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Abstract: The development and improvement of methods for the synthesis of environmentally
friendly catalysts based on base metals is currently an urgent and promising task of modern cataly-
sis. Catalysts based on nanoscale magnetite and maghemite have fast adsorption-desorption kinet-
ics and high chemical activity. The purpose of this work was to obtain magnetic composites, deter-
mine their physicochemical characteristics and verify their activity in the process of liquid-phase
oxidation of phenol with oxygen. Magnetic nanocomposites were obtained by chemical co-deposi-
tion of salts of ferrous and trivalent iron. The synthesized magnetic composites were studied by X-
ray diffractometry, energy dispersive X-ray fluorescence and Mdssbauer spectroscopy, IR-Fourier
spectroscopy, elemental analysis. To increase the catalytic activity in oxidative processes, the mag-
netite surfaces were modified using cobalt nitrate salt. Further, CoFe:04 was stabilized by adding
polyethylenimine (PEI) as a surfactant. Preliminary studies of the oxidation of phenol with oxygen,
as the most typical environmental pollutant were carried out on the obtained FesOs, CuFexOs,
CoFe204/PEI catalysts. The spectrum of the reaction product shows the presence of CH in the aro-
matic ring and double C=C bonds, stretching vibrations of the C=O groups of carbonyl compounds;
the band at 3059 cm™! corresponds to the presence of double C=C bonds, the band at 3424 cm™! hy-
droquinone compounds. The band at 1678 cm-! and the intense band at 1646 cm™! refer to vibrations
of the C=O bonds of the carbonyl group of benzoquinone. Peaks at 1366 cm™ and 1310 cm™ can be
related to the vibrations of C-H and C—C bonds of the quinone ring. Thus it was demonstrated that
produced magnetic composites based on iron oxide are quite effective in the oxidation of phenol
with oxygen.
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1. Introduction

The processes of liquid-phase oxidation of phenols have been comprehensively stud-
ied by various scientists [1-15]. As oxidants, depending on which phenol oxidation prod-
uct should be obtained, it is proposed to use a number of compounds of both organic and
inorganic nature. Recently, heterogeneous catalytic oxidation of phenols with air oxygen
has become widespread, which has a number of advantages over other methods of de-
structive oxidation of phenolic compounds. The direction of the oxidation reaction de-
pends on the conditions of the process and the catalyst used. In the processes of destruc-
tive oxidation of phenol in the liquid phase, the most popular are: persulfates, peroxides,
ozone [1-5, 16-31]. These oxidizers can be introduced into the liquid-phase system from
the outside or obtained directly in the reaction volume in situ. It is possible to intensify
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the oxidation process by adding various catalytic systems. The use of oxygen as an envi-
ronmentally friendly and cheap oxidizer for phenol and phenyl-substituted compounds
depends on the specificity of the action of catalysts with respect to oxygen. To date, there
is a large number of works studying the possibility of deep catalytic oxidation of highly
toxic organic compounds, including phenol and phenol-substituted compounds using
metallic and metal oxide Pd, Pt, Ru, Rh, Fe, Ni, Si, Co, Mn, as well as deposited catalysts
with an active metal content of 0.05-30.0% [10, 20-28].

The development and improvement of methods for the synthesis of environmentally
friendly catalysts based on base metal nanoparticles is currently an urgent and promising
problem of modern catalysis [32]. Among such catalytic systems, catalysts containing iron
nanoparticles and/or iron oxides are of particular interest. This is due to the fact that iron
is characterized by low cost, is widely distributed in soils, iron is non-toxic and has unique
magnetic properties. Among the oxides of variable metals, iron oxides and their compo-
sites are used with great success [33-40]. They are used not only in the field of electronics,
medicine, protection and purification of the environment from various pollutants such as
phenol and its derivatives, but also due to their cheapness, good thermal stability, high
specific surface area as heterogeneous catalysts in complete and partial oxidation reac-
tions. Catalysts based on nanoscale magnetite and maghemite have a high degree of ex-
traction, fast adsorption-desorption kinetics and high chemical activity [33-35, 41-48].

The purpose of this work was to obtain magnetic composites, determine their phys-
ico-chemical characteristics and test their activity in the process of liquid-phase oxidation
of phenol with oxygen.

2. Materials and Methods
2.1. Preparation of magnetic nanocomposites

Magnetic nanocomposites were obtained by chemical co-deposition of salts of fer-
rous and trivalent iron. The main advantage of the process of co-deposition of iron salts
is that a large number of nanoparticles can be synthesized in this way. The process of co-
deposition occurs in two stages: the first is the nucleation of crystals when the concentra-
tion reaches a critical supersaturation, and then there is a slow growth of embryos by dif-
fusion of dissolved substances to the crystal surface. To obtain iron oxide nanoparticles,
these two stages must be separated, i.e. the nucleation of crystals during the growth pe-
riod should be avoided [45-52].

Composites were obtained in a Mini glass reactor with a capacity of 50 ml, equipped
with a Mini stirrer with a rotation speed controller up to 1500 rpm. An aqueous solution
of a mixture of Fe(II) and (III) salts was prepared by stirring at 180 rpm and slowly heated
to a temperature of 80°C. Then a 25% ammonia solution was added drop by drop to the
prepared solution of iron salts with intensive stirring (600 rpm), controlling the pH of the
solution, temperature and stirred for another 30 minutes. The resulting black precipitate
of magnetite was washed by decanting with bidistilled water until a pH value of 7-8 was
reached, then the magnetic dispersion was centrifuged in a CM-6M centrifuge at 2000 rpm
for 10 minutes.

The chemical reaction of the formation of FesOs can be written as:

Fe?+2Fe3+80H: = Fes0u+4H:0 1)

In order to increase the catalytic activity in oxidative processes, magnetite surfaces
were modified using cobalt nitrate salt, since among spinel ferrites with the general for-
mula is MeFe204, where “Me” is some divalent cation (Fe?t, Co?t, Ni?*, Cu?*) cobalt ferrite
(CoFe204) has a stronger cubic magnetocrystalline anisotropy.

To obtain CoFe204, a mixture of aqueous solutions of FeCls-6H20 and Co(NOs)2:6H20
at 180 rpm was slowly heated to a temperature of 80°C. Then a 25% ammonia solution
was added drop by drop to the prepared solution with intensive stirring (600 rpm), con-
trolling the pH of the solution, the temperature and stirred another 40 min.
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At the same time, an instantaneous formation of a dark brown suspension was ob-
served. The reaction was carried out at a temperature of 80° + 5°C, the temperature was
kept constant in the process with the need to obtain nanodisperse ferrite composites. The
resulting precipitates were washed by decantation in a rotary evaporator and dried at a
temperature of 90-100°C.

The chemical reaction of CoFe204 formation can be written as:

Co? + 2Fe¥ + 80H- = CoFex04+4H20 @)

Further, CoFe20s was stabilized by adding polyethylenimine as a surfactant, hybrid
materials based on cobalt ferrite and polyethylenimine (PEI) were obtained by mixing an
aqueous suspension of cobalt ferrite and an aqueous solution of PEI at the same tempera-
ture at which cobalt ferrite synthesis was carried out, and mixed at the specified temper-
ature for 1.5 hours. The resulting composites were then dried at room temperature in air.
As a result, samples of hybrid materials CoFe20s, CoFe20/PEI were obtained.

2.2. Tests of synthesized catalysts in the process of oxidation of phenol with oxygen

Preliminary studies of the oxidation of phenol with oxygen, as the most typical envi-
ronmental pollutant, were carried out on the obtained FesOs, CoFe204, CoFe204/PEI cata-
lysts.

The oxidation reactions of phenol with oxygen were carried out in a non-flowing
glass gradient-free thermostatic reactor of “the duck” type (Figure 1) equipped with a po-
tentiometric device. The kinetic regime was provided by intensive shaking of the reactor
(300-400 swings per minute), the volume of the liquid phase was no more than 40 cm?,
with a total reactor volume of 180 cm?. The reaction rate was monitored by oxygen ab-
sorption from a thermostatic burette connected to the reactor.

Figure 1. Laboratory installation for oxidation of phenol with oxygen: 1- reactor, 2- electrode, 3-
funnel for reagent input, 4-potentiometer, 5-thermostat, 6- measuring burette, 7- gasometer, 8-tran-
sition valve, 9- taps.

The components of the system were introduced in the following order: solutions of
substances were poured into the reactor, the interactions between which are limited by
equilibrium processes in the liquid phase, or the speed of which can be neglected com-
pared to the speed of the reaction under study. Then a given oxygen atmosphere was
created in the reactor. The reactor was shaken until a constant volume of the gas phase
was established, within the experimental error, after which the remaining components of
the system were quickly introduced through a glass faucet. This moment was taken as the
beginning of the reaction. The temperature was maintained with an accuracy of 0.5°C us-
ing a thermostat.

When the oxygen absorption rate became below 0.1 ml/min, the reaction was consid-
ered complete. Samples were taken at certain intervals, which were analyzed for the con-
tent of phenol and benzoquinone by UV and IR spectroscopy.
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The reactions were carried out under optimal conditions established during the stud-
ies of phenol transformation in the presence of the obtained catalysts. The initial concen-
tration of phenol was 0.003 mol/l.

2.3. Conducting an analysis

The obtained magnetic composites were studied by X-ray diffractometry, energy dis-
persive X-ray fluorescence spectroscopy, and Mossbauer, IR-Fourier spectroscopy. Moss-
bauer spectroscopy was used to study the magnetic structure and phase analysis. The
source was ¥Co in a rthodium matrix with an activity of 100 mCi. The spectra were pro-
cessed on a PC using “the least squares” method. The values of isomeric shifts (Is) are
given relative to a-Fe. The temperature of taking spectra is 20°C. Shooting mode is “in
transmission”. Spectrometer MS 1104Em was applied. AIS = +0.03 mm/s; AQS = + 0.03
mmy/s; AS=+2.0 %.

Elemental analysis was performed using energy-dispersive X-ray fluorescence spec-
troscopy on an INCA Energy 450 energy-dispersive microanalysis system mounted on a
JSM 6610 LV scanning electron microscope, JOEL, Japan. Determination error is *
0.01%.

X-ray diffractometry was performed using a Dron-4-07 X-ray diffractometer with a
tube with a cobalt anode. Shooting mode: sweep speed 2 degrees/min; operating param-
eters of the tube: 30 kV, 20 mA.

IR spectra were recorded and processed on a VERTEX 70 IR-Fourier spectrometer in
the frequency range from 4000 to 500 cm~' and using a PIKE MIRacle ATR single frustrated
internal total reflection (ATR) attachment with a germanium crystal. The results were pro-
cessed using the OPUS 7.2.139.1294 software.

The absorption spectra were measured using a Shimadzu UV-1240 spectrophotome-
ter with a spectrum measurement range from 190 to 1100 nm.

3. Results
3.1. Characterization of magnetic composites

Figure 2 shows an X-ray diffractogram of a magnetic composite. The X-ray image of
synthesized iron oxide nanoparticles agrees well with the literature data for magnetite
[44-46, 52-55]. Reflexes at 20 values 35°, 43°, 57°, 63° and 74° corresponds to the lattice
planes (311), (400), (422), (511), and (440), respectively, characteristic of iron oxide, indi-
cating its crystal structure. However, the positions of the diffraction peaks of magnetite
and maghemite are very much the same and they have a common crystal lattice structure.
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Figure 2. X-ray diffractogram of synthesized iron oxide, magnetic composite.
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The structure of maghemite is a defective structure of magnetite, a cation-deficient
form of spinel. Mossbauer spectroscopy allows us to solve the problem of phase analysis
in magnetic composites, therefore, using Mossbauer spectroscopy, we have studied the
structure and phase composition of magnetic composites.

Figure 3 shows the Mossbauer spectrum of a composite obtained at room tempera-
ture belonging to iron oxides in a magnetically ordered state.
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Figure 3. MOssbauer spectrum of a magnetic composite at 20°C.

The Mossbauer spectrum has a relaxation character, as indicated by the parabolic
shape of the background line. The magnetic hyperfine splitting of resonance lines indi-
cates the magnetically ordered states of iron ions at room temperature. Satisfactory fit of
the calculated spectrum to the experimental one was obtained by decomposing the latter
into four magnetically ordered components (phases) with a distribution of effective mag-
netic fields (Heffective) from 485 to 397 keV.

The spectrum can be considered as two sextets similar in their parameters, corre-
sponding to trivalent iron ions and with slightly less splitting from divalent iron ions. The
values of isomeric shifts (Is) and quadrupole cleavages (Qs) indicate the simultaneous
presence of phases of magnetite FesOs and maghemite y-Fe20s, which completely coincide
with the tabular values. The values of the isomeric shift and the effective ultrathin mag-
netic field obtained from the experimental Mdssbauer spectra correspond to Fe nuclei
occupying tetrahedral and octahedral positions. The low values of the effective magnetic
fields can be explained by the high dispersion of the sample particles. This possibility is
indicated by the relaxation nature of the spectrum. In this case, the size of the studied
particles is close to 10 nm [52-58].

To determine the chemical composition of magnetic composites, an elemental analy-
sis was carried out. Figure 4 and Figure 5 show the results of SEM (Scanning Electron
Microscopy) with the corresponding spectra of energy dispersion analysis.
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Figure 5. X-ray fluorescence spectrum of magnetic composite.

The elemental analysis of magnetic composite is shown in Table 1. Processing param-
eters: all elements were analyzed (normalized).

Table 1. Data of elemental analysis of magnetic composite (in wt.%).

Elements
(0} Al Si S Cl Cr Mn Fe Total
Areal 2651 015 013 113 127 047 040 69.94 100.00
Area 2 2652 012 013 087 134 050 030 70.22 100.00
Area 3 2621 015 011 100 133 047 033 7038 100.00
Average 2642 014 012 100 131 048 034 70.18 100.00

Area

The IR spectrum of the composite contains wide bands of valence vibrations with
absorption maxima of 3380 cm! and deformation vibrations of 1637 cm”, indicating the
presence of hydroxyl groups. In the IR spectrum of the magnetic composite, an absorption
band is observed at 1111 cm™ and a shoulder at 1051 cm, according to the literature data,
which can be identified as deformation vibrations of Fe-O-H bonds in the spinel
structure. Valence fluctuations of the Fe — O bond in oxides are manifested in the region
of 800-600 cm™ at 783.649 cm™.

Figure 6 and Figure 7 show the X-ray diffraction patterns of CoFe2Os and
CoFe204/PEI composites, respectively. In the diffraction pattern of CoFe:0s (Figure 6),
along with reflections related to iron oxide, a cobalt reflex appears in the region of angles
20 = 50-55° and an indistinguishable shoulder in the region 20 = 40-45°. When stabilized
with polyethyleneimine, the reflex diffraction patterns revealed several phases of iron
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oxides - y-Fe20s, a-Fe20s, e-Fe20s. The diffraction reflections for cobalt oxide correspond
to spinel CosOs [37, 38, 42, 57-60].
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Figure 6. X-ray diffraction pattern of CoFe2Os composite.
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Figure 7. X-ray diffraction pattern of CoFe2O4/PEI composite.

Figure 8 and Figure 9, Table 2 show the Mdssbauer spectrum of composites obtained
at room temperature belonging to iron oxides in a magnetically ordered state.

The substitution of the Fe atom for the Co atom leads to an increase in the hyperfine
magnetic field at the ¥Fe nucleus. The Mdssbauer spectroscopy data confirm the results
of X-ray phase analysis. We assume that during the process, the decrease in the values of
H effective (keV) in CoFe:04/PEI compared to CoFexOs is associated with a high
dispersion of sample particles during the addition of PEL The values of the shifts observed
in the spectra make it possible to identify them as partial spectra of the Fe? and Fe3* cations
in the paramagnetic state.
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Figure 8. Mossbauer spectrum of CoFe2Os.
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Figure 9. Mdssbauer spectrum of CoFe2O4/PEI
Table 2. Results of Mdssbauer spectra of CoFe204, CoFe204/PEI composites.
IS, Qs
1 Hestective keV 9
Sample (mm-s-) (mm-s) trective (ke'V) S (%)
0.37 -0.22 518 92
C ite CoFe20
ompostie Fore T 01 0.54 - 8.0
0.37 -0.18 520 20.0
0.28 -0.01 495 34.0
Composite 0.41 -0.09 423 17.0
CoFe204/PEIL 0.39 -0.07 469 21.0
0.42 0.76 - 2.0
1.15 242 - 3.0
0.34 0.53 - 3.0

The chemical composition of CoFe201 was also determined.
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Figure 10 and Figure 11 show the results of scanning electron microscopy with the
corresponding energy dispersive analysis spectra.
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Figure 11. SEM image of CoFe20a.

Elemental analysis is presented in Table 3. Processing parameters: all elements were
analyzed (normalized).

Table 3. Data of elemental analysis of CoFe204 (in wt.%).

Elements
Al Si Cl Ca Cr Mn Fe Co Total
Areal 2116 0.17 0.12 1468 0.03 0.19 022 4328 20.15 100.00
Area2 2129 014 0.11 13.76  0.05 022 0.14 4248 21.80 100.00
Area3 2069 015 0.13 1481 018 027 024 4256 2098 100.00
Average 21.05 0.15 0.12 1442 0.09 023 020 4277 2098 100.00

Area

The IR spectrum of CoFe204contains wide bands of valence oscillations with absorp-
tion maxima of 3388 cm' and deformation oscillations of 1607 cm, indicating the presence
of hydroxyl groups. The absorption band is observed at 1031 cm™ and 678-663 cm, ac-
cording to the literature data, which can be identified as valence oscillations of the Co-O-
H and Co-O bonds, respectively. Deformation fluctuations of Fe-O-H bonds in the spinel
structure are manifested at 1355, 1219 cm-!. Valence vibrations of the Fe-O bond in oxides
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manifest themselves in the region of 800-600 cm™ in the form of several bands at 735, 656,
639, 626 cm-'.

When identifying the IR spectra of CoFe204/PEL in addition to the absorption bands
Co-O and Fe-O, Fe-O-H absorption bands in the region of 1105 and 1048 cm! correspond-
ing to the valence oscillations of C-N and CHo, respectively, are observed. The shift of the
absorption bands with respect to the PEI spectrum is observed, as well as the shift of the
bands characteristic of the bonds of the NH group in the region of 1649 cm™. The com-
plexity of the spectra in this area did not allow us to find out the participation of PEI in
the formation of complexes with metal ions [51-62].

3.2. Results of testing the synthesized catalysts in the oxidation of phenol with oxygen

The obtained FesOs, CoFe204, CoFe204/PEI were investigated as catalysts in the oxi-
dation of phenol as the most typical environmental pollutant.

The initial concentration of phenol was 0.003 mol/L.

Figure 12 shows that the most effective oxidation of phenol occurs at CoFe204/PEL
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Figure 12. Dependence of phenol concentration on oxidation time: a) in the presence of 1-FesOs, 2-
CoFe204, 3-CoFe204/PEL b) in the presence of CoFe204/PEL 1 - 30°C; 2 - 40°C; 3 - 50°C; 4 - 60°C; 5 -
80°C.

When phenol is oxidized to CoFe:0s stabilized with polyethylenimine, the concen-
tration of phenol decreases from 0.03 to 0.001 mol/L in 120 minutes, on FesOs, CoFexO4
catalytic systems, phenol oxidation occurs with a decrease in the concentration of phenol
from 0.03 to 0.0025 mol/L in 150 minutes. With an increase in temperature from 30°C to
80 °C, the maximum degree of transformation of CsHsH is observed at 80°C.

In the UV spectrum of the initial solution of phenol, absorption bands are observed
in the region of 193, and 210.8 and 270 nm (Fig. 13, a) characteristic of phenol. Depending
on the oxidation time in the UV spectra, a shoulder in the region of 207 nm (Fig. 13b) and
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a plateau in the region of 275 nm are similarly observed. The ratio of intensities and spec-
tral characteristics of the absorption bands of phenol with a shift to the long-wavelength
region from absorption measurements in the wavelength range 190-320 nm allows us to
estimate the concentration of phenol in the sample, to give a primary qualitative assess-
ment of the oxidation of phenol.

Spectrum [ 320,0nd_ 0,

(2) )

Figure 13. Absorption spectra of the initial aqueous solution of phenol (a) and oxidation time (b, 1
hour); (¢, 2.0 hours).

The IR spectra of phenol and reaction products are shown in Figure 14. In the IR
spectra of phenols, the characteristic absorption bands of valence vibrations of the OH
group lie in the frequency range 3390-3600 cm™, valence vibrations of the C-O group are
observed at 1230 cm™. In the UV spectra, the absorption bands of phenol are as follows:
210 (e = 6200 L/mol - cm) and 270 nm (¢ = 1450 L/mol - cm).
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Figure 14. IR spectra of the initial aqueous solution of phenol before (a) and after (b) reactions.

In the IR spectrum of the phenol solution, characteristic absorption bands of the OH
group valence oscillations in the region of 3394 cm™ are observed and the band in the
region of 1242 cm! refers to the valence vibrations of the C-O groups of phenol (Fig.14a).

A qualitative comparison of the obtained spectra of the reaction product shows the
presence of CH in the aromatic ring and double C =C bonds, valence vibrations of C= O
groups of carbonyl compounds, the band 3059 cm! corresponds to the presence of double
C=C bonds, the band 3424 cm™ may refer to vibrations of hydroxyl groups of the interme-
diate compound hydroquinone. The band in the region of 1678 cm™ and the intense band
in the region of 1646 cm™ refers to fluctuations in the bonds of the C=O carbonyl group of
benzoquinone [40-44, 59-62]. The peaks of 1366 cm™ and 1310 cm™! may relate to fluctua-
tions in the C-H and C-C bonds of the quinone ring (Fig.14b).

Thus, according to the data of UV and IR spectroscopy, magnetic composites based
on iron oxide show their good effectiveness in the oxidation of phenol with oxygen.

The research will be continued.

4. Conclusions

The work is aimed at creating magnetic nanocomposites for the oxidation of the or-
ganic pollutant phenol and its derivatives. Magnetic nanocomposites were obtained by
chemical co-precipitation of ferrous and trivalent iron salts. The co-precipitation process
consisted of two stages: the nucleation of crystals, when the concentration reaches a criti-
cal supersaturation, and the slow growth of nuclei by diffusion of solutes to the crystal
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surface. Magnetite surfaces were modified with cobalt nitrate salt. Next, polyethylene-
imine (PEI) was added to CoFe20s as a surfactant. The composition and structure of the
catalysts have been characterized using modern physicochemical methods. The study of
the characteristics of magnetically active nanocomposites was carried out using electron
microscopy, Mossbauer, IR-Fourier spectroscopy. The developed nanomagnetic compo-
sites were tested in the process of phenol oxidation in aqueous solutions. UV and IR spec-
troscopy data confirm that magnetic composites based on iron oxide are active and effi-
cient in the oxidation of phenol with oxygen.
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