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Abstract: Bayesian techniques for engineering problems, that rely on Gaussian process (GP) regres- 1
sion, are known for their ability to quantify epistemic and aleatory uncertainties and for being data =
efficient. The mathematical elegance of applying these methods usually comes at a high computa- s
tional cost when compared to deterministic and empirical Bayesian methods. Furthermore, using
these methods becomes practically infeasible in scenarios characterized by a large number of inputs s
and thousands of training data. The focus of this work is on enhancing Gaussian Process-based
metamodeling and model calibration tasks, when the size of the training datasets is significantly = 7
large. To achieve this goal, we employ a stochastic variational inference algorithm that enables rapid s
statistical learning of the calibration parameters and hyperparameter tuning, while retaining the rigor ~ »
of Bayesian inference. The numerical performance of the algorithm is demonstrated on multiple 10
metamodeling and model calibration problems with thousands of training data. 1

Keywords: Gaussian Processes; stochastic variational inference; multi-fidelity modeling; manifold 12
gradient ascent; structural dynamics; vibration torsion 13

1. Introduction 14

Modern engineering tasks are often characterized by the need to perform large scale ex- s
pensive laboratory experiments or amortize hours of compute performing simulations that s
are based on sophisticated mathematical formulations. While these high-fidelity sources 17
of information provide detailed insight into the complex physical process, one usually  1s
faces a heavy computational runtime or a massive financial investment. In addition to this, s
obtaining datum by running experiments or simulations needs more advanced insight, 20
that might not always be extricated from the datum by applying state-of-the-art methods 21
used to build data-driven metamodels [1]. Finally, with the advent of Industry 4.0 [2], =2
developing digital twins, that are commonly probabilistic surrogate models representing 23
the underlying physical process, is becoming a routine practice across the industry. Ina 24
realistic scenario, paucity of data and noise in the recorded measurements are challenges s
that also need to be taken into account. 26

Surrogate modeling methods that have shown promise in dealing with problems of  2»
the aforementioned kind, typically include Gaussian process (GP) regression [3-5], proba- 2.
bilistic deep neural networks [6-8] or Polynomial Chaos expansions [9-11]. Application 2o
of these methods has been extended to problems from different domains, such as man- o
ufacturing [12,13], flow through porous media [10,14], and combustion mechanics [15]. 31
Classic formulations of these methods provide a meaningful representation of model form s
uncertainty and noise, and they demonstrate strong predictive performance on unseen 3
data. However, these approaches are susceptible to challenges like limited training data, s
multiple sources of information that model the same process, and the lack of identifiability s
of model parameters [16]. 36

In this work, our focus is on applying GP regression to problems that have thousands  s-
of data [17]. Secondly, we focus on the use of GP regression in both, the single-fidelity and s
the multi-fidelity modeling scenarios. In the second scenario, we focus on the case where 3o
data from two sources of differing fidelity is available and the task involves calibrating the 40
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so-called tuners of the lower fidelity source. In all these tasks, we resort to a fully Bayesian
formulation of the GP regression, differentiating ourselves from the works of [18-20], the 42
details of which are discussed in Ghosh et al. [21]. This is a critical aspect of this work, a3
as retaining a fully Bayesian treatment for the metamodeling and model calibration tasks s
with GPs is a major challenge from a computational and numerical perspective. In some 45
of the authors” previous work (see Pandita ef al. [22]), it was demonstrated how savings s
in computational time can be achieved using adaptive Sequential Monte Carlo methods 47
fused with a fully Bayesian treatment, applied to tasks of the above kind. However, the s
utilization of hundreds of computational processing units or cores, is not always practically  as
possible, necessitating the need for alternative approaches. Other adaptive algorithms that  so
accelerate Markov chain Monte Carlo methods for Bayesian inference [23-25] and optimal =
transport based approaches that circumvent the need for MCMC methods [26] have shown s
promise in recent years. 53

Most of the above mentioned works rely on computational power and heavy use of s
large scale computing, in order to overcome the challenges of training the models. Our main  ss
contribution in this work is to achieve computational efficiency by leveraging a variational  se
formulation of Bayesian inference, commonly known as black-box variational inference s
(BBVI) [27], and by improving the performance of the optimization scheme involved using  ss
efficient subsampling, rather than resorting to online access to exorbitant computational  se
resources. 60

Variational methods [28,29] to Bayesian inference have shown promise in various e
tasks that resort to a Bayesian formalism in order to train surrogate models [30,31], calibrate &2
physical models [32] and more recently across a swathe of deep learning tasks [33-35]. The s
key ingredient in Variational Inference (VI), that enables efficient posterior density explo- s
ration conditioned on large amounts of data, is to perform the required likelihood function s
evaluations using random batch-sampling. Introducing this additional level of stochasticity s
in the algorithm, resulting in what is known as Stochastic Variational Inference (SVI) [36], &7
allows for fast likelihood evaluations during the optimization procedure and scales the s
algorithm, while full exploration of the available training dataset is still guaranteed. SVIhas e
been previously successfully applied for training deep GP models [37] and sparse GPsin 7
big data scenarios [38]. In this work, we apply SVI to train hybrid Gaussian Process models 71
that make use of training data stemming from multiple levels of fidelity, while at the same 7
time they can incorporate calibration parameters. Specifically, we adopt the well known 7
Kennedy-O’Hagan formulation [39] that relies on an autoregressive GP scheme and we 7
develop a training algorithm that scales BBVI for big data problems using batch-sampling. s
We identify the optimal Gaussian approximations to the true posterior densities of the 7
model’s hyperparameters by solving the variational problem with respect to full covariance 7z
matrices, thus capturing all correlations between the parameters. To achieve this, we make s
use of a manifold gradient ascent algorithm that performs the optimization directly on 7
the manifold of symmetric positive semi-definite matrices, as opposed to solving complex &0
constrained optimization problems. 81

The outline of the paper is as follows: We present the mathematical details of the s
autoregressive multi-fidelity calibration model in Sec. 2. In Secs. 3.1 and 4.1, we expand s
on the details of the black-box variational inference and its use in scaling up for big data e
problems, and we introduce the manifold gradient ascent optimization scheme, to be used  es
for carrying out the optimization task. To illustrate the direct applicability of the proposed s
approach on calibrating models using data from sources of varying fidelity, we use a set &7
of synthetic functions in Sec. 5.1. We demonstrate the impact of the extended variational s
formulation on a benchmark machine learning dataset with thousands of training data, in s
Sec.5.2. In Sec.5.3, we highlight the impact of the proposed formulation on a challenging o0
multi-fidelity problem, in the high-sample regime with over ten thousand training data, o
where the parameters of interest include the uncertain tuners of the low-fidelity simulation o2
model. We summarize our conclusions and directions for future work in Sec. 6. 93
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2. Multi-fidelity Gaussian Process modeling and calibration %
2.1. Autoregressive Gaussian Processes 95

We consider the Kennedy & O’Hagan formulation [40] where two simulators are s
available, namely y,(x), y;(x, 8), where yj, represents some high fidelity computer code and o
yi(x, 0) represents a low fidelity simulation code. The design variable x is assumed to take  oe
values within a space of feasible designs X C RP, while 8 is a set of calibration parameters oo
that characterize the low fidelity simulator. 100

The relationship between the two codes is assumed to be

yn(x,0) = pyi(x,0) +3(x) +e(x), (1)

where 6(x) is a discrepancy term that is statistically independent of y;(x,6) and €(x)
accounts for measurement noise and is independent of both y;(x, 0) and J(x). The coefficient
p satisfies

) covlyu(%.0),1(x0) (2)

var[y; (x,6)]

and therefore accounts for the correlation between the models. Although in general p can
be considered a function of x [41,42], we assume for simplicity that it is constant throughout
this work. Further, we take y;(x,6), 6(x) to be Gaussian Processes with zero mean and
variances 077;(x,x') and 037, (x, X') respectively where r; and r; are correlation kernels, here

to be taken as squared exponential functions

D (4 _ 42
ri(x,x') = exp [_ )3 (ngle)] , t=19, ©)
i-1 iy

with /; ; being the correlation length or lengthscale along dimension i, for the two kernels 101
(t = l ’ (S) 102

The framework defined above may suffer from issues that pertain to recovering the 103
correct solutions for the parameters being calibrated, also known as identifiability issues. 104
These drawbacks are known in the literature and have been discussed in various works  1os
[43—45]. In this work, we limit our focus on improving the computational efficiency ina 106
fully Bayesian formulation while acknowledging this characteristic of the multi-fidelity 1o
framework. 108

2.2. Posterior distribution 109

Assuming a set of observations are available, namely D; = {x;, 0;, y; fil and D), =

{xi, y,}?ﬁl are the input to output sets of points corresponding to the low and high fidelity
simulators respectively. Conditioning the distribution of y, (x*, 8) evaluated at some test
point x* on the available data D := D; U Dj, and taking into account the prior choices and
the independence between y;(-) and J(-), we can write the posterior density as a Gaussian
Process with mean and variance given by [39]

py, (x*,0) = t,(x*,0)V, ly )
and
oy, (",0) = 0 (<) = ta (X", O) V" 1 (X", 6). ®)
In the above expressions we use y = (y/,y})7, 110

V(l/l) V(l/h) (9)

Vi(0) = V(h")(G) V(h'h)(G) (6)
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where the diagonal block matrices are given by 111
viD = o (R(Dy) +a21), -
VIR (8) = oF(Rs(Dy) + 02 1) + P2 (Ri(Dy(8)) + 02 1),

and R¢(D;) is the correlation matrix with entries 7¢(x,x') for x, X' € Dy, t = 1,6. In the
above, Dy (0) := {(x;, 6)}5\]:’11 for x; € Dj,. The off-diagonal blocks are written

v () = pvD (D), Dy (0)). ®)
At last, we define the vector 112
2R;((x*,0),Dp)
th(x*,0) = o o > 9
O, ) ( p*07R((x*,0), D) + 0 Rs(x*, Dy) ©)

3. Variational Inference 113

Throughout this section we present the main ingredients of the Variational Inference
framework for the purpose of training Gaussian Process models by means of exploring a
Bayesian posterior density. The target distribution in our case is the posterior distribution
of the Gaussian Process hyperparameters w, defined as the set of lengthscales /;;, t = I, h
along each dimension of X, the variance parameters 07, 02, Uezt, t,h and the calibration
parameters 0. This posterior density is conditioned on the training data D that in general

consists of the high- and low-fidelity input and output observations. From Bayes’ rule

pluip) = LEIB) (10)

the posterior density is known as a function of the likelihood term and the prior density,
up to a proportionality constant. Variational Inference [46,47] bypasses the challenge
of sampling from the posterior, by approximating it by an element g(w) chosen from
a parametric family of distributions Q = {g(w|A) : A € A}, where A is some set that
determines the parameterization of the densities in Q. The criterion, for choosing the
optimal density from the family, is minimizing the Kullback-Leibler (KL) divergence
between the candidate and the target densities. We define KL divergence between the
candidate and target densities as follows:

KLlg(@l) )] = [ gl tos( L43 )do. an

Several techniques for solving the optimization problem exist in the literature [28] such as 114

mean-field VI [48] or nonparametric VI [32], and are typically tailored to problem specific 11s

choices of prior densities, approximating family of distributions and the inference problem 116

under investigation. 117
One common characteristic of the approaches mentioned above is that they all trans-

form the problem of minimizing the KL divergence to an equivalent maximization problem

by substituting (10) into (11) to obtain

log p(D) = KL[g(w|A)[p(w)] + Fq], (12)

where

Fla) = gl + [ a(w|h) log(p(D, w))dw (13)

and #([q] is the entropy of g(w|A). Since the left-hand side of (12) is constant, we can s
conclude that the variational solution can be obtained by maximizing F|g] that is referred 11
to as the Evidence LOwer Bound (ELBO). 120


https://doi.org/10.20944/preprints202207.0034.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 July 2022 d0i:10.20944/preprints202207.0034.v1

50f 15

3.1. Black box Variational Inference 121

One of the most popular choices for optimizing (13) is to directly employ a stochastic
gradient descent or ascent algorithm, after observing that the objective function can be
written as an expectation

Flq] = Eqllog p(D, 0) —logq(w|A)], (14)

where the expectation is taken with respect to g(w|A). The gradient of this expression with
respect to the parameters A that we seek to optimize will be

VaF(q] = Eg[Valogg(w|A)(log p(D, w) —logg(w|A))], (15)

where the gradient V log q(w|A) is known as the score function for any probability density
g and the joint density can be expanded using Bayes’ rule to p(D, w) = p(D|w)p(w). A
Monte Carlo estimator of (15) can be written as

ViFlg vaAlogw w'[1) (log p(D, w') ~ logg(w'|A)), (16)

where w' ~ g(w|A). Note that in the above expression, the gradient appears only on 122
the score function, and can, in general, be computed analytically for certain families 123
of distributions. On the contrary, the log-joint term log p(D, w) which depends on the 12
Bayesian model under investigation, needs not be differentiated. The gradient expression 125
does not make any further assumptions and applies generically on every Bayesian inference 126
problem, justifying the term coined to this approach as Black Box Variational Inference [27]. 122
To further scale the algorithm, the perform the log-joint function evaluations p(D, w') =
p(D|w')p(w') using batch sampling throughout the available dataset D, where each time a
random subset of the dataset is used to form the likelihood term. To put things in a realistic
multi-fidelity context, is it highly unlikely that a big data problem will consist of a large
number of high fidelity observations. Therefore, in this work we consider the following
scenario where the number of training data points in D is significantly larger that the
number of high fidelity observations Dy, that is |D;| > |Dy|, thus, the batch sampling
approach is applied only on D;. At every evaluation of eq. (17), let Df be a random subset
of D;and D' = Df U Dy, then eq. (17) is rewritten as follows:

VaFlg) = 5 Z V1 log q(w'|) (log p(D", w') — logg(w'|2) ), (17)

where D; is subsampled N times, that is the number of Monte Carlo samples used to 12
estimate V F[q]. This scaling approaching has been previously introduced in the literature 129

as Stochastic Variational Inference (SVI) [36]. 130
4. Stochastic Optimization 131
4.1. Manifold Gradient Ascent 132

For the case where the approximating family of distributions Q consists of multivariate 13
Gaussian densities, thatis Q := {g(w|A) := N (w|p,£)}, a suitable optimization scheme 13«
needs to be employed over the parameters A = (y, X) such that the symmetric positive 1ss
semi-definiteness property of the covariance matrix is not violated. Here, we employ a 136
stochastic optimization scheme that is tailored particularly on our problem. The scheme 137
applies a momentum algorithm for updating p while performing the X update using a 13s
manifold gradient ascent step. For such a case, we make use of the natural gradient [49] as 139
it is known to be invariant under parameterization [50]. 140

The natural gradient on Riemannian manifolds is defined as

Vi Flgl = I 'V Flq] (18)
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where V, F[q] is the regular gradient and Ir is the Fisher information for density g that is
defined as

IF(A) = B[V logq(w|A) (Vi logq(w]A))]: (19)

In the Gaussian distribution case, the Fisher information matrix becomes
e = (=0 0)

! 0 IrX) )’
where the elements of Ir(X) are (Ip(X)) G = tr (Z’l %Z’l a‘%) and the inverse sim-
plifies to
([ Z 0

Ip(A) ~< 0 Ter ) 21)

where “®" is the Kronecker product. Finally, the natural gradient of F[g] can be written as

Vi Fla) = ZV.Flq]

Vi Fl = TVsFlE @

In our stochastic gradient ascent scheme, the parameters i are updated using a momentum
algorithm with updating step

Pyl = i+ ymy, (23)

where the momentum term 1, is given by
Mypyy = vy, + (1 - U)vﬁut}—[ﬂ- (24)

For the update on X it is necessary to map the point on the tangent space, indicated by
the steepest ascent direction, back to the manifold. For that, we use a retraction mapping
that approximates the exponential map of the manifold of symmetric positive semi-definite
matrices [51].

In our case, we use

Re(@) =2+ + 027 25)

Further, for the momentum update on the manifolds we apply a vector transport that further
projects the translated points back to the tangent space, as was first done in [52]. For our
purposes, we apply the following mapping:

1/2
Try,ox,(8) = UgU’, U= (222f1> : (26)
Finally, our computational algorithm is summarized in Algorithm 1.

5. Numerical examples

We study the performance of the proposed algorithm on three problems. One meta-
modeling problem and two multi-fidelity model calibration problems are used in the
sections that follow.

5.1. Academic example

We consider the following mathematical functions

filx,0) = 6;(8w x —2)sin(5w’x —4) + 6, (2w x + 1)

f(x,0) = fi(x,0)+30(wlx)? (27)

144

146

148

149

150
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Algorithm 1: Manifold Gradient Ascent
Initialize : Choose g, Xo.;
Estimate V,, F[q] and Vy, F|[q] and the corresponding natural
gradients;
Initialize the momentum 1,,, = Vﬁ‘;t}" [q] and my, = V%’;t}" [q];
fort =1t T do
Pt = p—1+yme_q;
Iy = Ry, (ymg, ,);
Estimate V, F|q], Vx, Flq];
Compute natural gradients V' Flq] = £V, Flq], VI Flq] = £ Vy, Flg]Z;
Update momentum terms:
my, = vmy, | +(1— U)Vﬁft}"[q] and
my, = Urztfl—mt(mzt) +(1- U)Vgt}-[‘i]?
end

600 -
+ *x  Low Fid
+ High Fid

400 -

—200 -

Figure 1. Training data for the academic example. Low fidelity data is depicted with blue “x” while
high fidelity observations are depicted with orange ‘+".

with the coupling indicating that f;(x, ) can be considered to be a low fidelity simulator
and f,(x, 0) the high fidelity function. We take x € R!? and the vector w is considered a set
of known parameters projecting the 10-dimensional vector x to R. For this example we take

0.14042
—0.35474
0.42674
—0.09312
—0.21463
W= 026425 | (28)
0.25603
~0.18959
0.00467
| —0.66800

A set of 10* training points is generated from the low fidelity function, that is D; =
{xi, Bi,yi}ilgll while D), = {x;,y;}?% consists of 200 points simulated from f, where the
calibration parameters have been fixed to 8 = (3/2,30). All inputs are generated using
uniform Latin Hypercube sampling on [—2,2]'” while the 6;’s are sampled uniformly within
[0.5,2.5] x [20,40]. The data is shown in Figure 1.

160

161

162

163

164
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To test for the robustness of the approach, we first perform the ELBO optimization 1es
corresponding to training an autoregressive GP model on the available training data using 1es
a varying number of Monte Carlo samples used to evaluate the ELBO gradient estimate 167
(17), namely N = 10,50, 100. We run 5 - 10° iterations of algorithm 1 using an initial learning s
rate 9 = 0.0001, momentum weight parameters v = 0.6 and a random batch size equal to  1eo
50 data points (0.5% of the full dataset) to enable the SVI feature. As expected, the runtimes 170
scale linearly from 13mins for N = 10 to 61mins for N = 50 to 125mins for N = 100. 171

Fig. 2 shows the comparison between the observations and the trained model predic- 172
tions along with a 45-degree line plot for the case where the number of MC samples is as 173
low as 10. As can be seen, the red ‘e’ marks that correspond to the discrepancy-adjusted 17
prediction match exactly the observations and the variance remains low. The blue ‘X’ 17
marks, that corresponding to the inferred low fidelity simulator 7(x, 8), fall below the line, 176
which agrees with the observed trends of the true functions as seen in Fig. 1. Specifically, 17
the low fidelity function appears to be the closest possible to the high fidelity on design i7s
points x that correspond to values of w!x near the origin, which is when we should expect 170
the discrepancy term points to be the closest to the 45-degree line. When 7(x, 0) reaches  1so
very low or very high values (near —200 or 200 respectively), the discrepancy is the largest, 1e:
and indeed the points are far from the 45-degree line. 182

¢ Discrepancy-adjusted(n + &)prediction ¥~
300 ©  Calibrated simulator(n)prediction

A
200 o

> X 1%
= 100 Ly g
g g .
g 0 B ?3?2! s
a
~100 f
B 3 g

-200 -

0 50 100 150 200 250 300 350
actual-Y

Figure 2. Prediction on the training data for low fidelity term 7(x, #) and discrepancy-adjusted high
fidelity output y;(x, ) versus observations. Model was trained using 10 MC samples for the ELBO
evaluation.

Fig. 3 shows the prediction versus observations plots for 500 test data points along 1es
with a 45-degree line plots again for the case where the number of MC samples is 10. At  1s4
last, Fig. 4 shows the posterior densities of the two calibration parameters 8 = (01,6;) 1es
obtained using the VI framework. We observe a clear improvement in the accuracy of the 1ss
6 estimate as the number of Monte Carlo samples increase from 10. To ensure numerical 1e7
stability in our implementation, the Gaussian approximation has been applied on the log 6  1es
and the resulting density plots are based on kernel density estimation using 5 - 10° samples 180
from the optimal log-normal approximation that is obtained using the VI approach. 190

5.2. Chicago crimes statistics dataset 101

In this section, we demonstrate the applicability of the proposed approach on a 1
metamodeling task. The dataset used for this problem is one of the three datasets under 1es
the Query Analytics Workloads Dataset section, hosted by the University of California Irvine 104
open-source machine learning data repository'. This dataset has been used in the other s
recent work [53,54], in order to benchmark the performance of the proposed novel machine 196

1 https:/ /archive.ics.uci.edu/ml/datasets/Query+Analytics+ Workloads+Dataset
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500

300

Prediction

100

-100
0 100 200 300 400
Observation

Figure 3. Prediction versus observations for 500 test data points. The model was trained using 10 MC
samples for the ELBO gradient evaluation.

p(61) p(62)

N=10 o N=50 o N =100

Probability

s 10 15 20 25 B S 0 5 & o5 s s
6, 6 B s w6 B s w6 B s s

Figure 4. Top: Posterior marginal densities for 6; (left) and 6, (right) obtained after the ELBO
optimization with a varying number of Monte Carlo samples. Bottom: Joint density plots obtain for
N = 10,50, 100.

learning algorithms. The quantity of interest being modeled is the number of crimes 1o7
reported or simply the count of crimes in a particular region, in the city of Chicago [53]. 1es
The variables used to define the region, include the x and y coordinates of the center of the 100
region and the radius of the region. Thus, the problem has three inputs and one output. 200
The dataset has ten thousand pairs of inputs and output. We leverage nine thousand points 20
for training the fully Bayesian metamodel and leave out one thousand points as test data  zo2
in order to evaluate the predictive performance of the trained model and we run 2 - 10* 205
iterations of our optimization scheme. 204

Two clear observations from Fig. 5 are: a) the predictive performance visibly improves  zos
as the batch size of subsampled training data increases from across the three subfigures, 206
and b) the predictive epistemic uncertainty of the trained model also decreases indicating 20
higher confidence in the model. In addition to these, Fig. 6 shows the increase in runtime 208
of the algorithm as the batch size of subsampled training data increases. For reference, we 200
also present the runtimes of the Sparse GP implementations presented in [4] using the GPy 210
package [55] for the same number of iterations and batch size and a latent variable with 80 21

Batch size = 45 Batch size = 67
600 600
500
400 400

300

Prediction

200 & 200

100

-100

0 100 200 300 400 500 600 0 100 200 30 400 500 600 0 100 200 300 400 500 600
Observation Observation Observation

Figure 5. Prediction versus observations for 1000 test data points. The three models were trained
using batch sizes equal to 45 (top left) 67 (top right) and 90 (bottom) that were resampled from the
full dataset.
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data points. As can be seen our approach reduced the runtime significantly for very small = 212
batch sizes while the performance of the two algorithms is about the same when batch size 21

becomes 90. 214
Runtimes
A i |
250 -
4 200- P
c
o p
o Y
@ .
£ 150-
w
E
" 100-
_________________ e A sV
50- A" A Sparse GP [4]
50 60 70 80 90
Batch size

Figure 6. Runtime comparison for three different batch sizes for the Chicago crimes dataset.

5.3. Torsional vibration problem

We consider the torsional vibration problem on the system depicted in Fig. 7 that
consists of three shafts and two discs of varying geometric characteristics and elasticity
properties. Our goal is to built a Gaussian Process metamodel on the quantity of interest
that expresses the lowest natural frequency, given as

—h— 2=
Y = \/l);m/zn, (29)
wherea =1,
b=— (% 4 Kzl+21<3), ¢ = KifatKokatkiky, (30)

Figure 7. Torsional vibration on system consisting of 2 discs and 3 shafts.

The torsional stiffnesses are given by

- 7TG1'd1' .
Ki =6, 3L i=1,23 (31)
and the polar moments of inertia are given by
Di\?

with M; = %nt]'%, j = 1,2. We consider a high fidelity simulator where Yjf is evaluated 21
using 61 = 71/32, 0, = % and shaft diameters dy = 2, d, = 1.825, d3 = 2.25 in expressions 217
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Part | Parameter | Value range
Shaft 1 Length L1 | [9, 11]
Modulus of rigidity G; | [1053, 1287]x10°
Shaft 2 Length L, | [10.8,13.2]
Modulus of rigidity Gy | [558, 682]x10%
Shaft 3 Length L3 | [7.2,8.8]
Modulus of rigidity Gz | [351, 429]x 10*
Disk 1 Diameter D; | [10.8, 13.2]

Thickness t; | [2.7,3.3]
Weight density p; | [0.252, 0.308]
Disk 2 Diameter D, | [12.6, 15.4]

Thickness t, | [3.6,4.4]
Weight density p, | [0.09, 0.11]

Table 1. Torsional vibration problem: Description of the 12-dimensional input parameters and their

values ranges. Length, diameters and thicknesses are given in inches, moduli of rigidity are in 1b/sq
inch and weight densities are expressed in 1b/cubic inch.

(31) & (32) while data from a low fidelity Yy is also used where 6y, 6, are considered 215
unknown parameters to be inferred and all diameters are taken equal dy = dy =d3 = 2. 210
All 12 remaining geometric and elasticity properties of the system are assumed to be design 220
parameters and are described in Table 1. 221

We consider again an experimental scenario in the big data regime, where 10% sim- 222
ulation data points are generated from J; and a much smaller number of high fidelity -
observations are available from [,. We test the robustness of the approach by varying -
the number of high-fidelity observations from only 50 points up to 250 and we compare 225
the runtimes. Due to the increasing number of data points used to optimize the ELBO, it 226
becomes necessary to adjust the maximum number of iterations for which the optimization 2e7
algorithm will run, and therefore, the resulting runtime will be affected. For the first three 22s
cases we perform 1000 iterations, for the case Nj, = 200 we perform 1500 iterations, and 229
for the remaining case (N;,y = 250), 2000 iterations were found to be necessary. Fig. 8 shows 230
the convergence of the ELBO function along with the root mean squared error (RMSE) 2
values obtained for each trained model, based on 100 test data points. As expected, the 232
RMSE goes down with increasing number of high-fidelity data as shown in Fig. 8 (b). 233

The posterior results for the calibrated parameters along with the runtimes for each  2:«
cases are shown in Table 2. As can be seen, the true values (0.98 and 0.5) fall within the »ss
reported mean values of 8 & 2-standard deviations for all cases. At last, the comparison of 236
the model prediction versus observation, along with the 45-degree line plots is provided 237

N

3

N
»

for the worse and best case (Nj,s = 50,250) in Fig. 9. 238
RMSE
1000 - A A
030- ™ >
800 -
"
¢ 600- 0.25 - '
E 4
400 - @
Q = 020
o 200-
0- 0.15 -
-200- : )
0.10 A
10° 10! 102 10° 50 100 150 200 250
Iteration # of high-fid data

Figure 8. Torsional vibration problem: Plots of the ELBO function vs number of iterations (top) and
plot of the RMSE values (bottom) for different number of high fidelity data points Nj.
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Ny | 61 (mean, std) | 6, (mean, std) | Runtime

50 | (0.092,0.01) | (0.484,0.042) 9.7
100 | (0.091,0.01) | (0.487,0.111) | 12.9’
150 | (0.132,0.03) | (0.682,0.179) | 14.1/
200 | (0.145,0.27) | (0.554,1.614) | 44.6
250 | (0.088,0.0008) | (0.450,0.0007) | 54.4’

Table 2. Torsional vibration problem: Posterior statistics for the calibration parameters (61, 6,) and

the computational runtimes for each training case.

Vi T

8

8

®
®

Prediction
Prediction

8 8
8

&
B8

2 30 32 3 36 36 28 30 32 34 36 38
Observation Observation

Figure 9. Torsional vibration problem: Comparison of trained model prediction vs observation on
100 test data points along with 45-degree line plots. The high fidelity points used to train the model
are Ny = 50 (top) and Ny s = 250 (bottom).

6. Conclusions 230

We enhance and extend the state-of-the-art stochastic variational Bayesian formulation 240
for tasks that use GPs for multi-fidelity metamodeling and model calibration tasks, in 241
order to treat problems with tens of thousands of training data and model calibration 242
problems with more than ten inputs. The proposed mathematical formulation extends two 24
classic approaches, the so-called black-box VI and stochastic VI, while utilising a manifold = 2ss
gradient ascent scheme to accomplish the task of inferring the GP hyperparameters as well 245
as the calibration parameters. The major impact of our work, is in being able to perform 26
fully Bayesian uncertainty quantification while training and calibrating models using multi- 24
fidelity GPs albeit with large datasets and moderately large number of inputs. Numerical 248
results on two challenging engineering problems visibly demonstrate a scale up of classical 240
Bayesian GPs for multi-fidelity modeling to calibrate untuned computer simulators, by 2s
enabling savings in compute. This speed-up is critical for engineering applications, especially  2s1
in the industry, where repeated model calibration tasks are a common occurrence and can 252
lead to accumulated savings using the proposed approach. 253

This work has shown promise in accelerating the training procedure in Gaussian 2se
Process-based metamodels without relying on enormous computational power. The key 255
characteristic in our approach is the batch sampling step that is being used in the stochastic  2se
variational inference framework which allows for fast computation of the likelihood term 257
and accelerates the optimization task. One key challenge in our approach is that fine 2ss
tuning of the optimization is required in order to ensure sufficiently large updating step  2s0
in the optimization scheme, while at the same time we avoid overshooting. Fine tuning 2eo
the algorithm heavily depends on the size of the batch samples being used, which is 261
also relative to the original data size that is available. Extremely small batch samples 262
can result in very inaccurate likelihood evaluations and eventually miss the optimum. 263
Another important aspect mentioned above is the number of Monte Carlo samples used for 2se
approximating the ELBO function. Very small number of samples can lead to inaccurate 2es
estimates with large variance that will fail to converge, while on the other hand, a high 266
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number of samples will make the algorithm computationally expensive and will fail to
achieve the desired speed up. Typically, big data problems in Bayesian inference exhibit
a well defined posterior, therefore optimizing the ELBO should always be a feasible task
given that some fine tuning has been performed. A limitation of the approach would
the case where big part of the data is corrupted or contains high noise, in which case,
exploration of the posterior via VI might become challenging due to the complex nature
of the true posterior. In such cases more complex variational approximations need to be
considered which could, however, make the algorithm less computationally efficient.

Other general challenges, not associated specifically with our approach, are problems
of extremely high input and output dimensions as well as highly nonsmooth response
functions. In such cases, further development of our framework might be necessary such
that it aligns with similar approaches in the literature, for instance, enabling covariance
matrix sparsity, employing non smooth correlation kernels and last, but not least, leveraging
parallel computing.

Directions for future work include scaling up the proposed approach to problems
with higher input dimensionality i.e. hundreds of inputs and with more than one sources
of information with lower fidelity and large training data. Additionally, the proposed
approach needs more work in order to be applied to problems where the different sources
do not share the same inputs.
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