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Abstract: Bayesian techniques for engineering problems, that rely on Gaussian process (GP) regres- 1

sion, are known for their ability to quantify epistemic and aleatory uncertainties and for being data 2

efficient. The mathematical elegance of applying these methods usually comes at a high computa- 3

tional cost when compared to deterministic and empirical Bayesian methods. Furthermore, using 4

these methods becomes practically infeasible in scenarios characterized by a large number of inputs 5

and thousands of training data. The focus of this work is on enhancing Gaussian Process-based 6

metamodeling and model calibration tasks, when the size of the training datasets is significantly 7

large. To achieve this goal, we employ a stochastic variational inference algorithm that enables rapid 8

statistical learning of the calibration parameters and hyperparameter tuning, while retaining the rigor 9

of Bayesian inference. The numerical performance of the algorithm is demonstrated on multiple 10

metamodeling and model calibration problems with thousands of training data. 11

Keywords: Gaussian Processes; stochastic variational inference; multi-fidelity modeling; manifold 12

gradient ascent; structural dynamics; vibration torsion 13

1. Introduction 14

Modern engineering tasks are often characterized by the need to perform large scale ex- 15

pensive laboratory experiments or amortize hours of compute performing simulations that 16

are based on sophisticated mathematical formulations. While these high-fidelity sources 17

of information provide detailed insight into the complex physical process, one usually 18

faces a heavy computational runtime or a massive financial investment. In addition to this, 19

obtaining datum by running experiments or simulations needs more advanced insight, 20

that might not always be extricated from the datum by applying state-of-the-art methods 21

used to build data-driven metamodels [1]. Finally, with the advent of Industry 4.0 [2], 22

developing digital twins, that are commonly probabilistic surrogate models representing 23

the underlying physical process, is becoming a routine practice across the industry. In a 24

realistic scenario, paucity of data and noise in the recorded measurements are challenges 25

that also need to be taken into account. 26

Surrogate modeling methods that have shown promise in dealing with problems of 27

the aforementioned kind, typically include Gaussian process (GP) regression [3–5], proba- 28

bilistic deep neural networks [6–8] or Polynomial Chaos expansions [9–11]. Application 29

of these methods has been extended to problems from different domains, such as man- 30

ufacturing [12,13], flow through porous media [10,14], and combustion mechanics [15]. 31

Classic formulations of these methods provide a meaningful representation of model form 32

uncertainty and noise, and they demonstrate strong predictive performance on unseen 33

data. However, these approaches are susceptible to challenges like limited training data, 34

multiple sources of information that model the same process, and the lack of identifiability 35

of model parameters [16]. 36

In this work, our focus is on applying GP regression to problems that have thousands 37

of data [17]. Secondly, we focus on the use of GP regression in both, the single-fidelity and 38

the multi-fidelity modeling scenarios. In the second scenario, we focus on the case where 39

data from two sources of differing fidelity is available and the task involves calibrating the 40
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so-called tuners of the lower fidelity source. In all these tasks, we resort to a fully Bayesian 41

formulation of the GP regression, differentiating ourselves from the works of [18–20], the 42

details of which are discussed in Ghosh et al. [21]. This is a critical aspect of this work, 43

as retaining a fully Bayesian treatment for the metamodeling and model calibration tasks 44

with GPs is a major challenge from a computational and numerical perspective. In some 45

of the authors’ previous work (see Pandita et al. [22]), it was demonstrated how savings 46

in computational time can be achieved using adaptive Sequential Monte Carlo methods 47

fused with a fully Bayesian treatment, applied to tasks of the above kind. However, the 48

utilization of hundreds of computational processing units or cores, is not always practically 49

possible, necessitating the need for alternative approaches. Other adaptive algorithms that 50

accelerate Markov chain Monte Carlo methods for Bayesian inference [23–25] and optimal 51

transport based approaches that circumvent the need for MCMC methods [26] have shown 52

promise in recent years. 53

Most of the above mentioned works rely on computational power and heavy use of 54

large scale computing, in order to overcome the challenges of training the models. Our main 55

contribution in this work is to achieve computational efficiency by leveraging a variational 56

formulation of Bayesian inference, commonly known as black-box variational inference 57

(BBVI) [27], and by improving the performance of the optimization scheme involved using 58

efficient subsampling, rather than resorting to online access to exorbitant computational 59

resources. 60

Variational methods [28,29] to Bayesian inference have shown promise in various 61

tasks that resort to a Bayesian formalism in order to train surrogate models [30,31], calibrate 62

physical models [32] and more recently across a swathe of deep learning tasks [33–35]. The 63

key ingredient in Variational Inference (VI), that enables efficient posterior density explo- 64

ration conditioned on large amounts of data, is to perform the required likelihood function 65

evaluations using random batch-sampling. Introducing this additional level of stochasticity 66

in the algorithm, resulting in what is known as Stochastic Variational Inference (SVI) [36], 67

allows for fast likelihood evaluations during the optimization procedure and scales the 68

algorithm, while full exploration of the available training dataset is still guaranteed. SVI has 69

been previously successfully applied for training deep GP models [37] and sparse GPs in 70

big data scenarios [38]. In this work, we apply SVI to train hybrid Gaussian Process models 71

that make use of training data stemming from multiple levels of fidelity, while at the same 72

time they can incorporate calibration parameters. Specifically, we adopt the well known 73

Kennedy-O’Hagan formulation [39] that relies on an autoregressive GP scheme and we 74

develop a training algorithm that scales BBVI for big data problems using batch-sampling. 75

We identify the optimal Gaussian approximations to the true posterior densities of the 76

model’s hyperparameters by solving the variational problem with respect to full covariance 77

matrices, thus capturing all correlations between the parameters. To achieve this, we make 78

use of a manifold gradient ascent algorithm that performs the optimization directly on 79

the manifold of symmetric positive semi-definite matrices, as opposed to solving complex 80

constrained optimization problems. 81

The outline of the paper is as follows: We present the mathematical details of the 82

autoregressive multi-fidelity calibration model in Sec. 2. In Secs. 3.1 and 4.1, we expand 83

on the details of the black-box variational inference and its use in scaling up for big data 84

problems, and we introduce the manifold gradient ascent optimization scheme, to be used 85

for carrying out the optimization task. To illustrate the direct applicability of the proposed 86

approach on calibrating models using data from sources of varying fidelity, we use a set 87

of synthetic functions in Sec. 5.1. We demonstrate the impact of the extended variational 88

formulation on a benchmark machine learning dataset with thousands of training data, in 89

Sec.5.2. In Sec.5.3, we highlight the impact of the proposed formulation on a challenging 90

multi-fidelity problem, in the high-sample regime with over ten thousand training data, 91

where the parameters of interest include the uncertain tuners of the low-fidelity simulation 92

model. We summarize our conclusions and directions for future work in Sec. 6. 93
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2. Multi-fidelity Gaussian Process modeling and calibration 94

2.1. Autoregressive Gaussian Processes 95

We consider the Kennedy & O’Hagan formulation [40] where two simulators are 96

available, namely yh(x), yl(x, θ), where yh represents some high fidelity computer code and 97

yl(x, θ) represents a low fidelity simulation code. The design variable x is assumed to take 98

values within a space of feasible designs X ⊂ RD, while θ is a set of calibration parameters 99

that characterize the low fidelity simulator. 100

The relationship between the two codes is assumed to be

yh(x, θ) = ρyl(x, θ) + δ(x) + ϵ(x), (1)

where δ(x) is a discrepancy term that is statistically independent of yl(x, θ) and ϵ(x)
accounts for measurement noise and is independent of both yl(x, θ) and δ(x). The coefficient
ρ satisfies

ρ =
cov[yh(x, θ), yl(x, θ)]

var[yl(x, θ)]
(2)

and therefore accounts for the correlation between the models. Although in general ρ can
be considered a function of x [41,42], we assume for simplicity that it is constant throughout
this work. Further, we take yl(x, θ), δ(x) to be Gaussian Processes with zero mean and
variances σ2

l rl(x, x′) and σ2
δ rδ(x, x′) respectively where rl and rδ are correlation kernels, here

to be taken as squared exponential functions

rt(x, x′) = exp

[
−

D

∑
i=1

(xi − x′i)
2

ℓ2
i,t

]
, t = l, δ, (3)

with ℓi,t being the correlation length or lengthscale along dimension i, for the two kernels 101

(t = l, δ). 102

The framework defined above may suffer from issues that pertain to recovering the 103

correct solutions for the parameters being calibrated, also known as identifiability issues. 104

These drawbacks are known in the literature and have been discussed in various works 105

[43–45]. In this work, we limit our focus on improving the computational efficiency in a 106

fully Bayesian formulation while acknowledging this characteristic of the multi-fidelity 107

framework. 108

2.2. Posterior distribution 109

Assuming a set of observations are available, namely Dl = {xi, θi, yi}
Nl
i=1 and Dh =

{xi, yi}
Nh
i=1 are the input to output sets of points corresponding to the low and high fidelity

simulators respectively. Conditioning the distribution of yh(x∗, θ) evaluated at some test
point x∗ on the available data D := Dl ∪Dh and taking into account the prior choices and
the independence between yl(·) and δ(·), we can write the posterior density as a Gaussian
Process with mean and variance given by [39]

µyh(x
∗, θ) = th(x

∗, θ)V−1
h y (4)

and
σ2

yh
(x∗, θ) = σ2

h (x
∗)− th(x

∗, θ)V−1
h th(x

∗, θ). (5)

In the above expressions we use y = (yT
l , yT

h )
T , 110

Vh(θ) =

[
V(l,l) V(l,h)(θ)

V(h,l)(θ) V(h,h)(θ)

]
(6)
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where the diagonal block matrices are given by 111

V(l,l) = σ2
l

(
Rl(Dl) + σ2

ϵl
I
)

,

V(h,h)(θ) = σ2
δ

(
Rδ(Dh) + σ2

ϵh
I
)
+ σ2

l ρ2
(

Rl(Dh(θ)) + σ2
ϵl

I
)

,
(7)

and Rt(Dt) is the correlation matrix with entries rt(x, x′) for x, x′ ∈ Dt, t = l, δ. In the
above, Dh(θ) := {(xi, θ)}Nh

i=1 for xi ∈ Dh. The off-diagonal blocks are written

V(l,h)(θ) = ρV(l,l)(Dl ,Dh(θ)). (8)

At last, we define the vector 112

th(x
∗, θ) =

(
ρσ2

l Rl((x∗, θ),Dl)
ρ2σ2

l Rl((x∗, θ),Dl) + σ2
δ Rδ(x∗,Dh)

)
. (9)

3. Variational Inference 113

Throughout this section we present the main ingredients of the Variational Inference
framework for the purpose of training Gaussian Process models by means of exploring a
Bayesian posterior density. The target distribution in our case is the posterior distribution
of the Gaussian Process hyperparameters ω, defined as the set of lengthscales ℓi,t, t = l, h
along each dimension of X , the variance parameters σ2

l , σ2
h , σ2

ϵt , t, h and the calibration
parameters θ. This posterior density is conditioned on the training data D that in general
consists of the high- and low-fidelity input and output observations. From Bayes’ rule

p(ω|D) =
p(D|ω)p(ω)

p(D)
(10)

the posterior density is known as a function of the likelihood term and the prior density,
up to a proportionality constant. Variational Inference [46,47] bypasses the challenge
of sampling from the posterior, by approximating it by an element q(ω) chosen from
a parametric family of distributions Q = {q(ω|λ) : λ ∈ Λ}, where Λ is some set that
determines the parameterization of the densities in Q. The criterion, for choosing the
optimal density from the family, is minimizing the Kullback-Leibler (KL) divergence
between the candidate and the target densities. We define KL divergence between the
candidate and target densities as follows:

KL[q(ω|λ)||p(ω)] =
∫

q(ω|λ) log
(

q(ω|λ)
p(ω|D)

)
dω. (11)

Several techniques for solving the optimization problem exist in the literature [28] such as 114

mean-field VI [48] or nonparametric VI [32], and are typically tailored to problem specific 115

choices of prior densities, approximating family of distributions and the inference problem 116

under investigation. 117

One common characteristic of the approaches mentioned above is that they all trans-
form the problem of minimizing the KL divergence to an equivalent maximization problem
by substituting (10) into (11) to obtain

log p(D) = KL[q(ω|λ)||p(ω)] +F [q], (12)

where
F [q] = H[q] +

∫
q(ω|λ) log(p(D, ω))dω (13)

and H[q] is the entropy of q(ω|λ). Since the left-hand side of (12) is constant, we can 118

conclude that the variational solution can be obtained by maximizing F [q] that is referred 119

to as the Evidence LOwer Bound (ELBO). 120
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3.1. Black box Variational Inference 121

One of the most popular choices for optimizing (13) is to directly employ a stochastic
gradient descent or ascent algorithm, after observing that the objective function can be
written as an expectation

F [q] = Eq[log p(D, θ)− log q(ω|λ)], (14)

where the expectation is taken with respect to q(ω|λ). The gradient of this expression with
respect to the parameters λ that we seek to optimize will be

∇λF [q] = Eq[∇λ log q(ω|λ)(log p(D, ω)− log q(ω|λ))], (15)

where the gradient ∇λ log q(ω|λ) is known as the score function for any probability density
q and the joint density can be expanded using Bayes’ rule to p(D, ω) = p(D|ω)p(ω). A
Monte Carlo estimator of (15) can be written as

∇̂λF [q] =
1
N

N

∑
i=1

∇λ log q(ωi|λ)
(

log p(D, ωi)− log q(ωi|λ)
)

, (16)

where ωi ∼ q(ω|λ). Note that in the above expression, the gradient appears only on 122

the score function, and can, in general, be computed analytically for certain families 123

of distributions. On the contrary, the log-joint term log p(D, ω) which depends on the 124

Bayesian model under investigation, needs not be differentiated. The gradient expression 125

does not make any further assumptions and applies generically on every Bayesian inference 126

problem, justifying the term coined to this approach as Black Box Variational Inference [27]. 127

To further scale the algorithm, the perform the log-joint function evaluations p(D, ωi) =
p(D|ωi)p(ωi) using batch sampling throughout the available dataset D, where each time a
random subset of the dataset is used to form the likelihood term. To put things in a realistic
multi-fidelity context, is it highly unlikely that a big data problem will consist of a large
number of high fidelity observations. Therefore, in this work we consider the following
scenario where the number of training data points in Dl is significantly larger that the
number of high fidelity observations Dh, that is |Dl | ≫ |Dh|, thus, the batch sampling
approach is applied only on Dl . At every evaluation of eq. (17), let Di

l be a random subset
of Dl and Di = Di

l ∪Dh, then eq. (17) is rewritten as follows:

∇̂λF [q] =
1
N

N

∑
i=1

∇λ log q(ωi|λ)
(

log p(Di, ωi)− log q(ωi|λ)
)

, (17)

where Dl is subsampled N times, that is the number of Monte Carlo samples used to 128

estimate ∇̂λF [q]. This scaling approaching has been previously introduced in the literature 129

as Stochastic Variational Inference (SVI) [36]. 130

4. Stochastic Optimization 131

4.1. Manifold Gradient Ascent 132

For the case where the approximating family of distributions Q consists of multivariate 133

Gaussian densities, that is Q := {q(ω|λ) := N (ω|µ, Σ)}, a suitable optimization scheme 134

needs to be employed over the parameters λ = (µ, Σ) such that the symmetric positive 135

semi-definiteness property of the covariance matrix is not violated. Here, we employ a 136

stochastic optimization scheme that is tailored particularly on our problem. The scheme 137

applies a momentum algorithm for updating µ while performing the Σ update using a 138

manifold gradient ascent step. For such a case, we make use of the natural gradient [49] as 139

it is known to be invariant under parameterization [50]. 140

The natural gradient on Riemannian manifolds is defined as

∇nat
λ F [q] = I−1

F ∇λF [q] (18)
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where ∇λF [q] is the regular gradient and IF is the Fisher information for density q that is
defined as

IF(λ) = Eq

[
∇λ log q(ω|λ)(∇λ log q(ω|λ))T

]
. (19)

In the Gaussian distribution case, the Fisher information matrix becomes 141

IF(µ, Σ) =
(

Σ−1 0
0 IF(Σ)

)
, (20)

where the elements of IF(Σ) are (IF(Σ))σij ,σkl
= 1

2 tr
(

Σ−1 ∂Σ
∂σij

Σ−1 ∂Σ
∂σkl

)
and the inverse sim- 142

plifies to 143

IF(λ)
−1 ≈

(
Σ 0
0 Σ ⊗ Σ

)
, (21)

where “⊗" is the Kronecker product. Finally, the natural gradient of F [q] can be written as 144

∇nat
µ F [q] = Σ∇µF [q]

∇nat
Σ F [q] = Σ∇ΣF [q]Σ

. (22)

In our stochastic gradient ascent scheme, the parameters µ are updated using a momentum
algorithm with updating step

µt+1 = µt + γmµt (23)

where the momentum term mµt is given by 145

mµt+1 = υmµt + (1 − υ)∇nat
µ F [q]. (24)

For the update on Σ it is necessary to map the point on the tangent space, indicated by 146

the steepest ascent direction, back to the manifold. For that, we use a retraction mapping 147

that approximates the exponential map of the manifold of symmetric positive semi-definite 148

matrices [51]. 149

In our case, we use

RΣ(ξ) = Σ + ξ +
1
2

ξΣ−1ξ. (25)

Further, for the momentum update on the manifolds we apply a vector transport that further
projects the translated points back to the tangent space, as was first done in [52]. For our
purposes, we apply the following mapping:

ΓΣ1→Σ2(ξ) = UξUT , U =
(

Σ2Σ−1
1

)1/2
. (26)

Finally, our computational algorithm is summarized in Algorithm 1. 150

5. Numerical examples 151

We study the performance of the proposed algorithm on three problems. One meta- 152

modeling problem and two multi-fidelity model calibration problems are used in the 153

sections that follow. 154

5.1. Academic example 155

We consider the following mathematical functions 156

f1(x, θ) = θ1(8wTx − 2) sin(5wTx − 4) + θ2(2wTx + 1
2 )

f2(x, θ) = f1(x, θ) + 30(wTx)2,
(27)
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Algorithm 1: Manifold Gradient Ascent
Initialize : Choose µ0, Σ0.;

Estimate ∇µ0F [q] and ∇Σ0F [q] and the corresponding natural
gradients;

Initialize the momentum mµ0 = ∇nat
µ0

F [q] and mΣ0 = ∇nat
Σ0

F [q];
for t = 1 to T do

µt = µt−1 + γmt−1;
Σt = RΣt(γmΣt−1);
Estimate ∇µtF [q], ∇ΣtF [q];
Compute natural gradients ∇nat

µt F [q] = Σt∇µtF [q], ∇nat
Σt

F [q] = Σt∇ΣtF [q]Σt;
Update momentum terms:
mµt = υmµt−1 + (1 − υ)∇nat

µt F [q] and
mΣt = υΓΣt−1→Σt(mΣt) + (1 − υ)∇nat

Σt
F [q];

end

Figure 1. Training data for the academic example. Low fidelity data is depicted with blue ‘×’ while
high fidelity observations are depicted with orange ‘+’.

with the coupling indicating that f1(x, θ) can be considered to be a low fidelity simulator 157

and f2(x, θ) the high fidelity function. We take x ∈ R10 and the vector w is considered a set 158

of known parameters projecting the 10-dimensional vector x to R. For this example we take 159

w =



0.14042
−0.35474

0.42674
−0.09312
−0.21463

0.26425
0.25603

−0.18959
0.00467

−0.66800


. (28)

A set of 104 training points is generated from the low fidelity function, that is Dl = 160

{xi, θi, yi}104

i=1 while Dh = {xi, yi}200
i=1 consists of 200 points simulated from f2 where the 161

calibration parameters have been fixed to θ = (3/2, 30). All inputs are generated using 162

uniform Latin Hypercube sampling on [−2, 2]10 while the θi’s are sampled uniformly within 163

[0.5, 2.5]× [20, 40]. The data is shown in Figure 1. 164
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To test for the robustness of the approach, we first perform the ELBO optimization 165

corresponding to training an autoregressive GP model on the available training data using 166

a varying number of Monte Carlo samples used to evaluate the ELBO gradient estimate 167

(17), namely N = 10, 50, 100. We run 5 · 103 iterations of algorithm 1 using an initial learning 168

rate γ0 = 0.0001, momentum weight parameters υ = 0.6 and a random batch size equal to 169

50 data points (0.5% of the full dataset) to enable the SVI feature. As expected, the runtimes 170

scale linearly from 13mins for N = 10 to 61mins for N = 50 to 125mins for N = 100. 171

Fig. 2 shows the comparison between the observations and the trained model predic- 172

tions along with a 45-degree line plot for the case where the number of MC samples is as 173

low as 10. As can be seen, the red ‘•’ marks that correspond to the discrepancy-adjusted 174

prediction match exactly the observations and the variance remains low. The blue ‘×’ 175

marks, that corresponding to the inferred low fidelity simulator η(x, θ), fall below the line, 176

which agrees with the observed trends of the true functions as seen in Fig. 1. Specifically, 177

the low fidelity function appears to be the closest possible to the high fidelity on design 178

points x that correspond to values of wTx near the origin, which is when we should expect 179

the discrepancy term points to be the closest to the 45-degree line. When η(x, θ) reaches 180

very low or very high values (near −200 or 200 respectively), the discrepancy is the largest, 181

and indeed the points are far from the 45-degree line. 182

Figure 2. Prediction on the training data for low fidelity term η(x, θ) and discrepancy-adjusted high
fidelity output yh(x, θ) versus observations. Model was trained using 10 MC samples for the ELBO
evaluation.

Fig. 3 shows the prediction versus observations plots for 500 test data points along 183

with a 45-degree line plots again for the case where the number of MC samples is 10. At 184

last, Fig. 4 shows the posterior densities of the two calibration parameters θ = (θ1, θ2) 185

obtained using the VI framework. We observe a clear improvement in the accuracy of the 186

θ1 estimate as the number of Monte Carlo samples increase from 10. To ensure numerical 187

stability in our implementation, the Gaussian approximation has been applied on the log θ 188

and the resulting density plots are based on kernel density estimation using 5 · 103 samples 189

from the optimal log-normal approximation that is obtained using the VI approach. 190

5.2. Chicago crimes statistics dataset 191

In this section, we demonstrate the applicability of the proposed approach on a 192

metamodeling task. The dataset used for this problem is one of the three datasets under 193

the Query Analytics Workloads Dataset section, hosted by the University of California Irvine 194

open-source machine learning data repository1. This dataset has been used in the other 195

recent work [53,54], in order to benchmark the performance of the proposed novel machine 196

1 https://archive.ics.uci.edu/ml/datasets/Query+Analytics+Workloads+Dataset
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Figure 3. Prediction versus observations for 500 test data points. The model was trained using 10 MC
samples for the ELBO gradient evaluation.

Figure 4. Top: Posterior marginal densities for θ1 (left) and θ2 (right) obtained after the ELBO
optimization with a varying number of Monte Carlo samples. Bottom: Joint density plots obtain for
N = 10, 50, 100.

learning algorithms. The quantity of interest being modeled is the number of crimes 197

reported or simply the count of crimes in a particular region, in the city of Chicago [53]. 198

The variables used to define the region, include the x and y coordinates of the center of the 199

region and the radius of the region. Thus, the problem has three inputs and one output. 200

The dataset has ten thousand pairs of inputs and output. We leverage nine thousand points 201

for training the fully Bayesian metamodel and leave out one thousand points as test data 202

in order to evaluate the predictive performance of the trained model and we run 2 · 104
203

iterations of our optimization scheme. 204

Two clear observations from Fig. 5 are: a) the predictive performance visibly improves 205

as the batch size of subsampled training data increases from across the three subfigures, 206

and b) the predictive epistemic uncertainty of the trained model also decreases indicating 207

higher confidence in the model. In addition to these, Fig. 6 shows the increase in runtime 208

of the algorithm as the batch size of subsampled training data increases. For reference, we 209

also present the runtimes of the Sparse GP implementations presented in [4] using the GPy 210

package [55] for the same number of iterations and batch size and a latent variable with 80 211

Figure 5. Prediction versus observations for 1000 test data points. The three models were trained
using batch sizes equal to 45 (top left) 67 (top right) and 90 (bottom) that were resampled from the
full dataset.
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data points. As can be seen our approach reduced the runtime significantly for very small 212

batch sizes while the performance of the two algorithms is about the same when batch size 213

becomes 90. 214

Figure 6. Runtime comparison for three different batch sizes for the Chicago crimes dataset.

5.3. Torsional vibration problem 215

We consider the torsional vibration problem on the system depicted in Fig. 7 that
consists of three shafts and two discs of varying geometric characteristics and elasticity
properties. Our goal is to built a Gaussian Process metamodel on the quantity of interest
that expresses the lowest natural frequency, given as

Y =

√
−b −

√
b2 − 4ac
2

/
2π, (29)

where a = 1,
b = −

(
K1+K2

J1
+ K2+K3

J2

)
, c = K1K2+K2K3+K1K3

J1 J2
. (30)

Figure 7. Torsional vibration on system consisting of 2 discs and 3 shafts.

The torsional stiffnesses are given by

Ki = θ1
πGidi
32Li

, i = 1, 2, 3 (31)

and the polar moments of inertia are given by

Jj = θ2Mj

(Dj

2

)2

, i = 1, 2 (32)

with Mj =
ρj
g πtj

Dj
4 , j = 1, 2. We consider a high fidelity simulator where Yh f is evaluated 216

using θ1 = π/32, θ2 = 1
2 and shaft diameters d1 = 2, d2 = 1.825, d3 = 2.25 in expressions 217
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Part Parameter Value range
Shaft 1 Length L1 [9, 11]

Modulus of rigidity G1 [1053, 1287]×105

Shaft 2 Length L2 [10.8, 13.2]
Modulus of rigidity G2 [558, 682]×104

Shaft 3 Length L3 [7.2, 8.8]
Modulus of rigidity G3 [351, 429]×104

Disk 1 Diameter D1 [10.8, 13.2]
Thickness t1 [2.7, 3.3]

Weight density ρ1 [0.252, 0.308]
Disk 2 Diameter D2 [12.6, 15.4]

Thickness t2 [3.6, 4.4]
Weight density ρ2 [0.09, 0.11]

Table 1. Torsional vibration problem: Description of the 12-dimensional input parameters and their
values ranges. Length, diameters and thicknesses are given in inches, moduli of rigidity are in lb/sq
inch and weight densities are expressed in lb/cubic inch.

(31) & (32) while data from a low fidelity Yl f is also used where θ1, θ2 are considered 218

unknown parameters to be inferred and all diameters are taken equal d1 = d2 = d3 = 2. 219

All 12 remaining geometric and elasticity properties of the system are assumed to be design 220

parameters and are described in Table 1. 221

We consider again an experimental scenario in the big data regime, where 104 sim- 222

ulation data points are generated from J1 and a much smaller number of high fidelity 223

observations are available from J2. We test the robustness of the approach by varying 224

the number of high-fidelity observations from only 50 points up to 250 and we compare 225

the runtimes. Due to the increasing number of data points used to optimize the ELBO, it 226

becomes necessary to adjust the maximum number of iterations for which the optimization 227

algorithm will run, and therefore, the resulting runtime will be affected. For the first three 228

cases we perform 1000 iterations, for the case Nh f = 200 we perform 1500 iterations, and 229

for the remaining case (Nh f = 250), 2000 iterations were found to be necessary. Fig. 8 shows 230

the convergence of the ELBO function along with the root mean squared error (RMSE) 231

values obtained for each trained model, based on 100 test data points. As expected, the 232

RMSE goes down with increasing number of high-fidelity data as shown in Fig. 8 (b). 233

The posterior results for the calibrated parameters along with the runtimes for each 234

cases are shown in Table 2. As can be seen, the true values (0.98 and 0.5) fall within the 235

reported mean values of θ ± 2-standard deviations for all cases. At last, the comparison of 236

the model prediction versus observation, along with the 45-degree line plots is provided 237

for the worse and best case (Nh f = 50, 250) in Fig. 9. 238

Figure 8. Torsional vibration problem: Plots of the ELBO function vs number of iterations (top) and
plot of the RMSE values (bottom) for different number of high fidelity data points Nh f .
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Nh f θ1 (mean, std) θ2 (mean, std) Runtime

50 (0.092, 0.01) (0.484, 0.042) 9.7’
100 (0.091, 0.01) (0.487, 0.111) 12.9’
150 (0.132, 0.03) (0.682, 0.179) 14.1’
200 (0.145, 0.27) (0.554, 1.614) 44.6’
250 (0.088, 0.0008) (0.450, 0.0007) 54.4’

Table 2. Torsional vibration problem: Posterior statistics for the calibration parameters (θ1, θ2) and
the computational runtimes for each training case.

Figure 9. Torsional vibration problem: Comparison of trained model prediction vs observation on
100 test data points along with 45-degree line plots. The high fidelity points used to train the model
are Nh f = 50 (top) and Nh f = 250 (bottom).

6. Conclusions 239

We enhance and extend the state-of-the-art stochastic variational Bayesian formulation 240

for tasks that use GPs for multi-fidelity metamodeling and model calibration tasks, in 241

order to treat problems with tens of thousands of training data and model calibration 242

problems with more than ten inputs. The proposed mathematical formulation extends two 243

classic approaches, the so-called black-box VI and stochastic VI, while utilising a manifold 244

gradient ascent scheme to accomplish the task of inferring the GP hyperparameters as well 245

as the calibration parameters. The major impact of our work, is in being able to perform 246

fully Bayesian uncertainty quantification while training and calibrating models using multi- 247

fidelity GPs albeit with large datasets and moderately large number of inputs. Numerical 248

results on two challenging engineering problems visibly demonstrate a scale up of classical 249

Bayesian GPs for multi-fidelity modeling to calibrate untuned computer simulators, by 250

enabling savings in compute. This speed-up is critical for engineering applications, especially 251

in the industry, where repeated model calibration tasks are a common occurrence and can 252

lead to accumulated savings using the proposed approach. 253

This work has shown promise in accelerating the training procedure in Gaussian 254

Process-based metamodels without relying on enormous computational power. The key 255

characteristic in our approach is the batch sampling step that is being used in the stochastic 256

variational inference framework which allows for fast computation of the likelihood term 257

and accelerates the optimization task. One key challenge in our approach is that fine 258

tuning of the optimization is required in order to ensure sufficiently large updating step 259

in the optimization scheme, while at the same time we avoid overshooting. Fine tuning 260

the algorithm heavily depends on the size of the batch samples being used, which is 261

also relative to the original data size that is available. Extremely small batch samples 262

can result in very inaccurate likelihood evaluations and eventually miss the optimum. 263

Another important aspect mentioned above is the number of Monte Carlo samples used for 264

approximating the ELBO function. Very small number of samples can lead to inaccurate 265

estimates with large variance that will fail to converge, while on the other hand, a high 266
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number of samples will make the algorithm computationally expensive and will fail to 267

achieve the desired speed up. Typically, big data problems in Bayesian inference exhibit 268

a well defined posterior, therefore optimizing the ELBO should always be a feasible task 269

given that some fine tuning has been performed. A limitation of the approach would 270

the case where big part of the data is corrupted or contains high noise, in which case, 271

exploration of the posterior via VI might become challenging due to the complex nature 272

of the true posterior. In such cases more complex variational approximations need to be 273

considered which could, however, make the algorithm less computationally efficient. 274

Other general challenges, not associated specifically with our approach, are problems 275

of extremely high input and output dimensions as well as highly nonsmooth response 276

functions. In such cases, further development of our framework might be necessary such 277

that it aligns with similar approaches in the literature, for instance, enabling covariance 278

matrix sparsity, employing non smooth correlation kernels and last, but not least, leveraging 279

parallel computing. 280

Directions for future work include scaling up the proposed approach to problems 281

with higher input dimensionality i.e. hundreds of inputs and with more than one sources 282

of information with lower fidelity and large training data. Additionally, the proposed 283

approach needs more work in order to be applied to problems where the different sources 284

do not share the same inputs. 285
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