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Abstract: Mining is an important industry, accounting for 6.9% of global GDP. However, global 
development promotes accelerated demand, resulting in the accumulation of hazardous waste in 
land, sea, and air environments. It reached 7 billion tonnes of mine tailings generated yearly world-
wide, and 19 billion solid tailings will be accumulated by 2025. Adding to this, the legacy of envi-
ronmental damage from abandoned mines is worrying; in Canada there are around 10,000 aban-
doned mines, 50,000 in Australia, 6,000 in South Africa, and 9,500 coal mines in China, reaching 
15,000 by 2050. In this scenario, restoration techniques from mining tailing have become increas-
ingly discussed among scholars due to their potential to offer benefits towards reducing tailings 
levels, thereby reducing environmental pressure for the correct management and adding value to 
previously discarded waste. This review paper explores available literature on the main techniques 
of mining tailing recycling and reuse and discusses leading technologies, including the benefits and 
limitations, as well as emerging prospects. The findings of this review serve as a supporting refer-
ence for decision-makers concerning the related sustainability issues associated with mining, min-
eral processing, and solid waste management. 
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1. Introduction 
The products of mining activity are essential not only for the subsistence of modern 

society but also for its improvement. We can reflect the impact of the absence of products 
in our daily lives, such as aircraft, ceramics, computers, building materials, medicines, 
agricultural products, asphalt, electronic products, metals, and paints [1,2]. Substantial 
mining activity is usually correlated with a region’s development, such that geologically 
privileged regions can count on a considerable part of their GDP from this activity [3]. For 
example, the European extractive industry includes more than 17,500 companies employ-
ing more than half a million people, and the development of the western United States 
was primarily due to the mining industry [4].  

The activities involved in the intricate process of mining range from metal extraction 
(precious metals, ferrous alloys, and nonferrous materials), mineral beneficiation (gypsum, 
salt, kaolin, sulfur, and phosphate), fuels (hard coal, steam coal, petroleum, and coking 
coal), smelting, refining, and remediation [5-7]. The process of extraction produces signif-
icant amounts of wastes, typically consisting of: (i) solid wastes in the form of waste rock, 
clouds of dust, sludges, and slags; (ii) liquid wastes in the form of wastewater and efflu-
ents; and (iii) gaseous emissions. Waste generated due to mining activity poses a serious 
issue due to the large amounts generated, and it is often associated with the risks posed by 
its storage and environmental management [8]. 
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Global resources are finite and greater extraction and use of virgin materials puts 
significant pressure on the Earth's resources, critically threatening future generational re-
source requirements [9]. Furthermore, the population growth generates high consump-
tion, putting pressures never seen before on natural resources. Consequently, the mining 
industry is generating vast quantities of tailings per year, representing the more promi-
nent waste producer worldwide, reaching 7 billion tonnes per year [10]. Recent estimates 
point out that 19 billion solid tailings will be accumulated by 2025 and due to the struc-
tural complexity (chemical and physical), 20% cannot be recycled at all [11,12]. Among 
others, the consequences are apparent in the permanent impacts on soil exposure, vegeta-
tion, water sources (major impact), atmospheric pollution, and harming the lives of the 
population in its surroundings [1,13-15]. In this scenario, recycling mine tailings can help 
reduce the number of tailings for disposal. Circular economy, recyclability, recycling, and 
reuse have been identified as emerging solutions that can drive the multidimensional as-
pects of sustainability in the mining and metal extraction industries. As the residue is a 
heterogeneous, complex, and reactive mixture of minerals, each solution has its ad-
vantages and limitations of method that are observed in the waste feasibility study.   

In a feasibility study, waste characterization is initially done during mining, where 
the waste is stored above ground ore prior to treatment. At this phase, the concern is to 
know if the residues will cause acid and metalliferous drainage (AMD), saline and sodic 
drainage, and leaching and mobilization of metals and toxic compounds. AMD is the for-
mation and movement of highly acidic water rich in heavy metals and causes serious en-
vironmental problems around the world. It refers to effluents with low pH and high con-
centrations of hazardous and toxic elements that are generated when sulfide-rich wastes 
are exposed to the environment [16]. It is especially harmful when mining activity ceases, 
causing the water table to rise to normal levels, reacting with contaminated acid leachates 
that settle on rock walls when the AMD is present [17-19]. Australia, Canada, and China 
have 52,324, 10,129, and 5,383 abandoned mines, respectively [20,21]. Neutralization, ad-
sorption, ion exchange, membrane technology, biological mediation, and electrochemical 
remediation techniques have been used with relative success in tackling AMD [22-26]. As 
a disadvantage of these remediation techniques, they need to be applied for a long time 
due to the persistence of the reactivity of the elements that form AMD. As a result, pre-
vention strategies have gained the attention of scholars due to their ability to limit the 
formation of AMD in the early stages [16]. 

Recently, as is hereafter reviewed, many researchers have proposed the recycling or 
reuse of mine wastes due to their potential to offer benefits over reducing tailings levels, 
thereby reducing environmental pressure for the correct management, and adding value 
to previously discarded waste. Criticism occurs when some researchers argue that there 
are more opportunities to reduce the impact of tailings waste in the mining design phase 
than in the operational or post-processing phases, and the emphasis on post-processing 
strategies could undermine prevention opportunities [27]. Given the concerns listed, the 
aims of this review are to present recent technological advancements in recycling and re-
use of mining tailings, to explore the environmental and economic implications of these 
strategies, and finally to discuss future perspectives for mine waste remediation technol-
ogies. 
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2. Methodology 
 A total of 90 published articles between 1990 and 2022 were analyzed. These papers 

were retrieved through scholarly databases such as Scielo, Scopus, Google Scholar, Sci-
ence Direct, ResearchGate, and Web of Science. The keywords used in the literature search 
included: "mining tailings," "waste," and "recycling techniques" with "metal recovery", 
"construction materials", "new applications", "sustainable mining", and "agricultural ferti-
lizers”.  

 The articles were analyzed according to a series of characteristics. Initially, the types 
of tailings sources were identified, such as lead, zinc, copper from overload, rock waste, 
processing tailings, metallurgical slag, and water treatment residuals, among others. It 
was also noted the disposal and treatment types of the mining waste. Next, the degree of 
the environmental impact of mining operations, for example: the suppression or preven-
tion of vegetation; the removal of large amounts of fertile soil; the contamination of water 
sources, waters in rivers or in reservoirs by oil, grease and heavy metals; the modification 
of the water-flow regimen; air pollution; and the risks arising from the accumulation of 
tailings in containment barriers. Finally, the recovery options observed in the articles were 
summarized, outlining the advantages and disadvantages of each application. 

3. Discussion 

3.1. Mining and mineral processing wastes 
Mining waste refers to all material that is extracted from the ground and processed 

to varying stages during the ore-processing and enrichment phases, having low or no eco-
nomic value as it is considered an unusable mineralized material, hence is stored or dis-
carded rather than processed [28,29]. Usually, these products present themselves as fine 
suspended materials (1–600 μm), including dissolved metals and reagents, chemicals, in-
organic and organic additives, and are thus stored in the form of slurry in large man-made 
embankments, commonly referred to as tailings dams. Table 1 summarizes some types of 
mine waste, their classifications, and disposal options [30-33]. Table 2 shows the main ap-
plications of mine tailing identified in the articles. 

Table 1. Characterization of mining waste [30-33]. 

Types of mining waste 
Physical classifica-

tion of residues 
Environmental 
classification 

Disposal 
Options 

Rock waste (sterile) / Pro-
cessing waste  

•Aqueous solutions 
•Wastewater 

•Particulate emissions 
•Water treatment sludge 

•Metallurgical slag 
•Atmospheric emissions  

Acid mine drainage AMD  
 
 

Solid form  
•waste rock, dust, sludge, 

and slag,  
Liquid form  
•Liquid slag,  
•wastewater, 

 •effluent 
Gaseous form 

Chemical and miner-
alogical composition 
Physical properties 
Volume and surface 

occupied 
Waste disposal method 

Tailings dams 
Exhausted mine pits,  
In piles, by dry stack-
ing (suitable for areas 
of high seismic activ-
ity, for cold climates) 

Disposal in paste 
Underground backfill-

ing 
Submarine tailing dis-

posal (STD) 
 

According to Table 1, mining waste can present itself as rock waste from the bedrock 
that has been mined and transported out of the pit. However, it does not have the metal 
concentration of economic interest. It is stored in a landfill site near mining production 
because it is not economically viable to transport to another site [34]. In the processing 
phase, an ore mill is located at the extraction site to produce the first marketable products 
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(metallic concentrates, sorted ore, and ingots); the residues of this stage are called pro-
cessing waste. In this phase, various types of waste, such as aqueous solutions, 
wastewater, and slurry composed of fine-grained particles mixed with additives as well 
as products of chemical reactions, are produced, which need to be stored in ponds for 
dewatering. Acid mine drainage occurs when acid, sulfate and metal wastewater (efflu-
ents with low pH and high toxic elements concentration) are released from the ponds into 
the environment. The mine may continue to generate AMD for decades even after it ceases 
its operation. It is a huge source of concern due to its high environmental impact [16,35]. 
Still, in the processing stage, roasting is applied in sulfides to extract metals and remove 
impurities from the ore. Therefore, toxic gases like SO2 come out; this is an example of 
mine waste in the form of atmospheric emissions [36]. Still, one of the residues from the 
burning of sulfides is classified as slag, and it usually accumulates together with ashes in 
the vicinity of the production center, rather than in tailings ponds. 

Disposal refers to accumulating large amounts of waste in a concentrated area or 
filling spaces in inoperative mines. Tailing dams is the most common method of deposi-
tion of fine tailings from ore grinding. Here, the idea is to dispose of the waste in an opti-
mized, accessible, and environmentally safe way to allow its reprocessing in the future 
with the advancement of new technologies. We will address some of them in this article. 
Underground backfilling is the most expensive method, it can only be used away from 
aquifers, and it is generally an option when geological stability and safety in operations 
are required. Submarine tailing disposal (STD) consists of the deposition of tailings in un-
derwater marine bodies. Although there is a lot of criticism regarding the risks of the op-
eration, and this has been increasing restrictions on the use of this solution over time 
[37,38], some authors emphasize the benefit because the underwater conditions favor the 
geochemical stabilization of sulfide mineral residues [39]. 

    Table 2. Tailings identified and their applications. 

Types of tailings identified Application 
Number 

of articles 
analyzed 

Iron ore; Copper; Platinum Group Metals; AMD; Zinc; 
Phosphogypsum; Slag; Red mud; Electric oven powders; 

Limestone powder; Fly ash and sewage sludge; clay-
based residues; Gold tailings; Marble; Coal combustion; 

Construction ma-
terials 

25 

Manganese; Phosphogypsum; Platinum Group Metals; 
Combustion coal; Mine drainage sludge; Limestone pow-

der; Phytoremediated tailings 

Agricultural 
applications 

7 

AMD-causing tailings Geopolymers 3 

Chromium ore tailings 

Automobile cata-
lytic converters; 

electronic materi-
als; jewelry 

3 

Sand-based tailings; Platinum Group Metals; Coal com-
bustion; Copper slag  

Landfills 
and source 

of rare earth ele-
ments 

3 
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According to Table 2, construction materials are the main applications of mine waste. 
In this sector, the most significant research is related to additive incorporation in cement 
for concrete block manufacturing [33,40], followed by brick manufacturing [41,42]. Agri-
cultural products are in second place. Tailings that are suitable for use in agriculture must 
possess more similar physicochemical, compositional, and morphological characteristics, 
primarily in being rich in silicates, calcium, iron, and aluminum, among other beneficial 
elements, to be desirable for soil remediation and remineralization purposes. Several ag-
ricultural applications were observed in the articles, such as: improving soil structure and 
crop yield [43], reducing soil erosion [44], treating acidic or metal-rich soils [45,46], or in-
creasing available S and P concentrations in the soil [47]. 

3.2. Recovery of mine wastes through reuse and recycling  
Reusing mine waste means using the material in its entirety without processing it in 

a new application. Recycling, on the other, hand extracts new valuable components from 
the waste or uses the waste as an input to the manufacture of a valuable product or appli-
cation through processing [48] 

In the different mining phases (exploration, transport, processing, and beneficiation) 
measures are taken to manage the generated waste. Different parameters such as geo-
graphic, geological, hydrogeological, and climatological disparities are decisive for ad-
dressing the strategies. In the long term, the research and development (R&D) sectors of 
companies work to improve the efficiency of current exploration methods (drilling and 
extraction), while in the short term, planners and decision-makers embrace management 
tools, as shown in Figure 1, aiming to add value to the production liability and reducing 
the risk of the operation.  

 
Figure 1: Mine waste hierarchy modified from [49]. 

The triangle of Figure 1 represents a mine waste hierarchy serving as a guide for 
prioritizing waste management practices, representing the most favored at the top to the 
least favored at the bottom. As seen, minimization of the creation of mine waste is the 
preferred option, whereas disposal and treatment are the least preferred option. Reuse 
and recycling are the top feasible options in waste management [48].  

To be possible to reuse waste there must be a guarantee of the quality of the material 
compared to the original condition. In this strategy, there is no biological, physical, or 
physical-chemical transformation. The advantages are the saving of natural resources and 
manufacturing of cheaper products.  

Recycling, which aims to reintroduce a waste after undergoing transformations in its 
properties to a particular production chain and serve as raw material for the manufacture 
of other products, has the following advantages: generation of employment, encourage-
ment of scientific development, reduction of the need for extraction of minerals in mines, 
among others. However, the most common practice used in conventional mining is the 
treatment, disposal, and storage, the least favored option. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 August 2022                   doi:10.20944/preprints202207.0010.v3

https://doi.org/10.20944/preprints202207.0010.v3


 6 of 18 
 

 

Despite the consolidation of technologies for treatment, disposal, and storage, there 
is a growing evolution regarding the use of mining waste recycling, especially in devel-
oped countries [50-52] where an increase in the number of research activities in this area 
leads to the belief that structural modification of this pyramid is possible in the future 
[53,54]. 

Table 3 shows the main recycling and reuse processes of residues outlying ad-
vantages and drawbacks of each. These residues are by-products of mining or have an 
indirect relationship in sharing similar properties and/or composition to mining waste 
thus facing similar technical and economic feasibility challenges and opportunities. 

Table 3. The relationship between types of mine waste and their main recovery techniques. 

Type of 
waste 

Main Recy-
cling/Reuse 

Processes 
Advantages  

 
Limitations Citing Articles 

Metal waste 

Flotation 

Large-scale use; effective 
application in fine miner-

als; application in non-
magnetic ores. 

Low recovery when 
mixed with mud. 

Wang et al., 2017 
[55]; Ndlovu et al., 
2017 [56]; Mackay 

et al., 2018 [57]; 
Shengo, 2021 [16]; 
Kalisz et al., 2022 

[58]. 

Gravity Separa-
tion 

No use of Chemical prod-
ucts; Relatively little envi-
ronmental impact except 
for the disposal of sludge; 

Operational simplicity; 
Lower cost than flotation, 
Application in materials 
with larger particle size. 

Considerable loss of 
tailings, when the 

method is dense type. 

Wang et al., 2017 
[55]; Ndlovu et al., 

2017 [56]; 
Rao et al., 2017 

[59]. 

Magnetic Separa-
tion 

Low operational cost; 
Simplicity of equipment; 
A small amount in the re-
lease of waste that can af-

fect the environment. 

Application only in 
waste with the pres-

ence of magnetic mate-
rials. 

Wang et al., 2017 
[55]; Ndlovu et al., 

2017 [56]. 

Solvent Extraction 

Economically and opera-
tionally feasible to exe-
cute in a short time; ob-
taining elements with 

high purity; effective in 
the selective extraction of 
heavy metals from indus-

trial waste. 

Cost, degradation, vol-
atility of solvents. 

Ndlovu et al., 2017 
[56]. 

Biolixiviation (bi-
oleaching) 

Microorganisms are used 
to obtain metals from 
low-grade ores; High 

technological potential; 
Recent technology. 

Slow rate; climate de-
pendent; containment 

requirements. 

Duarte et al., 1990 
[60]; Stanković et 

al., 2015 [61]. 
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Amalgamation 

An efficient process for 
extracting larger particle 
size metals; Simple and 

inexpensive process. 

Limitation in recover-
ing fine-grained mate-

rials. 

Pulungan et al., 
2019 [62]. 

Gypsum 
waste 

Solvent Extraction 
Good selectivity; Obtain-
ing elements with high 

purity. 
- 

Cánovas et al., 
2018 [63]; Garg et 

al., 1996 [64]. 

Acid Leaching 
Low energy input; low in-

vestment.  

Difficult separation of 
impurities; Presence of 
a high volume of acid. 

Cánovas et al., 
2018 [63]. 

Metallurgi-
cal waste 

Pyrometallurgical 
Process 

Ability to receive zinc-
based metallurgical pow-

ders. 

High thermal energy 
requirements; Addi-

tional steps to recover 
volatile metals from 

flue gas. 

Matinde et al., 
2018 [30]; Ndlovu 

et al., 2017 [56]; 
Lin et al., 2017 

[65]. 

Hydrometallurgi-
cal process 

Increasing use in recent 
years; Flexible and eco-
nomical; Few environ-

mental problems. 

Chemical consump-
tion; Separations chal-

langes. 

Matinde et al., 
2018 [31]; Buzin et 

al., 2017 [66]; 
Ndlovu et al., 2017 
[56]; Rodríguez et 

al. 2020 [67]. 

Electrometallurgi-
cal process 

Emerging technology; 
Smaller scale use. 

Materials of construc-
tion requirements. 

Hansen et al., 2012 
[68]. 

Steel slag 

Dry Granulation 
More used; More effec-

tive; Less environmental 
pollution. 

Lower product value. 
Bisio, 1997 [69]; 

Barati et al., 2011 
[70]. 

Air Blast Granula-
tion 

Metals recovered with 
higher heterogeneity. 

Higher energy con-
sumption. 

Bisio, 1997 [69]; 
Barati et al., 2011 

[70]. 

Granulation with 
Liquid Slag Im-

pact 

Reduction of energy in-
tensity in the metal pro-

duction process 

The release of toxic 
gases; Little possibility 
of using vitreous slag 

in materials such as ce-
ment. 

Barati et al., 2011 
[70]. 

 
It is important to emphasize that even if a residue is not directly linked to mineral 

exploration, it entered the subsequent analysis of this Section because its use in the com-
position of mineral residues in recycling processes was identified in several analyzed ar-
ticles, signaling its importance. For example, metallurgical waste in [32,71,72] and steel 
slag in [73-76].  

It is also worth noting that the choice of procedure depends on the physical-chemical 
characteristics/properties of the residue, in addition to the operational cost to recover 
these materials from the waste and their environmental impact. Some techniques are al-
ready well consolidated, while others are still under development, requiring further re-
search for their use to be on a larger scale. 

Next, we will detail the main types of waste and their respective methods of use, 
whether in recycling or reuse. 
3.2.1. Metal waste 

In the past, the prices of non-ferrous metals were somewhat lower than they are to-
day, and this is the main reason why the mining industry has left significant quantities of 
these in tailings dams around the world. The increased reprocessing of copper tailings is 
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becoming an increasingly logical decision, with a sufficiently high content of valuable 
components so that tailings can be economically exploited, and new technologies for cop-
per extraction and recycling are being developed [30]. It is also possible to recycle iron, 
copper, zinc, and gold mining waste to obtain bricks, tiles, and lightweight aggregates 
[12]. Regarding copper recovery, bioleaching has been widely used, where thermophilic 
bacteria are used to recover copper and other valuable metals [60,61]. 

Furthermore, copper waste has been used with relative success replacing granite 
used in road and highway pavement concretes and brick production [32,33,77,78] In these 
studies, the suitability of copper ore tailings as an additive mixture in concrete preparation 
was tested by replacing common Portland cement at different grades. Up to 20% is saved 
when we use copper ore tailings instead of Portland cement. The copper tailings produced 
in this way had good strength and durability characteristics. Regarding the anticorrosive 
characteristics and cost reduction, the use as an additive product, rather than as raw ma-
terial, was considered a good option [79]. Copper slag is also being used in the manufac-
ture of roof tiles, mine filling materials, and granular materials [80]. 

In most cases, iron ore tailings have fine granulometry, high silica content, iron ox-
ides, alumina, and other smaller minerals [81]. This composition facilitates its use in the 
construction industry [82]. However, this waste generates water and soil pollution in the 
form of dust, leaching water runoff from mining waste, and infiltration of iron-contami-
nated water, which consequently affects living things [83]. When using iron ore tailings 
as mortar, up to 85% of tailings can be applied with good results, with the option of man-
ufacturing different types of products, such as paving blocks and masonry blocks [84]. 
Clay and shale are essential in producing bricks and must be subjected to a high firing 
temperature [85]. Extracting materials consumes a lot of energy, negatively affecting the 
environment and releasing a worrying amount of residue and greenhouse gases [41,86]. 
Thus, it is interesting to defend the development of ecologically correct materials and con-
struction processes, where iron tailings represent an option of raw material to produce 
bricks. 

Similar to copper waste, iron ore residues can be mixed in concrete, floors, and ce-
ramic tiles with relative mechanical and physical, and chemical performance [87-89]. The 
compressive strength of concrete from iron ore tailings (Figure 2) showed an improve-
ment of 11.56% compared to concrete with conventional aggregates, showing that it is 
possible to obtain quality materials from mineral tailings in relation to certain mechanics 
properties [87]. However, some characteristics disqualify processing residues as aggre-
gates such as metal composition, variability, particle size, leaching of trace metals, and 
adjacent chemical reactions that can generate unwanted acids [56]. Because the iron con-
tent in this type of material is very low, reprocessing can become complicated due to the 
huge volume of waste generated to extract an economically viable amount of iron ore. 
This excessive volume of waste will require good storage management. 

 
Figure 2. (a) fine and (b) coarse iron ore tailings, and (c) tailings aggregate concrete. Source: [87]. 
CC-BY. 

Sulfides from mining oxidize more easily in tailings facilities, exposing tailings to air 
and water. This disturbing phenomenon in the mining industry is known as acid mine 
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drainage (AMD). A solution to reduce the formation of acid mine drainage is the use/re-
cycling of mine waste into building materials and geopolymers [90]. In addition, there are 
other industrial materials with recovery potential from tailings, for example, sulfur, sul-
furic acid, metallic pigments, and sulfates, calcium carbonate and magnesium hydroxides, 
agricultural materials (e.g., fertilizers), and adsorbents [91]. 
3.2.2. Gypsum waste 

Gypsum is by far, one of the most materials produced in the world. The total amount 
of unwanted by-product, the phosphogypsum (PG) solid waste produced up to 2006 is 
estimated at 6 billion tonnes, of which 2.2 billion tonnes (37%) were produced in the 
United States [63]. 

Due to the high content of calcium, phosphorus, and sulfur, PG has been successfully 
used as a soil amendment, in addition to having a fertilizer value due to the ammonium 
sulfate content [11]. Recent studies [92], have used mixtures of cement - OPC (Ordinary 
Portland Cement) and phosphogypsum in the stabilization of soils with high water con-
tent and low strength, known as degraded soils. The authors characterized different types 
of sedimentary soils, with different plasticity indexes, where the soil sludge was mechan-
ically mixed with cement and phosphogypsum powder, obtaining a homogeneous paste. 
The specimens obtained from the above procedure were subjected to different tests such 
as unconfined compressive strength (UCT), pH measurement, SEM, and XRD. Significant 
improvements were obtained in terms of mechanical strength, density improvement, and 
obtaining ettringite (AFt), as the main cementitious product of the pozzolanic reaction 
between cement, phosphogypsum and clay minerals.  

It is economically attractive to develop studies to seek the use of PG in construction 
materials, roads [93], agriculture [63], re-obtaining mineral resources that were previously 
underexploited, or in environmental applications. However, it is important to know that 
the percentage of use is still low (15%), and the remainder, in most cases, is accumulated 
in abandoned storage areas [63,94].  
3.2.3. Metallurgical waste 

Metallurgical powders are generated from materials added in foundry furnaces. 
They are heterogeneous mixtures and oxides with a relative degree of complexity [56]. 
Generally, the two main options for recovering valuable metals from ferrous powders are 
pyrometallurgical and hydrometallurgical processes. The principal gain of pyrometallur-
gical processes is the ability to process in a viable way metallurgical dust containing high 
amounts of Zn [56,65]. 

However, they are special processes that require high temperatures, efficient dust 
filtration systems, and volatilized return steps for the additional recovery of metals pre-
sent in the flue gases [56]. There are advantages related to hydrometallurgical processes, 
which puts it highly rated compared to other technologies. Flexibility, economy, low emis-
sion of toxic gases, dust, and noise are some of the advantages. As a disadvantage, we can 
mention the high-water consumption, in addition to making it impossible to use it in prod-
ucts with high added value such as glass, and ceramic materials, among others. Due to 
the considerable concentration of Pb, Cr, Zn, and Cd, these residues are classified as haz-
ardous. Thus, its disposal is controlled through pre-treatment or stabilization [56,66,95–
97]. Although these powders are economically valuable, recycling can be done directly, 
but the process is generally limited by the accumulation of harmful metals and other ma-
terials. 
3.2.4. Steel slag 
 The energy consumed in high-temperature metal processing is distributed between 
metal, slag, off-gas, and natural losses to the atmosphere. The thermal energy of the slag 
accounts for about 10 and 90% of the output energy, depending on the slag-to-metal ra-
tio and the discharge temperature. Ferrous slags account for over 90% of the output ther-
mal energy. The available energy associated with slag where slag alone constitutes 50% 
of that energy. Thus, the investigation to recover part of this energy is recurrent, as well 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 August 2022                   doi:10.20944/preprints202207.0010.v3

https://doi.org/10.20944/preprints202207.0010.v3


 10 of 18 
 

 

as the development of more energy-efficient processes based on the physical and chemi-
cal aspects of the slag. These methodologies include dry granulation processes, air jet 
granulation, impact granulation of solid slag, and centrifugal granulation [70,69]. Liquid 
slag is also studied as it has a good property of sensitive heat recovery through chemical 
methods [70]. 

Solidified metallurgical slag contains significant amounts of metal-based contami-
nants, which can harm the environment. For example, the presence of dissolved toxic 
metal species such as chromium in stainless steel, steel, and ferrochromium alloy slag can 
cause serious environmental problems [56,98,99].  

The recovery of slag from metallurgical processes is recurrent due to the number of 
consolidated techniques. Application of slag as building materials [32], and in the manu-
facture of ceramics [100,101] is often identified. However, the recycling and reuse of the 
slag are strongly hampered by the presence of dissolved toxic metallic elements [31]. 

Radiation monitoring of waste from the blast furnace is necessary, and there is al-
ready a study that proves it established safe values for building materials, which indicates 
that the cement compounds studied do not have a significant effect on increasing the ex-
posure risk of the population [102]. Metallurgical slag also has great potential as a raw 
material in building new engineering materials, for example, glass ceramics, porous ce-
ramic materials, ceramic bricks, functional zeolites for wastewater treatment, and refrac-
tory materials.  

Blast furnace slag is used in the composition of cement, adding special properties 
such as increased mechanical strength, morphology, and resistance to abrasion [103-105]. 
Converter slag (obtained by the pig iron industry) is not used as much for recycling due 
to high free lime content, but there is potential if the free lime is stabilized by carbonation 
[106,107]. 

The slag from an electric arc furnace (EAF) and slag from desulfurization and slag 
skimming (SDSS) generated by steel mills have been used as a fine aggregate or concrete 
filling material in the construction industries [12,108], but beneficiation treatment can be 
either a requirement due to unsuitable properties or to improve properties, safety, and 
market value, as exemplified in Figure 3. Excellent results were observed for slag rejects 
obtaining good homogeneity, good mechanical properties, and the possibility of up to 
40% cement reduction in the application in concretes [109]. 

 
Figure 3. Flowsheet of SSDS beneficiation experiment. Source: [108]. CC-BY-NC-ND. 
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In the mining process itself there is the formation of slag, a waste material produced 
in ore extraction. This mining waste can be used as construction material (road construc-
tion), both in infrastructure and in the reclamation of land damaged by mining [110,111]. 
However, the use of slag from metallurgical processes is more common for the recov-
ery/recycling of tailings from mining, so steel slag is among the more commonly used 
waste types [32,74,112]. For example, there is a study that was carried out recycling gold 
mining waste by slag atomization, being a process without harmful environmental im-
pacts. However, a thorough evaluation of the process is necessary to obtain various types 
of materials, such as asphalt concrete, among others [74]. 

3.3. Future perspectives of mine tailing remediation techniques 
Mining waste generation and disposal must always be reviewed and updated peri-

odically. Although several methods can be suggested for recycling mine waste, the key 
point is the presence of up-to-date feasibility and technical, operational, economic, and 
environmental studies in line with local legislation. The waste recycling technique used 
depends on the production capacity required, the type and volume of final product gen-
erated, and the public health and environmental regulations applicable to the production 
process [113,114]. Figure 4 shows a decision-making organogram for aiding in the design 
of upgrading processes for mine wastes [114]. 
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Figure 4. Flow chart for mineral waste recycling process-train design algorithm. Source: [114]. Re-
used with permission from Springer Nature (5342261298332). 

Geopolymerization is a promising technology that is currently being studied to con-
vert tailings or dumps into new raw materials. It consists of mixtures of a solution of so-
dium silicate and sodium hydroxide to which water is added. Iron ore tailings are blend-
ing in geopolymer as fine aggregates, fillers, and precursors forming new materials that 
can be used as construction materials such as roads and highways. This procedure can be 
used to recover several types of tailings, mainly: copper (binder materials, bricks, and 
road-construction materials), iron (binder materials, bricks, and backfills for building 
foundations), phosphate (binder materials), among other applications [115]. 

A practical example of the above is the study carried out by Figueiredo et al. [116], 
where a commercial metakaolin (MK) based geopolymeric cement was prepared as pre-
cursor material, and sodium silicate, Na2SiO3, (SS), and sodium hydroxide, NaOH, (SH) 
as activators. Three different iron ore tailings (IOT), obtained from flotation processes of 
three mines located in the province of Quadrilátero Ferrífero, in the state of Minas Gerais, 
Brazil, were added to the above, to use the mine tailings as filler. Subsequently, the chem-
ical composition of the MK and IOT was evaluated by X-ray fluorescence analysis (XRF) 
with a Philips spectrometer. The incorporation of tailings into the geopolymer cements 
promoted an increase in compressive strength which is promising for the development of 
better mine tailings management practices for alternative applications, but the authors 
state that further research is required to better understand the interactions between geo-
polymer matrices and backfills from mine tailings. 

Another remarkably recent technology is the one that uses microorganisms, but it is 
still in the laboratory study phase. In addition, the lack of greater investment affects the 
development of this study, being also a chronic problem in a broader way. Although the 
economic return is satisfactory, there is a need for an initial investment that often limits 
advances in this area. To achieve a long-term aesthetic solution, the use of live plants or 
microorganisms/biomass, which can be implemented in situ for remediation of tailings 
and mill tailings, is proving to be a promising strategy. In this recent phenomenon, Phyto 
stabilization has emerged as an alternative recovery technique for the stabilization of en-
vironmental toxins using green plants, which is proving to be economical, self-sustaining, 
and aims to rehabilitate the entire terrestrial as well as aquatic ecosystems [14,117].  

It is remarkable that a greater effort is still needed to increase the recycling of solid 
waste. Mine tailings technologies can be improved, where there are many discrepancies 
in recycling rates and application of waste reduction technologies between a few devel-
oped countries (US, Japan, Western Europe, China) and most countries [118,119]. It is nec-
essary to involve industrial waste in use because of its potentially valuable consumer 
properties to develop and implement low-waste technologies in cooperation with scien-
tific organizations [120]. 

4. Conclusions 
In recent years, several adequate resource management approaches have been used 

for recycling mine waste, most notably: the recovery of valuable minerals and metals, pro-
duction of cost-effective building materials, and preparation of soil modifiers and agricul-
tural fertilizers [121-124].  

It is notable that a greater concern of the countries for better use of this waste to pro-
vide profitability to the use of these components in various areas of application. From the 
analyzed works, studies were observed in relation to the use of waste in almost 40 coun-
tries, highlighting mainly: China, India, the United States, Spain, Japan, Australia, the 
United Kingdom, Russia, Canada, and South Africa. Many of these countries produce 
large amounts of solid waste, but in parallel, they are evolving the issue of waste recycling, 
with the aim of reducing environmental impacts. 
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Despite the high demand from the construction industry (1.5 billion tonnes), the use 
of tailings as construction material does not reach 1% in volume [119]. This situation oc-
curs due to factors such as the value of building materials being relatively low compared 
to other products with higher added value, and transportation costs [107,122]. 

In this review, successful or potentially implementable approaches covered predom-
inantly included those where the material properties resulted in ecologically friendly and 
low-cost resource recovery, compared to traditional materials. To this end, it has been 
clear from the literature that recycling or recovery of tailings from mines has had applied 
as construction materials, despite low profitability and agricultural applications, but that 
is limited to tailings having non-hazardous compositions and being in reasonably close 
locations to their end-use.  

To tackle these wastes, engineered technologies to re-process them are needed, and 
the most innovative examples of these from the literature have been bioleaching, flotation, 
and magnetic separation. Even then, limitations arise when it comes to the complexity of 
the recovery process, or of the mineral composition itself, and the still generation of resi-
dues (sludges and wastewaters) with burdensome contaminants (metals, ligands, surfac-
tants, acids, microbes, etc.). 

There is a need for more research on the recycling and recovery of tailings from 
mines, with little R&D being observed in different chemical compositions and geotech-
nical characterization of tailings. Tailing recycling is thus still incipient in most countries 
in terms of volume, and local regulatory pressures have been the main drivers for action 
in wealthier nations and those with strong environmental advocation groups.  

Despite a relatively vast literature on the research subject of mine tailing reuse and 
resource recovery, the subject also remains quite broadly tackled. This leaves several re-
search gaps in need of more attention, mainly those concerning technological transfer 
from academia to practice, and improved efficiency in the recovery and use of valuable 
compounds from tailings, including chromium, cobalt, manganese, nickel, bauxite, alu-
minum, zinc, silver, feldspar, bentonite, among others.  

The reuse of mining waste involves integrated and properly controlled management, 
which does not always lead to the desired results. To improve the current situation, the 
integration of different methodologies and available technologies will be necessary, and 
inspiration could be found from the principles of process intensification [125], which de-
spite their origins in the field of chemical engineering have the potential to bring disrup-
tive solutions to the fields of mineral and solid waste processing. 
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