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Abstract: The development of synthetic biology has enabled us to make massive progress on biotech- 1

nology and to approach research questions from a brand new perspective. In particular, the design 2

and study of gene regulatory networks in vitro, in vivo and in silico, have played an increasingly 3

indispensable role in understanding and controlling biological phenomena. Among them, it is of great 4

interest to understand how associative learning is formed at the molecular circuit level. Noticeably, 5

mathematical models have been increasingly used to predict the behaviors of molecular circuits. The 6

Fernando’s model, which is thought to be one of the first works in this line of research using the 7

Hill equation, attempted to design a synthetic circuit that mimics Hebbian learning in the neural 8

network architecture. In this article, we carry out in-depth computational analysis of the model and 9

demonstrate that the reinforcement effect can be achieved by choosing the proper parameter values. 10

We also construct a novel circuit that can demonstrate forced dissociation, which was not observed 11

in the Fernando’s model. Our work can be readily used as reference for synthetic biologists who 12

consider implementing the circuits of this kind in biological systems. 13

14Keywords: associative learning; molecular circuits; synthetic biology; mathematical modeling; Hill 
equation; Pavlov’s dog; reinforcement; dissociation; non-dimensionalization 15

1. Introduction 16

Synthetic biology is an emerging field that involves re-engineering the existing bi- 17

ological systems or creating new ones that may solve real-world problems in medicine, 18

agriculture, etc [1–9]. Over the past few decades, synthetic biology has witnessed rapid rev- 19

olution in biotechnology industry and opened up enormous potential for next-generation 20

research in biology due to the increasingly tremendous power of genetic engineering 21

technology and ever decreasing cost of synthesis and sequencing [10–17]. Particularly, 22

increasing attention has been drawn to designing and testing synthetic biological circuits 23

in vitro, in vivo and in silico, in an attempt to better understand bio-artificial intelligence 24

at cellular and molecular level [18–23]. These artificial circuits can therefore function as 25

fundamental units to modify existing cellular behaviors and to perform a wide range of 26

tasks of our own interest in programmable organisms [24–28]. Notably, numerous syn- 27

thetic circuits have been developed for the decision-making tasks such as classification and 28

associative learning [29–34]. Besides, with the growing collaboration between theorists and 29

experimentalists in almost every discipline, we also noticed a trend in synthetic biology that 30

mathematical models have been frequently used to acquire insight, inform troubleshooting 31

and make predictions [35–39]. 32

It is believed that associative learning occurs in many aspects of our life and is regarded 33

as the basis for our understanding of other forms of behavior and cognition in human 34

and nonhuman animals [40–44]. The most classic experiment on associative learning is 35
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Pavlov’s dog, in which the dog managed to associate the ring of a bell with the smell of 36

the food [45,46]. The dog learned to associate the conditioned stimulus (bell’s ring) with 37

the unconditioned stimulus (smell) such that next time, in the presence of the bell’s ring 38

alone, the dog knows the food will be served soon and the learned response (saliva from its 39

mouth) is observed. The historical viewpoint is that mammalian nervous system plays a 40

vital role in associative learning through neuronal signaling and re-configuration [47–50]. 41

However, some studies have revealed the possibility that non-neural agents may also 42

organize in a similar fashion [34,51,52]. Naturally, one can reckon that molecular circuits 43

may display similar behaviors as molecular reactions form the building block of cellular 44

activities. As a result, the design and investigation of molecular interactions that manifest 45

associative learning has become an active research topic. Although logic gates have been 46

widely adopted in synthetic biology for emulating diverse biological behaviors [53–57], in 47

this article, the focus is confined to the continuous models constructed by the Hill equation 48

[58,59] since continuous models tend to generate more accurate results and facilitate the 49

comprehension of fine details of the system. One of the first models is the Fernando’s model 50

where the authors designed a genetic circuit that mimics Hebbian learning in the neural 51

network architecture [60]. The work stands as a well-organized interdisciplinary article 52

in which a mathematical model is developed and the biotechnological approach that the 53

model can be implemented in Escherichia coli is thoroughly discussed. Nonetheless, because 54

of its interdisciplinary nature, the work only demonstrates the fact that learning can be 55

formed after conditioning but fails to investigate other more advanced behaviors such 56

as reinforcement effect and forced dissociation. More specifically, it is natural to assume 57

that the learned response gets stronger with the increasing times of conditioning. For 58

illustrative brevity, we name the phenomenon reinforcement effect. Besides, it is reasonable 59

to suppose that the response gets weaker with the repeated cuing of conditioned stimulus 60

(with no unconditioned stimulus taking place at the same time) shortly after the formation 61

of conditioning and we call it forced dissociation. To the best of our knowledge, neither of 62

them has been formally discussed in the previous literature. The potential importance of 63

these two behaviors can be explained by two aspects. On the one hand, in Pavlov’s dog’s 64

experiment, the former would be equivalent to the scenario that the repeated conditioning 65

of the bell and the food would reinforce the dog’s belief that the bell’s ring is a reminder 66

of food availability; and the latter would be that the repeated bell’s ring alone shortly 67

after the conditioning would stop the dog reckoning that the bell is related to the food’s 68

availability. On the other hand, these properties may provide experimentalists with more 69

flexibility over the control of some biological systems as synthetic circuits are widely used 70

to regulate them [4,6,61,62]. We will show that the Fernando’s model is able to manifest 71

reinforcement effect by choosing the proper parameters but unable to manifest forced 72

dissociation. This motivated us to design a new circuit that possesses the potential to 73

display forced dissociation. The new circuit also involves fewer proteins and doesn’t 74

contain any feedback loop, which can potentially reduce the wiring complexity in the 75

practical implementation. In the meantime, we will also study the robustness of the 76

respective models to the Hill coefficients as this will instruct experimentalists on the type 77

of polymers that can be used to implement the circuit. 78

2. Models 79

2.1. Fernando’s Model 80

The circuit diagram of the Fernando’s model is shown in Figure 1 and we assume
that the circuit can be implemented in a programmable cell. Unlike the schematic diagram
given in [60], here we omit genes for the illustrative simplicity. In the diagram, each
oval box denotes a particular protein. The activation is drawn with an arrow and the
inhibition is drawn with a hammerhead. Except for the inhibition u1 → r1 and u2 → r2
where the input molecules are directly bound to the repressors, all the other activation and
inhibition are realized by transcription and translation. For instance, repressor r1 inhibits
the transcription of a particular gene which guides the manufacturing of molecule ω1. Also
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note that the upstream gene of the protein p has two available operator sites, one for r1,
ω1, and another for r2, ω2. More detailed explanation can be found in [60]. The Fernando’s
model is characterized by the system as follows (N = 2):

dp
dt

=
N

∑
j=1

vp

( ωa
j

Ka
ω + ωa

j

)( Kb
r

Kb
r + rb

j

)
− δp p

dωj

dt
= vω

( pb

Kb
p + pb

)( Kb
r

Kb
r + rb

j

)
− δωωj + ϵj

rj =
R

1 + kuj

(1)

In the equations above, u1 and u2 represent the respective concentrations of the uncon- 81

ditioned stimulus and the conditioned stimulus and they will be given to the cell in a 82

transient time window. ω1 and ω2 represent the respective concentrations of the weight 83

molecules. r1 and r2 represent the respective concentrations of the repressor molecules. 84

The concentration of the response molecule is denoted by p. Kω, Kr and Kp denote the 85

respective Hill constants for molecule ω, r and p that measure the concentration of tran- 86

scription factors required for half occupancy. R denotes the repressor concentration in the 87

absence of molecule u. a and b are Hill coefficients which measure the cooperativity of the 88

transcriptional factor. In [60], the authors use a = 4 and b = 2 but in this work, we will 89

study the impact of varying integer values of a and b on the qualitative behaviors. ϵ denotes 90

the basal grow rate and we assume that it is only non-zero for j = 1. v and δ denote the 91

growth and degradation rate parameter respectively and the subscripts are used to signify 92

the source of contribution. As one can observe from the architecture, the genetic circuit is 93

structurally symmetric and the left and the right half are independent. The association is 94

triggered by the feedback of the response molecule p and the inspiration came from the 95

Hebbian learning which has been thought to dictate the information exchange between 96

neurons [63]. 97

In order for the association to be formed, we can simply make the concentration of the 98

molecule ω1 abundant and the molecule ω2 insignificant before the start of the experiment. 99

When only molecule u1 is given to the cell, it binds to the repressor molecule r1 and 100

reduces the concentration of the molecule r1. Therefore, the inhibition on the transcription 101

with respect to the genes controlled by molecule r1 will be lifted. Eventually, sufficient 102

molecule ω1 will activate the transcription with respect to the gene associated with the 103

response molecule p and promote the production of p. Conversely, when only molecule u2 104

is given to the cell, we won’t be able to observe abundant molecule p due to the shortage 105

of ω2 availability. However, the time when molecule u1 is paired with molecule u2, the 106

production of molecule p (triggered by u1) will elevate the concentration of molecule ω2 107

because of the feedback loop so that the next time even when only molecule u2 is present, 108

there will already exist sufficient molecule ω2 for the production of p which implies that 109

the association has been formed. 110

In order to analyze a system of differential equations, one often converts the system to
the dimensionless scale as a first step. One generally reduces the volume of parameters and
remove physical units from the system, which will facilitate mathematical investigations
and make the model more flexible for experimentalists who wish to implement the system
in vivo or in vitro as the units are not specified. By using the scaling ωj =

ωj
Kω

, rj =
rj
Kr

,
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p = p
Kp

, t = δpt, uj = kuj, the dimensionless model becomes (overlines have been dropped
for simplicity.): 

dp
dt

=
N
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1 + ωa
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)
− p
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dt
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(2)

where α =
vp

Kpδp
, β = vω

Kωδp
, θ = δω

δp
, τj =

ϵj
Kωδp

, S = R
Kr

. 111

Now we try to intuitively interpret whether the reinforcement effect can be realized 112

by the Fernando’s model or not. Suppose we carry out the conditioning twice, in order to 113

guarantee that the second learned response is more abundant than the first one, the simplest 114

way is to ensure that the initial concentration of ω2 is small and the growth parameter β is 115

not too large so that we can anticipate p to keep growing with the repeated conditioning 116

according to Equation 2. Next we investigate how the two stimuli dissociate. Intuitively, in 117

light of the design of the Fernando’s model, the disappearance of the learned response is 118

dictated by the time elapse. This is due to the fact that ω2 promotes the production of p such 119

that the response will eventually disappear only if ω2 falls to 0. Additionally, the learned 120

response will not attenuate if the time interval between two successive stimuli is insufficient 121

relative to the decay rate. In all, the dissociation is autonomous and is not dictated by the 122

repeated cuing of the conditioned stimulus (alone). This can be circumvented by a different 123

design which will be introduced next. 124

Figure 1. The schematic circuit of the Fernando’s model.

2.2. A model with forced dissociation 125

The circuit for the model proposed here is inspired by the work [18] and is shown 126

in Figure 2. In the diagram, each oval box denotes a particular protein molecule and 127

we again omit the genes for the illustrative brevity. More specifically, input x initiates 128

the transcription of a particular gene which guides the manufacturing of molecule u; the 129

translation of molecule v is controlled by another gene, the expression of which is dictated 130

by x, u and z all together; Similarly, y is controlled by a third gene, the expression of which 131

is dictated by x, v and z. The activation is drawn with an arrow and the inhibition is drawn 132

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 July 2022                   doi:10.20944/preprints202207.0110.v1

https://doi.org/10.20944/preprints202207.0110.v1


5 of 17

with a hammerhead. Input x plays the role of the conditioned stimulus, input z plays the 133

role of unconditioned stimulus and y represents the response. However, we do need to point 134

out here that the discrimination between the conditioned and unconditioned stimulus has 135

been downplayed in some sense and we will explain this in the discussion part. The design 136

of this new architecture comes with at least two purposes. First of all, we intend to construct 137

a simple circuit of which the mechanism is completely different from the Fernando’s 138

model. We hope the components of the circuit are more interactive with each other and 139

the association is not reliant upon the participation of the feedback loops. These may lift 140

a few restrictions on the synthetic implementation. Secondly, given that the Fernando’s 141

model is not capable of demonstrating forced dissociation, we hope to build a model 142

that can successfully dissociate the two stimuli by repeating the cuing of the conditioned 143

stimulus alone right after the conditioning. To fulfill the latter requirement, instead of 144

placing a molecule (ω2 in the Fernando’s model) that promotes the transcription of the 145

response protein molecule, we can actually consider introducing an inhibitor upstream of 146

the response molecule. In this way, the consistent input of conditioned stimulus alone is 147

expected to reduce the amount of the response molecule, so long as the stimulus promotes 148

the expression of the inhibitor after the conditioning of conditioned and unconditioned 149

stimulus. This explains why we introduce the x → v → y pathway in Figure 2. As for 150

the other parts of the circuit, z → y and z → v → y guarantee that input z can always 151

activate the output y, x → y ensures that there can exist sufficient amount of learned 152

response upon formation of associative learning, and u works as a moderator speeding up 153

the consumption of v that makes the reinforcement effect more likely to occur. Here we 154

assume the Hill coefficients for all molecules are identical and are denoted by a. 155

By employing the Hill equation, the system can be described by the following equa-
tions: 
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Similarly to the Fernando’s model, here Kx, Kz, Kv and Ku denote the respective Hill
constants for molecule x, z, v and u. The production and degradation rate are denoted by α
and δ where the subscripts are used to signify the source of contribution. Then we use a
similar scaling approach to make the system dimensionless. The dimensionless system is
shown as below: 
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One of the drawbacks of this circuit, one may have already noted, is that the model 156

is not as heuristic as the Fernando’s model. Indeed, the Fernando’s model borrows the 157

architecture of Hebbian learning whereas we built our model from scratch tailored for 158

the properties we want to achieve. Intuitively, in order to make the reinforcement effect 159

occur, we anticipate that by properly choosing the parameter values, the presence of x 160

alone can significantly elevate the amount of v and the conditioning (whenever both x and 161

z are present) can speed up the consumption of v. This will ensure that the second learned 162

response is more abundant than the first one and at the same time, the response to the 163

conditioned stimulus alone is less abundant than to the unconditioned stimulus. When it 164

comes to forced dissociation, as we discussed previously, repeated cuing of input x alone 165

after the conditioning can elevate the concentration of v which subsequently reduces the 166

output y as a result of x → v → y. The numerical result will be given in the next section. 167

Before closing this section, we would want to briefly mention a potential adjustment
to the current circuit that can simplify the system given in Equation 4. Our existing scheme
allows for x, v and z to bind at a single operator site. In fact, we can adjust the output part
in a way such that z exploits operator sites that only restrict to z itself, which makes it look
somehow analogous to the output part of the Fernando’s model in which the left half and
the right half are unrelated. The dimensionless model arising from the adjustment can then
be reduced to: 

dy
dt

= αyx

( xa

1 + xa

)( 1
1 + va

)
+ αyz

( za

1 + za

)
− y

du
dt

= αux
xa

1 + xa − βuu

dv
dt

= αvx

( xa

1 + xa

)( 1
1 + ua

)( 1
1 + za

)
− βvv

(5)

The adjustment provides an alternative with a simpler mathematical formulation (but likely 168

with more biological complexity) for readers who wish to implement our circuit. We will 169

later demonstrate that this adjusted model can also display the same qualitative behaviors. 170

Figure 2. The schematic circuit of the model with forced dissociation.

3. Results 171

The numerical simulations were conducted in MATLAB R2020b. As the ODE systems 172

are too complex to be analyzed in terms of the numerical stability [64,65], we first used the 173

Runge–Kutta 4th order method [66] to obtain a benchmark result for the models and for the 174

purpose of efficiency, we used the forward Euler method with time step ∆t = 0.01 to carry 175
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out the entire analysis. We gradually reduced the time step from ∆t = 0.1 and the result 176

remains unchanged, which demonstrates that the numerical method is stable in this case. 177

Figure 7(a) displays one simulation result for the Fernando’s model (Equation 2) and 178

the parameter values used in the simulation are listed in Table 1. Here we use the Hill 179

coefficients recommended in [60], which are a = 4 and b = 2. 180

The first spike in p is stimulated by the unconditioned stimulus u1. The second (small) 181

spike in response p is triggered by the conditioned stimulus u2. Of course, the response 182

p can be retained to 0 only in the presence of u2 by setting the initial concentration of ω2 183

to 0 just like the authors did in the original paper, but here we want to highlight the fact 184

that various levels of conditioned response are available to choose. The first conditioning 185

is formed at the third spike and the second conditioning is formed at the fifth spike in p 186

when both u1 and u2 are present. The fourth and the sixth spike in p represent the first and 187

the second learned response respectively when solely u2 is present. As can be seen, the 188

learned response has been reinforced after the repeated conditioning. Next, we move on 189

to the discussion of how the two stimuli dissociate, namely, how the learned response is 190

attenuated in the presence of consecutive conditioned stimulus alone after the formation 191

of conditioning. The conjecture made in the previous section is validated by the last four 192

spikes in response p in Figure 7(a). As is apparent, the sixth, seventh and the eighth spike 193

are of the same amplitude as the time intervals are not wide enough. Conversely, the 194

response starts to decrease (shown by the last two spikes) when the time interval is further 195

widened. This can be deemed a limitation for the model because in some applications (e.g., 196

immune inflammation), we may hope to force the stimuli to dissociate by repeated cuing 197

of the conditioned stimulus alone in a short time window, after the formation of associative 198

learning, which forms one of the motivations for our novel design. 199

Furthermore, we would also like to study whether the qualitative behaviors of asso- 200

ciative learning that we introduced previously are preserved or not apart from using the 201

Hill coefficients recommended in [60]. The values for the other parameters will remain the 202

same as shown in Table 1. 203

First, we fix b = 2 and alter the Hill coefficient for the weight molecules from a = 1 204

to a = 4. The respective responses of molecule p are displayed in Figure 3. As is obvious 205

from the figure, The qualitative behaviors have barely changed irrespective of the value 206

of a apart from the fact the a = 1 gives rise to a relatively notable response when only the 207

conditioned stimulus u2 is present prior to conditioning. However, the result of a = 1 can 208

still be classified as a valid associative learning in broad term as the response triggered by 209

the conditioned stimulus u2 alone is more significant after conditioning than before. 210

Then we study the case when a = b and we alter a from a = 1 to a = 4. The respective 211

responses of molecule p are displayed in Figure 4. As can be seen from the figure, only 212

a = 1 gives rise to undesirable behaviors as the concentration of response p never comes 213

down to 0. This is because a = 1 leads to a large transient growth rate of the weight for the 214

conditioned stimulus ω2. 215

In all, the Fernando’s model is robust to the variation of the Hill coefficients even 216

without exploring the other parameters. It may offer more flexibility to synthetic biologists 217

since one doesn’t have to require two dimers to be bound cooperatively for weight molecule 218

ω1 and ω2. As we have shown in Figure 3, even a = 1 and b = 2 can produce desirable 219

results, which may reduce the experimental complexity. 220
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Figure 3. The concentration of molecule p under various Hill coefficient a when the value of b is
fixed for the Fernando’s model. From (a) to (d) display the results when a = 1, 2, 3, 4. b = 2, α =

1, β = 0.8, θ = 0.02, τ = 0.1, S = 10.
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Figure 4. The concentration of molecule p under various Hill coefficient when a = b for the
Fernando’s model. From (a) to (d) display the results when a = 1, 2, 3, 4. α = 1, β = 0.8, θ = 0.02, τ =

0.1, S = 10.
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Table 1: Parameter values used in the simulation for the Fernando’s model (Equation 2).

Parameter Value

α 1
β 0.8
θ 0.02
τ 0.1
S 10

Figure 7(b) displays the simulation result for the model with forced dissociation 221

(Equation 4) using a = 2 and the other parameter values used in the simulation are listed 222

in Table 2. 223

The first spike in response y is stimulated by the unconditioned stimulus z and the 224

second spike is stimulated by the conditioned stimulus x. The first conditioning is formed 225

at the third spike and the second conditioning is formed at the fifth spike in p when both z 226

and x are present. The fourth and the sixth spike in p represent the first and the second 227

learned response respectively. As can be seen, the learned response has been reinforced 228

after the repeated conditioning. As opposed to the Fernando’s model, this model can 229

successfully repress the learned response to the preconditioned level by means of repeated 230

cuing of the conditioned stimulus within a short time window, which has been corroborated 231

by the last two spikes in response y in Figure 7(b). 232

Considering our model is not as heuristic as the Fernando’s model, it is necessary to 233

validate that the reinforcement effect is indeed the result of the conditioning. Therefore, we 234

remove the second and the third unconditioned stimulus z from the system and the result 235

is shown in Figure 8(a). As can be seen, the reinforcement effect no longer exists without 236

the the conditioning of x and z. The result also validates our conjecture in the previous 237

section that the presence of x as well as z speeds up the degradation of u, which is the game 238

changer for the formation of reinforcement effect. 239

Similarly to what we have done for the Fernando’s model, we will study the behaviors 240

of this model under various Hill coefficient a with the other parameters specified in Table 2 241

unchanged. 242

From a = 1 to a = 4, the respective responses of molecule y are displayed in Figure 5. 243

As can be observed, only a = 2 and a = 3 yield desirable associative learning behaviors. 244

The effect of conditioning is not discriminative for a = 1, and for a = 4, the response during 245

condition is not more significant than the one when only unconditioned stimulus is present. 246

The adjusted model (Equation 5) introduced previously can also display the qualitative 247

behaviors which are shown in Figure 8(b) when using a = 2. The parameter values used 248

in this simulation are listed in Table 3. What is worth noticing is that the adjusted model 249

can give rise to more abundant response on the dimensionless scale, as compared to the 250

original version (Figure 7(b) and Figure 8(b)). 251

Again, we study the behaviors of the model with various Hill coefficient a without 252

changing the other parameters specified in Table 3. As is apparent from Figure 6, the 253

qualitative behaviors of the associative learning have been largely preserved. However, the 254

learned responses for the case a = 3 and a = 4 are less significant as compared to a = 2. 255
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Figure 5. The concentration of molecule y under various Hill coefficient a for the model with forced
dissociation. From (a) to (d) display the results when a = 1, 2, 3, 4. αyx = 2, αyz = 4, αxyz = 4, αux =

0.6, αvx = 1.5, βu = 0.1, βv = 0.02.
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Figure 6. The concentration of molecule y under various Hill coefficient a for the adjusted model
with forced dissociation. From (a) to (d) display the results when a = 1, 2, 3, 4. αyx = 4, αyz = 1, αux =

0.6, αvx = 1, βu = 0.1, βv = 0.02.
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Table 2: Parameter values used in the simulation for the model with forced dissociation
(Equation 4).

Parameter Value

αyx 2
αyz 4
αxyz 4
αux 0.6
αvx 1.5
βu 0.1
βv 0.02

Table 3: Parameter values used in the simulation for the adjusted model with forced
dissociation (Equation 5).

Parameter Value

αyx 4
αyz 1
αux 0.6
αvx 1
βu 0.1
βv 0.02
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Figure 7. (a) Time series for the Fernando’s model: (1) response molecule p; (2), (3) conditioned
stimulus u2 and unconditioned stimulus u1; (4) weight molecule ω1 (blue) and ω2 (red); α = 1, β =

0.8, θ = 0.02, τ = 0.1, S = 10. (b): Time series for the model with forced dissociation (1) response
molecule y; (2), (3) conditioned stimulus x and unconditioned stimulus z; (4) weight molecule u
(blue) and v (red); a = 2, αyx = 2, αyz = 4, αxyz = 4, αux = 0.6, αvx = 1.5, βu = 0.1, βv = 0.02. In (1),
the first spike is stimulated by the unconditioned stimulus and the second spike is triggered by the
conditioned stimulus; the first and the second conditioning are formed at the third and the fifth spike
respectively; the first and the second learned response are reflected by the fourth and the sixth spike;
the remaining spikes demonstrate whether the forced dissociation can be realized or not.
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Figure 8. (a): Time series for the model with forced dissociation without conditioning (1) response
molecule y; (2), (3) conditioned stimulus x and unconditioned stimulus z; (4) weight molecule u
(blue) and v (red); a = 2, αyx = 2, αyz = 4, αxyz = 4, αux = 0.6, αvx = 1.5, βu = 0.1, βv = 0.02.
(b): Time series for the adjusted model with forced dissociation (1) response molecule y; (2), (3)
conditioned stimulus x and unconditioned stimulus z; (4) weight molecule u (blue) and v (red);
a = 2, αyx = 4, αyz = 1, αux = 0.6, αvx = 1, βu = 0.1, βv = 0.02.

4. Discussion 256

In this work, we presented a detailed analysis of two advanced behaviors (reinforce- 257

ment effect and forced dissociation) in associative learning. The Fernando’s model can 258

successfully demonstrate reinforcement effect if we properly choose the parameter values. 259

However, the attenuation of learned response only occurs when the time interval between 260

learned response is big enough, in the sense that there is no way to force the learned 261

response to decrease within a short time window. The model introduced in Chapter 2.2 has 262

been shown to be able to manifest reinforcement effect as well as forced dissociation with 263

the parameter values listed in Table 2, which can potentially provide more possibilities for 264

the biological and medical applications of synthetic biology. 265

Having highlighted the contribution of our model, we must point out that it comes 266

with a few constraints that synthetic biologists need to be aware of. First of all, the overall 267

qualitative behavior of the system is not very robust to the parameters aside from the Hill 268

coefficients. We found that a 25% change in parameter values could lead to less desirable 269
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behaviors. An example is given in Figure 9 where αux has been changed from 0.6 to 0.45. 270

The first spike is now of the same amplitude as the third in response y. But the stringent 271

constraint can be relaxed if we only expect to implement only one of the two behaviors, 272

either reinforcement effect or forced dissociation. Secondly, it is extremely difficult, if not 273

impossible, to control the response to the conditioned stimulus prior to conditioning at an 274

insignificant level (second spike in y in Figure 7(b)), while maintaining the behaviors of 275

interest. Hence, the model proposed here may not be a suitable candidate to emulate the 276

behaviors of Pavlov’s dog, but fits the context of associative learning in a broader sense 277

where the conditioning and learning are of the major concern. Thirdly, the model demands 278

that v remains abundant in order for the associative learning to happen. Therefore, v needs 279

to be supplemented to a sufficient level before the start of each experiment. Otherwise, the 280

conditioned stimulus x alone could result in an over-expression of the response. 281
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Figure 9. An example to illustrate the effect of change in parameter values on the model with forced
dissociation. a = 2, αyx = 2, αyz = 4, αxyz = 4, αux = 0.45, αvx = 1.5, βu = 0.1, βv = 0.02.

Last but not least, we also want to mention several potential applications of our work 282

in the field of synthetic biology and medicine. Firstly, for the treatment for diabetes: Ye 283

et al. [67] built a synthetic signaling cascade that enhances blood-glucose homeostasis. 284

The reinforcement effect we demonstrated in the models may pave the way for further 285

adjustment to the circuit in the hope to attain more efficient control of glucose level. 286

Secondly, for the treatment for immune-mediated disease, the adoptive T-cell transfer 287

technology has shown immense promise in the treatment of immune-mediated disease 288
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such as cancer immunotherapy [68]. The feature of forced dissociation displayed in our 289

model may provide more flexibility for experimentalists to shut off the excessive immune 290

response once the tumors are eliminated. Finally, some recent studies have been focused on 291

modeling the network of neurodegenerative markers [69,70]. The models we discussed in 292

this article may shed light on how to model these new findings at the genetic circuit level 293

and build hierarchical neuronal architectures. Besides, the models may play a supportive 294

role in the existing technology that controls neurotransmitter release [71]. 295
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