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1 Abstract: Indoor scene recognition and semantic information can be helpful for social robots. 
2 Recently, in the field of indoor scene recognition, researchers have incorporated object-level infor-
3 mation and shown improved performances. This paper demonstrates that scene recognition can 
4 be performed solely using object-level information in line with these advances. A state-of-the-art 
5 object detection model was trained to detect objects typically found in indoor environments and 
6 then used to detect objects in scene data. These predicted objects were then used as features to 
7 predict room categories. This paper successfully combines approaches conventionally used in com-
8 puter vision and natural language processing (YOLO and TF-IDF, respectively). These approaches 
9 could be further helpful in the field of embodied research and dynamic scene classification, which 

10 we elaborate on.

11 Keywords: scene recognition; object detection; scene classification; TF-IDF

1. Introduction12

Humans are highly efficient when it comes to contextualizing environments. We13

can infer information regarding a scene based on observations and extensive prior14

knowledge we build through experience. This experience can be based on long-term15

associations we learn through our lifetimes or short-term observations and knowledge16

that contextualizes current situations. For example, suppose an individual is exploring a17

campus and walks into a room with several chairs arranged circularly with a large central18

table. In that case, we might infer that this room is a "seminar room". Encountering19

a similar room but in another environment (e.g., an "office space"), we might assign a20

different label (e.g., "conference room").21

When it comes to designing social robots, it has been argued and shown that22

semantic level information is essential for indoor scene recognition and navigation [1–5].23

If social robots are to be deployed indoors (and, potentially, in other contexts), some level24

of semantic knowledge must be incorporated. In many simple cases (e.g., a cleaning25

robot), this might not be necessary. However, if the agent (robot) is to perform "higher"26

level functions such as target-driven navigation and scene inference, the incorporation27

of semantic-level information is effective [1,6,7]. Intuitively, if the agent is to locate28

a particular target object, identifying what room the agent is in and what peripheral29

(non-target) objects are observed in that room would aid its navigation. Incorporating30

object-room and object-object semantic-level associations (in combination with computer31

vision approaches – such as semantic segmentation or object detection) could allow the32

agent to locate target objects more rapidly [6,8]. Additionally, an agent could incorporate33

observed objects into its working memory and keep track of contexts and object locations.34

This would be further useful in navigating an environment, as the agent would often35

have a sub-par view of its surroundings at any point in time (e.g., it might be staring at36

the corner of a couch or a blank wall).37

Further, when it comes to indoor scene recognition, one could argue that the room38

category largely depends on the function allocated to said room. For example, consider39

an empty abode with a certain number of rooms. Some rooms will have predefined40
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determinations of function (such as kitchen, bathroom, garage, among others). However,41

some rooms are defined by the objects they contain. Moreover, the objects found in these42

rooms will often be determined by the function assigned to them. For example, a room43

might be a "home office", a "bedroom", or something else. Prior to allocating a function44

to the room, it could be anything. However, once assigned a function, the objects in the45

said room would reflect this.46

Additionally, a room might be assigned multiple functions, such as a sleeping area47

and working area (e.g., a bedroom/home office). In which case, the objects observed48

would likely correspond to objects typically found in both room classes. In this context,49

object-level representation would be beneficial in disambiguating indoor scenes, as50

overlapping labels would be appropriate.51

To define semantic-level associations, one needs to identify representative data that52

can be used to quantify these associations. One approach would be to observe how53

often objects appear together and in what contexts. In the field of natural language54

processing (NLP), the term frequency-inverse document frequency (TF-IDF) is often used55

to determine the relevance of words to documents [9,10]. TF-IDF is often used in text56

classification to identify words typically associated with a specific class of documents [11].57

In the context of scene recognition, a similar approach could be utilized to identify what58

objects (analogous to words) are relevant to rooms (analogous to documents). Particular59

objects would contain more semantic information relative to other objects. For example,60

a "chair" is likely to be found in most rooms, whereas a "bed" is most likely found in a61

bedroom. Additionally, while some objects might be less informative by themselves (e.g.,62

a mirror), they could add semantic information when combined with another object (e.g.,63

mirror-sink). Object co-occurrence has been shown to improve classification models64

when performing object-level scene classification [12]. Other NLP approaches have also65

been used to facilitate scene recognition, such as word embeddings [13].66

This paper aims to illustrate the benefit of an NLP approach to scene recognition as67

a proof of concept. Treating scenes as analogous to language would allow one to apply68

approaches used in NLP to perform and facilitate tasks required by a social robot. This69

work trained two object detection models to detect objects typically found in indoor70

environments and applied TF-IDF transformation to classify indoor scenes based on71

detected objects using a simple machine learning approach. This approach was also72

implemented using a pre-trained semantic segmentation model.73

This paper is structured as follows; we describe the related research in scene recogni-74

tion in the scientific literature. Followed by details of the used methodology elaborating75

on the datasets, the object detection approach, how the objects were transformed into76

feature inputs, and scene classification (see Figure 1 for an illustration of the pipeline77

used). Subsequently, the results are reported, followed by a discussion that considers78

the results and the general approach in the context of wider fields of research.79

2. Related Work80

2.1. Indoor Scene Classification81

Traditional methods used for outdoor scene classification do not perform as well82

when applied to indoor scene classification [14] (see ref. [15] and references therein for a83

review on scene recognition). This is because indoor scenes tend to have lower variability84

in global spatial features when compared to outdoor scenes. Early attempts at improving85

indoor scene classification sought to leverage both local and global spatial features by86

incorporating techniques such as bag-of-visual words [16]. It has been argued that87

indoor scene classification has two main challenges, 1) low inter-class variance between88

scene categories and 2) ambiguity regarding scene labeling [17]. This ambiguity could89

potentially arise due to an overlap between room functionality and labels associated90

with particular rooms. For example, if a room has a dining table, one couch, and one91

television, is it a dining room or a living room? How would one demarcate areas in a92

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 July 2022                   doi:10.20944/preprints202207.0070.v1

https://doi.org/10.20944/preprints202207.0070.v1


3 of 12

studio flat with an attached kitchen? Does a counter separate the kitchen or not? The93

overlap of functionality in room categories is a challenge to be considered.94

More recently, techniques have focused on scene classification by leveraging object-95

level semantic information [18–21]. In 2019, Chen and colleagues [13] investigated scene96

classification by combining traditional scene classification techniques with NLP methods.97

Using a convolutional neural network (CNN) module, they generated an ordered top-598

prediction for a given image and segmented the scene using a scene parser module.99

These segmented objects were then passed through a word embedding module that100

refined the top-5 predictions and improved indoor scene classification performances.101

They trained and tested their model within three super-categories: school, shopping mall,102

and home. They reasoned that while GPS tracking would be sufficient in determining103

the general setting of a potential agent, it would not be sufficient in determining the104

exact location and room that the agent would find itself in. Considering overlap between105

many scene categories, refining the potential room classes to setting specific choices106

could reduce the limitations of low scene variability. For example, by using GPS, one107

could determine that the agent is on a school campus and thereby use an indoor room108

classification model trained on indoor school settings to predict the room category that109

the agent is in.110

In addition to methodological limitations in finding the best algorithms for indoor111

scene recognition, it is necessary to address the technical elements of implementing112

these. The method demonstrated here builds on previous work by providing a relatively113

simplistic approach that leverages the speed of a widely used object detection network:114

YOLO (You Only Look Once) [22] and a simple NLP approach that is not computationally115

demanding. In the context of robotics, where incoming visual data relies on frames,116

having approaches that can process information close to the speed of incoming frame117

rates could be a boon. There are papers that demonstrate the speed of YOLO [22] and118

while improved accuracy is always desirable - being able to perform the same task at119

less computational cost should also be valued.120

Teder and colleagues [12] investigated various word embedding approaches (Latent121

semantic analysis [23] and word2vec) and whether object-level distributions and co-122

occurrences contributed meaningful semantic information to scene recognition. They123

compared Residual networks [24] and VGG networks [25] and how well they performed124

when fusing word embeddings in the final CNN layer. They observed improved scene125

recognition performances when incorporating object-level semantic information.126

Our approach is closely related to both methods [12,13]. While both incorporate127

object-level semantic information in scene recognition, our approach performs scene128

recognition solely through object-level representations. This means that we represent a129

scene not through the embedded objects but by means of vector representations of these130

objects.131

Zhou et al. [26] have recently implemented a Bayesian approach for scene recog-132

nition. The authors implemented an improved object model (IOM) enriched from a133

Bayesian perspective (BIOM) to find object co-occurrences and pairwise object relations.134

These models are incorporated into a pretrained CNN model (placesCNN) and tested135

on the reduced places365 dataset (n=7 and 14 classes) and SUN RGB-D dataset [27].136

PlacesCNN can be seen as the original baseline for scene recognition on the places365137

dataset [28]. In the same direction, Miao and colleagues [29] propose an Object-to-Scene138

(OTS) method, which extracts object features and learns object relations to recognize139

indoor scenes. More recently, Labinghisa et al. [30] proposed a method called image-140

based indoor location awareness algorithm (IILAA) in combination with a clustering141

algorithm, with state-of-the-art performance on the MIT67 dataset [31].142

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 July 2022                   doi:10.20944/preprints202207.0070.v1

https://doi.org/10.20944/preprints202207.0070.v1


4 of 12

Figure 1. Visualization of the pipeline. top: general diagram of the modules for object detection and room prediction, and
bottom: step-by-step scheme A) Train YOLO to detect indoor objects. B) Perform object detection on scene data (examples
use IOD155 with conf. thresh = 0.25). C) Transform predicted object labels into TF-IDF input features. D) Train classifier to
predict room category based on these input features.

3. Methodology143

3.1. Datasets144

Open Images V6 [32] was used to train YOLOv5 [33] to perform object detection145

using 90 classes (Indoor Object Detection 90 - IOD90) and 155 classes (IOD155) that one146

would reasonably expect to find in indoor settings (e.g., oven, dining table, TV, keyboard,147

bed, flower, sink, laptop, wrench, etc.). For IOD90, 309,762 images were used for training,148

6,307 were used for validation, and 18,644 for testing. For IOD155, 468,579 images were149

used for training, 11,717 images were used for validation, and 34,907 for testing. The150

Open Images dataset contains annotated images, and the images were selected based on151

whether object classes were present. Irrelevant annotations were ignored, and only target152

object classes were used. In Figure 1 an overall technical flow of the pipeline proposed153

in this work is depicted, as well as a step-by-step scheme. Moreover, the pseudocode of154

the whole algorithm is presented in Algorithm 1.155

For scene recognition, eight indoor room classes were selected from the Places365156

dataset [28] (bathroom, bedroom, corridor, clean-room, kitchen, home-office, living-157
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room, and dining-room). Five thousand images were selected for training and validation158

for all categories apart from "clean-room", with 3,871 images. The number of images159

used for training was 38,871, of which a balanced 20% were used for validation. For160

testing, 100 images were used for each category (for a total of 800) and correspond to the161

Places365 designated validation set. The original Places365 testing set does not contain162

labels as it is part of an ongoing challenge; therefore, a customized validation/testing163

approach was required.164

Algorithm 1 Pseudocode of the proposed approach

1: procedure REQUIREMENTS:
2: A working object detection model ▷ either custom or pretrained
3: A dataset D of scene data ▷ with labeled rooms
4: procedure FOR PERFORMING ROOM CLASSIFICATION
5: for Image in dataset D do
6: DetectObjects(Image)
7: TrainValTest.split(D)
8: CountVectorizer()
9: TF-IDF()

10: TrainClassifier() ▷ for predicting room category
11: PredictRooms() ▷ evaluate room classification performance

3.2. Object Detection Modules165

We trained a recent implementation of YOLO [22,34], YOLOv5L1, to detect pre-166

defined objects using the Open Images V6 dataset. Of the 600 trainable objects in this167

dataset, 90 and 155 object classes were selected to be used. For the used images, the168

annotations were converted to a PASCAL VOC format. YOLO was used because it is169

one of the fastest object detection methods currently available. In the field of embodied170

agents and reinforcement learning, the improved speed of YOLO could be beneficial171

when performing studies investigating reinforcement learning and object navigation.172

This is because reinforcement learning is already computationally expensive, and using173

a relatively "simple" object detection framework could be beneficial [35,36]. Additionally,174

we are aware of the current controversy revolving around YOLOv4 [37] and YOLOv5 [33]175

and have no reason to select one over the other. The current study aims not to optimize176

the object detection task, but instead to utilize object detection (trained on custom data)177

in a scene recognition task. We have no opinion regarding the appropriateness of which178

version to use; we have used the Jocher and colleagues [33] implementation of YOLO179

because it is compatible with PyTorch [38].180

YOLOv5 was trained using the default hyperparameters for 100 epochs in batches181

of 32. YOLOv5 uses standard Non-Max Suppression (NMS) in post-processing. It pro-182

vides the option for image augmentation and while creating mosaics in the training183

phase we did not initialize the image augmentation preprocessing option. YOLOv5184

uses anchor boxes and determines them using an "AutoAnchor" [39]. For testing model185

performance, a confidence threshold of 0.001 was used. The same confidence threshold186

was used to detect objects for the indoor scene classification and 0.25, 0.50, and 0.75.187

However, increasing the confidence threshold was negatively associated with indoor188

scene classification accuracies. This is because as the confidence threshold increases,189

fewer objects are detected, and so the number of images without detected objects in-190

creases. It would be interesting to see how false positives and false negatives affect191

classification performances in scene recognition. However, as the images used for scene192

recognition had no object-level annotations, this could not be tested. It could be that if193

a false positive is consistent enough in a scene category, it could be "informative" and194

1 See https://github.com/ultralytics/yolov5
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be used in scene classification despite being mislabelled; unfortunately, this was not195

something we could empirically expand on.196

A pre-trained semantic segmentation model (Xception [40]) was also used. The197

semantic segmentation model contained 150 classes relevant to the ADE20k dataset [41].198

ADE20k is a dataset that provides semantic segmentation labels for images containing199

scene categories corresponding to the Places365 dataset. It is important to note that200

the 150 classes used in the segmentation model also include classes relevant to outdoor201

scenes and are not exclusive to objects found in indoor environments.202

3.3. Object-Level Scene Classification Module203

We generated object-level predictions (with object detection and semantic segmen-204

tation, separately) that were used as features in relevant images in the Places365 dataset205

using the Object Detection Modules. These features were then transformed using TF-IDF206

and Count Vectorizer with the default parameters, where each image was treated as a207

document. Count Vectorizer is a standard method used in NLP and it is used to convert208

corpora into a matrix of token counts of words. In this case, it is used to count detected209

objects in order to identify their frequency across our scene data. It is crucial to keep in210

mind that Places365 does not have object-level annotations. So, the input features for211

scene classification represent predicted objects – as opposed to concrete and well-defined212

labels.213

Term frequency (TF - Equation 1) is defined as the frequency that the term t appears214

in the document d and inverse document frequency (IDF) is a metric used to identify215

how much information the term provides. IDF (Equation 2) is calculated as the logarithm216

of the total number of documents N divided by the number of documents where the217

term t appears (i.e., in regard to this study: the number of images, where the object is218

present) and corresponds to how frequent or rare a term is in a collection of documents.219

Term frequency-inverse document frequency (TF-IDF - Equation 3) is calculated as the220

product of TF and IDF. The more relevant a word is to a document, the higher the TF-IDF221

score (on a scale of 0-1). TF-IDF was calculated using Scikit-Learn [42].222

t f (t, d) =
ft,d

∑t′∈d ft′ ,d
(1)

id f (t, D) = log
N

|d ∈: t ∈ d| (2)

t f id f (t, d, D) = t f (t, d)× id f (t, D) (3)

The same weighting can be applied to objects and scenes if the term for object223

and document for an image is substituted. Common objects observed in most scenes224

would be weighted down, and rare objects would have an increased weighting. For225

example, one would expect "oven" to be a relatively infrequent object but often observed226

in kitchen settings. In this context, ovens would have a higher TF-IDF weighting than a227

more frequent and less informative object (e.g., a chair).228

Using a Bag-of-Words (BoW) [43] approach, these features correspond to a vector-229

ization of the frequency of occurrence for objects in the target room categories. This230

vector space was then used to train a classifier to predict a room category based on231

observed (predicted) objects. In NLP, BoW approaches can be limited because they do232

not capture the structural sequence and order of words so other approaches might be233

more appropriate. However, in static scene recognition, there is no sequential order234

(which could be more relevant in dynamic scene processing), so this limitation is less235

applicable here.236

A random forest classifier was used to predict scene category from observed (pre-237

dicted) objects in images using Scikit-Learn [42] with n=1000 estimators, the minimum238

number of samples is 2, and an unlimited number of leaf nodes. This was applied to239

all object detection methods (IOD90 and IOD155) and semantic segmentation (Xcep-240
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tion). Other machine learning models were tested (linear regression and support vector241

machine) however random forest was superior in all cases and gave the best results.242

4. Results243

4.1. Evaluating Object Detection244

Using a confidence threshold of 0.001, object detection for the 90 indoor classes had245

a precision of 0.526, recall of 0.601, mean average precision at 0.5 IOU (mAP@0.5) of 0.553246

and a mAP@0.5:0.95 (mean average precision at IOUs from 0.50 to 0.95 at 0.05 increments)247

of 0.416. Object detection for 155 indoor classes had a precision of 0.455, recall of 0.469,248

mAP@0.5 of 0.417 and a mAP@0.5:0.95 of 0.309. These results are summarized in Table 1.249

and correspond to 100 epochs of training using default hyperparameters and evaluated250

on the Open Images testing data.251

Table 1. Evaluating YOLO.

Model Precision Recall mAP@.50 mAP@.50:.95

IOD90 0.526 0.601 0.553 0.416
IOD155 0.455 0.469 0.417 0.309

4.2. Scene classification with IOD90252

Scene recognition using 90 classes of objects (IOD90) and a confidence threshold253

of 0.001 achieved an accuracy of 82.53% on the validation set (test: 83.63%) and using254

a confidence threshold of 0.25 achieved an accuracy of 74.92% (test: 75.50%). Using a255

confidence threshold of 0.50, an accuracy of 56.65% on the validation set (test: 55.88%)256

was achieved. Using a highly restrictive confidence threshold of 0.75, the accuracy was257

close to chance at 23.97% (test: 25.63%). Increased confidence thresholds were associated258

with lower accuracy scores (see Figure 2 for a visual summary).259

The number of detected objects might explain this. Using a confidence threshold260

of 0.001, a mean of 299.02 (std: 6.00, range: 12-300) number of objects per image were261

detected and using a confidence threshold of 0.25, a mean of 44.69 (std: 39.28, range:262

0-300) objects per image was detected. An average of 10.05 (std: 13.30, range: 0-277)263

and 0.74 (std: 2.35, range: 0-91) number of objects were detected using confidence264

threshold of 0.50 and 0.75, respectively. Further, increasing thresholds resulted in more265

images having no predicted objects, which influenced the performance of the object-level266

classification of scenes. For example, with a 0.001 confidence threshold, all 90 classes267

were detected, with all images having at least one detected object (i.e., 100%). With268

a 0.25 confidence threshold, 89 object classes were detected, with 92.07% of images269

having at least one detected object. Using a confidence threshold of 0.50, 80 classes were270

detected across 66.53% of all images and using a 0.75 confidence threshold, 55 objects271

were detected across 15.21% of images.272

Considering how many objects were detected on average for a confidence threshold273

of 0.001, scene classification was tested using the only single occurrence of objects274

detected (i.e., using only the presence of an object class, as opposed to all detected275

instances of objects). When ignoring duplicate objects, IOD90 achieved a 79.74% accuracy276

(test: 81.25%) with a 0.001 confidence threshold on the validation set and an accuracy of277

76.10% (test: 75.50%) using 0.25. An accuracy of 57.21% was observed on the validation278

set (test: 57.00%) using a threshold of 0.50, and an accuracy of 23.99% was observed279

(test: 25.63%) using a threshold of 0.75. Only slight changes in accuracy were observed:280

-2.79%, +1.18%, +0.56% and +0.02% for confidence thresholds of 0.001, 0.25, 0.50 and281

0.75, respectively, on the validation sets when using sets of objects.282
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Figure 2. Scene Recognition for IOD90 & IOD155 - visualization of results across conf. thresholds
(0.001, 0.25, 0.50, 0.75) for validation and testing sets. Also displayed are whether all detected
objects or singular instances (sets of objects) are used in predicting room category.

4.3. Scene classification with IOD155283

Using a model trained to detect 155 object classes (IOD155) an accuracy of 83.25%284

on the validation set (test: 83.38%) was observed using a confidence threshold of 0.001285

and an accuracy of 75.91% (test: 77.00%) was observed using a threshold of 0.25. A286

threshold of 0.50 achieved an accuracy of 57.43% on the validation set (test: 57.75%) and287

a threshold of 0.75 achieved an accuracy of 23.61% (test: 23.75%).288

Again, this could be explained by the number of detected objects. On average,289

298.98 (std: 11.48, range: 12-300), 48.57 (std: 43.37, range: 0-300), 10.81 (std: 14.47, range:290

0-300), 0.80 (std: 2.68, range: 0-162) objects were detected per image using confidence291

thresholds of 0.001, 0.25, 0.50, 0.72 - respectively. Out of 155 classes, 135 objects were292

detected at least once using a threshold of 0.001 across all (100%) images, and 125 objects293

were detected at least once using a threshold of 0.25 across 90% of the images. Using a294

threshold of 0.50, 106 object classes were detected across 66.89% of the images, while 60295

object classes were detected in 15.91% of the images at least once using a threshold of296

0.75.297

When ignoring duplicate objects detected, a confidence threshold of 0.001 achieved298

80.57% accuracy (test: 80.88%), a threshold of 0.25 achieved an accuracy of 76.14% (test:299

77.75%), a threshold of 0.50 achieved an accuracy of 58.25% (test: 58.63%) and 0.75300

achieved an accuracy of 23.64% (test: 23.75%). Again, only slight differences in accuracy301

were observed: -2.68%, +0.23%, +0.82%, +0.03% for confidence thresholds of 0.001, 0.25,302

0.50 and 0.75, respectively, on the validation set.303

4.4. Scene classification with Semantic Segmentation304

Using a pre-trained semantic segmentation model, an accuracy of 80% was achieved305

on the validation set and 71.41% accuracy on the testing set. Across all data, semantic306

segmentation detected 149 object classes. Unlike YOLO, semantic segmentation uses307

masking, and the implementation here does not allow for the counting of objects detected308

(apart from the number of classes). On average, 16.37 (std: 6.50, range: 1-47) object309

classes were detected per image. The most commonly segmented classes were "wall",310

"floor", and "ceiling", which is to be expected for indoor environments. However, due to311

their relatively high-frequency and shared commonality across room categories, TF-IDF312

should down weight their importance. All images contained at least one instance of313

those classes; when ignoring those semantic labels, at least one object was detected in314

99.91% of all images.315
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4.5. Model Comparisons316

Table 2. Scene Recognition - Model Comparisons (IOD90 & IOD155 conf. thresh = 0.001).

Top-1 Top-5
Dataset Val Test Val Test

ADE20K
ResNet18+LSA [12] 53.77% - 75.65% -

Places365
VGG [28] 55.24% 55.19% 84.91% 85.01%

ResNet152 [28] 53.63% 54.65% 85.08% 85.07%

Places365 - Home
ResNet50 [13] 83.46% 92.03% - -

ResNet50+Word2Vec [13] 83.67% 93.27% - -
CBORM [26] 85.80% - - -

OTS [29] 85.90% - - -

this work IOD155+tfidf 83.25% 83.38% - -
IOD90+tfidf 82.53% 83.63% - -

Xception+tfidf 80.00% 71.41% - -

Identifying relevant benchmarks for this study is no trivial task. Table 2 compares317

a selection of scene recognition models. Often when looking at a large number of318

classes for scene data (e.g., the full ADE20k and Places365 datasets), researchers compare319

model performances regarding their accuracy for the Top-1 prediction and the Top-5320

predictions. This is due to overlap and ambiguity; however, as this study only has321

eight room categories, a Top-5 accuracy would not be appropriate. Furthermore, the322

room categories were confined to rooms typically found in residential homes. Chen and323

colleagues [13] use the Top-5 predictions and refine their predictions based on word324

embeddings. Our results are comparable to theirs as they use the same dataset with325

more room categories represented in their "home" data (n=14). However, they select326

their testing set from the Places365 training set and use the Places 365 testing set as their327

validation set, which differs from this study. Newer approaches where the semantic328

relationships among the objects [26] and transfer object learning [29] are included for329

scene recognition improve the state-of-the-art by around 2.0%.330

Despite the differences in the number of room categories, the performances on the331

testing set for this study more closely resemble their validation set (both in terms of332

results and likely overlapping scene data).333

4.6. Experimental Settings334

The models were implemented in the Pytorch library and trained using an NVIDIA335

Volta V100 GPU with 10 cores from a Xeon Gold 6230 processor, with 32Gb of RAM. The336

parameters used during the training stage were a batch size set to 32 and 100 epochs.337

The Adam optimization algorithm with a base learning rate of 0.1 for minimization,338

while momentum and weight decay are set to 1.0 and 1e-5, respectively. The obtained339

models and datasets (IOD155 and IOD90) are available for reproducibility (see Reference340

[44]).341

5. Discussion342

This study aimed to demonstrate the benefit of NLP approaches to scene recognition343

and further illustrate object-level importance. As demonstrated, indoor scene classi-344

fication can be performed solely from object-level information by combining TF-IDF345

weighting with detected objects in static scenes.346
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Researchers often use semantic information to facilitate high-level functions such347

as object-goal-directed navigation and exploration in embodied research. The object348

detection models developed here could further advance this field, as they often rely on349

pre-trained models that contain a limited number of classes relevant to indoor scenes,350

such as MS-COCO [6]. YOLO was trained to perform object detection on 90 and 155351

object classes relevant to indoor scenes, which could be beneficial to the field.352

When evaluating the object detection models, IOD90 performed better than IOD155;353

however, IOD155 performed better in scene classification. This illustrates one of the354

limitations of this study. Object-level annotations for the scene data (Places365) were355

not available, so evaluating the object-level prediction on the scene data is not possible.356

Generally, lower confidence thresholds were associated with improved scene recognition,357

which is likely due to more input features for the classification task.358

Both IOD90 and IOD155 performed better than the semantic segmentation model359

when used as input features for classification. This is likely due to IOD90 and IOD155360

incorporating more semantic labels specific to indoor scenes. The semantic segmentation361

model also contained semantic labels associated with all other scene categories from362

the Places365 dataset, including outdoor scenes. Therefore, one cannot infer that one363

approach is better than the other. However, in this case, it is likely that object detection364

performed better due to having more relevant indoor object classes.365

Interestingly, only slight deviations in classification performance were observed366

when using instances of objects detected (i.e., sets of objects). In the context of dynamic367

scene classification, this might be an interesting line of future research. When exploring368

a room, a proportion of the relevant frames could include a suboptimal field of view.369

Recently encountered objects could be stored in working memory to allow for contextual-370

izing the immediate scene/frame. However, performing object detection over all frames371

could lead to large collections of "encountered" objects - despite the actual number of372

objects being far lower (due to the same object/s being present across frames). Using373

sets of recently encountered objects could simplify this task.374

6. Conclusion375

This paper illustrates the relevance of objects and NLP approaches to indoor scene376

classification. These models were then used to predict objects in unlabelled scene data377

by training YOLO to detect indoor objects. These predicted objects were then used to378

train a classifier, using object TF-IDF values as input features to classify room categories.379

This approach could yield further benefits to static and dynamic indoor scene380

classification and could also be beneficial for embodied research. Given the presented381

approach’s simplicity, the proposed implementation can be deployed easily on low-cost382

hardware, which is the case with most commercially available humanoid robots. Some383

limitations include the lack of semantic relationships among the objects in rooms once384

these are detected, as well as the absence of learning about the room’s composition once385

the classification is performed. This last limitation is essential in case of dynamic changes386

if the various aspects of the room change, so there is no need to run the algorithm every387

time in the same location. Future research directions include addressing these limitations,388

and, more importantly, our goal is to deploy the proposed algorithm in assistive robots,389

particularly for elderly care.390
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