

Article

Multi-fidelity Model Calibration in Structural Dynamics using Stochastic Variational Inference on Manifolds

Panagiotis Tsilifis ^{†,1*}, Piyush Pandita ^{†,2}, Sayan Ghosh ^{†,3} and Liping Wang ^{†,4}

[†] Probabilistic Design Group, General Electric Research, Niskayuna, NY 12309, USA;

¹ panagiotis.tsilifis@ge.com (P.T.); ² piyush.pandita@ge.com (P.P.); ³ sayan.ghosh1@ge.com (S.G.); ⁴ wangli@ge.com (L.W.)

* Correspondence: panagiotis.tsilifis@ge.com

Abstract: Bayesian techniques for engineering problems, that rely on Gaussian process (GP) regression, are known for their ability to quantify epistemic and aleatory uncertainties and for being data efficient. The mathematical elegance of applying these methods usually comes at a high computational cost when compared to deterministic and empirical Bayesian methods. Furthermore, using these methods becomes practically infeasible in scenarios characterized by a large number of inputs and thousands of training data. The focus of this work is on enhancing Gaussian Process-based metamodeling and model calibration tasks, when the size of the training datasets is significantly large. To achieve this goal, we employ a stochastic variational inference algorithm that enables rapid statistical learning of the calibration parameters and hyperparameter tuning, while retaining the rigor of Bayesian inference. The numerical performance of the algorithm is demonstrated on multiple metamodeling and model calibration problems with thousands of training data.

Keywords: Gaussian Processes; stochastic variational inference; multi-fidelity modeling; manifold gradient ascent; structural dynamics; vibration torsion

1. Introduction

Modern engineering tasks are often characterized by the need to perform large scale expensive laboratory experiments or amortize hours of compute performing simulations that are based on sophisticated mathematical formulations. While these high-fidelity sources of information provide detailed insight into the complex physical process, one usually faces a heavy computational runtime or a massive financial investment. In addition to this, obtaining datum by running experiments or simulations needs more advanced insight, that might not always be extricated from the datum by applying state-of-the-art methods used to build data-driven metamodels [1]. Finally, with the advent of Industry 4.0 [2], developing digital twins, that are commonly probabilistic surrogate models representing the underlying physical process, is becoming a routine practice across the industry. In a realistic scenario, paucity of data and noise in the recorded measurements are challenges that also need to be taken into account.

Surrogate modeling methods that have shown promise in dealing with problems of the aforementioned kind, typically include Gaussian process (GP) regression [3–5], probabilistic deep neural networks [6–8] or Polynomial Chaos expansions [9–11]. Application of these methods has been extended to problems from different domains, such as manufacturing [12,13], flow through porous media [10,14], and combustion mechanics [15]. Classic formulations of these methods provide a meaningful representation of model form uncertainty and noise, and they demonstrate strong predictive performance on unseen data. However, these approaches are susceptible to challenges like limited training data, multiple sources of information that model the same process, and the lack of identifiability of model parameters [16].

In this work, our focus is on applying GP regression to problems that have thousands of data [17]. Secondly, we focus on the use of GP regression in both, the single-fidelity and the multi-fidelity modeling scenarios. In the second scenario, we focus on the case where data from two sources of differing fidelity is available and the task involves calibrating the

so-called tuners of the lower fidelity source. In all these tasks, we resort to a fully Bayesian formulation of the GP regression, differentiating ourselves from the works of [18–20], the details of which are discussed in Ghosh *et al.* [21]. This is a critical aspect of this work, as retaining a fully Bayesian treatment for the metamodeling and model calibration tasks with GPs is a major challenge from a computational and numerical perspective. In some of the authors' previous work (see Pandita *et al.* [22]), it was demonstrated how savings in computational time can be achieved using adaptive Sequential Monte Carlo methods fused with a fully Bayesian treatment, applied to tasks of the above kind. However, the utilization of hundreds of computational processing units or cores, is not always practically possible, necessitating the need for alternative approaches. Other adaptive algorithms that accelerate Markov chain Monte Carlo methods for Bayesian inference [23–25] and optimal transport based approaches that circumvent the need for MCMC methods [26] have shown promise in recent years.

Most of the above mentioned works rely on computational power and heavy use of large scale computing, in order to overcome the challenges of training the models. Our main contribution in this work is to achieve computational efficiency by leveraging a variational formulation of Bayesian inference, commonly known as black-box variational inference (BBVI) [27], and by improving the performance of the optimization scheme involved using efficient subsampling, rather than resorting to online access to exorbitant computational resources.

Variational methods [28,29] to Bayesian inference have shown promise in various tasks that resort to a Bayesian formalism in order to train surrogate models [30,31], calibrate physical models [32] and more recently across a swathe of deep learning tasks [33–35]. The key ingredient in Variational Inference (VI), that enables efficient posterior density exploration conditioned on large amounts of data, is to perform the required likelihood function evaluations using random batch-sampling. Introducing this additional level of stochasticity in the algorithm, resulting in what is known as Stochastic Variational Inference (SVI) [36], allows for fast likelihood evaluations during the optimization procedure and scales the algorithm, while full exploration of the available training dataset is still guaranteed. SVI has been previously successfully applied for training deep GP models [37] and sparse GPs in big data scenarios [38]. In this work, we apply SVI to train hybrid Gaussian Process models that make use of training data stemming from multiple levels of fidelity, while at the same time they can incorporate calibration parameters. Specifically, we adopt the well known Kennedy-O'Hagan formulation [39] that relies on an autoregressive GP scheme and we develop a training algorithm that scales BBVI for big data problems using batch-sampling. We identify the optimal Gaussian approximations to the true posterior densities of the model's hyperparameters by solving the variational problem with respect to full covariance matrices, thus capturing all correlations between the parameters. To achieve this, we make use of a manifold gradient ascent algorithm that performs the optimization directly on the manifold of symmetric positive semi-definite matrices, as opposed to solving complex constrained optimization problems.

The outline of the paper is as follows: We present the mathematical details of the autoregressive multi-fidelity calibration model in Sec. 2. In Secs. 3.1 and 4.1, we expand on the details of the black-box variational inference and its use in scaling up for big data problems, and we introduce the manifold gradient ascent optimization scheme, to be used for carrying out the optimization task. To illustrate the direct applicability of the proposed approach on calibrating models using data from sources of varying fidelity, we use a set of synthetic functions in Sec. 5.1. We demonstrate the impact of the extended variational formulation on a benchmark *machine learning* dataset with thousands of training data, in Sec. 5.2. In Sec. 5.3, we highlight the impact of the proposed formulation on a challenging multi-fidelity problem, in the high-sample regime with over ten thousand training data, where the parameters of interest include the uncertain tuners of the low-fidelity simulation model. We summarize our conclusions and directions for future work in Sec. 6.

2. Multi-fidelity Gaussian Process modeling and calibration

2.1. Autoregressive Gaussian Processes

We consider the Kennedy & O'Hagan formulation [40] where two simulators are available, namely $y_h(\mathbf{x})$, $y_l(\mathbf{x}, \theta)$, where y_h represents some high fidelity computer code and $y_l(\mathbf{x}, \theta)$ represents a low fidelity simulation code. The design variable \mathbf{x} is assumed to take values within a space of feasible designs $\mathcal{X} \subset \mathbb{R}^D$, while θ is a set of calibration parameters that characterize the low fidelity simulator.

The relationship between the two codes is assumed to be

$$y_h(\mathbf{x}, \theta) = \rho y_l(\mathbf{x}, \theta) + \delta(\mathbf{x}) + \epsilon(\mathbf{x}), \quad (1)$$

where $\delta(\mathbf{x})$ is a discrepancy term that is statistically independent of $y_l(\mathbf{x}, \theta)$ and $\epsilon(\mathbf{x})$ accounts for measurement noise and is independent of both $y_l(\mathbf{x}, \theta)$ and $\delta(\mathbf{x})$. The coefficient ρ satisfies

$$\rho = \frac{\text{cov}[y_h(\mathbf{x}, \theta), y_l(\mathbf{x}, \theta)]}{\text{var}[y_l(\mathbf{x}, \theta)]} \quad (2)$$

and therefore accounts for the correlation between the models. Although in general ρ can be considered a function of \mathbf{x} [41,42], we assume for simplicity that it is constant throughout this work. Further, we take $y_l(\mathbf{x}, \theta)$, $\delta(\mathbf{x})$ to be Gaussian Processes with zero mean and variances $\sigma_l^2 r_l(\mathbf{x}, \mathbf{x}')$ and $\sigma_\delta^2 r_\delta(\mathbf{x}, \mathbf{x}')$ respectively where r_l and r_δ are correlation kernels, here to be taken as squared exponential functions

$$r_t(\mathbf{x}, \mathbf{x}') = \exp \left[- \sum_{i=1}^D \frac{(x_i - x'_i)^2}{\ell_{i,t}^2} \right], \quad t = l, \delta, \quad (3)$$

with $\ell_{i,t}$ being the correlation length or lengthscale along dimension i , for the two kernels ($t = l, \delta$).

The framework defined above may suffer from issues that pertain to recovering the correct solutions for the parameters being calibrated, also known as identifiability issues. These drawbacks are known in the literature and have been discussed in various works [43–45]. In this work, we limit our focus on improving the computational efficiency in a fully Bayesian formulation while acknowledging this characteristic of the multi-fidelity framework.

2.2. Posterior distribution

Assuming a set of observations are available, namely $\mathcal{D}_l = \{\mathbf{x}_i, \theta_i, y_i\}_{i=1}^{N_l}$ and $\mathcal{D}_h = \{\mathbf{x}_i, y_i\}_{i=1}^{N_h}$ are the input to output sets of points corresponding to the low and high fidelity simulators respectively. Conditioning the distribution of $y_h(\mathbf{x}^*, \theta)$ evaluated at some test point \mathbf{x}^* on the available data $\mathcal{D} := \mathcal{D}_l \cup \mathcal{D}_h$ and taking into account the prior choices and the independence between $y_l(\cdot)$ and $\delta(\cdot)$, we can write the posterior density as a Gaussian Process with mean and variance given by [39]

$$\mu_{y_h}(\mathbf{x}^*, \theta) = t_h(\mathbf{x}^*, \theta) V_h^{-1} \mathbf{y} \quad (4)$$

and

$$\sigma_{y_h}^2(\mathbf{x}^*, \theta) = \sigma_h^2(\mathbf{x}^*) - t_h(\mathbf{x}^*, \theta) V_h^{-1} t_h(\mathbf{x}^*, \theta). \quad (5)$$

In the above expressions we use $\mathbf{y} = (\mathbf{y}_l^T, \mathbf{y}_h^T)^T$,

$$V_h(\theta) = \begin{bmatrix} V^{(l,l)}(\theta) & V^{(l,h)}(\theta) \\ V^{(h,l)}(\theta) & V^{(h,h)}(\theta) \end{bmatrix} \quad (6)$$

where the diagonal block matrices are given by

$$\begin{aligned} V^{(l,l)} &= \sigma_l^2 \left(R_l(\mathcal{D}_l) + \sigma_{\epsilon_l}^2 I \right), \\ V^{(h,h)}(\theta) &= \sigma_\delta^2 \left(R_\delta(\mathcal{D}_h) + \sigma_{\epsilon_h}^2 I \right) + \sigma_l^2 \rho^2 \left(R_l(\mathcal{D}_h(\theta)) + \sigma_{\epsilon_l}^2 I \right), \end{aligned} \quad (7)$$

and $R_t(\mathcal{D}_t)$ is the correlation matrix with entries $r_t(\mathbf{x}, \mathbf{x}')$ for $\mathbf{x}, \mathbf{x}' \in \mathcal{D}_t$, $t = l, h$. In the above, $\mathcal{D}_h(\theta) := \{(\mathbf{x}_i, \theta)\}_{i=1}^{N_h}$ for $\mathbf{x}_i \in \mathcal{D}_h$. The off-diagonal blocks are written

$$V^{(l,h)}(\theta) = \rho V^{(l,l)}(\mathcal{D}_l, \mathcal{D}_h(\theta)). \quad (8)$$

At last, we define the vector

$$t_h(\mathbf{x}^*, \theta) = \begin{pmatrix} \rho \sigma_l^2 R_l((\mathbf{x}^*, \theta), \mathcal{D}_l) \\ \rho^2 \sigma_l^2 R_l((\mathbf{x}^*, \theta), \mathcal{D}_l) + \sigma_\delta^2 R_\delta(\mathbf{x}^*, \mathcal{D}_h) \end{pmatrix}. \quad (9)$$

3. Variational Inference

Throughout this section we present the main ingredients of the Variational Inference framework for the purpose of training Gaussian Process models by means of exploring a Bayesian posterior density. The target distribution in our case is the posterior distribution of the Gaussian Process hyperparameters ω , defined as the set of lengthscales $\ell_{i,t}$, $t = l, h$ along each dimension of \mathcal{X} , the variance parameters $\sigma_l^2, \sigma_h^2, \sigma_{\epsilon_l}^2, t, h$ and the calibration parameters θ . This posterior density is conditioned on the training data \mathcal{D} that in general consists of the high- and low-fidelity input and output observations. From Bayes' rule

$$p(\omega|\mathcal{D}) = \frac{p(\mathcal{D}|\omega)p(\omega)}{p(\mathcal{D})} \quad (10)$$

the posterior density is known as a function of the likelihood term and the prior density, up to a proportionality constant. Variational Inference [46,47] bypasses the challenge of sampling from the posterior, by approximating it by an element $q(\omega)$ chosen from a parametric family of distributions $\mathcal{Q} = \{q(\omega|\lambda) : \lambda \in \Lambda\}$, where Λ is some set that determines the parameterization of the densities in \mathcal{Q} . The criterion, for choosing the optimal density from the family, is minimizing the Kullback-Leibler (KL) divergence between the candidate and the target densities. We define KL divergence between the candidate and target densities as follows:

$$\text{KL}[q(\omega|\lambda) || p(\omega)] = \int q(\omega|\lambda) \log \left(\frac{q(\omega|\lambda)}{p(\omega|\mathcal{D})} \right) d\omega. \quad (11)$$

Several techniques for solving the optimization problem exist in the literature [28] such as mean-field VI [48] or nonparametric VI [32], and are typically tailored to problem specific choices of prior densities, approximating family of distributions and the inference problem under investigation.

One common characteristic of the approaches mentioned above is that they all transform the problem of minimizing the KL divergence to an equivalent maximization problem by substituting (10) into (11) to obtain

$$\log p(\mathcal{D}) = \text{KL}[q(\omega|\lambda) || p(\omega)] + \mathcal{F}[q], \quad (12)$$

where

$$\mathcal{F}[q] = \mathcal{H}[q] + \int q(\omega|\lambda) \log(p(\mathcal{D}, \omega)) d\omega \quad (13)$$

and $\mathcal{H}[q]$ is the entropy of $q(\omega|\lambda)$. Since the left-hand side of (12) is constant, we can conclude that the variational solution can be obtained by maximizing $\mathcal{F}[q]$ that is referred to as the *Evidence LOwer Bound (ELBO)*.

3.1. Black box Variational Inference

One of the most popular choices for optimizing (13) is to directly employ a stochastic gradient descent or ascent algorithm, after observing that the objective function can be written as an expectation

$$\mathcal{F}[q] = \mathbf{E}_q[\log p(\mathcal{D}, \boldsymbol{\theta}) - \log q(\boldsymbol{\omega}|\lambda)], \quad (14)$$

where the expectation is taken with respect to $q(\boldsymbol{\omega}|\lambda)$. The gradient of this expression with respect to the parameters λ that we seek to optimize will be

$$\nabla_{\lambda} \mathcal{F}[q] = \mathbf{E}_q[\nabla_{\lambda} \log q(\boldsymbol{\omega}|\lambda)(\log p(\mathcal{D}, \boldsymbol{\omega}) - \log q(\boldsymbol{\omega}|\lambda))], \quad (15)$$

where the gradient $\nabla_{\lambda} \log q(\boldsymbol{\omega}|\lambda)$ is known as the score function for any probability density q and the joint density can be expanded using Bayes' rule to $p(\mathcal{D}, \boldsymbol{\omega}) = p(\mathcal{D}|\boldsymbol{\omega})p(\boldsymbol{\omega})$. A Monte Carlo estimator of (15) can be written as

$$\widehat{\nabla_{\lambda} \mathcal{F}}[q] = \frac{1}{N} \sum_{i=1}^N \nabla_{\lambda} \log q(\boldsymbol{\omega}^i|\lambda) \left(\log p(\mathcal{D}, \boldsymbol{\omega}^i) - \log q(\boldsymbol{\omega}^i|\lambda) \right), \quad (16)$$

where $\boldsymbol{\omega}^i \sim q(\boldsymbol{\omega}|\lambda)$. Note that in the above expression, the gradient appears only on the score function, and can, in general, be computed analytically for certain families of distributions. On the contrary, the log-joint term $\log p(\mathcal{D}, \boldsymbol{\omega})$ which depends on the Bayesian model under investigation, needs not be differentiated. The gradient expression does not make any further assumptions and applies generically on every Bayesian inference problem, justifying the term coined to this approach as *Black Box Variational Inference* [27].

To further scale the algorithm, the perform the log-joint function evaluations $p(\mathcal{D}, \boldsymbol{\omega}^i) = p(\mathcal{D}|\boldsymbol{\omega}^i)p(\boldsymbol{\omega}^i)$ using batch sampling throughout the available dataset \mathcal{D} , where each time a random subset of the dataset is used to form the likelihood term. To put things in a realistic multi-fidelity context, is it highly unlikely that a big data problem will consist of a large number of high fidelity observations. Therefore, in this work we consider the following scenario where the number of training data points in \mathcal{D}_l is significantly larger than the number of high fidelity observations \mathcal{D}_h , that is $|\mathcal{D}_l| \gg |\mathcal{D}_h|$, thus, the batch sampling approach is applied only on \mathcal{D}_l . At every evaluation of eq. (17), let \mathcal{D}_l^i be a random subset of \mathcal{D}_l and $\mathcal{D}^i = \mathcal{D}_l^i \cup \mathcal{D}_h$, then eq. (17) is rewritten as follows:

$$\widehat{\nabla_{\lambda} \mathcal{F}}[q] = \frac{1}{N} \sum_{i=1}^N \nabla_{\lambda} \log q(\boldsymbol{\omega}^i|\lambda) \left(\log p(\mathcal{D}^i, \boldsymbol{\omega}^i) - \log q(\boldsymbol{\omega}^i|\lambda) \right), \quad (17)$$

where \mathcal{D}_l is subsampled N times, that is the number of Monte Carlo samples used to estimate $\widehat{\nabla_{\lambda} \mathcal{F}}[q]$. This scaling approaching has been previously introduced in the literature as Stochastic Variational Inference (SVI) [36].

4. Stochastic Optimization

4.1. Manifold Gradient Ascent

For the case where the approximating family of distributions \mathcal{Q} consists of multivariate Gaussian densities, that is $\mathcal{Q} := \{q(\boldsymbol{\omega}|\lambda) := \mathcal{N}(\boldsymbol{\omega}|\mu, \Sigma)\}$, a suitable optimization scheme needs to be employed over the parameters $\lambda = (\mu, \Sigma)$ such that the symmetric positive semi-definiteness property of the covariance matrix is not violated. Here, we employ a stochastic optimization scheme that is tailored particularly on our problem. The scheme applies a momentum algorithm for updating μ while performing the Σ update using a manifold gradient ascent step. For such a case, we make use of the natural gradient [49] as it is known to be invariant under parameterization [50].

The natural gradient on Riemannian manifolds is defined as

$$\nabla_{\lambda}^{nat} \mathcal{F}[q] = I_F^{-1} \nabla_{\lambda} \mathcal{F}[q] \quad (18)$$

where $\nabla_\lambda \mathcal{F}[q]$ is the regular gradient and I_F is the Fisher information for density q that is defined as

$$I_F(\lambda) = \mathbf{E}_q \left[\nabla_\lambda \log q(\omega|\lambda) (\nabla_\lambda \log q(\omega|\lambda))^T \right]. \quad (19)$$

In the Gaussian distribution case, the Fisher information matrix becomes

$$I_F(\mu, \Sigma) = \begin{pmatrix} \Sigma^{-1} & 0 \\ 0 & I_F(\Sigma) \end{pmatrix}, \quad (20)$$

where the elements of $I_F(\Sigma)$ are $(I_F(\Sigma))_{\sigma_{ij}, \sigma_{kl}} = \frac{1}{2} \text{tr} \left(\Sigma^{-1} \frac{\partial \Sigma}{\partial \sigma_{ij}} \Sigma^{-1} \frac{\partial \Sigma}{\partial \sigma_{kl}} \right)$ and the inverse simplifies to

$$I_F(\lambda)^{-1} \approx \begin{pmatrix} \Sigma & 0 \\ 0 & \Sigma \otimes \Sigma \end{pmatrix}, \quad (21)$$

where “ \otimes ” is the Kronecker product. Finally, the natural gradient of $\mathcal{F}[q]$ can be written as

$$\begin{aligned} \nabla_\mu^{nat} \mathcal{F}[q] &= \Sigma \nabla_\mu \mathcal{F}[q] \\ \nabla_\Sigma^{nat} \mathcal{F}[q] &= \Sigma \nabla_\Sigma \mathcal{F}[q] \Sigma. \end{aligned} \quad (22)$$

In our stochastic gradient ascent scheme, the parameters μ are updated using a momentum algorithm with updating step

$$\mu_{t+1} = \mu_t + \gamma m_{\mu_t} \quad (23)$$

where the momentum term m_{μ_t} is given by

$$m_{\mu_{t+1}} = v m_{\mu_t} + (1 - v) \nabla_\mu^{nat} \mathcal{F}[q]. \quad (24)$$

For the update on Σ it is necessary to map the point on the tangent space, indicated by the steepest ascent direction, back to the manifold. For that, we use a *retraction mapping* that approximates the exponential map of the manifold of symmetric positive semi-definite matrices [51].

In our case, we use

$$R_\Sigma(\xi) = \Sigma + \xi + \frac{1}{2} \xi \Sigma^{-1} \xi. \quad (25)$$

Further, for the momentum update on the manifolds we apply a *vector transport* that further projects the translated points back to the tangent space, as was first done in [52]. For our purposes, we apply the following mapping:

$$\Gamma_{\Sigma_1 \rightarrow \Sigma_2}(\xi) = U \xi U^T, \quad U = \left(\Sigma_2 \Sigma_1^{-1} \right)^{1/2}. \quad (26)$$

Finally, our computational algorithm is summarized in Algorithm 1.

5. Numerical examples

We study the performance of the proposed algorithm on three problems. One meta-modeling problem and two multi-fidelity model calibration problems are used in the sections that follow.

5.1. Academic example

We consider the following mathematical functions

$$\begin{aligned} f_1(\mathbf{x}, \boldsymbol{\theta}) &= \theta_1(8\mathbf{w}^T \mathbf{x} - 2) \sin(5\mathbf{w}^T \mathbf{x} - 4) + \theta_2(2\mathbf{w}^T \mathbf{x} + \frac{1}{2}) \\ f_2(\mathbf{x}, \boldsymbol{\theta}) &= f_1(\mathbf{x}, \boldsymbol{\theta}) + 30(\mathbf{w}^T \mathbf{x})^2, \end{aligned} \quad (27)$$

Algorithm 1: Manifold Gradient Ascent

```

Initialize: Choose  $\mu_0, \Sigma_0$ ;  

  Estimate  $\nabla_{\mu_0} \mathcal{F}[q]$  and  $\nabla_{\Sigma_0} \mathcal{F}[q]$  and the corresponding natural  

  gradients;  

  Initialize the momentum  $m_{\mu_0} = \nabla_{\mu_0}^{nat} \mathcal{F}[q]$  and  $m_{\Sigma_0} = \nabla_{\Sigma_0}^{nat} \mathcal{F}[q]$ ;  

for  $t = 1$  to  $T$  do  

   $\mu_t = \mu_{t-1} + \gamma m_{t-1}$ ;  

   $\Sigma_t = R_{\Sigma_t}(\gamma m_{\Sigma_{t-1}})$ ;  

  Estimate  $\nabla_{\mu_t} \mathcal{F}[q], \nabla_{\Sigma_t} \mathcal{F}[q]$ ;  

  Compute natural gradients  $\nabla_{\mu_t}^{nat} \mathcal{F}[q] = \Sigma_t \nabla_{\mu_t} \mathcal{F}[q], \nabla_{\Sigma_t}^{nat} \mathcal{F}[q] = \Sigma_t \nabla_{\Sigma_t} \mathcal{F}[q] \Sigma_t$ ;  

  Update momentum terms:  

   $m_{\mu_t} = v m_{\mu_{t-1}} + (1 - v) \nabla_{\mu_t}^{nat} \mathcal{F}[q]$  and  

   $m_{\Sigma_t} = v \Gamma_{\Sigma_{t-1} \rightarrow \Sigma_t}(m_{\Sigma_t}) + (1 - v) \nabla_{\Sigma_t}^{nat} \mathcal{F}[q]$ ;  

end

```

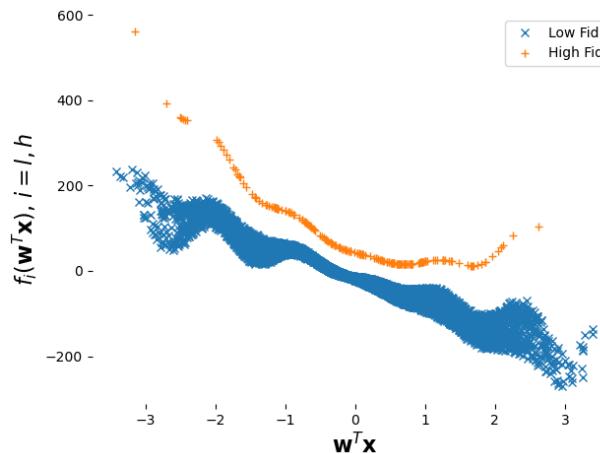


Figure 1. Training data for the academic example. Low fidelity data is depicted with blue 'x' while high fidelity observations are depicted with orange '+'.

with the coupling indicating that $f_1(\mathbf{x}, \theta)$ can be considered to be a low fidelity simulator and $f_2(\mathbf{x}, \theta)$ the high fidelity function. We take $\mathbf{x} \in \mathbb{R}^{10}$ and the vector \mathbf{w} is considered a set of known parameters projecting the 10-dimensional vector \mathbf{x} to \mathbb{R} . For this example we take

$$\mathbf{w} = \begin{bmatrix} 0.14042 \\ -0.35474 \\ 0.42674 \\ -0.09312 \\ -0.21463 \\ 0.26425 \\ 0.25603 \\ -0.18959 \\ 0.00467 \\ -0.66800 \end{bmatrix}. \quad (28)$$

A set of 10^4 training points is generated from the low fidelity function, that is $\mathcal{D}_l = \{\mathbf{x}_i, \theta_i, y_i\}_{i=1}^{10^4}$ while $\mathcal{D}_h = \{\mathbf{x}_i, y_i\}_{i=1}^{200}$ consists of 200 points simulated from f_2 where the calibration parameters have been fixed to $\theta = (3/2, 30)$. All inputs are generated using uniform Latin Hypercube sampling on $[-2, 2]^{10}$ while the θ_i 's are sampled uniformly within $[0.5, 2.5] \times [20, 40]$. The data is shown in Figure 1.

157
158
159

160
161
162
163

To test for the robustness of the approach, we first perform the ELBO optimization corresponding to training an autoregressive GP model on the available training data using a varying number of Monte Carlo samples used to evaluate the ELBO gradient estimate (17), namely $N = 10, 50, 100$. We run $5 \cdot 10^3$ iterations of algorithm 1 using an initial learning rate $\gamma_0 = 0.0001$, momentum weight parameters $v = 0.6$ and a random batch size equal to 50 data points (0.5% of the full dataset) to enable the SVI feature. As expected, the runtimes scale linearly from 13mins for $N = 10$ to 61mins for $N = 50$ to 125mins for $N = 100$.

Fig. 2 shows the comparison between the observations and the trained model predictions along with a 45-degree line plot for the case where the number of MC samples is as low as 10. As can be seen, the red '•' marks that correspond to the discrepancy-adjusted prediction match exactly the observations and the variance remains low. The blue 'x' marks, that corresponding to the inferred low fidelity simulator $\eta(\mathbf{x}, \theta)$, fall below the line, which agrees with the observed trends of the true functions as seen in Fig. 1. Specifically, the low fidelity function appears to be the closest possible to the high fidelity on design points \mathbf{x} that correspond to values of $\mathbf{w}^T \mathbf{x}$ near the origin, which is when we should expect the discrepancy term points to be the closest to the 45-degree line. When $\eta(\mathbf{x}, \theta)$ reaches very low or very high values (near -200 or 200 respectively), the discrepancy is the largest, and indeed the points are far from the 45-degree line.

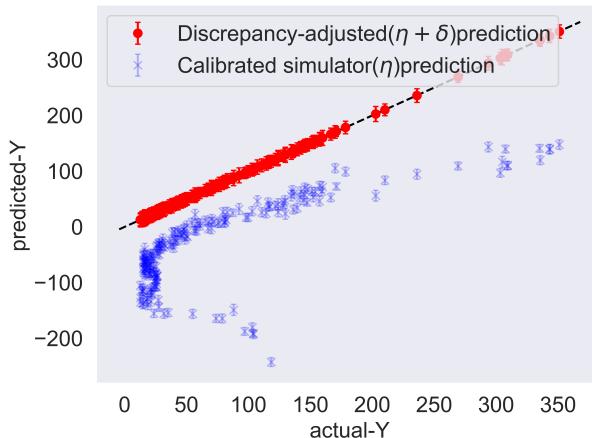


Figure 2. Prediction on the training data for low fidelity term $\eta(\mathbf{x}, \theta)$ and discrepancy-adjusted high fidelity output $y_h(\mathbf{x}, \theta)$ versus observations. Model was trained using 10 MC samples for the ELBO evaluation.

Fig. 3 shows the prediction versus observations plots for 500 test data points along with a 45-degree line plots again for the case where the number of MC samples is 10. At last, Fig. 4 shows the posterior densities of the two calibration parameters $\theta = (\theta_1, \theta_2)$ obtained using the VI framework. We observe a clear improvement in the accuracy of the θ_1 estimate as the number of Monte Carlo samples increase from 10. To ensure numerical stability in our implementation, the Gaussian approximation has been applied on the $\log \theta$ and the resulting density plots are based on kernel density estimation using $5 \cdot 10^3$ samples from the optimal log-normal approximation that is obtained using the VI approach.

5.2. Chicago crimes statistics dataset

In this section, we demonstrate the applicability of the proposed approach on a metamodeling task. The dataset used for this problem is one of the three datasets under the *Query Analytics Workloads Dataset* section, hosted by the University of California Irvine open-source machine learning data repository¹. This dataset has been used in the other recent work [53,54], in order to benchmark the performance of the proposed novel machine

¹ <https://archive.ics.uci.edu/ml/datasets/Query+Analytics+Workloads+Dataset>

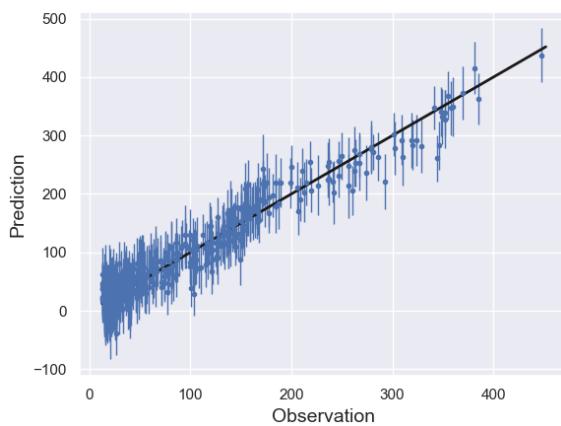


Figure 3. Prediction versus observations for 500 test data points. The model was trained using 10 MC samples for the ELBO gradient evaluation.

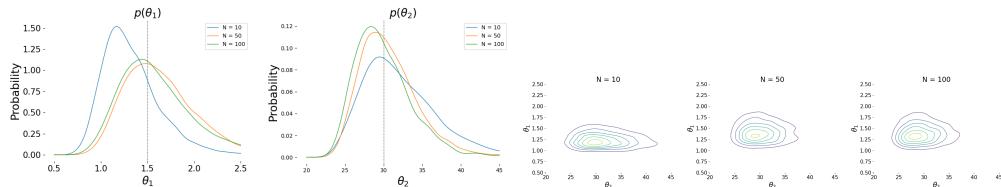


Figure 4. Top: Posterior marginal densities for θ_1 (left) and θ_2 (right) obtained after the ELBO optimization with a varying number of Monte Carlo samples. Bottom: Joint density plots obtain for $N = 10, 50, 100$.

learning algorithms. The quantity of interest being modeled is the number of crimes reported or simply the count of crimes in a particular region, in the city of Chicago [53]. The variables used to define the region, include the x and y coordinates of the center of the region and the radius of the region. Thus, the problem has three inputs and one output. The dataset has ten thousand pairs of inputs and output. We leverage nine thousand points for training the fully Bayesian metamodel and leave out one thousand points as *test data* in order to evaluate the predictive performance of the trained model and we run $2 \cdot 10^4$ iterations of our optimization scheme.

Two clear observations from Fig. 5 are: a) the predictive performance visibly improves as the batch size of subsampled training data increases from across the three subfigures, and b) the predictive epistemic uncertainty of the trained model also decreases indicating higher confidence in the model. In addition to these, Fig. 6 shows the increase in runtime of the algorithm as the batch size of subsampled training data increases. For reference, we also present the runtimes of the Sparse GP implementations presented in [4] using the GPy package [55] for the same number of iterations and batch size and a latent variable with 80

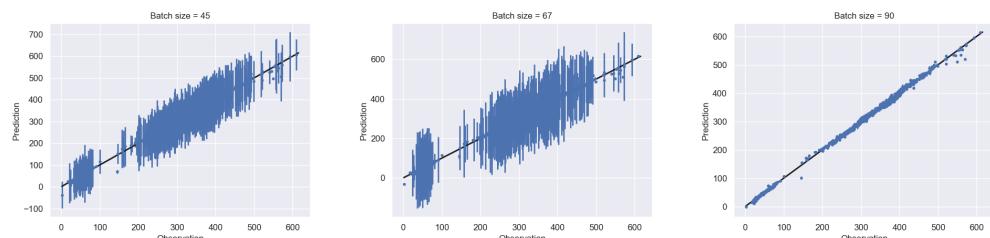


Figure 5. Prediction versus observations for 1000 test data points. The three models were trained using batch sizes equal to 45 (top left) 67 (top right) and 90 (bottom) that were resampled from the full dataset.

data points. As can be seen our approach reduced the runtime significantly for very small batch sizes while the performance of the two algorithms is about the same when batch size becomes 90. 212
213
214

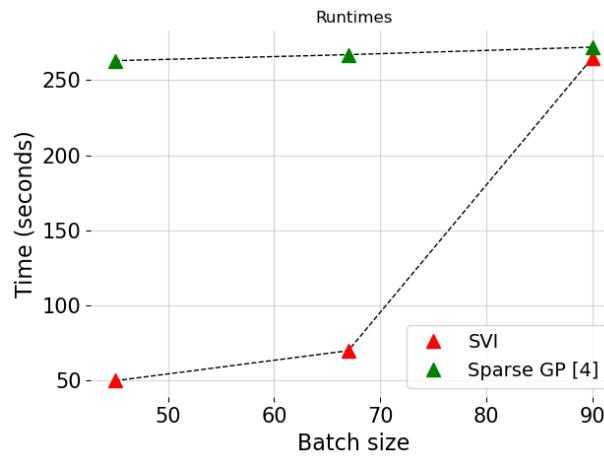


Figure 6. Runtime comparison for three different batch sizes for the Chicago crimes dataset.

5.3. Torsional vibration problem 215

We consider the torsional vibration problem on the system depicted in Fig. 7 that consists of three shafts and two discs of varying geometric characteristics and elasticity properties. Our goal is to built a Gaussian Process metamodel on the quantity of interest that expresses the lowest natural frequency, given as

$$Y = \sqrt{\frac{-b - \sqrt{b^2 - 4ac}}{2}} / 2\pi, \quad (29)$$

where $a = 1$,

$$b = -\left(\frac{K_1+K_2}{J_1} + \frac{K_2+K_3}{J_2}\right), \quad c = \frac{K_1K_2+K_2K_3+K_1K_3}{J_1J_2}. \quad (30)$$

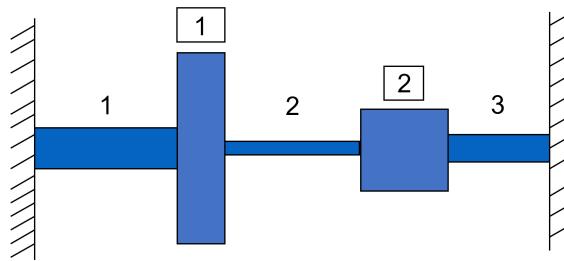


Figure 7. Torsional vibration on system consisting of 2 discs and 3 shafts.

The torsional stiffnesses are given by

$$K_i = \theta_1 \frac{\pi G_i d_i}{32 L_i}, \quad i = 1, 2, 3 \quad (31)$$

and the polar moments of inertia are given by

$$J_j = \theta_2 M_j \left(\frac{D_j}{2}\right)^2, \quad i = 1, 2 \quad (32)$$

with $M_j = \frac{\rho_j}{g} \pi t_j \frac{D_j}{4}$, $j = 1, 2$. We consider a high fidelity simulator where Y_{hf} is evaluated using $\theta_1 = \pi/32$, $\theta_2 = 1/2$ and shaft diameters $d_1 = 2$, $d_2 = 1.825$, $d_3 = 2.25$ in expressions 216
217

Part	Parameter	Value range
Shaft 1	Length L_1	[9, 11]
	Modulus of rigidity G_1	$[1053, 1287] \times 10^5$
Shaft 2	Length L_2	[10.8, 13.2]
	Modulus of rigidity G_2	$[558, 682] \times 10^4$
Shaft 3	Length L_3	[7.2, 8.8]
	Modulus of rigidity G_3	$[351, 429] \times 10^4$
Disk 1	Diameter D_1	[10.8, 13.2]
	Thickness t_1	[2.7, 3.3]
Disk 2	Weight density ρ_1	[0.252, 0.308]
	Diameter D_2	[12.6, 15.4]
	Thickness t_2	[3.6, 4.4]
	Weight density ρ_2	[0.09, 0.11]

Table 1. Torsional vibration problem: Description of the 12-dimensional input parameters and their values ranges. Length, diameters and thicknesses are given in inches, moduli of rigidity are in lb/sq inch and weight densities are expressed in lb/cubic inch.

(31) & (32) while data from a low fidelity Y_{lf} is also used where θ_1, θ_2 are considered unknown parameters to be inferred and all diameters are taken equal $d_1 = d_2 = d_3 = 2$. All 12 remaining geometric and elasticity properties of the system are assumed to be design parameters and are described in Table 1.

We consider again an experimental scenario in the big data regime, where 10^4 simulation data points are generated from J_1 and a much smaller number of high fidelity observations are available from J_2 . We test the robustness of the approach by varying the number of high-fidelity observations from only 50 points up to 250 and we compare the runtimes. Due to the increasing number of data points used to optimize the ELBO, it becomes necessary to adjust the maximum number of iterations for which the optimization algorithm will run, and therefore, the resulting runtime will be affected. For the first three cases we perform 1000 iterations, for the case $N_{hf} = 200$ we perform 1500 iterations, and for the remaining case ($N_{hf} = 250$), 2000 iterations were found to be necessary. Fig. 8 shows the convergence of the ELBO function along with the root mean squared error (RMSE) values obtained for each trained model, based on 100 test data points. As expected, the RMSE goes down with increasing number of high-fidelity data as shown in Fig. 8 (b).

The posterior results for the calibrated parameters along with the runtimes for each cases are shown in Table 2. As can be seen, the true values (0.98 and 0.5) fall within the reported mean values of $\theta \pm 2$ -standard deviations for all cases. At last, the comparison of the model prediction versus observation, along with the 45-degree line plots is provided for the worse and best case ($N_{hf} = 50, 250$) in Fig. 9.

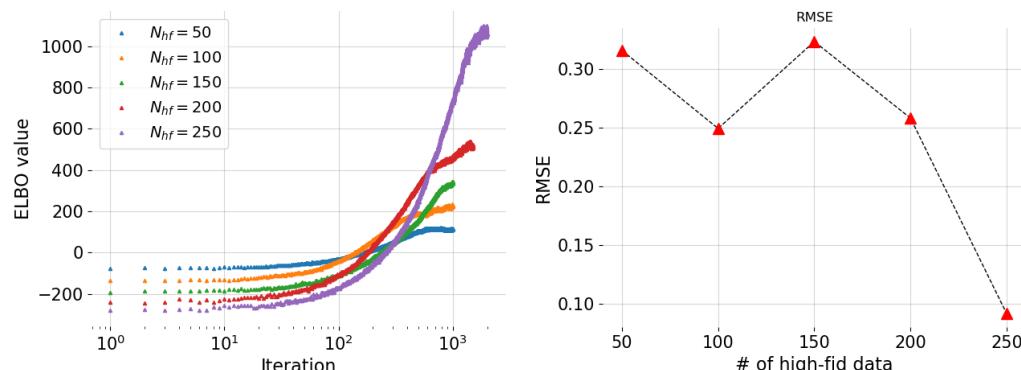


Figure 8. Torsional vibration problem: Plots of the ELBO function vs number of iterations (top) and plot of the RMSE values (bottom) for different number of high fidelity data points N_{hf} .

N_{hf}	θ_1 (mean, std)	θ_2 (mean, std)	Runtime
50	(0.092, 0.01)	(0.484, 0.042)	9.7'
100	(0.091, 0.01)	(0.487, 0.111)	12.9'
150	(0.132, 0.03)	(0.682, 0.179)	14.1'
200	(0.145, 0.27)	(0.554, 1.614)	44.6'
250	(0.088, 0.0008)	(0.450, 0.0007)	54.4'

Table 2. Torsional vibration problem: Posterior statistics for the calibration parameters (θ_1, θ_2) and the computational runtimes for each training case.

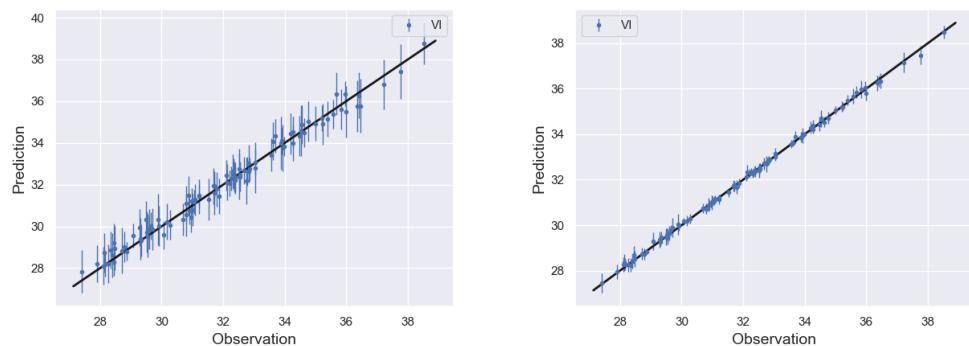


Figure 9. Torsional vibration problem: Comparison of trained model prediction vs observation on 100 test data points along with 45-degree line plots. The high fidelity points used to train the model are $N_{hf} = 50$ (top) and $N_{hf} = 250$ (bottom).

6. Conclusions

We enhance and extend the state-of-the-art stochastic variational Bayesian formulation for tasks that use GPs for multi-fidelity metamodeling and model calibration tasks, in order to treat problems with tens of thousands of training data and model calibration problems with more than ten inputs. The proposed mathematical formulation extends two classic approaches, the so-called black-box VI and stochastic VI, while utilising a manifold gradient ascent scheme to accomplish the task of inferring the GP hyperparameters as well as the calibration parameters. The major impact of our work, is in being able to perform fully Bayesian uncertainty quantification while training and calibrating models using multi-fidelity GPs albeit with large datasets and moderately large number of inputs. Numerical results on two challenging engineering problems visibly demonstrate a scale up of classical Bayesian GPs for multi-fidelity modeling to calibrate *untuned* computer simulators, by enabling savings in compute. This *speed-up* is critical for engineering applications, especially in the industry, where repeated model calibration tasks are a common occurrence and can lead to accumulated savings using the proposed approach.

This work has shown promise in accelerating the training procedure in Gaussian Process-based metamodels without relying on enormous computational power. The key characteristic in our approach is the batch sampling step that is being used in the stochastic variational inference framework which allows for fast computation of the likelihood term and accelerates the optimization task. One key challenge in our approach is that fine tuning of the optimization is required in order to ensure sufficiently large updating step in the optimization scheme, while at the same time we avoid overshooting. Fine tuning the algorithm heavily depends on the size of the batch samples being used, which is also relative to the original data size that is available. Extremely small batch samples can result in very inaccurate likelihood evaluations and eventually miss the optimum. Another important aspect mentioned above is the number of Monte Carlo samples used for approximating the ELBO function. Very small number of samples can lead to inaccurate estimates with large variance that will fail to converge, while on the other hand, a high

number of samples will make the algorithm computationally expensive and will fail to achieve the desired speed up. Typically, big data problems in Bayesian inference exhibit a well defined posterior, therefore optimizing the ELBO should always be a feasible task given that some fine tuning has been performed. A limitation of the approach would be the case where big part of the data is corrupted or contains high noise, in which case, exploration of the posterior via VI might become challenging due to the complex nature of the true posterior. In such cases more complex variational approximations need to be considered which could, however, make the algorithm less computationally efficient.

Other general challenges, not associated specifically with our approach, are problems of extremely high input and output dimensions as well as highly nonsmooth response functions. In such cases, further development of our framework might be necessary such that it aligns with similar approaches in the literature, for instance, enabling covariance matrix sparsity, employing non smooth correlation kernels and last, but not least, leveraging parallel computing.

Directions for future work include scaling up the proposed approach to problems with higher input dimensionality i.e. hundreds of inputs and with more than one sources of information with lower fidelity and large training data. Additionally, the proposed approach needs more work in order to be applied to problems where the different sources do not share the same inputs.

Author Contributions: Conceptualization, P.T.; methodology, P.T.; software, P.T.; validation, P.T. and P.P.; writing—original draft preparation, P.T. and P.P.; writing—review and editing, P.T., P.P. and S.G.; supervision, L.W.; project administration, S.G.. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hill, W.J.; Hunter, W.G. A review of response surface methodology: a literature survey. *Technometrics* **1966**, *8*, 571–590.
2. Vaidya, S.; Ambad, P.; Bhosle, S. Industry 4.0—a glimpse. *Procedia manufacturing* **2018**, *20*, 233–238.
3. Rasmussen, C.E. Gaussian processes in machine learning. In Proceedings of the Summer school on machine learning. Springer, 2003, pp. 63–71.
4. Hensman, J.; Fusi, N.; Lawrence, N.D. Gaussian processes for Big data. In Proceedings of the Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, 2013, pp. 282–290.
5. Damianou, A.; Lawrence, N.D. Deep gaussian processes. In Proceedings of the Artificial intelligence and statistics. PMLR, 2013, pp. 207–215.
6. Goodfellow, I.; Bengio, Y.; Courville, A. *Deep learning*; MIT press, 2016.
7. Gal, Y.; Ghahramani, Z. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In Proceedings of the international conference on machine learning. PMLR, 2016, pp. 1050–1059.
8. Lakshminarayanan, B.; Pritzel, A.; Blundell, C. Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles. *Advances in Neural Information Processing Systems* **2017**, *30*.
9. Ghanem, R.; Spanos, P.D. Polynomial chaos in stochastic finite elements. *Journal of Applied Mechanics* **1990**, *57*, 197–202.
10. Tsilifis, P.; Ghanem, R.G. Reduced Wiener chaos representation of random fields via basis adaptation and projection. *Journal of Computational Physics* **2017**, *341*, 102–120.
11. Sa, G.; Liu, Z.; Qiu, C.; Peng, X.; Tan, J. Novel Performance-Oriented Tolerance Design Method Based on Locally Inferred Sensitivity Analysis and Improved Polynomial Chaos Expansion. *Journal of Mechanical Design* **2021**, *143*, 022001.
12. Pandita, P.; Bilionis, I.; Panchal, J.; Gautham, B.; Joshi, A.; Zagade, P. Stochastic multiobjective optimization on a budget: Application to multipass wire drawing with quantified uncertainties. *International Journal for Uncertainty Quantification* **2018**, *8*.
13. Pandita, P.; Bilionis, I.; Panchal, J. Bayesian optimal design of experiments for inferring the statistical expectation of expensive black-box functions. *Journal of Mechanical Design* **2019**, *141*.
14. Pandita, P.; Bilionis, I.; Panchal, J. Extending expected improvement for high-dimensional stochastic optimization of expensive black-box functions. *Journal of Mechanical Design* **2016**, *138*, 111412.
15. Tsilifis, P.; Huan, X.; Safta, C.; Sargsyan, K.; Lacaze, G.; Oefelein, J.C.; Najm, H.N.; Ghanem, R.G. Compressive sensing adaptation for polynomial chaos expansions. *Journal of Computational Physics* **2019**, *380*, 29–47.
16. Hu, Z.; Hu, C.; Mourelatos, Z.P.; Mahadevan, S. Model discrepancy quantification in simulation-based design of dynamical systems. *Journal of Mechanical Design* **2019**, *141*.

17. Liu, H.; Ong, Y.S.; Shen, X.; Cai, J. When Gaussian process meets big data: A review of scalable GPs. *IEEE transactions on neural networks and learning systems* **2020**, *31*, 4405–4423. 321

18. Wang, K.; Pleiss, G.; Gardner, J.; Tyree, S.; Weinberger, K.Q.; Wilson, A.G. Exact Gaussian processes on a million data points. *Advances in Neural Information Processing Systems* **2019**, *32*, 14648–14659. 322

19. Berns, F.; Beecks, C. Towards Large-scale Gaussian Process Models for Efficient Bayesian Machine Learning. In Proceedings of the DATA, 2020, pp. 275–282. 323

20. Tran, A.; Eldred, M.; McCann, S.; Wang, Y. srMO-BO-3GP: A sequential regularized multi-objective Bayesian optimization for constrained design applications using an uncertain Pareto classifier. *Journal of Mechanical Design* **2022**, *144*. 324

21. Ghosh, S.; Pandita, P.; Atkinson, S.; Subber, W.; Zhang, Y.; Kumar, N.C.; Chakrabarti, S.; Wang, L. Advances in bayesian probabilistic modeling for industrial applications. *ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering* **2020**, *6*, 030904. 325

22. Pandita, P.; Tsilifis, P.; Ghosh, S.; Wang, L. Scalable Fully Bayesian Gaussian Process Modeling and Calibration With Adaptive Sequential Monte Carlo for Industrial Applications. *Journal of Mechanical Design* **2021**, *143*, 074502. 326

23. Cui, T.; Law, K.J.; Marzouk, Y.M. Dimension-independent likelihood-informed MCMC. *Journal of Computational Physics* **2016**, *304*, 109–137. 327

24. Parno, M.D.; Marzouk, Y.M. Transport map accelerated markov chain monte carlo. *SIAM/ASA Journal on Uncertainty Quantification* **2018**, *6*, 645–682. 328

25. Peherstorfer, B.; Marzouk, Y. A transport-based multifidelity preconditioner for Markov chain Monte Carlo. *Advances in Computational Mathematics* **2019**, *45*, 2321–2348. 329

26. El Moselhy, T.A.; Marzouk, Y.M. Bayesian inference with optimal maps. *Journal of Computational Physics* **2012**, *231*, 7815–7850. 330

27. Ranganath, R.; Gerrish, S.; Blei, D. Black box variational inference. In Proceedings of the In Artificial intelligence and statistics (pp. 814–822). PMLR, 2014. 331

28. Blei, D.; Kucukelbir, A.; McAuliffe, J. Variational inference: A review for statisticians. *Journal of the American statistical Association* **2017**, *112*, 859–877. 332

29. Titsias, M.; Lázaro-Gredilla, M. Doubly stochastic variational Bayes for non-conjugate inference. In Proceedings of the International conference on machine learning. PMLR, 2014, pp. 1971–1979. 333

30. Tsilifis, P.; Ghanem, R. Bayesian adaptation of chaos representations using variational inference and sampling on geodesics. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences* **2018**, *474*, 20180285. 334

31. Tsilifis, P.; Papaioannou, I.; Straub, D.; Nobile, F. Sparse Polynomial Chaos expansions using variational relevance vector machines. *Journal of Computational Physics*, *416*, 109498. 335

32. Tsilifis, P.; Bilionis, I.; Katsounaras, I.; Zabaras, N. Computationally efficient variational approximations for Bayesian inverse problems. *Journal of Verification, Validation and Uncertainty Quantification* **2016**, *1*. 336

33. Graves, A. Practical variational inference for neural networks. *Advances in neural information processing systems* **2011**, *24*. 337

34. Paisley, J.; Blei, D.M.; Jordan, M.I. Variational Bayesian inference with stochastic search. In Proceedings of the Proceedings of the 29th International Conference on International Conference on Machine Learning, 2012, pp. 1363–1370. 338

35. Deshpande, S.; Purwar, A. Computational creativity via assisted variational synthesis of mechanisms using deep generative models. *Journal of Mechanical Design* **2019**, *141*. 339

36. Hoffman, M.; Blei, D.; Wang, C.; Paisley, J. Stochastic variational inference. *Journal of Machine Learning Research* **2013**, *14*. 340

37. Salimbeni, H.; Deisenroth, M. Doubly stochastic variational inference for deep Gaussian processes. arXiv preprint arXiv:1705.08933, 2017. 341

38. Hoang, T.; Hoang, Q.; Low, B. A unifying framework of anytime sparse Gaussian process regression models with stochastic variational inference for big data. In Proceedings of the In International Conference on Machine Learning (pp. 569–578). PMLR, 2015. 342

39. Kennedy, M.; O'Hagan, A. Bayesian calibration of computer models. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* **2001**, *63*, 425–464. 343

40. Kennedy, M.; O'Hagan, A. Predicting the output from a complex computer code when fast approximations are available. *Biometrika* **2000**, *87*, 1–13. 344

41. Le Gratiet, L.; Garnier, J. Recursive co-kriging model for design of computer experiments with multiple levels of fidelity. *International Journal for Uncertainty Quantification* **2014**, *4*. 345

42. Le Gratiet, L. Bayesian analysis of hierarchical multifidelity codes. *SIAM/ASA Journal on Uncertainty Quantification* **2013**, *1*, 244–269. 346

43. Arendt, P.D.; Apley, D.W.; Chen, W.; Lamb, D.; Gorsich, D. Improving identifiability in model calibration using multiple responses. *Journal of Mechanical Design* **2012**, *134*. 347

44. Arendt, P.D.; Apley, D.W.; Chen, W. A preposterior analysis to predict identifiability in the experimental calibration of computer models. *IIE Transactions* **2016**, *48*, 75–88. 348

45. Tuo, R.; Jeff Wu, C. A theoretical framework for calibration in computer models: parametrization, estimation and convergence properties. *SIAM/ASA Journal on Uncertainty Quantification* **2016**, *4*, 767–795. 349

46. Hoffman, M.; Bach, F.; Blei, D. Online learning for latent Dirichlet allocation. In Proceedings of the In advances in neural information processing systems, 2010, pp. 856–864. 350

47. Wainwright, M.; Jordan, M. Graphical models, exponential families, and variational methods. *New Directions in Statistical Signal Processing* **2003**, p. 138. 380
381

48. Wang, C.; Blei, D. Variational Inference in Nonconjugate Models. *Journal of Machine Learning Research* **2013**, *14*. 382

49. Amari, S. Natural gradient works efficiently in learning. *Neural computation* **1998**, *10*, 251–276. 383

50. Martens, J. New insights and perspectives on the natural gradient method. *Journal of Machine Learning Research* **2020**, *21*, 1–76. 384

51. Absil, P.; Mahony, R.; Sepulchre, R. *Optimization algorithms on matrix manifolds*; Princeton University Press, 2009. 385

52. Roy, S.; Harandi, M. Constrained stochastic gradient descent: The good practice. In Proceedings of the In 2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA) (pp. 1-8). IEEE, 2017. 386
387

53. Savva, F.; Anagnostopoulos, C.; Triantafillou, P. Explaining aggregates for exploratory analytics. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data). IEEE, 2018, pp. 478–487. 388
389

54. Anagnostopoulos, C.; Savva, F.; Triantafillou, P. Scalable aggregation predictive analytics. *Applied Intelligence* **2018**, *48*, 2546–2567. 390

55. GPy. GPy: A Gaussian process framework in python. <http://github.com/SheffieldML/GPy>, since 2012. 391