 3. A detailed explanation
of MLP-NN is given in Schalkoff (1997) and Hanoon et al. (2021).
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Figure 3. mlp-NN architecture with two hidden layers.

The neurons in the input layer work as a buffer for the distribution of input signals
to the hidden layers. Any hidden neuron j sum up the signals from the input layers x;
based on the strength of connection wj;. Then the output yj of any neuron j is calcu-
lated as the function of sums up as follows:

yj = F(Z wji * xi)

where, function F can be radial bias function (RBF), hyperbolic tangent, a sigmoidal
or simple threshold function. The backpropagation and gradient descent is the most com-
mon training algorithms in Multilayer perceptron. The change in connection weights be-
tween neurons i and j are:

Awj; = néjx;

where, 1 is known as the learning rate and § depends on whether j is input or
hidden neuron.
For hidden neurons:

. of .
0 = (anetj)zwq] * O

A variation of a desired and factual output of neurons in hidden layers j which are
replaced via weighted sums of dq term previously achieved for neuron q connecting to
the output of j.

For output neuron:

8j = ( o )(yjt - )

dnetj
netj is an overall weighted total of signals in the input layer. yj* is the goal output

for neurons j
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2.3. Uncertainty analysis.

The prediction uncertainty of the AI models was quantified using the d-factor as in
Mohsenzadeh et al. (2020).

4 for = dx
factor = -

where, 0 is the standard deviation and dx is the average distance between the up-
per and lower bands

n
1
dx = —ZXU—XL
n 1

3. Results and discussions

The performance of ANFIS and mlp-NN models in predicting fine dust and coarse
dust at monthly and seasonal timescales are shown in Figures 4 -7 and Table 1 - 2. The
results from this case study show that the ANFIS model performs better than the mlp-NN
model to predict aeolian dust at both monthly and seasonal timescales. The correlation
(r), root mean square error (RMSE), and percentage bias (% Bias) for monthly fine dust
prediction (ANFIS model) is 0.7, 0.45 ug/m3 and 40.64 % respectively. The models’ per-
formance is generally better to predict seasonal dust than monthly dust. At seasonal time-
scale r, RMSE, and % BIAS (ANFIS model, fine dust) are 0.83, 0.31 ug/m3, and 28.30 %
respectively. Hanoon et al. (2021) also showed that AI models better predict the temper-
ature and relative humidity at (longer) monthly timescale than (shorter) daily timescale.
This might be attributed to the nonstationary spurious internal variability of the climate
system that is difficult to capture by the models (Shi et al. 2018). The results demonstrate
that Al models based on the climatic data only predict Southwestern US dust with similar
skill as the models using land surface conditions. Long-term climatic data are more readily
available than long-term land surface conditions data.
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Figure 4. Al models for fine dust (PM2.5, ug/m3) at a monthly timescale.

As shown in Figures 4 — 7 and Tables 1-2, same month/or season predict skills are
better than one month/or season lead prediction skills. This highlights that ambient dust-
iness over the region depends more on the same month/or season climate than the previ-
ous month/or season climate. Pu et al. (2019) also noted that spring Season dust in the
western US depends more on the Spring climatic and surface condition than the Winter
climate and land conditions.

Comparing Figures 1-2 with Figures 3-4, the correlation for fine dust is better than
the correlation for coarse dust at both monthly and seasonal timescales (Aryal 2022). The
IMPROVE stations are located on federal lands and national parks at some distance from
the dust source (DeBell et al. 2006). The coarse dust has a short transport distance and air
retention time. Therefore, observation stations are more likely to miss coarse dust than
fine dust. Therefore, the regional climate has difficulty explaining coarse dust variability.
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Figure 5. Al models for fine soil (PM2.5, ug/m3) at the seasonal timescale.

However, if we look at the % BIAS (comparing Tables 1 and 2) the results on the
accuracy of predicting fine dust and coarse dust are not consistent. This highlights that
different statistical indices should be examined to confirm the effectiveness of the exam-
ined models (Hanoon et al. 2021).

The relative importance of precipitation and temperature to predict dust over the
region is further examined. A previous study showed that temperature is a more im-
portant predictor followed by precipitation to predict monthly dust over the SWUS region
(Aryal 2022). This study compares the relative importance of temperature and precipita-
tion predicting dust at monthly and seasonal timescales. Table 3 shows the results from
the ANFIS model. % BIAS is lower for the prediction based on T and W than the model
based on P and W for predicting fine dust and coarse dust at
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Figure 6. Al models for coarse dust (PM10, pg/m3) at a monthly timescale.

Both monthly and seasonal dust implying the relative importance of temperature in
predicting dust over the SWUS. This is consistent with the previous study, Aryal (2022),
on a monthly timescale. On the shorter timescale (i.e., monthly to seasonal timescale) dust
emission quickly responds to the warming due to the soil moisture variability in the sur-
face soil layer. On the other hand, the impacts of precipitation on dust emissions are
strongly detected on a longer timescale (i.e., annual to decadal) due to changes in vegeta-
tion cover (Namdari et al. 2018). Comparing the relative importance of precipitation and
temperature, the difference between the relative importance of temperature and precipi-
tation is larger at the monthly timescale for fine dust prediction (Table 3a difference in %
BIAS; -23.4 Vs -14.85). For the coarse dust prediction, the difference between the relative
importance of temperature and precipitation is larger at seasonal timescale (Table 3b dif-
ference in % BIAS; -8.35 Vs -22.59).
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Figure 7. Al models for coarse dust (PM10 pg/m3) at seasonal timescale.

Table 1. Performance of ANFIS model to predict fine dust (PM2.5) during testing phase (2010-

2020).
Inputs Output (E;//[:j) % BIAS Change in % BIAS
P(m),T(m),W(m) Dm 0.455 40.640
P(m),W(m) Dm 0.561 78.90 -38.26
T(m),W(m) Dm 0.448 55.50 -14.86 -23.40
P(s), T(s), W(s) Ds 0.308 28.304
P(s),W(s) Ds 0.401 44.45 -16.14
T(s),W(s) Ds 0.310 29.60 -1.30 -14.85
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Table 2. Performance of ANFIS model to predict coarse dust (PM10) during testing phase (2010-

2020).
Inputs Output (I;lg\//[;];) B;ﬁ S Change in % BIAS
P(m),T(m),W(m) Dm 2.57 42.08
P(m),W(m) Dm 2.62 50.57 -8.49
T(m),W(m) Dm 2.59 42.22 -0.14 -8.35
P(s), T(s), W(s) Ds 1.96 27.82
P(s),W(s) Ds 2.95 50.73 -22.92
T(s),W(s) Ds 1.98 28.14 -0.32 -22.59

The results from the uncertainty analysis are given in Table 3. The d-factor of both
fine and coarse dustiness is low implying the reasonable accuracy of the model for pre-
dicting regional dustiness.

Table 3. d-factor for ANFIS mode

d-factor
PM2.5
Monthly 0.002
Seasonal 0.00035
PM10
Monthly 0.1
Seasonal 0.067

4. Conclusions

In this study, the performance of artificial intelligence (AI) models: adaptive-net-
work-based fuzzy inference system (ANFIS) and multi-layered perceptron neural net-
work (mlp-NN) are investigated to predict aeolian dust over the southwestern US. The
ambient dust data was taken from the Interagency Monitoring of Protected Visual Envi-
ronments (IMPROVE) network while the regional meteorology data (precipitation, tem-
perature, wind speed) were retrieved from North American Regional Reanalysis (NARR).
The models’ performances for fine dust and coarse dust at monthly and seasonal time-
scales are compared.

- Al models better predict regional dustiness at seasonal timescale than monthly
timescale.

- ANFIS model works better than mlp-NN model in predicting regional dustiness at
both monthly and seasonal timescales.

- The ambient dustiness over the region is better predicted by the same month (or
season) climatic condition than using the precious month (or season) climatic condition.

- Compared to precipitation, the temperature is the more important predictor of the
regional dustiness at both monthly and seasonal timescales. However, compared to the
seasonal timescale, the difference between the relative importance of temperature and
precipitation is larger at the monthly timescale for fine dust prediction and vice versa for
coarse dust.
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