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Simple Summary: This study presents a solution for the comprehensive and skilled monitoring
of water bodies located in all terrains worldwide. Built from the synergy between remote sensing,
big data computing, and Earth system physics, it presents a substantial increase in coverage
and state-of-the-art results compared with existing initiatives. The service provides access to
unprecedented information for hydrologists and water-relying assets managers.

Abstract: Surface water availability is a fundamental environmental variable to implement effec-
tive climate adaptation and mitigation plans, as expressed by scientific, financial and political
stakeholders. Recently published requirements urge the need for homogenised access to long
historical records at a global scale, together with the standardised characterisation of the accuracy
of observations. While satellite altimeters offer world coverage measurements, existing initiatives
and online platforms provide derived water level data. However, these are sparse, particularly
in complex topographies. This study introduces a new methodology in two steps 1) teroVIR, a
virtual station extractor for a more comprehensive global and automatic monitoring of water
bodies, and 2) teroWAT, a multi-mission, interoperable water level processor, for handling all
terrain types. L2 and L1 altimetry products are used, with state-of-the-art retracker algorithms
in the methodology. The work presents a benchmark between teroVIR and current platforms in
West Africa, Kazakhastan and the Arctic: teroVIR shows an unprecedented increase from 55% to
99% in spatial coverage.A large-scale validation of teroWAT results in an average of unbiased root
mean square error ubRMSE of 0.638 m on average for 36 locations in West Africa. Traditional
metrics (ubRMSE, median, absolute deviation, Pearson coefficient) disclose significantly better
values for teroWAT when compared with existing platforms, of the order of 8 cm and 5% improved
respectively in error and correlation. teroWAT shows unprecedented excellent results in the Arctic,
using a L1 products based algorithm instead of L2 one, reducing the error of almost 4 m on average.
To further compare teroWAT with existing methods, a new scoring option, teroSCO, is presented,
measuring the quality of the validation of time series transversally and objectively across different
strategies. Finally, teroVIR and teroWAT are implemented as platform-agnostic modules and used
by flood forecasting and river discharge methods as relevant examples. A review of various
applications for miscellaneous end-users is given, tackling the educational challenge raised by the
community.

Keywords: remote sensing; satellite; altimetry; water level; water inland; essential climate variable;
database

1. Introduction

Due to their strong contribution to the water cycle, water surface dynamics are the
predictive features for the eventuality of floods, hydric stress, water scarcity nay severe
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drought [1–4]. Soaring needs of monitoring are being expressed by all types of end-users,
such as hydrological and climate experts, administrations, intergovernmental and non
governmental agencies, and financial investors. Through the requirements expressed
by communities committed to water preservation, challenges of getting information in
specific uncovered areas are being witnessed [5]. Significant indicators encompass water
levels, water discharge and water volume changes of inland reservoirs and rivers [6–12].
Remote sensing, and more especially the field of altimetry, offers a privileged access to
the quantification of water availability and the computation of the relative change in
terms of water resources [13].

Several web platforms allow the access to water level observations at pre-determined
locations defined as virtual stations. The most important are summed up in Table 1.
Copernicus Global Operational Land Service [14] uses Jason-3 and Sentinel-3 data to
obtain water level measurements over 12901 virtual stations. Hydroweb [15] recently
(November 2020) increased their number of virtual stations from 1733 to 11336, in ad-
dition to 124 large lakes. Observations are refreshed at the latest 1.5 days after the
availability of a new altimetric measurement in the Hydroweb platform. Dahiti [16]
currently provides not only water level measurements for 4411 stations but also for
some of them, surface areas, volume variations, bathymetry, water occurrence masks,
land-water masks, hypsometry and river discharge with a latency of 1-2 days. G-REALM
[17] monitors in real time lakes over 100 km2 around the world relying on Jason-3 and
other past missions for historical data since 1992. However, information provided suffer
from spatio-temporal coverage sparsity at a global scale as they are only available at
predefined locations from existing web platforms. Not only large regions of the world
are being underrepresented, but missing data are observed in complex topographies
(mountainous landscapes, seasonal ice cover) which require more advanced processing
algorithms. Coss et al. [18] give a truthful and suited listing of the inherent reasons
behind these limitations.

Table 1: Open access water dynamics maintained datasets at predefined locations. In-
cludes Name of the dataset (Name), Satellite Missions used (Sat), Temporal Aggregation
(Tagg), Latency (Lat), Number of virtual stations (Nvs), Method References (Ref).
Satellite missions’ acronyms are referred as TOPEX/Poseidon (T/P), Jason(JS) 1-2-3,
Sentinel(S) 3, SARAL/Altika (SRL).

Name Sat Tagg Lat Nvs Ref
Copernicus Global Land Op-
erational Service (CGLOS)

T/P, JS-1, JS-2,
JS-3, S-3

Near
Real
time

4 days 12901 [15], [19]

Hydroweb T/P, JS-1, JS-
2, GFO, EN-
VISAT

Near
Real
time

1.5
days

11460 [15], [20], [21]

DAHITI T/P, JS-1, JS-2,
JS-3, GFO,
ERS-1, ERS-2,
Cryosat-2,
SRL, EN-
VISAT

Near
Real
time

1-2
days

4411 [16]

Global Reservoirs and Lakes
Monitor (G-REALM)

T/P, JS-1, JS-2,
JS-3, GFO, EN-
VISAT

Near
Real
time

7-10
days

379 [17]

When water level data are not available, their computation requires altimetry data
access at different levels of processing and from the various satellite missions providing
measurements. However, radar altimeter orbits and elevation retrieval technology were
originally thought for observing oceans implying a design of their spatial resolution lim-
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iting to 1000 meters river widths measurements for most of the missions [22]. Moreover,
retrieving water heights from altimeter range data require a great deal of processing for
rivers as surrounding land introduces noise in the system conceived for open water. As
indicated in the column of Method of Table 1, references of the algorithms used to extract
water level heights from altimetry data unfold that these large datasets rely on L2 data-
based products with ocean or ice retrackers [15,20,21,23] and applying post-processing
outliers rejections, while DAHITI [16] use L1 data based algorithms. Despite the BRAT
toolbox [24] was conceived to process these raw data, downloading and processing
the altimetry data for large scale sites remain a challenge that the AltEx software [25]
intended to tackle in 2019. An open-source platform with a web-viewer was built to
explore altimetry database availability and access water level time series information
on-the-fly. However, considered missions were limited to Jason 2-3 and the web-viewer
does not seem to be maintained anymore, neither the API access to data. Moreover,
AltEx does not verify wether users have selected points over water.

Recently, [26] stated that the greatest challenge of extracting insights from altimetry
is actually educational in order to set up synergies with hydrologists. There is a strong
need of operational remote sensing derived products with "continuity of data services,
standardization of information, characterization of errors and accuracy" to engage mis-
cellaneous types of end-users in benefiting from these information.

The call for world scale tracking of water level heights firstly relies on mapping
all possible water bodies areas that can be monitored on a regular basis, called virtual
stations. In this study, a cutting-edge operational virtual stations extractor algorithm
(denominated teroVIR) has been developed for multi-altimetry missions going beyond
predetermined locations availability. Moreover, an operational, robust and consistent
big geospatial-temporal data processor (denominated teroWAT) has been implemented,
relying on a constellation of Level 2 (L2) altimetry missions’ data (Sentinel 3A-B, Jason
1-2-3 and SARAL/Altika) to get continuous water level information from 2001 over large
areas barely covered until today such as the Arctic or the Ishim and Nura river basins
in Kazakhstan. The platform agnostic software teroWAT has then been adapted to be
systematically run near real time covering all West Africa and validated across the whole
region (17 countries) with a standardized and state-of-the-art proposed metric. The com-
munity of scientific users of the teroWAT software has contributed to the development
of products such as water volume variations and embedded visualisation fostered the
use of remote sensing information in hydrological applications. L2 data based algorithm
[27] has been found to have limited accuracy in the Arctic region due to frozen water at
winter time. Therefore, a Level 1 (L1) data based algorithm [28] has been operationalised
and plugged onto the existing software to deliver unrivaled water heights information.

In section 2, the methodologies are introduced, firstly detailing the datasets. Sec-
ondly, a description of teroVIR, a world scale virtual stations extractor, is provided.
Thirdly, the modulable and all terrains teroWAT software is presented by functional
block highlighting its interoperability. Finally, we expose the conventional metrics used
to validate water level heights and propose a combined innovative one. In section
3, the results such as unprecedented water surface dynamics of uncovered area are
revealed, as well as large scale validation of water level time series in West Africa but
also improvements brought by the L1 based processor for complex terrain handling and
illustration of the compliance to the mosaic of users’ needs. In section 4, the methods
and results are discussed.
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Figure 1. Satellite altimetry missions compatible with teroVIR and teroWAT processors, from first
available operational data (GeoSat, starting 1986) until present and future launches.

2. Material and Methods
2.1. Datasets

Twenty five years of available satellite altimetry missions [26] opens the opportunity
to build a long record of water level data. Figure 1 depicts the possibility of temporal
continuity of observations thanks to overlapping missions’ lifetime and high revisit
time (roughly bi-monthly/monthly) at medium spatial resolution (300 m up to 2.2 km).
However, each mission follows its specific nominal orbit impeding the persistence of
spatial coverage when the mission is over. The processors developed in this study
only rely on currently flying missions, namely Saral/ALTIKA(SRL), Jason(J) missions
1-2-3 (which followed one after each other the nominal orbit), Sentinel(S )3A-3B. While
CryoSat-2 is currently active, this mission suffers from low revisit time (369 days) for
most of the world since focusing on the polar regions and is therefore not included as an
input of the processor. As opposed to imaging satellite missions, the altimetry tracks are
sparse and do not offer the possibility to fly over the entire world. Fortunately, water
level heights disclose the advantage of being physical quantities spatially connected
along the same water body and the sparsity of the measurements is then counterbalanced.
As a result, observational requirements encompass selecting permanent water bodies
frequently flown over by altimetry missions in favour of spatio-temporal consistency.
Permanent water extent are extracted from the JRC GSWE dataset [29] which expresses
the water occurrence value per pixel in percentage aggregated over thirty years (1979-
2019) at 30 meters resolution. Spatial resolution limitations of the altimetry missions and
geometry of the water bodies entail constraints on their validity to extract water level
heights. In this sense, the virtual stations extractor teroVIR aims at inducing all possible
locations in the world which would allow for continuous water level observations,
without the need of setting them up a priori.
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2.2. teroVIR: world scale coverage virtual stations extractor

The teroVIR processor derives virtual stations by crossing altimeters’ buffered
nominal reference tracks with water masks extracted from JRC GSWE. In order to fulfill
long data record requirements [26], no interleaved and drifting orbits are considered,
since satellite missions follow their nominal reference tracks repeatedly during most
of their operational life. In the following, we describe the built teroVIR framework,
illustrated in Figure 2.

Figure 2. Virtual stations extractor (teroVIR) diagram.

Satellite nominal tracks

World coverage of the nominal satellite tracks are retrieved from the data providers
of each satellite mission and read by the software as vector objects. Cleaning of the
geometries to respect continuous coordinate set of points encompassing latitudes be-
tween −90 and +90 degrees and longitudes between −180 and 180 degrees firstly needs
to be carried out. Harmonization of the multi missions tracks geodata follows so that
each satellite track object discloses the following metadata (essential for uniqueness
denomination of the virtual stations): satellite name, absolute orbit, relative orbit.

User inputs

Virtual stations are extracted for the areas of interest provided as polygons by the
user. In case of regions with high water occurrence coverage (like in the Arctic), river
beds can be provided as linestrings. In those regions, main rivers and reservoirs of
interest drive the water dynamics impact within the hydrological catchment. By coarsely
pre-setting the lines of geometry of the river beds of interest, only virtual stations along
these water streams are retrieved, reducing significantly the processing time. This
process is called Geographic Selection and outputs filtering geometries of interest.
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Surface water occurrence

Surface water mapping is conditioned by downloading the JRC GSWE occurrence
maps. An adapter parsing the bounding box around the filtering geometries had to be
implemented to fit the formatting system used to geo-query the JRC GSWE tiles by their
name. Each tile is then downloaded and processed in order to extract, as explained in
the following sections, firstly water bodies and secondly virtual stations. The codebase
is modulable so that any water bodies dataset released with higher accuracy could be
plugged in.

Water bodies module

For each tile downloaded, water occurence pixel values are thresholded (T) to
derive a binary mask (water/land). Filtering geometries issued from the Geometric
Selection step are intersected with the tile, forming the area of interest from which
the water bodies geometries should be extracted. In case of string lines (representing
the river beds), they are buffered by a distance in degrees (bl) covering the full width
potentiality of the river. The outputted collection of geometries is burned into a raster
mask, to allow for the intersection with the water mask. The intersected mask is finally
vectorised into a collection of water bodies geometries. As this collection could contain
interrupted and disconnected components which actually represent the same water body,
traditional image processing operations of erosion followed by dilation are carried out.
The water body dataset JRC GSWE has a resolution of 30 m, and parameters of erosion e
and dilation d are chosen within the same order of magnitude. Finally, sanitized and
non empty geometries are kept as a collection of water bodies for the specified tile. This
aforedescribed process represents the Water bodies module.

Virtual stations module

For each satellite mission, only harmonized tracks geometries lying into the tile are
kept. As the tracks geometries are simplified compared to where the real altimetry signal
could occur, their spatial expansion has to be modelled. To do so, each of these tracks is
buffered by a certain distance in degrees (bt) which covers the across track resolution
for JS and SRL nominal tracks and the derivation potentiality of the real track from the
nominal track specific to the S3 mission. Then, water bodies and tracks geometries are
intersected, outputting a collection of virtual stations. This collection is finally cleaned
to only keep geometries within certain area extent boundaries (mina and maxa). The
inferior area extent bound ensures that the virtual station has a high probability to
receive an altimetry pulse. JS and SRL work in Low Resolution Mode (LRM) operating
mode whereas S3 works in Satellite Aperture Radar (SAR) mode, allowing for a higher
resolution along track. Therefore, for JS and SRL missions, the minimum area extent
is set as mina = pi× ( altr

2 ×
actr

2 )2 while for S3, mina = altr × actr. The upper boundary
maxa is used to discard virtual stations following into oceans or seas which would then
be way too big. All parameters and values are summed up in section 4 Table 6.

2.3. teroWAT: Interoperable all terrains water level processor

The water level processor teroWAT is built under the following rationale. Altimeters
send pulses at recurring points in time towards the earth’s surface. Onboard trackers
gather echoes scattered back which are then accumulated under a power distribution
function over time known as "waveform" [13]. Waveforms obtained over open water are
accurately processed to obtain the satellite ranges (distance to the water) by estimating
their "epoch" [30] with algorithms named "Retrackers" [31,32]. The L2 products of
altimeters [33] only provide with the satellite ranges, whereas the L1 data products
consist of geolocated waveforms generated by the signal received by the sensor on board
of satellites. As shown in Figure 3, the water level processor teroWAT was built in blocks
in order to ensure the modularity of the software. This way, additional features can be
added to the processor so that it can be tailored to the users’ needs. Necessary inputs
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mainly consist of surface water geometries (the so-called virtual stations or the entire
water body) and the period of observation. It is possible then to further filter by missions
or processing level (L1 or L2). Since the purpose of teroWAT is to obtain water level
heights at a large number of relevant locations around the world, necessary automatic
download of a large number of altimetry datasets has to be carried out. To optimize
downloading times, only passes close by the virtual stations geometries are being
queried to the data provider, with priority to the most consolidated processed products
in terms of timeliness. Several virtual stations can be flown over by the same pass,
therefore, duplicates of queries are removed to reduce downloading times. All passes
are then being downloaded in parallel for the case of multiple virtual stations ensuring
an optimized processing. After this, the L2 processing module is also run in parallel
for all virtual stations. In this module, for each virtual station, all geo-matching passes
containing altimetry datasets are processed. Each altimetry dataset provides data for
all pulses of the entire satellite pass crossing the globe but only data points intersecting
the water mask geometry are kept for computation. The larger the water body is, the
more data points are likely to be found. Satellite ranges and backscatter values for all
retrackers available in L2 products and corresponding corrections (troposphere, dry
troposphere, ionosphere, solid earth tide, geocentric pole tide and ocean loading tide)
are computed [27]. The best retracker is the one presenting the highest number of points
falling into the mask and the smaller standard deviation of the basckatter values. An
additional filtering step is performed to obtain valid points and reject outliers both
within each water body, and within each water level time series. The Interquartile Range
Rule is used to first discard pulses with out of range backscatter values for one water
body at a certain date, but also to discard water level values from the entire time series
associated to a water body at the end of the processing. The output of the teroWAT
consists of multiple time series of water level values for each of the surface water mask
and each mission used as input.

Figure 3. Water level processor teroWAT diagram block.
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While the L2 product is sufficient for large open water bodies (oceans, lakes), the
retracked satellite range can be a complete outlier when land reverberations or frozen
water presence contaminate the waveform. In this case, state-of-the-art algorithm by Gao
et al. [28], based on L1 products, has been implemented to filter out too noisy waveforms
(based on the number and amplitude of the peaks) and the ones with retracked epoch
too far away from the corresponding local elevation value (obtained from a Digital
Elevation Model). While in most of the regions of world, the Shuttle Radar Topography
Mission (SRTM) DEM is available, for the northernmost and southernmest areas, an
adapter has been developed to be able to use the Arctic DEM. Following the same
strategy of modularity, other adapters can be included for regional DEM of higher
resolution. As seen in Figure 3, the L1 processing module is stand alone and only
requires communication with the altimetry datasets. The L1 processor computes the
retracked satellite range value which becomes an input of the L2 processor.

As all satellite missions operate on different orbits, biases can be introduced that
require a cross-calibration of inter-track and inter-satellite biases. For each water surface
geometry, mean differences between the overlapping time series of the different missions
are set as bias and therefore removed to the water heights computed for each mission.
By post processing the time series with satellite missions bias removal [34], the final
outputs of teroWAT are mere water level time series for each virtual station.

The teroWAT processor can be adapted to any online processing platforms facilitat-
ing tailored access as required by users [26]. As shown in Figure 3, platform adapters
only are necessary for reading the inputs, for communicating with the data providers
available in the platform and for vizualisation of the results. This demonstrates the
capability of the system to be implemented in on-line platforms by slightly changing
the processor, while maintaining the main steps unaltered. In other words, the system is
platform agnostic.

2.4. Consistent and inclusive evaluation metrics

The water heights are being validated by calculating a collection of usual metrics.
The unbiased root mean square error (ubRMSE) [28] allows an estimation of the errors
between the insitu measurements and the water level datasets, removing the bias induced
by the distance between the measurements (< 50 km) on the same water body. The
Median Absolute Deviation (MAD) provides an assessment of the errors by removing
the impacts of potential outlier datepoints. MAD is defined as:

MAD = median(|(X− X)− (Y−Y)|) (1)

with (X1, ..XN) being the insitu measurements corresponding with (Y1, ..YN), the
water level matching N datepoints. The Pearson coefficient (R) [35] gives an indication
on the correlation of the time series compared.

Considering the sparsity of the measurements in remote and difficult of access
areas, not all insitu stations will have the same sample size and reliability. The ubRMSE
and R are more likely to be better for a time series of two datepoints than for more.
Based on this observation, we propose to classify the time series extracted by virtual
station-mission (VSM) in four reliability categories. If a virtual station is at the crossing
of different missions tracks, each mission time series will be evaluated separately as a
VSM. The normalized TeroSCO (Ts) grants a consistent comparison, combining different
metrics, of all virtual stations and is evaluated as:

Ts = wc ×
1

eubRMSE × R (2)

where c is the reliability category and corresponding weight wc. The definition of
the categories is as such:

• Very low coverage category: N = 1 datepoint is available and wc = 0 since only
one measurement does not define a reliable time series.
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• Low coverage category: 1 < N ≤ 3 datepoints are available, defining a minimum
of points for a reliable time series and wc = 0.1

• Medium coverage category: 3 < N ≤ m datepoints are available, defining around
at least one year of data and wc = 0.35. For Jason mission, m = 35, whereas for
other missions m = 12, considering their revisit time.

• High coverage category: N > 12 datepoints are available, defining more than one
year of data and wc = 0.55

The TeroSCO ensures an interpretable metric (normalized range), favouring datasets
with highest number of measurements (N), highest accuracies (ubRMSE) and highest
correlations (R).

3. Results

Figure 4. Virtual stations provided by teroVIR in the different Areas Of Interest (background from
ESRI).

3.1. Coverage

The teroVIR and teroWAT processors have been run for five areas of interest around
the world. Virtual stations extracted with teroVIR are shown in Figure 4 in North of
Kazakhstan, in the Arctic and in West Africa. Table 2 informs that Kazakhstan, Arctic in
West and East Russia were barely covered by neither CGLOS, Hydroweb or Dahiti while
North America and West Africa are at best respectively one sixth and half less covered
than with teroVIR.

The total surface covered in Kazakhstan is 283,905 km2 (roughly 10% of the total
surface of this country), which has been suffering from severe floods events while its
monitoring remains very sparse as just demonstrated. The Arctic area is covered with
small water bodies which may not influence much the water balance of a catchment,
and therefore having prior information of major river lines helps to only run the teroVIR
processor where needed. These river lines have been derived by hydrological experts
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and divided into three regions, namely North America, West Russia and East Russia.
A descriptive of the missions providing data for all areas of interest stations can be
observed in Figure 5. While JS 1-2-3 sequence ensures 10 years of continuous data, the
spatial coverage is significantly lower than for S3A and S3B respectively only available
since 2016 and 2018 and than for SRL, deprecated (on drifting orbit mode) since July
2016.

Table 2: Benchmark of virtual stations provided in different areas of interest by the
different platforms.

AOI teroVIR CGLOS Hydroweb Dahiti
Arctic - North America 1677 269 132 62

Arctic - West Russia 828 6 90 9
Arctic - East Russia 1454 8 21 3

West Africa 1078 478 549 332
Kazakhstan 373 6 12 3

Figure 5. Virtual stations counts by mission in each region.

3.2. Accuracy

In West Africa alone, 727 virtual stations provide data near real time for missions
SRL, JS 1-2-3 and S3A-3B. In 17 countries, 19 insitu stations have overlapping datepoints
with 36 virtual stations. All metrics have been computed by reliability category for
the 46 VSMs available in West Africa and displayed in Table 3. On the one hand, the
less reliable is the category, the better are the metrics (ubRMSE, MAD and R). Medium
coverage category also has more than double VSMs as other ones. On the other hand,
TeroSCO’s are higher on average for high coverage category, giving the evidence of its
consistent design.

For all VMSs, a mean score of 0.136 is found and a standard deviation of 0.104,
revealing a large disparity of the VMSs accuracy, which is also verified for the metrics
ubRMSE (mean of 0.638 m and standard deviation of 0.447 m) and MAD (mean of 0.418
m and standard deviation of 0.528 m). However, while the respectively worst ubRMSE
and MAD reach 1.446 and 1.772 m, no more than 75% of the VMSs respectively go over
0.988 and 0.460 m. Therefore, most of the VMSs present state-of-the-art accuracy.

In order to assess the TeroSCO liability and validate the teroWAT algorithm againts
existing datasets, we choose three insitu stations (Kirango and Koulikoro [Mali], Umaisha
[Nigeria]) where all the data providers (CGLOS, Dahiti and Hydroweb) disclosed virtual
stations. Table 4 reports the best ubRMSE, MAD and R and the worst Ts for teroWAT,
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since on average, the VMSs disclose the least datepoints. The teroWAT algorithm, through
its outliers filtering processing steps, presents a destructive behaviour, favouring higher
accuracy and less datepoints. The detailed table by insitu station is found in Appendix 7.
The TeroSCO shed light on the reliability of a VSM with Hydroweb disclosing the highest
score.

While the teroWAT algorithm based on L2 products requires half less data to down-
load and half less processing time, complex terrain can disclose severe outliers in the
results. A comparison between L1 and L2 processing levels has been carried out for
several virtual stations in the Lena river, one of the major rivers flowing into the Arctic
Ocean. Figure 6 shows how L2 products can include outliers within the retracked values
when the signals suffer from land pollution or frozen water backscattering. Unreliable
values are being filtered out by the L1 teroWAT processor, especially in Kangalassy and
Pokrovsk. S3A derived water levels are only computed after 9 March 2019, due to the
failing Open Loop mode in this region for on-board DEM prior to version 5.0. Table 5
reveals the improvement in all metrics for the studied stations, by using L1 instead of L2
processor. Less datepoints are found for L1, since more outliers are discarded.

Table 3: Averaged metrics of all VSMs in West Africa by reliability category.

Category ubRMSE (m) MAD (m) R Ts Number
of VSMs
Very low 0 0 0 0 6

Low 0.488 0.262 0.999 0.061 8
Medium 0.748 0.461 0.816 0.161 21

High 0.886 0.678 0.890 0.216 11

Table 4: Averaged metrics of VSMs for 3 in situ stations (Kirango, Koulikoro, Umaisha)
in West Africa for comparison between CGLOS, Dahiti, Hydroweb and teroWAT data
providers.

Data provider ubRMSE (m) MAD (m) N R TS
CGLOS 0.971 0.782 13.1 0.845 0.161
Dahiti 0.966 0.813 13.2 0.841 0.162

Hydroweb 0.961 0.778 13.0 0.846 0.163
teroWAT 0.889 0.707 10.42 0.905 0.153

Table 5: Averaged metrics of VSMs for 5 in situ stations (Batamai, Kalangassy, Yakutsk,
Tabaga, Pokrovsk) in the Lena River for comparison between L1 and L2 teroWAT proces-
sors. The insitu measurements are only available until 2020.

teroWAT processors ubRMSE (m) MAD (m) N R TS
L1 0.369 0.737 9.25 0.658 0.176
L2 4.480 1.765 10.6 0.572 0.148

3.3. Users adoption

The modularity of the processors allows to easily ingest their outputs into various
applications required by the users. Common specification lies in retrieving long data
record to retrace past scenario. Monthly water volume variations obtained from the
combination of the output of the water level processor and water masks have for in-
stance been computed for flood characterization in several unprecedented locations in
Kazakhstan (see Figure 8a) and for water quality assessment in Lake Volta and Lake
Victoria (see Figure 8b). Floods forecast is particularly a topic of interest in Africa where
more extreme precipitations are observed at higher frequency every year during rainy

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 July 2022                   doi:10.20944/preprints202207.0037.v1

https://doi.org/10.20944/preprints202207.0037.v1


12 of 18

Figure 6. Water level relative change time series in meters for all virtual stations and corresponding in situ stations in the Lena River
with (a) map with in situ stations (in yellow) and corresponding Virtual Stations geometries (background from ESRI), (b) Batamai, (c)
Kangalassy, (d) Yakutsk, (e) Tabaga, (f) Pokrovsk close by stations time series.

(a)

(b)
-

(c)

(d)

(e)

(f)

seasons. FANFAR [36] aims at producing an operational flood forecasting and alerts
system in West Africa, gathering hydrological experts and civil protection units of 17
countries collaborating with the scientists developing the system. By allying direct
users feedback and easy insights access (see Figure 8c) taking advantage of the H-TEP
(see Figure 8d), the all-in hydrology platform, FANFAR enhances the capacity of West
African institutions to forecast, alert for and manage floods. The flood forecast model
uses as an input the 727 water level time series (see section 3.2) produced near real
time in automatic production to overcome the sparsity of gauges in this region. Finally,
fresh water monitoring for arctic users community 1 has been carried out in the H-TEP
with water discharge computed from water level time series from S3 obtained by the L1
processor.

1 Pan-arctic user-group: Arctic-HYCOS - national hydrological services in Arctic council member states/GRDC/WMO and Yakutian user-
group:Federal, regional, and local stakeholders, and research institutes in Republic of Sakha (Yakutia), HYPE-ERAS (Belmont forum project)
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Figure 7. Viewers of the applications relying on the teroVIR and teroWAT processors for (a) water
level time series 2017-2020 in Nur-Sultan (Kazakhstan) [viewer], (b) water volume change time
series in Lake Volta (Ghana) [viewer], (c) FANFAR viewer for flood forecast [viewer], (d) H-TEP
geobrowser with near real time water level time series on the left panel, virtual stations delineated
in orange, and water level service on the right panel [geobrowser].

(a) (b)

(c) (d)

4. Discussion

Climate science often studies large-scale spatio-temporal phenomena depicted by
long data records [37], many of which can be derived from Earth Observation satellites
on a recurrent basis such as water level related products. We developed an operational
software conceptualized with a modulable view, not only allowing to fit the requirements
of miscellaneous users but also delivering datasets at a global scale extracted from up
and running altimetry missions (since 2001). Within this software, the interoperability of
the teroVIR processor producing virtual stations and of the teroWAT processor delivering
corresponding water level time series, guarantees the extension to past (Geosat, ERS 1-2,
Topex/Poseidon, GFO, Envisat) and future (SWOT, Sentinel-6) missions.

The virtual stations extractor teroVIR was built on the scientific and physical knowl-
edge of multi-missions/datasets types to map all possible water bodies areas that can
be water level monitored on a regular basis. Unprecedented virtual stations in barely
covered area to date have been found in high numbers in Kazakhstan and in the Arctic.
In West Africa, an increase of 55.6%, 49.0%, 69.2% of extracted virtual stations in com-
parison respectively with CGLOS, Hydroweb and Dahiti (dispensing predetermined
stations), has been achieved. However, limitations are found for the virtual stations
whose shape extension follows the same orientation as the satellite track as seen in Figure
8. Since the bathymetry and width of the water body as well as the geoid local values can
significantly vary along the river bed, the average water height value computed at each
date point will not give an accurate representation of the distribution of all the water
level values of each pulse. Further refinement of the teroVIR based on the alignment of
the virtual station with the track geometry should allow to split it up. Moreover, the mul-
titude of virtual stations found over large water bodies such as lakes should be merged
into a unique one since they are all connected on a hydrological physical interpretation.
Finally, since the teroVIR targets the production of time continuous data records, only
permanent water bodies have been considered though many regions present a high
inter-seasonal variation in water availability such as West Africa. An evolution of the
processor considering seasonal water bodies would give unprecedented information on
water heights over the years.
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Figure 8. Virtual station (in red) leading to unreliable water level time series. The orientation of
the river bed follows the S3 satellite track (in purple) over almost 30 km. For each date, all pulses
observations falling into this geometry are averaged introducing artifacts due to great variations
occuring along the river.

The teroWAT processor modularity ensured a smooth evolution guided by the
needs of the users. Key stakeholders asking for data in remote locations can also be data
providers. The access given by the hydrologists of West Africa to gauges allowed, to the
best of our knowledge, the first large scale validation for water level products across
such a large region. An average of ubRMSE of 0.638 m and MAD of 0.418 m have been
found for 36 virtual stations for the L2 processor. The TeroSCO introduced, combining
several metrics to assess with a normalized value the reliability of a virtual station
and corresponding water level heights accuracy, proved its effectiveness by favouring
virtual stations with more datepoints (N), lower ubRMSE and higher pearson coefficient
(R). This score allows an unequivocal understanding of the quality of the validation
of time series, by removing the bias introduced by the number of samples compared.
Other datasets from CGLOS, Dahiti, Hydroweb providers have been compared against
teroWAT, the latest showing better conventional metrics (ubRMSE, MAD, pearson)
while lower TeroSCO. The accuracy of the L1 teroWAT processor has been improved,
targeting complex terrain regions barely covered until today, like the Arctic, with the
modular addition of the L1 module. Results significantly show the effectiveness of
the L1 processor in discarding the polluted waveforms by terrain contamination and
in improving the accuracy for the selected ones. The teroWAT undeniably discloses a
destructive strategy with its outliers processing steps, removing unreliable datepoints
benefiting for smaller errors but penalizing the TeroSCO. In parallel to removing the
outliers postprocessing on water level heights, further adjustments on only retaining the
high backscatter values (e.g. > 15 dB in Ku band and > 20 dB in S band [24]) for each
pulse could help on get ridding of outliers which remain in the results. These values are
obtained on very flat surfaces, such as deserts, large river basins or wetlands due to the
specularity of the return radar echo.

As demonstrated in section 3.3, any region of the world can then be monitored
near real time, opening for scientific collaborations and actual usage of EO data as a
driver for change implementation. Among the sundry purposes presented, water surface
dynamics have disclosed their relation to flood forecast and river discharge estimation in
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complex terrains with the L1 processor. Since the flexiblity of the processors have been at
the center of the development of the software, improvement of the computation core can
easily be implemented while connection to any platform or viewer is facilitated. Finally,
the developed processors, providing water level time series information on-the-fly, could
be adapted to an unrivaled platform that allows users to query the large global raw
altimetry database dynamically.
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Table 6: Parameters for the virtual station extractor.

Parameter Name Value
T Threshold 75%
bl Line buffer 0.1 degrees
e Erosion 20 meters
d Dilation 30 meters

Sentinel 3 Saral/ALTIKA Jason
bt Track buffer 5000 meters 1400 meters 2200 meters
actr Across track
resolution 1640 meters 1400 meters 2200 meters
altr Along track
resolution 300 meters 1400 meters 2200 meters
mina Minimum
area 0.5 km^2 1.6 km^2 3.8 km^2
maxa Maximum
area 10000 km^2 10000 km^2 10000 km^2
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Table 7: Detailed averaged metrics of VS-mission time-series for 3 in situ stations (Ki-
rango, Koulikoro, Umaisha) in West Africa for CGLOS, Dahiti, Hydroweb and teroWAT
data providers.

insitu station Data provider ubRMSE (m) MAD (m) N R TS

Kirango

CGLOS 1.260 1.393 14.0 0.634 0.099
Dahiti 1.296 1.548 14.5 0.647 0.098
Hydroweb 1.260 1.393 14.0 0.634 0.099
teroWAT 1.279 1.434 13.25 0.787 0.109

Koulikoro

CGLOS 0.741 0.351 14.0 0.963 0.253
Dahiti 0.737 0.320 14.5 0.949 0.252
Hydroweb 0.741 0.351 14.0 0.963 0.253
teroWAT 0.483 0.115 8.0 0.989 0.215

Umaisha

CGLOS 0.834 0.602 11.3 0.938 0.132
Dahiti 0.746 0.572 10.5 0.926 0.137
Hydroweb 0.779 0.590 11.0 0.940 0.136
teroWAT 0.812 0.571 10.0 0.9401 0.133
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