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Abstract: Since ancient times aging has also been regarded as a disease, and humankind has always 
strived to extend the natural lifespan. Analyzing the genes involved in aging and disease allows for 
finding important indicators and biological markers for pathologies and possible therapeutic tar-
gets. An example of the use of omics technologies is the research regarding aging and the rare and 
fatal premature aging syndrome progeria (Hutchinson-Gilford progeria syndrome, HGPS). In our 
study, we focused on the in silico analysis of differentially expressed genes (DEGs) in progeria and 
aging, using a publicly available RNA Seq dataset (GEO dataset GSE113957) and a variety of bioin-
formatics tools. We identified several genes that appear to be involved both in natural aging and 
progeria (KRT8, KRT18, ACKR4, CCL2, UCP2, ADAMTS15, ACTN4P1, WNT16, IGFBP2). Further 
analyzing these genes and the pathways involved confirmed their possible roles in aging, suggest-
ing the need for further in vitro and in vivo research. The graphical abstract illustrates the analysis 
workflow we used and will introduce in the following as an example to demonstrate the power of 
omics and bioinformatics. 
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Aging is characterized as a time-dependent functional decline leading to progressive 
loss of physiological functions and deterioration [1]. It is known as the primary risk factor 
for several major pathologies, including cardiovascular disorders, diabetes, neurodegen-
erative diseases, and cancer [1]. 

López-Otín et al. have defined the hallmarks of aging, aiming for a similar effect on 
aging research as Hanahan and Weinberg’s hallmarks of cancer had on cancer research 
by contributing to the momentum cancer research has gained in the last decades [1]. The 
technical progress in research, which becomes obvious by looking at disciplines such as 
“-omics”, also contributes to the growing knowledge and understanding of the processes 
involved in aging. In general, the ending “-omics” indicates a global or comprehensive 
assessment of a kind of molecule [2]. 

Like the first “omics” discipline, genomics, which focuses on entire genomes instead 
of solely studying single genes [2], all kinds of “-omics” focus on a global or comprehen-
sive assessment of a certain kind of molecule [2]. Transcriptomics, for instance, analyzes 
RNA levels in a qualitative and quantitative manner [2]. By comparing high-throughput 
sequencing data of healthy individuals and individuals affected by a disease, it is possible 
to gain a better understanding of various human pathologies including ageing-related 
diseases. 

An example of the progress in aging research is the rare and fatal premature aging 
syndrome progeria (Hutchinson-Gilford progeria syndrome, HGPS). The disease was first 
described in 1886 by Hutchinson [3] and in 1897 by Gilford [4], and was brought to atten-
tion as a detailed case study in 1913 [4], emphasizing the need for further knowledge and 
research [4,5]. 

Progeria is often diagnosed relatively early in childhood, and as the name suggests, 
several of the symptoms of progeria also occur with old age, including hair graying or 
loss, skin thinning, and osteopenia/osteoporosis [6] as well as diminished joint mobility 
[7]. Besides aging symptoms, progeria patients often suffer from cardiovascular problems 
[8] as well as stroke [8], which result in premature death and an average life expectancy 
of about 13 years. 

In 2003, 90 years after progeria was ardently brought to attention, a mutation in 
LMNA was identified as the cause of HGPS by the Progeria Research Foundation’s col-
laborative research team [9]. Due to a dominant 1824C>T mutation, which was found to 
be the predominant cause of progeria, a cryptic splice donor site gets activated [10,11]. 
This is causing the formation of a truncated prelamin A, named progerin, which is missing 
50 amino acids due to internal deletion and is not processed into normal lamin A [10,11]. 

Thanks to the efforts of the Progeria Research Foundation (PRF) and the worldwide 
participation of progeria patients and their families, less than two decades later, two suc-
cessful clinical trials aiming to treat HGPS and increase the life expectancy of HGPS pa-
tients have been performed [12,13] and a third trial is expected to be completed in 2023 
(NCT02579044). Additionally, the first medication against progeria has been FDA ap-
proved [14] and is in the process of being approved in Europe [15]. Besides searching for 
a cure, the PRF also supports progeria and aging research by other scientists, for instance, 
by sharing fibroblasts that were donated by HGPS patients [16,17]. 

Using human fibroblasts, Fleischer et al. generated a comprehensive set of genome-
wide RNA-Seq profiles to develop a computational method to predict the biological age 
[16,17]. The dataset contains RNA-Seq data of dermal fibroblasts donated by ten progeria 
patients and 133 “apparently healthy” individuals (aged 1 to 96 years according to their 
metadata) [16,17]. Their dataset is publicly available on the Gene Expression Omnibus 
(GEO) database [18] under accession number GSE113957 [16,17] Since its publication in 
November 2018, the article by Fleischer et al. has been cited 37 times in PubMed (until 
May 2022), with 13 of the citing papers mentioning the use of the GSE113957 dataset from 
the Fleischer et al. paper [19-31] (as described in Table 1). According to the publications in 
PubMed, the dataset alone contributed to 8 studies investigating aging [20,22-28]. 
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The frequent use of the dataset indicates the broad use and the value of the dataset 
for research, not only in aging research but also in bioinformatics in general. Keeping in 
mind that there might be further studies either still in preparation or not indexed in Pub-
Med, the possible applications of the dataset are nowhere near exhausted. 

Table 1. Publications listed in PubMed that mention the use of the GSE113957 dataset. 

Year Title Topic/Aim Ref. 

2020 

Epigenetic deregulation of lam-
ina-associated domains in 

Hutchinson-Gilford progeria 
syndrome 

Progeria research 
epigenetic changes, understanding progeria 

pathology (Lamina-associated domains 
(LADs), DNA methylation, chromatin acces-

sibility changes) 

[25] 

2020 

Phosphorylated Lamin A/C in 
the Nuclear Interior Binds Active 
Enhancers Associated with Ab-

normal Transcription in Progeria 

Progeria research 
understanding progeria pathophysiology 

(pS22-Lamin A/C-binding) 
[20] 

2020 
Prevalent intron retention fine-
tunes gene expression and con-
tributes to cellular senescence 

Aging research 
molecular mechanisms involved in aging (se-

nescence, alternative splicing, intron reten-
tion) 

[24] 

2020 
Analysis of transcriptional mod-

ules during human fibroblast 
ageing 

Aging research 
genome-wide 

transcriptional changes upon aging, potential 
biomarkers (network-based gene 

screening, Weighted 
Gene Co-expression Network Analysis, 

STRING database, validation via RT-qPCR 
assay) 

[22] 

2020 

Repetitive elements as a tran-
scriptomic marker of aging: Evi-
dence in multiple datasets and 

models 

Aging research 
Transcriptomic markers of aging (noncoding 
repetitive element transcripts, transcriptomic 

markers of age/aging) 

[23] 

2021 
Altered Chromatin States Drive 
Cryptic Transcription in Aging 

Mammalian Stem Cells 

Aging research 
molecular mechanisms involved in aging 
(age-associated cryptic transcription and 

chromatin signature) 

[28] 

2021 

Extremes of age are associated 
with differences in the expres-

sion of selected pattern recogni-
tion receptor genes and ACE2, 

the receptor for SARS-CoV-2: im-
plications for the epidemiology 

of COVID-19 disease 

Aging research related to another disease 
Effect of extreme age on the  

expression of genes known to  
interact with SARS-CoV-2 

[26] 
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2022 
Multi-omic rejuvenation of hu-
man cells by maturation phase 

transient reprogramming 

Aging research/rejuvenation/anti-aging 
“maturation phase transient reprogram-

ming” (MPTR) method,  
rejuvenates transcriptome and epigenome 

[27] 

2021 
BiT age: A transcriptome-based 
aging clock near the theoretical 

limit of accuracy 

Computational method/tool for aging re-
search 

binarized transcriptomic aging  
(BiT age) clock 

estimation/prediction of biological age (genes 
and transcription  

factors involved in aging) 

[29] 

2019 
Genome-wide quantification of 

ADAR adenosine-to-inosine 
RNA editing activity 

Computational method/tool  
Alu editing index (AEI) 

quantification of ADAR (adenosine deami-
nase acting on RNA) activity (e.g., Adeno-

sine-to-inosine  
(A-to-I) RNA editing) 

[21] 

2020 

mitoXplorer, a visual data min-
ing platform to systematically 

analyze and visualize mitochon-
drial expression dynamics and 

mutations 

Computational method/tool  
visual data mining platform  

mitoXplorer 
integrates expression and mutation data of 
mito-genes with a manually curated mito-

chondrial interactome (mitochondrial expres-
sion dynamics and mutations across various 
datasets from four model species, including 

human) 

[30] 

2021 
An integrated pipeline for mam-

malian genetic screening 

Computational method/tool 
sequencing-based target ascertainment and 

modular perturbation 
screening (STAMPScreen)  

method for enabling cellular engineering 
(computational method to identify candidate 

genes for a  
specific phenotypic conversion using RNA 
seq data, workflow for the study and engi-

neering of  
cellular phenotypes) 

[19] 

2022 
Landscape of  

adenosine-to-inosine RNA  
recoding across human tissues 

Computational method/tool 
RNA editing detection approach, dedicated 

and optimized for the coding region RNA ed-
iting within the coding sequence can result in 

amino-acid substitution (“recoding”)  
diversifying the proteome (Adenosine-to-ino-

sine (A-to-I) RNA editing) 

[31] 
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Besides the extensive comparison data for creating and testing computational analy-
sis methods, the RNA seq data can be combined with new analysis methods and the grow-
ing knowledge regarding pathways and protein interactions. This will enable further in-
sights and lead to new findings regarding fibroblasts, aging, pathways, and potential re-
lationships and interactions. 

In the present study, we used the RNA sequencing data to demonstrate the power of 
bioinformatics to reveal important differences between normal aging, progeria, and 
young fibroblasts in terms of pathways, proteins, and protein networks. We considered 
three subgroups of the dataset: healthy children, nonagenarians, and HGPS patients. As 
HGPS patients suffer from many conditions associated with old age, we were interested 
in the differences and similarities between HGPS patients and nonagenarians, as well as 
between healthy children and children suffering from HGPS. Additionally, we compared 
the RNA seq data of healthy children and nonagenarians to see the differences in gene 
expression occurring during natural aging. 

All tools used for this analysis are freely available R packages or software. To encour-
age such analyses for other pathophysiological conditions and stimulate transcriptome 
analysis, we will give some details on the different tools and where to find vignettes and 
workflows explaining the use of the respective tools (Supplementary Materials, Docu-
ment S1). 

2. Materials and Methods 
In this study, already published, publicly available data is analyzed. Thus, ethical 

approval and patient consent were not necessary. 

2.1. Hardware and Software 
All analyzes were performed on a PC with AMD Ryzen 9 3900X, 12-Core Processor, 

64.0 GB RAM, 64-Bit-Operating System, and an x64-based processor. A virtual Ubuntu 
environment (Ubuntu 20.04.2 LTS (OS-Type: 64-bit) running on a virtual machine (Virtual 
Box 6.1.34)) was used for data download, quality control, and alignment. The subsequent 
data analysis was performed using RStudio (2022.02.0+443 "Prairie Trillium" Release 
(9f7969398b90468440a501cf065295d9050bb776, 2022-02-16) for Ubuntu) with R version 
4.2.0 (2022-04-22) [32]. Cytoscape analyses were performed using Cytoscape for Windows 
(64-bit, version 3.9.1, on Windows 10). 

2.2. RNA Seq Data 
The single-end stranded RNA-Seq data of the GEO [33] dataset GSE113957 was 

downloaded via NCBI’s SRA Run Selector and checked for quality using FastQC (version 
0.11.9) [34] and MultiQC (version 1.12) [35]. The dataset was generated by Fleischer et al. 
[16,17] . It contains RNA seq data of human fibroblast cell lines derived from 10 progeria 
patients (Hutchinson-Gilford progeria syndrome (HGPS)) and 133 fibroblast cell lines de-
rived from “apparently healthy” individuals [16,17]. According to the metadata provided 
via NCBI’s SRA Run Selector, the healthy individuals were aged between 1 to 96. 

For this study, only the samples of the progeria patients aged 6 to 8 years (5 samples), 
the samples of healthy children in the same age group (age 6 to 9, 6 samples), and the 
samples of the individuals aged 90+ (7 samples) were analyzed. 

2.3. Data Preprocessing 
The RNA-seq data was aligned to GENCODE v39 [36] using the standard protocols 

for STAR (version 2.7.10a) [37] and RSEM (version 1.3.1) [38]. After STAR alignment, the 
transcripts were subsequently quantified with RSEM. 
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2.4. Identification of DEGs 
We performed DESeq2 (version 1.36.0, with apeglm version 1.18.0, using tximport 

version 1.24.0 for importing the data in R) [39-41] analyses to find differences between the 
two groups: (1) HGPS patients vs. healthy children and (2) 90-year-olds vs. healthy chil-
dren. Differentially expressed genes (DEGs) with a p-value < 0.05 were considered signif-
icant. The log2 fold change threshold values were set to > 1 for upregulated genes and < -
1 for downregulated genes. 

2.5. Data Visualization 
Principal component analysis (PCA) was performed using the DESeq2 package, and 

gene expression and DEGs were visualized in the form of volcano plots (EnhancedVol-
cano, version 1.14.0) [42] and heatmaps (pheatmap version 1.0.12) [43]. 

Additionally, gene expression was visualized using IsoformSwitchAnalyzeR (ver-
sion 1.18.0) [44], which supports data from various quantification tools, including RSEM 
[44]. To calculate gene expression, IsoformSwitchAnalyzeR can take count and abundance 
values into account and calculates gene expression by adding up the abundance values of 
all isoforms related to the respective gene [44]. The gene expression function of the 
IsoformSwitchAnalyzeR package was used for three different comparisons: (1) HGPS pa-
tients vs. healthy children, (2) 90-year-olds vs. healthy children, and (3) HGPS patients vs. 
90-year-olds. 

2.6. Pathway Enrichment Analysis 
Databases such as the Molecular Signatures Database [45-48], provide annotated 

gene sets that can be used for further analyses, including hallmark gene sets and ontology 
gene sets. The hallmarks gene set can be envisioned as a starting point for further analyses 
[46]. Biological ontologies, such as the Gene Ontology (GO) [47], provide knowledge 
about genes and their functions [49,50]. The gene ontology offers information on the sub 
ontologies that represent protein function: biological process (BP), cellular component 
(CC), and molecular function (MF) [51]. 

The enrichment analyses of the hallmark gene set and the GO BPs gene set were cal-
culated using MSigDB (version 7.5.1) [45-48], and visualized as bar plots, CNET plots, and 
heat plots using clusterProfiler (version 4.4.2) [49,52], enrichplot (version 1.16.1) [53], and 
ggplot2 (version 3.3.6) [54]. The heat plot function of the enrichplot package [53], which is 
also embedded in clusterProfiler [49,52], combines the functionalities of a heatmap and a 
CNET plot by displaying relationships, for instance, the genes involved in a specific path-
way, as a heatmap [53]. 

2.7. Protein-protein Interactions 
The Search Tool for Retrieval of Interacting Genes/Proteins (STRING) database [55] 

and web tool is a meta-resource for analyzing protein-protein interactions [55,56]. It is 
based on analyzing the ‘functional association’ of proteins, which is described as a link 
between two proteins that both contribute to a biological function [55]. 

The significant DEGs of interest were mapped to STRING using the official gene sym-
bol as input for the web app (https://string-db.org/, version 11.5) with a fullstringnetwork 
medium confidence of 0.4 and visualized via Cytoscape [57]. 

The open-source software project Cytoscape was developed as a modeling environ-
ment for the integration of molecular network interaction data. Its organizing metaphor 
is a network graph [57]. The nodes of the graph are molecular species that are connected 
via intermolecular interactions, which are represented as edges or links between the 
nodes. It supports various automated network layout algorithms and allows the user to 
visualize their data in the form of a network [57]. Furthermore, Cytoscape is designed to 
allow the implementation of additional plug-ins addressing biological problems [57].  
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We used Cytoscape [57] to further analyze and visualize the STRING database results 
for our genes of interest. Additionally, using Cytoscape [57], we visualized the log2fold 
changes of the DEGs that were calculated during DESeq2 analysis [39] (for aging and pro-
geria) and the average log2fold changes of the common DEGs in both conditions (calcu-
lated by adding the respective values and subsequently dividing them by 2). 

2.8. Venn Diagrams 
Venn diagrams were introduced almost 150 years ago as a method of visually repre-

senting classes and elements contained in one or several of these classes using intersecting 
circles [58]. Venn Diagrams can represent results that are rather difficult to explain in 
words in an intuitively understandable graphic representation. Therefore, they can be 
used to visualize overlapping genes between several groups. Besides that, Venn diagram 
tools, like the web app Venny [59] (https://bioinfogp.cnb.csic.es/tools/venny/), also offer 
to extract lists of every section of the Venn diagram [59]. 

The different genes of interest for the respective groups were visualized using the 
online tool Venny (version 2.1.0) [59]. Depending on the comparison, two or three lists of 
DEGs or pathways were uploaded in Venny, which automatically visualized overlaps and 
offers the option to save the resulting figure and the elements contained in the overlaps. 

2.9. miRNA prediction 
For predicting miRNA interactions, we used miRNet (https://www.mirnet.ca/, ver-

sion 2.0), a web-based platform for miRNA analysis. The input data is integrated with 
prior knowledge, including miRNA-target interactions, transcription factors, and single 
nucleotide polymorphisms [60], and the results can be visualized as a network using Cy-
toscape [57]. This allows for predicting miRNAs that might be regulated by genes of in-
terest. We performed three miRNA predictions, using the DEGs involved in aging, pro-
geria, and the common DEGs of both conditions as the respective input data. 

2.10. NicheNet: Finding Ligand-Receptor-Interactions Based on Prior Knowledge 
Since the growing knowledge of biological processes such as gene interactions and 

cellular communication is a cornerstone in data analysis, Türei et al. generated Omnipath, 
a comprehensive database combining over a hundred different resources covering protein 
interaction, transcriptional and post-transcriptional regulation, and cellular signaling [61]. 

NicheNet is a computational method developed for combining the prior knowledge 
archived in databases such as Omnipath with gene expression data, enabling the user to 
analyze prioritized ligand-target interactions as well as intracellular signaling [62]. Alt-
hough NicheNet offers its own database, it can also be combined with other databases as 
the source of the prior knowledge on which the subsequent NicheNet analysis is based.  

In this study, we followed the workflow for combining NicheNet (version 1.1.0) [62] 
and Omnipath data (via OminpathR, version 3.4.0) [61] previously described by Türei et 
al. [61]. The workflow allows predicting prioritized interaction partners for DEGs in-
volved in a pathway of interest (via fgsea, version 1.22.0) [63], which can offer further 
insights in network analysis [61]. 

2.11. Figures and Additional Packages 
While the graphical abstract was created using BioRender (https://biorender.com/), 

the figures containing analyses results were arranged using R/RStudio. The following 
helpful R packages were used for figure creation or as additional packages/dependencies 
of the packages used for analyses and figure creation: cowplot (version 1.1.1) [64], ggplo-
tify (version 0.1.0) [65], magick (version 2.7.3) [66], scatterplot3d (version 0.3.41) [67], 
scales (version 1.2.0) [68], viridis (version 0.6.2) [69], plotly (version 4.10.0) [70], RCo-
lorBrewer (version 1.1.3) [71], ggupset (version 0.3.0) [72], ggnewscale (version 0.4.7) [73], 
pathview (version 1.36.0) [74], ggridges (version 0.5.3) [75], europepmc (version 0.4.1) [76], 
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BiocManager (version 1.30.18) [77], org.Hs.eg.db (version 3.15.0) [78], tidyverse (version 
1.3.1) [79], dplyr (version 1.0.9) [80]. 

 

3. Results 
HGPS patients suffer from old age symptoms, therefore, we were interested in the 

differences and similarities of natural, chronological aging, as seen in individuals of ex-
treme age like nonagenarians, and premature or accelerated aging, as it can be observed 
in progeria patients. For our study, we compared three subsets of the RNA sequencing 
data within Fleischer et al.’s publicly available GEO dataset GSE113957 [16,17]: HGPS pa-
tients, nonagenarians (90s, aged 90 to 96 according to the metadata submitted with the 
GEO dataset [17]), and healthy children (Supplementary Materials, Table S1). To find 
genes related to aging and aging-related pathologies, we performed DESeq2 analyses 
comparing healthy children with progeria patients and nonagenarians, respectively. The 
results of both analyses were compared, focusing on DEGs, GO enrichment/pathways, 
miRNAs, and interaction partners. 

Since Gordon et al. reported that death due to complications of HGPS such as cardiac 
or cerebrovascular disease most often occurs in the age range between six and 20 years 
[81], we decided to focus on children suffering from HGPS aged six or older (HGPS, ages 
6 to 8 years). RNA sequencing data samples of healthy children of the same age group 
(Healthy Kids, aged 6 to 9) were used as controls. 

3.1. Differences and Similarities between Old Age and HGPS 
The gene expression of HGPS patients (Figure 1) and nonagenarians (Figure 2) were 

compared with the gene expression of healthy children using DESeq2 analysis [39]. 
Principal Component Analysis (PCA, Figure 1A, Figure 2A) indicates differences in 

gene expression between HGPS patients and healthy children (progeria, premature or ac-
celerated aging) and nonagenarians and healthy children (aging), respectively. DEGs are 
visualized as volcano plot [42] (Figure 1B, Figure 2B) and as heatmap [43] with hierarchical 
clustering (Figure 1C, Figure 2C). Upregulation is visualized in red, downregulation in 
blue. Comparing HGPS patients and healthy children (HGPS vs. healthy children, Figure 
1) resulted in 497 DEGs, with 332 genes being upregulated and 165 downregulated in 
progeria. In natural aging (90s vs. healthy children, Figure 2), 2743 genes are differentially 
expressed, with 1350 DEGs being upregulated and 1393 being downregulated (Supple-
mentary Materials, Table S2). 

Hallmark enrichment analysis and Gene Ontology enrichment analysis for biological 
processes (BPs) were conducted using clusterProfiler [49,52] and the respective gene sets 
available via the Molecular Signatures Database (MSigDB) [45-48]. While normal aging 
(Figure 2D and E, Supplementary Materials Figure S3 and S4) appears to affect the cell 
cycle G2/M checkpoint (G2M checkpoint), E2F targets, and the mitotic spindle assembly 
(hallmark MITOTIC_SPINDLE), progeria is only associated with KRAS signaling up, the 
genes upregulated by KRAS (Kristen rat sarcoma virus) activation (Figure 1D and E, Sup-
plementary Materials Figure S1 and S2). 

GO enrichment analysis, which was conducted using clusterProfiler [49,52], for BPs 
using the respective DEGs indicates which BP pathways might be affected by the differ-
ences in gene expression. In accelerated aging, 171 BP pathways were significantly en-
riched. The top ten enriched pathways of the clusterProfiler analysis are visualized as bar 
plots in Figure 1E. Here, pathways related to skin and skin development are among the 
top enriched pathways. Among the 189 significantly enriched BP pathways found in nat-
ural aging, several pathways related to the cell cycle were among the top ten enriched 
pathways (Figure 2E). The top three pathways of both comparisons and their related 
DEGs are visualized as CNET plots in the Supplementary Materials (progeria in Figure 
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S2, aging in Figure S4), demonstrating that these processes are also interconnected via the 
involved DEGs. 

 
 

 
Figure 1. Comparing gene expression in RNA sequencing data of HGPS patients and healthy chil-
dren (progeria/accelerated aging). (A) Principal Component Analysis (PCA): HGPS patients (blue 
dots) compared to healthy children (controls, red dots) (B) Volcano plot visualizing differentially 
expressed genes (DEGs): significantly upregulated genes are shown as red dots, significantly down-
regulated genes as blue dots, gray dots symbolize genes without significant changes in gene expres-
sion (C) Heatmap and hierarchical clustering of the DEGs. (D) Bar plot of enriched hallmark path-
ways. (E) Bar plot of GO enriched biological processes. 
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Figure 2. Comparing gene expression in RNA sequencing data of nonagenarians and healthy chil-
dren (normal/chronological aging). (A) Principal Component Analysis (PCA): nonagenarians (blue 
dots) compared to healthy children (controls, red dots). (B) Volcano plot visualizing differentially 
expressed genes (DEGs): significantly upregulated genes are shown as red dots, significantly down-
regulated genes as blue dots, gray dots symbolize genes without significant changes in gene expres-
sion. (C) Heatmap and hierarchical clustering of the DEGs. (D) Bar plot of enriched hallmark path-
ways. (E) Bar plot of GO enriched biological processes. 

3.2. Changes in Gene Expression in Progeria and Normal Aging 
Accelerated and natural aging share changes in gene expression. The Venn diagram 

in Figure 3A shows that both comparisons have 157 DEGs in common. However, not all 
of these DEGs are regulated in the same direction in both comparisons. The differences in 
gene expression of the six differently regulated genes (Figure 3C to E) are visualized using 
the R-package IsoformSwitchAnalyzeR [44].  

Comparing the changes in gene expression (log2foldchanges) of the 157 DEGs re-
vealed that six DEGs (KRT18, KRT8, ACKR4, UCP2, ADAMTS15, and ACTN4P1) were 
regulated in opposite directions. For instance, while HGPS patients express more KRT18 
than healthy children (Figure 3D), the expression of KRT18 appears to be reduced upon 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 July 2022                   doi:10.20944/preprints202207.0038.v1

https://doi.org/10.20944/preprints202207.0038.v1


 11 of 31 
 

normal aging as nonagenarians express less KRT18 than both healthy children (Figure 3C) 
and children affected with HGPS (Figure 3E). 

Performing GO enrichment with the 157 DEGs that both types of aging have in com-
mon results in 27 biological processes. The top ten enriched biological processes of the 
clusterProfiler analysis using the common DEGs are visualized in Figure 3B. Considering 
the common DEGs, Epithelial Cell Proliferation (ECP) appears to be the most enriched 
pathway. Additionally, ECP is also enriched in both comparisons, although it is not 
among the top ten enriched BPs in accelerated and normal aging. 

Comparing the DEGs in HGPS that are involved in ECP with the DEGs in old age 
and ECP shows that both groups have 15 genes of the ECP pathway in common: WNT16, 
CCL26, HGF, PTPRN, CCL2, WNT5A, STAT1, IRF6, GDF5, SIX1, KDR, FST, KIT, NKX3-
1, and WNT10B (Figure 4A). Analyzing these genes in the STRING database [56] (Figure 
4B) shows that almost all of these DEGs are linked with each other. 

Further analysis in Cytoscape [57] by combining the STRING results and the changes 
in gene expression that were evaluated. Cytoscape allows visualizing the ECP-related 
DEGs. Figure 4C visualizes the ECP-related DEGs both conditions have in common with 
ECP (octagons) and the ECP-related DEGs specific for comparing HGPS patients and 
healthy children (rectangles). The log2foldchanges derived from the DESeq2 analysis are 
indicated by color, with blue symbolizing downregulation and red upregulation. The 
same analysis was performed comparing the ECP-related common DEGs of both condi-
tions and the DEGs that are related to ECP but only differentially expressed between no-
nagenarians and healthy children (Supplementary Materials, Figure S5). 
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Figure 3. Comparison of accelerated and natural aging. (A) Common DEGs in accelerated aging 
(DEGs between HGPS patients and healthy children, blue) and normal aging (DEGs between nona-
genarians and healthy children, yellow) are visualized as Venn diagram. (B) The ten most enriched 
biological processes with GO enrichment using the common DEGs of aging and HGPS (overlap in 
A). (C) Gene expression of the six genes regulated in opposite directions, differences in gene expres-
sion between children and nonagenarians. (D) Gene expression of the six genes regulated in oppo-
site directions, differences in gene expression between children and progeria patients. (E) Gene ex-
pression of the six genes regulated in opposite directions, differences in gene expression between 
progeria patients and nonagenarians. 
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Figure 4. Comparison of accelerated and natural aging. (A) The visualization of the DEGs involved 
in Epithelial Cell Proliferation (ECP) differentially expressed in HGPS (blue) and old age (yellow) 
shows that both have 15 DEGs in common. (B) The common DEGs of old age and HGPS involved 
in ECP are visualized as STRING network (applying fullstringnetwork medium confidence of 0.4). 
(C) Visualization of the DEGs involved in ECP (by using STRING database and Cytoscape): com-
mon DEGs (octagons) and DEGs specific for HGPS (rectangles) and the respective log2foldchanges 
(blue downregulated, red upregulated). 

3.3. The Different Pathways Involved in Progeria, Aging, and Both Conditions 
The Venn diagram in Figure 5A visualizes the BPs which were calculated for progeria 

(Figure 5A, blue circle), aging (Figure 5A, yellow circle), and the DEGs both conditions 
have in common (Figure 5A, green circle). The complete list of the respective BPs is avail-
able in the Supplementary Materials (Table S3). 

To compare the changes in gene expression between progeria and aging, we ana-
lyzed the 15 common pathways as heat plots (Figure 5B and Figure 5C). The y-axes show 
the 15 common pathways, while the genes involved in the respective pathways are indi-
cated on the x-axes. The changes in gene expression were derived from the log2fold 
changes in gene expression in aging (Figure 5B) and progeria (Figure 5C), respectively. 

 Many genes show similar gene expression patterns and only differ in the log2fold-
changes in gene expression. However, some genes are upregulated in one of the compar-
isons and downregulated in the other (see Figure 3C to E). One of these genes, UCP2, is 
also involved in gland development. While UCP2 is upregulated in progeria, it is down-
regulated in nonagenarians. ACKR4, which is also regulated in different directions, is in-
volved in the cytokine-mediated signaling pathway. 
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Figure 5. Differences in gene expression between HGPS and aging. (A) Venn diagram visualizing 
the GO BPs enriched in HGPS (blue), aging (yellow), and in the 157 common DEGs of progeria and 
aging. 15 BPs are enriched in all three analyses. (B) Heat plot visualizing the changes in gene ex-
pression in the DEGs involved in the 15 BPs using the changes in gene expression observed while 
comparing nonagenarians and healthy children (log2foldchanges of DESeq2 analysis). (C) Heat plot 
visualizing the changes in gene expression in the DEGs involved in the 15 BPs using the changes in 
gene expression observed while comparing progeria patients and healthy children (log2foldchanges 
of DESeq2 analysis). The differences in gene expression are indicated by color (red for upregulated, 
blue for downregulated). Notably, UCP2, which is involved in gland development, is upregulated 
in progeria but downregulated in aging. ACKR4, which is involved in the cytokine-mediated sig-
naling pathway, is upregulated in aging (comparison of healthy children and nonagenarians) but 
downregulated in progeria (comparison of healthy children and progeria patients). 
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The aging pathway was among the enriched pathways in aging but not in progeria. 
As we were especially interested in aging, we compared the DEGs of HGPS and aging 
with the genes known to be involved in the biological process “GOBP_AGING” (Figure 
6A), which can be found in the Molecular Signatures Database (MSigDB) [82]. The DEGs 
between healthy children and nonagenarians also related to the aging pathway are shown 
in Figure 6B. The three DEGs that appear to be associated with the aging pathway, proge-
ria and normal aging are highlighted in purple. 

Besides UCP2, only WNT16 and IGFBP2 are DEGs in both conditions and are known 
to be involved in the aging pathway. Figure 6C, D, and E visualize the gene expression of 
the respective genes. Expression of WNT16 is higher in nonagenarians (Figure 6C) and 
progeria patients (Figure 6D) compared to healthy children. Comparing nonagenarians to 
progeria patients shows that nonagenarians have a slightly higher expression of WNT16 
than HGPS patients (Figure 6E). 

Nonagenarians express higher levels of IGFBP2 than healthy children (Figure 6C). 
Progeria patients present a higher IGFBP2 expression than healthy children (Figure 6D) 
and even higher IGFBP2 levels than nonagenarians (Figure 6E). Healthy children (Figure 
6C) and progeria patients (Figure 6E) express more UCP2 than nonagenarians. At the 
same time, progeria patients have higher UCP2 levels than healthy children (Figure 6D). 
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Figure 6. Network visualization of miRNAs related to WNT16, IGFBP2, and UCP2. (A) Comparing 
the genes involved in the Aging Pathway (green) with the DEGs in progeria comparison (blue) and 
the aging comparison (yellow) results in three common DEGs WNT16, IGFBP2, and UCP2. (B) Net-
work visualization of the DEGs involved in the aging pathway and differentially expressed between 
healthy children and nonagenarians. The three DEGs that are also differentially expressed when 
comparing progeria patients and nonagenarians are highlighted in purple. (C) Gene expression of 
the three DEGs WNT16, IGFBP2, and UCP2, when comparing children and nonagenarians. (D) 
Gene expression of the three DEGs WNT16, IGFBP2, and UCP2, when comparing children and 
HGPS patients. (E) Gene expression of the three DEGs WNT16, IGFBP2, and UCP2, when compar-
ing progeria patients and nonagenarians. 

3.4. Prediction of microRNAs and Visual Exploration of Interaction Partners of WNT16, 
IGFBP2, and UCP2 

MicroRNAs (miRNAs, miRs) are small non-coding RNAs that are photogenically 
conserved and act as master regulators of gene expression [83]. miRNAs were predicted 
using the web platform miRNet 2.0 [60]. For our analysis, we used the genes that were 
differentially expressed in the respective analyses. The predicted miRNAs for all three 
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analyses (progeria DEGs, aging DEGs, and the 157 common DEGs) and the subsequent 
analyses are available in the Supplementary Materials (Table S4). Here, we focus on the 
miRNA prediction using the 157 common DEGs, resulting in 37 predicted miRNAs.  

The calculated network of these miRNAs and their interaction partners were im-
ported to Cytoscape for further analysis and filtered for DEGs. The three common aging-
related DEGs (WNT16, IGFBP2, and UCP2) revealed five predicted miRNAs: WNT16 is 
associated with one miRNA (hsa-mir-181a-5p), UCP2 is associated with two miRNAs 
(hsa-mir-26a-5p and hsa-mir-124-3p), and IGFBP2 is associated with three miRNAs (hsa-
mir-124-3p, hsa-mir-126-3p, and hsa-mir-27b-3p). The same five miRNAs were predicted 
for aging and progeria (Supplementary Materials, Table S4 and Figures S6 to S8). 

The miRNAs and their interaction partners of the 157 common DEGs are visualized 
in Figures 7A to C. Figure 7A shows hsa-mir-181a-5p and its interaction partners, with 
WNT16 being highlighted. The interaction partners of the three miRNAs associated with 
IGFBP2 (highlighted) are visualized in Figure 7B, and Figure 7C shows hsa-mir-26a-5p 
and hsa-mir-124-3p, which are both predicted to interact with UCP2 (highlighted), and 
their interaction partners. In the Supplementary Materials (Figures S6 to S8), we also vis-
ualize the interaction partners of these five miRNAs, including the changes in gene ex-
pression using the log2foldchanges obtained when comparing HGPS and healthy children 
and the interaction partners of the miRNAs and the changes in gene expression (log2fold-
changes) obtained by comparing nonagenarians and healthy children. 
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Figure 7. miRNA prediction and network visualization of miRNAs related to WNT16, IGFBP2, and 
UCP2. (A) Predicted interaction partners of hsa-mir-181a-5p, WNT16 is highlighted. (B) Predicted 
interaction partners of hsa-mir-124-3p, hsa-mir-126-3p, and hsa-mir-27b-3p, IGFBP2 is highlighted. 
(C) Predicted interaction partners of hsa-mir-26a-5p and hsa-mir-124-3p, UCP2 is highlighted. 
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3.5. Predicting Interactions Using NicheNet and Omnipath 
Using NicheNet [62] and the Omnipath database [61,84], we combined the experi-

mental results regarding RNA expression obtained from the dataset by Fleischer et al. 
[16,17] with prior knowledge regarding potential interaction partners from the Omnipath 
database. 

Gene Set Enrichment Analysis (GSEA) [45] is integrated into the NicheNet workflow. 
Figures 8A and 8E visualize the pathways in aging and HGPS, respectively. The pathway 
UV response has the highest positive normalized enrichment score (NES) in aging and is 
also among the top five positive enriched pathways in progeria. Here, we focus on UV 
response, as it has been shown that sun exposure induces the expression of progerin in 
human skin [85]. Additionally, accumulation of progerin has been associated with vascu-
lar disease in progeria [86], but, over time, it also accumulates in non-HGPS individuals 
[87]. It might thus contribute to vascular aging and vascular disease [87]. 

Therefore, the subsequent NicheNet analyses to predict the potential ligand-receptor 
pairs were performed with UV response as the pathway of interest (Figures 8C, 8D, 8G, 
and 8H). The Pearson correlation of the predicted ligands involved in UV response is 
shown in Figures 8B and 8F. Darker color indicates a higher prediction ability. The target 
genes for these ligands regulating genes related to UV response are visualized as 
heatmaps for both groups in Figure 8C (comparison nonagenarians and healthy children) 
and Figure 8G (comparison progeria patients and healthy children). The color intensity 
indicates the regulatory potential for the top-ranked targets (the 0.1 quantiles) with targets 
according to the prior model, which was derived from prior knowledge archived in the 
Omnipath database. 

Figures 8C and 8G show the predicted ligand-target interactions. Both analyses have 
IGF1 and CCL2 as common ligands for the predicted target genes. IGF1 expression is 
higher in children both compared to nonagenarians (Figure 8I) and progeria patients (Fig-
ure 8J). When comparing IGF1 expression in nonagenarians and progeria patients, the 
expression levels show little difference (Figure 8K). 

Predicting the ligand-receptor interactions shows which of the receptors that are ex-
pressed in the respective genes might interact with the prioritized ligands. Figure 8D 
shows the comparison of nonagenarians and healthy children focusing on UV response, 
Figure 8H shows the comparison of progeria patients and healthy children focusing on 
UV response.  

The only ligand that both analyses have in common is CCL2. CCL2 is an upregulated 
DEG when comparing nonagenarians and healthy children (Figure 8I). It is upregulated 
even more when comparing progeria patients and healthy children (Figure 8J). When 
comparing CCL2 expression in progeria patients and nonagenarians, CCL2 is more ex-
pressed in progeria (Figure 8K). 

ACKR4 is the only potential CCL2 receptor that is also a DEG in aging and progeria. 
To find possible interaction partners of CCL2 that are differentially expressed in both 

analyses, we uploaded the set of HGPS DEGs obtained by comparing progeria patients 
and healthy children in STRING. The results of the STRING analysis, the interactions 
found between the DEGs, were subsequently analyzed in Cytoscape by selecting CCL2 
and its neighbors, resulting in a list of DEGs (CCL2-HGPSvsKids, blue circle in Figure 
9A). The same steps were repeated using the aging DEGs obtained by comparing nona-
genarians with healthy children (CCL2-90svsKids, yellow circle in Figure 9A). The over-
lapping 16 DEGs of both groups (STAT4, ACKR4, CCL26, CCL2, CFH, HGF, LEPR, 
SNAI1, CDH1, MSR1, KDR, EGR1, MMP10, KIT, IL11, and STAT1) were visualized in 
STRING (Figure 9B). 
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Figure 8. NicheNet analyses of progeria and aging. (A) GSEA pathways when comparing nonage-
narians and healthy children. (B) Pearson correlation of the predicted ligands in the aging compar-
ison. (C) Heatmap of predicted ligand-target interactions in the aging comparison. (D) Heatmap of 
the predicted ligand-receptor interactions in the aging comparison and their respective recep-
tors. (E) GSEA pathways when comparing HGPS patients and healthy children. (F) Pearson corre-
lation of the predicted ligands in the progeria comparison. (G) Heatmap of predicted ligand-target 
interactions in the progeria comparison. (H) Heatmap of the predicted ligand-receptor interactions 
in the progeria comparison. (I) Expression of CCL2 and IGF1 in children and nonagenarians. (J) Ex-
pression of CCL2 and IGF1 in children and progeria patients. (K) Expression of CCL2 and IGF1 in 
progeria patients and nonagenarians. 
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Figure 9. NicheNet and STRING analysis of progeria and aging. (A) The 16 common CCL2 interac-
tion partners are the overlapping neighbors of CCL2 in the DEGs of the progeria comparison (blue) 
and the DEGs of the aging comparison (yellow), respectively. (B) STRING network of CCL2 and the 
16 CCL2 interaction partners that are differentially expressed in both comparisons. 

The STRING analysis shows that all of the DEGs that are part of both analyses have 
already been associated with CCL2. Several of these DEGs have at least been co-men-
tioned in PubMed abstracts: Four (KIT, CDH1, STAT4, and IL11) have been co-mentioned 
in PubMed abstracts, four (MSR1, LEPR2, EGR1, and STAT1) have been co-mentioned 
and have putative homologs that are co-expressed in other organisms, four (HGF, CFH, 
MMP10, and KDR) have been co-mentioned and are co-expressed in humans, and one 
(SNAI1) has been co-mentioned, is co-expressed in humans, and has been associated with 
CCL2 in experimental/biochemical data. CCL2 and both CCL26 and ACKR4 have been 
co-mentioned and have experimental/biochemical data suggesting a possible functional 
link. 

Out of the three likely interaction partners of CCL2 (CCR10, ACKR2, and ACKR4) 
that were predicted using NicheNet and focusing on UV response, only ACKR4 is differ-
entially expressed in both analyses. As ACKR4 was regulated in different directions in 
progeria and aging (downregulated in HGPS, upregulated in aging, Figure 3C to 3E), 
ACKR4 might play an important role in both processes and might be involved in the se-
verity of the symptoms or the differences between accelerated and normal aging. 

4. Discussion 
In 1987, Rowe and Kahn proposed the concept of “successful aging”, pointing out 

that many of the changes regarded as “normal” during aging are preventable [88]. They 
also reported that some of these changes could be reversed [88] interpreting “aging as a 
disease”, a notion that has already been proposed in ancient times [89] and has recently 
garnered attention [89,90]. Regardless of whether aging should be seen as a disease or not, 
extending not only the lifespan but also the health span [1,89,90] and possibly even reju-
venation [27] are of great interest. In this study, we analyzed a publicly available RNA 
Seq dataset using bioinformatic tools. 

Although the name “progeria” is derived from Greek for “prematurely old” [4], there 
are differences in differential gene expression between HGPS and “normal” aging. Gene 
expression in both groups, the HGPS patients and the nonagenarians, differs from gene 
expression in the control group of healthy children. However, there are distinct differ-
ences between the analysis results for progeria and aging. While both conditions have 157 
DEGs in common, there are also DEGs specific to the respective conditions. This results 
in different biological processes being affected by the changes in gene expression, evident 
in enrichment analyses. 
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The differences might be due to differences between progeria patients and nonage-
narians. While progeria patients are children suffering from a rare and fatal disease re-
sulting in premature aging [91], the nonagenarians might be examples of “successful ag-
ing” [88]. 

Additionally, enrichment analyses might reveal relevant information for under-
standing and treating the conditions. 

For instance, the only hallmark gene set that is enriched when comparing progeria 
patients and healthy children is KRAS signaling up. KRAS is known as the most fre-
quently mutated RAS isoform [92]. Due to the oncogenic nature of mutations in the RAS 
genes, RAS inhibitors such as farnesyltransferase inhibitors (FTIs) have been researched 
as potential anticancer drugs [92,93], although FTIs did not advance into clinical use due 
to their lack of efficacy in cancer therapy in clinical trial [93,94]. The similarity in the post-
translational processing of RAS and progerin led to the repurposing of FTIs as potential 
treatments for HGPS [94]. One of these drugs, lonafarnib (zokinvy), was successfully 
tested as progeria treatment in the first clinical trial for treating progeria [12] and has since 
been FDA approved [14], becoming the first FDA approved drug for progeria treatment 
[94]. 

Since Fleischer et al. obtained the dermal fibroblasts from “apparently healthy indi-
viduals” via the Coriell Institute cell repository [16], there is no further information on the 
donors available. The number of samples (5-7/group) is sufficient for RNA Seq data anal-
ysis using DESeq2 [39,95,96]. However, a bigger sample size and detailed medical history 
of the fibroblast donors could have contributed to further insights. 

Here, we focused on the 157 common DEGs in progeria vs aging speculating they 
should be involved in or at least related to the aging process and might be the key to 
understanding aging and the processes involved. Surprisingly, six of these DEGs are reg-
ulated in different directions in progeria and aging, respectively. Five of the DEGs (KRT8, 
KRT18, ADAMTS15, ACTN4P1, and UCP2) are upregulated in HGPS patients compared 
to healthy children and nonagenarians but downregulated when comparing nonagenari-
ans and healthy children. 

The sixth DEG, ACKR4, is downregulated in children suffering from progeria com-
pared to healthy children and nonagenarians. Nonagenarians have higher ACKR4 levels 
than healthy children. The opposite regulation of these genes might lead to a better un-
derstanding of the differences between progeria and aging. Furthermore, the regulation 
of the DEGs could indicate accelerated aging or normal aging. 

KRT8 and KRT18 have been linked to modulating cellular stress response and cell 
resistance to apoptosis [97]. KRT18 has been suggested as a possible biomarker for frailty 
and aging [98], due to KRT18 and cKRT18 being biomarkers for diseases with apoptotic 
and mitochondrial defects, which are among the hallmarks of aging, and its association 
with senescence and anti-mitochondrial auto-antibody formation [98]. 

The nonagenarians, on the other hand, appeared to have rather low KRT18 expres-
sion, although KRT18 levels would be expected to rise with increasing age [98]. If KRT18 
expression in fibroblasts is similar to other tissues, this finding might indicate that the 
nonagenarian fibroblast donors were of extremely good health or that progeria severely 
affects the skin, which corresponds to skin problems being among the typical progeria 
symptoms [7,8]. Therefore, examining KRT18 and its interaction partners in HGPS and 
different age groups might lead to further insights regarding aging and “successful ag-
ing”. 

ADAM metallopeptidase with thrombospondin type 1 motif 15 (ADAMTS15) is up-
regulated in HGPS but appears to be downregulated upon aging (both compared to 
healthy children). ADAMTS15, along with ADAMTS1, 4, 5, 9, and 20, is involved in sev-
eral processes, including palate formation, skin pigmentation, myogenesis, and cardiac 
development [99], all of which appear to be affected by progeria. In addition, ADAMTS15 
is involved in the turnover of cartilage and/or bone during joint inflammation [100] and 
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the inverse correlation of ADAMTS15 and CITED2 expression links it to the Wnt path-
ways associated with bone formation and inflammatory arthritis [100]. 

Thus, ADAMTS15 might be interesting research targets in progeria and aging-related 
research, especially as WNT16 is among the only three DEGs that progeria, aging, and the 
aging pathway have in common. 

The role of actinin alpha 4 pseudogene 1 (ACTN4P1) is not yet known. Pseudogenes 
have long been regarded as “void of function” [101] or “junk DNA” [102,103]. However, 
research has shown that they can affect coding genes and are transcribed into RNA 
[102,103] and are involved in regulatory functions [103]. 

Progeria patients had higher ACTN4P1 expression than healthy children in our study 
and even higher ACTN4P1 expression compared to nonagenarians. To our knowledge, 
this is the first publication mentioning ACTN4P1, which warrants further investigation of 
which processes and interaction partners are affected by ACTN4P1 and whether the 
pseudogene is involved in aging-related processes. 

WNT16 is among the DEGs with rather drastic changes in gene expression, indicating 
that WNT16 might be of special importance in both progeria and aging. This is coherent 
with literature as Marthandan and colleagues assessed the five most commonly used hu-
man fibroblast strains for laboratory use by deep RNA sequencing and real-time PCR and 
demonstrated that WNT16 and IGFBP2 are among the most differentially expressed genes 
upon aging [104]. In aging research, WNT16 has already garnered interest due to its asso-
ciation with bone mineral density, bone strength, and fracture risk [105]. WNT16B has 
been associated with regulating the onset of replicative senescence and belongs to the 
WNT family, a family of secreted proteins involved in development, aging, senescence, 
and tumorigenesis [106]. Additionally, it has been proposed that progerin directly affects 
the transmission of Wnt signaling pathway, which is known to be impaired in HGPS [107]. 
Our study further confirms a possible connection between Wnt signaling, progeria, and 
aging. 

Another aging related gene, UCP2, is shown as upregulated in progeria compared to 
healthy children and nonagenarians. Upregulation of UCP2 was observed in aged rats 
[108] and a mouse model of premature aging [109,110], where UCP2 expression appeared 
to have metabolic effects [110]. Its upregulation in spontaneously obese mice suggested 
UCP2 mediated metabolic adaption to the increase of fatty acid biosynthesis and elevated 
lipid levels [108]. Increased UCP2 expression has been correlated with increased levels of 
free fatty acids, which is proposed to be involved in downregulating IGF1 levels via a 
negative feedback loop [108]. Therefore, UCP2 has been associated with counterregula-
tory effects on aging and age-related pathologies in mice, possibly via modulating the 
insulin/IGF1 signaling pathway, which indicates that targeted increase of UCP2 levels 
might prolong the lifespan of mammals [108]. 

However, in progeria, the high UCP2 levels do not correlate with patients’ body 
weight, as low body weight is one of the characteristics of progeria [8]. In addition, there 
appear to be parallels between UCP2 and the different LMNA isoforms. A study compar-
ing the effects of lamin A, lamin C, and progerin, the truncated form of lamin A, in mice 
revealed that progerin and lamin C regulate mitochondrial biogenesis and energy ex-
penditure via triggering antagonistic signals in adipose tissue [111]. While mice only ex-
pressing lamin C were obese and had an increased lifespan, the role of progerin in adipose 
tissue homeostasis might have an opposing effect on lifespan [111]. Additionally, the ra-
ther skinny progerin expressing mice were more sensitive to insulin and appeared to have 
a higher metabolic rate and use more carbohydrates [111]. In contrast, the lamin C ex-
pressing mice were moderately insulin-resistant, showed reduced overall energy con-
sumption, and appeared to prefer fatty acids [111]. Involvement of UCP2 in aging and 
insulin signaling is similar to progerin and of great interest to research further. 

Insulin-like growth factor-binding protein 2 (IGFBP2) levels positively correlate with 
age, insulin sensitivity and inversely correlate with the body mass index (BMI) [112]. Van 
den Beld et al. conducted a 20-year longitudinal study, repeatedly measuring BMI, IGF1, 
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IGFBP2, insulin sensitivity, and mortality around the ages of 55, 65, and 75 in 539 partici-
pants [112]. They reported, when adjusted for BMI, IGFBP2 levels and insulin sensitivity 
show a positive correlation [112]. Therefore the authors suggest IGFBP2 as a possible 
marker for insulin sensitivity [112]. 

We are, to our knowledge, the first to report and stress these elevated IGFBP2 levels 
in progeria patients. In our comparative analysis, IGFBP2 levels in healthy children and 
nonagenarians shows its upregulation with age. However, in progeria, IGFBP2 expression 
is considerably more elevated than in nonagenarians suggesting its role in both aging and 
progeria. Such upregulation in progeria could be related to their weight, as children suf-
fering from progeria typically have rather low BMIs [8]. The age-related increase of 
IGFBP2 levels, especially after 50 [112], could also be connected with the high IGFBP2 
expression in accelerated aging and in serum, it appears to be a mortality marker that 
positively correlated with insulin sensitivity [112]. 

While pseudogenes such as ACTN4P1 are still garnering research interest 
[101,102,113,114], microRNAs (miRNAs/miRs), which have been equally disregarded for 
a long time [115], are increasingly recognized as therapeutic targets [115] and show prom-
ising therapeutic results [116]. Hence, we included miRNA prediction, which is a promis-
ing research field on its own, in our analyses. 

Three of the 37 miRNAs that were predicted using the common DEGs as input might 
be associated with IGFBP2: hsa-mir-27b-3p, hsa-mir-126-3p, and hsa-mir-124-3p. 

In the plasma, hsa-mir-126-3p appears to be upregulated with age [117], while the 
miRNA was found to be downregulated in blood samples of centenarians and has there-
fore been proposed as a potential longevity biomarker [117,118]. Olivieri et al. reported 
that the increase of hsa-mir-126-3p blood level was accompanied by an increase of hsa-
mir-126-3p in human endothelial cells during senescence [119]. They also observed lower 
hsa-mir-126-3p levels in type 2 diabetes mellitus patients and proposed a possible inter-
relationship between mir-126-3p downregulation and age-related conditions with a pro-
inflammatory background, while an increase of mir-126-3p might act as a positive com-
pensatory mechanism [119]. miR-27b expression appears to affect wound healing in skin, 
as a study by Bi et al. indicates [120]. They reported increased fibroblast proliferation and 
thus accelerated healing of scald wounds in rats upon miR-27b inhibition [120]. 

Both IGFBP2 and UCP2 are associated with miR-124, which has been shown to in-
crease in senescent skin and upon UVB-irradiation, indicating a possible role of miR-124 
in UVB-induced skin aging [121]. UCP2 is also associated with mir-26a-5p. Measured in 
serum, miR-26a could serve as a prognostic marker for osteoporosis and appears to regu-
late serum IGF1 levels in osteoporosis patients [122]. Additionally, mir-26a-5p has been 
linked with UVB-induced apoptosis [117]. Increased expression of miR-181a, which was 
predicted to be associated with WNT16, has been reported upregulated in keratinocytes 
undergoing replicative senescence [117]. Furthermore, miR-181a is among the biomarkers 
of aging expressed by dermal fibroblasts and has been linked with skin immunosenes-
cence and the age-related inflammatory phenotype in CD4+ T cells [117].  

While GO enrichment focuses on DEGs, a GSEA analysis takes the whole gene set 
into account. Thus, using NicheNet analysis, GSEA, the Omnipath database, and the well-
known GSE113957 dataset, we present here to our knowledge the first integrated data 
analysis of the pathways involved in aging and progeria. Furthermore, we show genes 
and their interaction partners involved in these pathways. 

According to our analysis, UV response has the highest positive normalized enrich-
ment score when comparing nonagenarians and healthy children. Additionally, UV re-
sponse is among the top five pathways when analyzing progeria. Lesiak et al. assessed 
the progerin expression upon sun exposure in vivo and demonstrated that one week of 
sun exposure was enough to significantly elevate the progerin levels in the skin of partic-
ipants in their twenties almost to the amount of progerin measured in elderly participants 
(64.1 ±13.1 years) with photoaged skin [85]. Due to this experimentally backed correlation 
between UV exposure and progerin expression, we decided to focus on UV response in 
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our NicheNet analyses. In both analyses, aging and progeria, IGF1 and CCL2 are among 
the prioritized ligands. 

IGF1 (insulin-like growth factor 1) has been associated with IGFBP2 [112,123] and 
controls apoptosis [123,124]. Van den Beld and colleagues studied IGFBP2 and IGF1 con-
centrations, as well as insulin sensitivity and BMI in a 20-year longitudinal study and con-
cluded that IGFBP2 levels can predict mortality if interpreted in relation to insulin sensi-
tivity [112]. Hu et al. also reported a correlation between high IGFBP2 levels and mortality 
in subjects older than 70 years [123]. They proposed a possible association between low 
IGF1 expression, which is associated with lower mortality in animal models, and low 
IGFBP1 and IGFBP2 levels as markers for low IGF1 levels [123]. 

Fibroblasts of nonagenarians express less IGF1 than fibroblasts of healthy children, 
and IGF1 is indeed a DEG in natural aging. In fibroblasts donated by progeria patients, 
IGF1 appears to be slightly lower expressed than in nonagenarians. When comparing pro-
geria patients and healthy children, IGF1 is also lower expressed.   

As age appears to have a greater effect on UV-induced damages than the skin type 
[125], the effects of increased IGF1 expression were studied [126,127]. In aged skin, exog-
enous IGF1 [127] as well as dermabrasion and sun-protected skin-healing, which in-
creased IGF1 levels [126], were found to restore the response to UVB radiation [126,127]. 
Therefore, it would be of interest whether treatments affecting IGF1 expression influence 
the progeria-related skin abnormalities.  

Additionally, UV response might link inflammation and aging, “inflammaging”, as 
exposure to UV light is a well-known method to provoke inflammation [128], and CCL2 
expression is also induced by inflammatory stimuli [129]. The C-C Motif Chemokine Lig-
and 2 (CCL2), which is also known under several other names, including monocyte chem-
oattractant protein-1 (MCP-1), is the other prioritized ligand aging and HGPS have in 
common when analyzed regarding UV response. Among its predicted interaction part-
ners is ACKR4, the atypical chemokine receptor 4 that is also known as CCR11, and a 
variety of other names. ACKR4 is also among the CCL2-related DEGs that progeria and 
aging have in common. Although CCL2 levels are higher in progeria patients than in no-
nagenarians, both nonagenarians and progeria patients have higher CCL2 levels than 
healthy children. 

Again, the individual facets are known, but the suggested synthesis sheds new light 
on this aging pathway. Since increased CCL2 levels have been associated with inflamma-
tion and aging, Luciano-Mateo and colleagues crossbred mice bearing a mutation in their 
LMNA gene with mice overexpressing CCL2 [130]. The combination of accelerated aging 
and CCL2 overexpression significantly reduced the lifespan and the health span of the 
mice [130]. Additionally, higher CCL2 levels appeared to worsen accelerated aging and 
also affected the energy metabolism and the 1-C metabolism, , as well as the mitochondrial 
function of the mice bearing both the LMNA mutation and CCL2 overexpression [130]. 

These results, as well as our observations, suggest CCL2 as an additional target in 
aging and progeria research. Therefore, we visualized the interactions of CCL2 and the 
CCL2-related DEGs involved in both aging and progeria. In this study, we focus on the 
interaction between CCL2 and ACKR4, as both are involved in the UV response pathway, 
which we selected as an example for NicheNet analysis. ACKR4 has been mentioned as a 
receptor for CCL2 [131] which is upregulated in nonagenarians compared to healthy chil-
dren in our study, whereas the ACKR4 expression in progeria is very low in all compari-
sons. MCP-1/CCL2 can bind to a common binding site on ACKR4/CCR11 [131]. However, 
the relationship between CCL2 and ACKR4 is not yet explored. Hence, we predict that 
exploring the interactions of ACKR4 and CCL2 in aging in future research will be rather 
interesting. 

Although we elaborated here only on UV response as an example, the other path-
ways suggested by NicheNet analysis are equally interesting, and focusing on the ligands 
and receptors involved might generate further insights regarding aging and progeria. Due 
to the plethora of information contained in RNA seq experiments, reanalyzing existing 
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RNA seq data can still generate new insights. Even if in silico analysis can offer great in-
sights and help generate new hypotheses, subsequent in vitro and in vivo studies are nec-
essary to further validate the targets found using omics analyses. 

In summary, we briefly introduced several omics methods for RNA sequence analy-
sis that can be used on their own or in combination with both new data and already exist-
ing publicly available data. Here, we introduced some of the differentially expressed 
genes, their interaction partners, and their age-related implications, hoping to demon-
strate some of the possibilities omics analyses offer for aging research. 
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