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Abstract: Electrical microgrids are deemed to be the future of modern power systems. 
Microgrids are sophisticated, decentralized, and self-sufficient small-scale power systems 
consisting of various resources ranging from wind turbines, solar photovoltaics, electric 
vehicles, smart energy storage, and complex communication infrastructure. However, 
renewable energy sources such as solar photovoltaics and wind-based generators are highly 
intermittent, and if not appropriately planned, they can compromise the stability of the grid. 
Formal methods can define and analyze the functionality and behavior of any system and 
show if the system design is correct before the actual system is implemented. Although 
formal methods have been around for many years, it is surprising that little to none are 
utilized in the design of safety-critical electrical power systems. Currently, in modeling 
microgrids, few to no attempts of formalization are being used to improve the design 
reliability and reduce system operating costs and time. This work demonstrates how 
complex systems such as microgrids can be modeled elegantly using a formal specification 
method. In this work, the Z state-based formal specification language (Z-Method) is used 
to model and verify microgrid designs. In this work, 3-interconnected microgrid systems 
with a high penetration level of solar and wind-based renewable energy sources with plug-
in hybrid electric vehicles (PHEV) as battery energy storage systems (BESS) are modeled 
using the Z-method. To the best of authors, the knowledge presented formal method is one 
of the first reported attempts in modeling microgrid communities using Software 
Engineering formalism. 
 
Index Terms: Formal Specification, Microgrid, Battery Energy Storage Systems, 
Software Engineering, Plug-in Hybrid Electric Vehicle, Modeling, Renewable Energy, 
Safety-Critical systems, Microgrid Community 
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I. Introduction 
The U.S. Department of Energy defines a Microgrid (MG) as ‘a group of interconnected loads and 

distributed energy resources within clearly defined electrical boundaries that act as a single controllable 

entity with respect to the grid’ [1]. The term MG exemplifies the usage of complex control systems, 

bidirectional communication, advanced power electronics, and more installed with the aging conventional 

power grid to convert into an advanced proactive and mercurial system. The focus of the MG is to integrate 

renewable energy sources into the system. With the dramatic decrease in the cost of disposition, the share 

of renewables and energy storage will continue to grow in the future, improving the reliability, flexibility 

of the system and will enhance the economics of the system.  With advanced communication systems, 

MG’s can communicate and coordinate with each other, thereby increasing the overall reliability of the 

system and decreasing the total operational cost. Intermittent nature of the renewables can disrupt the 

conventional methods used for operating the utility grid, forcing the grid operators to adjust the real-time 

operating procedures. With minimal energy storage capacity available to maintain the stability of the grid, 

operators are forced to increase the reserve capacity to maintain the critical balance between demand and 

supply and to avoid the blackouts, which in turn will increase the operating cost. An effective way to 

decrease the effect of intermittency is to implement the theory from the law of large numbers. This 

probability theorem states that output from random events becomes closer to the expected value as a 

greater number of trials are performed. Similarly, the output from renewable energy becomes more 

predictable as the number of generators increases and they can be modeled effectively. To accommodate 

a large number of renewable energy generators MG’s are a perfect solution as it eliminates the necessity 

for redesigning the distribution system and is scalable while leaving a small footprint on the system in 

case of an outage.   

The energy management system is the heart and soul of the MG as it monitors, controls, and 

optimizes the performance of the MG to improve the resiliency and efficiency. The authors of this work 

are working to develop a self-healing MG energy management system by combining complex 

optimization techniques and multi agent systems and initial results for a simple 3-MG system in [2] 

demonstrates the effectiveness of the proposed approach. Each component in the MG is dynamic in nature 

and the behavior of the MG is governed by the dynamics of its components. MG community can be 

compared to a Complex Adaptive System (CAS) because it can exhibit global change as a result of local 

action [3].  It is clear at this point that MG is a complex system with so much complication at hand there 

is a necessity to model each component of the system. With the help of different types of formalism, 
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modeling the system in a sophisticated way is possible which will help to understand the system better. 

Formalism domain when applied MG’s will decrease the complexity of the system thus making it easy to 

implement the system. Although formal specification methods are around for a while it is surprising to 

see that little to no went into implementing the formalism for the microgrid domain which is a safety-

critical system.  

A formal specification is a mathematical based technique in which a statement is expressed in 

formally defined syntax and vocabulary to define the properties of the system. Formal specification is not 

an actual implementation of the system, but it is used to develop an implementation of the system. It 

provides the mathematical analysis for creating a system and will help to detect flaws in the system before 

actual implementation thus improving the reliability of the system. Objectives of the formal methods are 

verification, validation and documentation and it has broad range of effects making the system error prone 

and mathematically precise. While Formal specification has many advantages, critics claim that it will 

increase the cost of the system, requires highly trained mathematicians, lack of user-friendly tools and 

limitations for implementation on large scale software’s [4]. 

Formalism has been applied to many domains in the past some key examples include developing 

a formal specification for railway signaling systems with the help of the configuration data (Geographical 

data) in [5]. A case study for developing a system that monitors the operation of UAV’s in US airspace 

with the help of formally defined requirements was proposed in [6] proves that formal specification 

techniques (FST) are suitable for health & status monitoring of safety critical systems. A model-based 

software engineering methodology that incorporates FST was applied for aircraft software systems in [7]. 

Formal agent-based framework for AIDS proposed in [8] uses a formal specification model in 

combination with agent-based simulation for developing a CAS model. Formal method for earthquake 

disaster mitigation and management system using Vienna Development Method-Specification language 

is proposed in [9]. Using UML language supported by specification methods a methodological framework 

was developed for mechatronic models for industrial control systems in [10]. Usage of a formal 

specification for the smart grid has been mentioned in the literature [11]. Formalized method-based state 

machine software in smart microgrid control systems is implemented in [12]. A formal specification 

framework for smart grid components using CAS is presented in [13].  

The rest of the paper is organized as follows. FSM using Z-method in section II, section III 

discusses application of Z-method schema for a MG community. Finally, conclusions and future work are 

presented in section IV. 
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II. Formal Specification 

A. Formal Specification Method:  
Formal specification techniques (FST) have been in existence for decades it employs mathematical 

models for writing specifications, development, and verification of software and hardware systems. Using 

mathematical analysis for an engineering system will increase the robustness and reliability of the system. 

As mentioned previously, it reveals flaws and errors in the system before actual implementation, and if 

errors are found, modifications can be done, thereby saving valuable money and time. There are two 

fundamental approaches for implementing the formal specifications they are: 

a. Algebraic Approach: In this approach, a system is described in terms of operations and their 

relations. 

b. Model-Based Approach: In this approach, a model is built using mathematical constraints, and the 

system operations are defined by modifying the system state and looking for flaws in the system. 

In this work, the authors have implemented the model-based approach. 

 For implementing any formal design, there are three steps involved: 

a. Formal Specification: During this phase, the engineer will define the system using a modeling 

language (Z-Method in this case). This step converts a word problem into mathematical notation. 

Modeling a system using formal specifications is tough as modeling languages are fixed grammars.  

b. Verification: Verification is the toughest of all the phases because even the simplest systems need 

to develop dozens of theorems, and they must be proven to emphasize the provability and 

correctness of the system.  

c. Implementation:  Once the system is defined and verified, then the specification is converted into 

code using different approaches.  

While formal methods are around for a long time, Engineers don’t use them as the formal methods are 

extremely descriptive. But for large complex systems, some form of formalism is necessary.  

B. Z-Specification Language 
The Z-specification language is one of the popular and widely accepted formal language and is 

typically used for software and hardware systems. It is based on Zermelo-Fraenkel set theory and typed 

first-order predicate logic. By describing the states and the ways they can be changed, a system is modeled 

using the Z-method. Z-method is just a notation and not a method; it is an abstract formal specification. 

While Z is not a programming language, it is a model-based notation and uses a combination of boxes, 

Greek letters, and pictographic symbols.  
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To model a system in Z, it must be represented by its state, which is an assortment of state variables 

and its values. To model the complex physical systems such as MG community Z is a good fit as the 

models can be characterized by abstract data type (ADT). Mathematical objects are used to model the 

components of the proposed system as well as to model the data structures. A most distinguishable feature 

of Z, when compared to other methods is it uses schema which is a macro-like abbreviation and it uses 

smaller schemas to build bigger ones.  

Z specification typically has multiple numbers of state schemas and operation schemas. Information 

about syntax and semantics are described in [14]. The flow chart for Z-Specification implementation is as 

follows. 

Gathering requirements

Formal Methods
(Z-Notation)

Simulation

Error 
Reported

System Implementation

No

Yes

StartStart

End
 

Fig 1. Flowchart of Z-Specification Language 

The key difference between standard implementation and Z-schemas used in this work is that 

schema describes a type, but its description will not introduce any state to the system under 

implementation.  

 The Z formalization in the form of a vertical-form schema is as follows:          

 

Figure 2. Z-Specification Schema 
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The above figure shows the generic way of the axiomatic definition of the Z schema. The schema 

introduces a universal constant in the declaration part, satisfying the predicate part. The set-in part schema 

name is a formal parameter and is the scope of the body of the definition. After the models are transformed 

into Z notation, they are analyzed by the Z word tools to test the syntax and semantics of the schema. Then 

the system is checked for errors if any faults are found in the model they can be rectified before actual 

implementation saving valuable time and money.  It is impossible to find all the errors and faults in the 

system using formalism or any other method. However, it is still essential to test the systems with some 

manner of testing, especially if the system is a complex system like a microgrid community. The relevant 

conventions, declarations, sets, relations, functions and schema definitions are discussed in [15].  

II. Formal Specification framework for a Microgrid Community 

In this section, the formal specification framework is applied to the microgrid community and its 

components. The MG states considered in this work are islanded, Grid-tied, and Transition mode 

(Transition between both mode0-s). Components considered in this work are Solar Panel, Wind turbines, 

Battery Energy storage system, Plug-in Electric vehicle, and Load. A simple MG community with all the 

components looks as in fig 3.  To maintain the voltage/frequency stability in the MG energy storage system 

within acceptable ranges and to improve the power quality and to increase the dynamic response of the 

system towards disturbances, BESS is installed. Research states that EV’s sit idle in parking lots about 

70%of the time, and the big battery packs with high energy and power densities can act as energy storage 

systems which will eliminate the high capital investment for conventional Li-ion storage systems. 

 

 

Figure 3. 3-MG community with RES, PHEV, and BESS 
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A.  Microgrid community mode of operation 

A microgrid can operate in two modes grid-tied where it is connected to the utility grid, Islanded 

mode, where MG is operating as independent entity, in this work authors, are considering a third mode, 

i.e., transition mode (transition between grid-tied and island mode). Although this mode lasts for a concise 

period (in order of milliseconds to microseconds), it is still vital as it will introduce several transients into 

the system. Each mode and component have different states and events that cause state transitions.  

In Grid-Tied or Grid-connected mode, MG is connected to the utility grid at the point of common 

coupling (PCC) and exchanges power with it depending on generation, demand, and electricity price. 

When the load in MG is greater than a generation from distributed generators (DG) it buys power from 

the utility grid or neighboring MG’s. During excess generation, it injects the power back into the utility 

grid or sells the power to neighboring MG’s. Grid-connected MG’s earn revenue by selling the ancillary 

services to the utility grid. Some of the well-known services are demand response, voltage and frequency 

regulation, and black start capability.  

Following a grid failure or schedule MG changes its operational mode to islanded mode where the 

DG’s, BESS, and loads operate as an independent entity. When the MG enters an islanded mode, the 

energy management system (EMS) is responsible for voltage control and power-sharing between critical 

and non-critical loads and balancing within the MG. In the islanded mode of operation, there is no voltage 

and frequency support from the utility grid, and MG, which is a power electronic-based grid, lacks the 

inertia, and there must be other units to support the voltage and frequency fluctuations.  

To model the MG mode of operation using Z-Specification, a free type “MICROGRID” is used to 

represent different states of the MG that are Grid-Tied, Islanded, and Transition. 

[MICROGRID] = {GridTied, Islanded, Transition} 
 

After the free type, a schema named MG is defined that contains “MGState” variable of type 

“MICROGRID”. The value of the MGState can be GridTied, Islanded or Transition. 

 MG  

MGState: MICROGRID 
 

After defining the MG mode of operation and MG schema next step is to define the operational 

schemas. By presenting the initialization schema named InitMG and schema, MG is declared as a variable. 

In the predicate section of the schema upon initialization state of the MG is equal to GridTied. 
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 InitMG  

MGCondition 
 

MGState = GridTied 
 

An operational schema FaultCondition is defined to show the stressed conditions in the MG, state 

of the MG changes to Islanded, and change of the state is shown by ΔMG. In the predicate section, state 

changes from grid-tied to island mode.  

 FaultCondition    

ΔMG 
 

MGState = GridTied 

MGState′ = Islanded 
 

After the fault clears, MG goes back into grid-connected mode to model that an operational schema 

named NormalCondition is declared. In the predicate section, state of the microgrid changes from Islanded 

mode to grid-tied mode. 

 NormalCondition    

ΔMG 
 

MGState = Islanded 

MGState′ = GridTied 
 

For the efficient operation of the microgrid, a control strategy is required for smooth microgrid’s 

state transition from islanded to grid-tied and vice versa. To model that an operational schema named 

TransitionMode is defined. In the predicate, the initial state is either grid-tied or islanded mode, and the 

final state is Islanded or grid-tied depending on the initial mode of operation.  

 TransitionMode    

ΔMG 
 

MGState: GridTied ∪ Islanded 

MGState′: Islanded 
 

Similarly, 
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 TransitionMode    

ΔMG 
 

MGState: GridTied ∪ Islanded 

MGState′: GridTied 
 

The schemas for the MG and state changes are as shown in figure 4. 

MG

Grid Tied

Transition

Islanded 

Fault

Fault

Normal 
Operation

Fault 
Cleared

Fault 
Cleared

Fault 
Cleared

 
Figure 4. MG state changes 

B.  Power Transfer 

For the MG to be reliable and profitable energy exchange with the neighboring MG’s and utility 

grid is considered in this work. Different states and events involved in the energy transfer between MG’s 

and with utility grid are shown in Figure 5. Whenever MG needs to buy power, it communicates with 

neighboring MG’s and utility grid to check for the electricity prices, and it starts buying power from the 

lowest price provider. When there is a nominal price or no demand, there is no power exchange. In this 

work, power transfer has only been viewed from a price perspective, power transfer by demand response 

(DR) together will be included in future work.  
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Power 
Exchange

Low Electricity Price in 
MG’s

High Electricity Price
in MG’s

Nominal Electricity 
Price in MG

Between MG’s
With 

Utility
Grid

No Exchange

 

Figure 5. Power Exchange Schema 

A free type EnergyTransfer is used to define the different states of the energy transfer.  

[ET] == {BetweenMG’s, WithUtilityGrid, NoTransfer} 

After defining the ETState, schema is initialized with variable InitET. Initial state in the schema is 

NoTransfer.  

 EnergyTransfer           

ETState: ET 
 

After defining the ETState schema is initialized with variable InitET. Initial state in the proposed schema 
is NoTransfer.  

 InitET         

EnergyTransfer 
 

ETState:Notransfer 
 

If the neighboring MG’s offer a better price, then energy is transferred with in the MG community. so, the 

initial state here is NoTransfer and the final state is BetweenMG’s in the predicate and the transition is 

shown by defining LowElectricityPriceinMG’s schema. 

 LowElectricityPriceinMG′s         

ΔEnergyTransfer 
 

ETState : NoTransfer 

ETState′ : BetweenMG′s 
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If the electricity price is higher in MG community than the utility grid, then the power exchange is done 

between MG and utility grid. To model the transition schema HighElectricityPriceinMG’s is declared and 

in the predicate initial state is BetweenMG’s and the final state is WithUtilityGrid 

 HighElectricityPriceinMG′s         

ΔEnergyTransfer 
 

ETState : BetweenMG′s 

ETState′ : WithUtilityGrid 
 

If the price of electricity is nominal, then there is no power transfer, final state in this schema is NoTransfer 

with initial state as either BetweenMG’s or WithUtilityGrid in the predicate section and the transition is 

represented by defining the schema NominalElectricityPrice.  

 NominalElectricityPrice         

ΔEnergyTransfer 
 

ETState : BetweenMG′s U WithUtilityGrid 

ETState′: NoTransfer 
 

  

C.  Battery Energy Storage System  

Due to the intermittent nature of RES, voltage, and frequency fluctuations occur in the power grid, 

and BESS is a perfect solution to answer that problem. Although PHEV’s are considered as BESS in this 

work, the problem is that they are mobile and not plugged in all the time, so a BESS is installed at the 

point of common coupling. 100 MW/ 129 MWh Hornsdale Power Reserve in Australia is the world’s 

largest Li-ion battery; it helped in stabilizing the grid, avoid outages and reduces system costs, and surged 

fast response systems across the continent and saved $40 million [15]. That proves the effectiveness of 

the BESS in the system. The schema for BESS is like that of PHEV’s.  

BESS can provide ancillary services like frequency regulation, voltage support, black start, load 

shifting, and reserve provision. So, a schema is provided for ancillary services using BESS. Battery energy 

storage systems (BESS) are rechargeable batteries that store energy from renewable energy sources in the 

microgrid when there is an excess generation for utilization later when the demand is high or high 

electricity price. To smooth out intermittency from the renewable sources and to assist the grid by 

providing services like peak shaving, black start, voltage control, and frequency regulation energy storage 

system is a perfect choice. Energy storage is of many types Flywheel, hydroelectric dams, superconducting 
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magnetic energy, thermal storage, compressed air, and grid oriented large-scale battery technologies (Li-

ion batteries).   

For modeling the battery energy storage system state of charge (SoC) is used, it is defined as the 

percentage of the level of the charge left in the battery relative to its capacity. It is a measure of the rated 

capacity of the battery rather than the current capacity of the battery. As the battery nears the end of its 

lifetime actual capacity of the battery deteriorates and can only charge up to 80% of its rated capacity 

when fully charged so, SoC is a good measure for estimation when taking battery aging and depth of 

discharge into consideration. If the SoC is high, BESS can discharge to provide intended services, and 

when the SoC is low, it switches to idle mode, and when there is excess generation BESS gets charged 

and when it’s fully charged it goes back into idle mode.  

To present the formal specification for a BESS, a free type is defined by the name BESSState that 

comprises the different states of the BESS. 

 
           [BESSState] == {Charging, Discharging, Idle} 

 

To define BESS schema, a variable is declared by name ESSState of type BESSState that has any single 

value from the above-defined state set.  

 BESS         

BESSState: ESS 
 

By introducing the initialization schema named InitBESS, this schema calls the BESS as a variable and in 

the predicate to show the stage of the storage Idle is used at the initial time.  

 InitBESS  

BESS 
sss 

BESSState = Idle  
 

When an energy storage event occurs, BESS goes into the Charging state. This process is shown by the 

LowSoC schema. Change of the state is shown by delta (Δ) sign, and in predicate current state is either 

Idle or Discharging, which is changed to Charging. 

 LowSoC  

ΔBESS 
 

BESSState = Idle ⋃ Discharging 

BESSState′ = Charging 
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When the BESS charges and reaches High SoC it changes it’s state from Charging it enters Idle or 

 Discharging depending on the grid conditions. To model that a schema named HighSoC is declared and in  

the predicate section state change is declared.  

 HighSoC    

ΔBESS 
 

BESSState = Charging 

BESSState′ = Idle ⋃ Discharging 
 

After clearing the fault in the grid or after fully charging BESS enters idle state to model that IdleState 

schema is declared and in the predicate section the state changes from either charging to discharging to 

Idle 

 IdleState  

ΔBESS 
 

BESSState = Charging ⋃ Discharging 

BESSState′ = Idle 
 

As mentioned previously, BESS can also provide ancillary services, so to model the ancillary services 

using Z follow schema has been written. Frequency must be maintained within limits, and when violated, 

it can impose hefty fines on the MG owner. The authors of this work have proposed a proportional integral 

derivative (PID) controller with the design based on neural networks to control the frequency deviations 

in the MG community. To obtain the proper PID parameters in [17], they have used a multilayer 

feedforward neural network with random numbers as inputs, and the results prove the effectiveness of the 

method. To model the frequency regulation, a transition FrequencyRegulation is defined. Then a change 

in the state was declared with a delta sign, and in the predicate section, the initial state will be Idle or 

Charging, which then changes to Discharging.  

 FrequencyRegulation                             

ΔBESS 
 

BESSState: Idle U Charging 

BESSState′: Discharging 
 

When the voltage event occurs, BESS goes into discharging state to show this transition, a schema called 

VoltageSupport is called. In the predicate section, the state of the BESS changes from either idle or 

charging to Discharging.  
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 VoltageSupport         

ΔBESS 
 

BESSState:Idle U Charging 

BESSState′:Discharging 
 

Black start is the process of restoring power to an MG or a part of MG without relying on the utility grid. 

To model that a transition BlackStart schema is declared, with the initial state as Idle or Charging in the 

predicate section, and the final state is Discharging. 

 BlackStart         

ΔBESS 
 

BESSState:Idle U Charging 

BESSState′:Discharging 
 

 
Reserve provision allows conventional thermal generators to go into offline mode so that renewables can 

supply the demand during the peak generation hours of solar and wind. To model reserve provision using 

formal specifications, a transition schema named ReserveProvision is introduced, and in the predicate, the 

initial state is Idle, and the final state is Discharging. 

 ReserveProvision         

ΔBESS 
 

BESSState:Idle U Charging 

BESSState′:Discharging 
 

 

D.  Plug-in Hybrid Electric Vehicle 

PHEV’s are penetrating the market every year, and if not planned properly, they can have adverse 

effects on the power grid. According to research, electric vehicles spend only 10% of the time on the 

roads. They are essentially big battery packs sitting idle for 90% of the time. If planned properly, they can 

act as a battery energy storage system and help in mitigating the voltage and frequency fluctuations in the 

MG and earning income for the owners.  

There are three states, namely “Charging, Discharging and Idle” for the PHEV. First, we start by 

defining free type PHEV that comprises the different states of the EV. 

[EV] == {Charging, Discharging, Idle} 

For initializing schema, a variable PHEVState is declared that has a single value PHEVSTATE.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 June 2022                   doi:10.20944/preprints202206.0431.v1

https://doi.org/10.20944/preprints202206.0431.v1


 PHEV         

PHEVState:EV 
 

Defining the operational schema by introducing the initialization schema called InitPHEV. By calling the 

PHEV as a variable and Idle as predicate at the initial time.    

 InitPHEV         

PHEV 
 

PHEVState: Idle 
 

When price of electricity is low, and BESS is at medium or low SoC then it starts charging to model this 

condition a LowElectricityPrice schema is declared and changing in PHEV is shown by delta sign. In 

predicate the current state is Idle, and the final state is Charging.  

 LowElectricityPrice         

ΔPHEV 
 

PHEVState: Idle 

PHEVState′: Charging 
 

If the generation is low or demand is high utilities following spot pricing will raise the electricity price. 
So, when the price of electricity is high BESS starts discharging bringing down the electricity price. A 
schema named HighElectricityPrice is declared and in the predicate section state of the BESS changes 
from Charging to Discharging 

 HighElectricityPrice         

ΔPHEV 
 

PHEVState: Charging 

PHEVState′: Discharging 
 

During a fault condition MG enters the islanded mode, to supply the critical loads BESS will start 
discharging to model this condition. This process is defined by declaring a schema named FaultCondition 
and in the predicate section state of the PHEV changes from either Charging or Idle to Discharging. 

 FaultCondition         

ΔPHEV 
 

PHEVState: Charging U Idle 

PHEVState′: Discharging 
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After the fault is cleared BESS is in low SoC condition and should start charging to model this a schema 

named AfterFault is declared and in the predicate section state of the PHEV changes from Discharging to 

Charging 

 AfterFault         

ΔPHEV 
 

PHEVState: Discharging 

PHEVState′: Charging 
 

Like BESS, PHEV follows the charging and discharging conditions based on the SoC. This part of the 

schema looks like that of the PHEV. When SoC is low, an event named LowSoC occurs and in the 

predicate state changes from Idle to Charging.  

 LowSoC         

ΔPHEV 
 

PHEVState: Idle 

PHEVState′: Charging 
 

After charging PHEV reaches high SoC and stops charging. A schema named HighSoC is declared with 

Charging as initial state and Idle as final state in the predicate 

 HighSoC         

ΔPHEV 
 

PHEVState: Charging 

PHEVState′: Idle 
 

To enter idle state after a fault is cleared or charging schema IdleState is declared. In the predicate section 

initial state is either Charging or Discharging and final state is Idle 

 IdleState         

ΔPHEV 
 

PHEVState: Charging ∪ Discharging 

PHEVState′ : Idle 
 

 

PHEV with distinct states and events is shown in figure 6. 
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    Figure 6. PHEV states and events  

 

E.  Solar Cell 

Renewables considered in this work are the Solar Panels and Wind Turbine. In [13], a simple 

framework is presented for solar panel and wind generation based on the type of day, i.e., Sunny, Cloudy, 

and Night, and the states are NoGeneration, Partial Generation, and Full Generation. But a solar panel 

generation depends on many other factors like the type of solar cell, temperature, orientation, irradiance, 

Dirt, and Snow. These factors are included in this work to make the system realistic.  

A free type PVCell is defined for presenting different states, which comprise of states 

FullGeneration, PartialGeneration, and LowGeneration. 

[PVCell] == {LowGeneration, NominalGeneration, HighGeneration} 

Then a PV system schema is initialized. Schema takes a variable PVState of type PVCell is introduced, 

which takes the value mentioned above. 

 SolarPanel         

PVState: PVCell 
 

The next step is declaring operational schema by initializing InitPV schema. Initially, a schema SolarPanel 

is introduced in the declaration part, and in the predicate, LowGeneration is considered as an initial state. 

 InitSolar         

SolarPanel  
 

PVState: LowGeneration 
 

Temperature affects the generation of solar panels, as excessive heat can reduce the output of a PV 

system. As the temperature of the solar panel increases, output current increases exponentially while the 
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voltage decreases linearly. Most of the solar cells are tested at a temperature of 25°C.  For modeling the 

solar panel characteristics based on the temperature in this work, Panasonic HIT 330W N-Type 96 is 

considered, and its product specifications are documented in [18].  For raise in every 1°C, solar panel 

efficiency is decreased by 0.0258% and vice versa.  

For a temperature equal to 25°C, the solar panel is operating normally to model that a schema 

called TempEqualTo25C is declared, and in the predicate, the state change is indicated by ΔSolarPanel in 

with initial state LowGeneration while the final state is PartialGeneration. 

 TempEqualTo25C         

ΔSolarPanel 
 

PVState= LowGeneration 

PVState′= NominalGeneration 
 

When the temperatures are below 25°C, solar panels will generate more electricity. By declaring schema 

TempBelow25C and in the predicate section with initial state NominalGeneration and final state 

FullGeneration schema is as follows. 

 TempBelow25C         

ΔSolarPanel 
 

PVState= NominalGeneration 

PVState′= HighGeneration 
 

Whenever temperatures are above 25°C, solar panels efficiency decreases, which means less power is 

generated to model that schema named TempAbove25C is introduced with initial state HighGeneration 

and final state LowGeneration in the predicate.  

 TempAbove25C         

ΔSolarPanel 
 

PVState= HighGeneration 

PVState′= LowGeneration 
 

Dust and Snow can affect the generation of solar cell studies that are performed to estimate the losses 

taking these factors into consideration. So, it is important to include them in the model. The type of 

material used in the manufacturing process of solar panels can determine the efficiency of the panel. 

Traditionally they are made out of silicon as they are more efficient and long-lasting. There are currently 
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three types of silicon-based panels used they are Monocrystalline (24.2% Efficiency), Polycrystalline 

(19.3% Efficiency), and Amorphous silicon cell (10% Efficiency). There is also the fourth kind of solar 

cell named Hybrid Silicon Cell with an efficiency of 33% per unit area but is ignored in this work as it is 

still work in progress.  When modeled using Z-Method schema is as follows. 

The polycrystalline solar cell has a moderate efficiency to model that a schema named 

Polycrystalline is introduced and in predicate initial state is LowGeneration, and the final state is 

NominalGeneration.  

 PolyCrystalline         

ΔSolarPanel 
 

PVState=LowGeneration 

PVState′= NominalGeneration 
 

Monocrystalline cells are the most efficient among all the cells, so they generate more power to model 

them. A schema Monocrystalline is declared with LowGeneration as initial state and HighGeneration as 

the final state in the predicate 

 Monocrystalline         

ΔSolarPanel 
 

PVState= LowGeneration 

PVState′= HighGeneration 
 

Amorphous cells are the least efficient, so they generate less electricity per unit area than any other cell. 

A schema named Amorphous is declared with the initial state as NominalGeneration and final state 

LowGeneration in the predicate. 

 Amorphous  

ΔSolarPanel 
 

PVState= NominalGeneration  

PVState′= LowGeneration 
 

Solar panels generate maximum power when the surface is perpendicular to the sun. The position of the 

sun is plotted using two angles, namely Azimuth (Angle of the sun as it moves from East to West) and 

Zenith (Angle of the sun measured between ground and horizon). It is important for solar panels to be 

mounted at the correct angle for them to point them at the sky directly. Solar panel orientation refers to 

the azimuth setting; it is ignored in this work because the solar panel is assumed to be stationary on the 
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vertical axis.  Solar panel tilt refers to a zenith setting and is key for the efficient operation of a solar cell. 

Authors of this work are located in Grand Forks, ND and from [19] ideal solar tilt is calculated, and the 

values are as follows for optimal year-round generation tilt angle is 42°, for best performance in winter 

tilt angle is 27° and in summer best tilt angle is 57°.  

 To model the tilt angle, a schema names TiltAngleAbove42Deg is introduced, and in the predicate 

section initial state is LowGeneration, and the final state is NominalGeneration. This schema is for angles 

above 42° where solar panels are operating at moderate efficiency.  

 TiltAngleAbove42Deg         

ΔSolarPanel     
 

PVState= LowGeneration 

PVState′ = NominalGeneration 
 

For tilt angles equal to 42 degrees, solar panels are operating at maximum efficiency to model that a 

schema TitleAngle24Deg is declared with initial state NominalGeneration and final state HighGeneration 

in the predicate.  

 TiltAngle42Deg         

ΔSolarPanel 
 

PVState=NominalGeneration 

PVState′= HighGeneration 
 

To model the solar panel with a tilt angle less than 42 degrees, a schema TiltAngleBelow42Deg is 

initialized, and in predicate initial state is HighGeneration, and the final state is LowGeneration. In this 

work, all the tilt angles are taken for Grand Forks Location, and they vary from place to place. 

 TiltAngelBelow42Deg         

ΔSolarPanel 
 

PVState= HighGeneration 

PVState′ = LowGeneration 
 

Solar irradiance is the power generated at a particular location, and it varies depending on the 

season. It is measured in kWh/m2, and for Grand Forks location for a Flat lying solar panel average solar 

insolation values calculated from [19] are as follows: Jan-1.36, Feb-2.30, Mar-3.38, Apr-4.68, May-5.66, 

Jun-5.99, Jul-6.05, Aug-5.22, Sep-3.76, Oct-2.49, Nov-1.58, and Dec-1.17. 
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During Jan-Mar generation is Nominal to model that a schema named JanToMar is declared and in 

predicate initial state is LowGeneration and final state is NominalGeneration in the predicate 

 JanToMar         

ΔSolarPanel 
 

PVState= LowGeneration 

PVState′ = NominalGeneration 
 

During the summer solar panels generate maximum power. For Apr-Aug transition is implemented by 

decalring schema named AprToAug, with initial state NominalGeneration and final state HighGeneration 

in the predicate. 

 AprToAug  

ΔSolarPanel 
 

PVState= NominalGeneration 

PVState′ = HighGeneration 
 

During the spring and winter solar panels have a low generation to include them as a part of the model 

and to demonstrate the transition a schema named SepToDec is declared, and in the predicate section 

initial state is HighGeneration, and the final state is LowGeneration 

 SepToDec  

ΔSolarPanel 
 

PVState= NominalGeneration ∪ HighGeneration 

PVState′ = LowGeneration 
 

Accumulation of dust, snow, and water can distract the light from reaching the surface of the solar panels 

and can affect the generation of the solar panel, in extreme cases, generation was reduced by up to 85%.   

A slightly dirt-covered solar panel can’t generate electricity at full capacity, and the transition is shown 

by declaring with a schema SlightlyDirty with initial state LowGeneration and NominalGeneration as the 

final state in the predicate, and the schema is as follows 

 SlightlyDirty         

ΔSolarPanel 
 

PVState= LowGeneration 

PVState′ = NominalGeneration 
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A clean solar panel generates power at full capacity, and to model the transition, a schema named Clean 

and in predicate initial state is NominalGeneration, and the final state is HighGeneration.  

 Clean         

ΔSolarPanel 
 

PVState= NominalGeneration 

PVstate′ = HighGeneration 
 

If a solar panel is covered completely in the dirt it produces little to no electricity, which is highly 

undesirable. To represent the and to model it, a schema named CompletelyCoveredWithDust is declared 

while in the predicate section initial state is NominalGeneration, while the final state is LowGeneration. 

 CompletelyCoveredWithDirt         

ΔSolarPanel 
 

PVState= NominalGeneration  

PVState′ = LowGeneration 
 

Solar panel states, and the events that trigger the state changes are shown in figure 7. 
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Figure 7. Solar panel cell states and events 

 

F.  Wind Turbines 

A simple framework for wind turbines based on wind speed is presented in [13]. In this work taking 

temperature into consideration, a formal framework is presented. When temperature drops from +20°C to 
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-20°C turbine output will increase by 16%. The power generated by a wind turbine in terms of density of 

air and area swept out by turbines is given by. 

� =
1

2
∗ ������� �� ��� ∗ ���� ����� �� �������� ∗ (���������)� 

The air is denser when it is cold and vice versa. As air density is dependent on the temperature, it 

is important to model the temperature using formalism. To present the formal specification for the wind 

turbine, a free type WINDGEN is defined, and the set comprises different states of wind turbines, namely 

LowOutput, NominalOutput, and HighOutput.    

[WindGen] == {LowOutput, NominalOutput, HighOutput} 

A wind turbine schema is developed by declaring WindGenerator and a schema consisting of variable 

WTState of type WINDGEN. The value of this variable is presented in the above set. 

 WindGenerator         

WTState: WindGen  
 

Schema is initialized by presenting InitWT and calling the WindGenerator, and in the predicate initial state 

is LowOutput 

 InitWind         

WindGenerator   
 

WTState: LowOutput 
 

At room temperatures, wind turbines produce nominal output. Transition is represented by declaring 

RoomTemperature as the schema, and the change of state is indicated by ΔWindGenerator in the predicate 

initial state is LowOutput, and the final state is NominalOutput.   

 RoomTemperature         

ΔWindGenerator 
 

WTState= LowOutput 

WTState′= NominalOutput 
 

Low temperatures improve the performance of the wind turbine and can ramp up the power production to 

capture the transition a schema named LowTemperature is defined, and in the predicate, the initial state is 

NominalOutput while the final state is HighOutput. 
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 LowTemperature         

ΔWindGenerator 
 

WTState= NominalOutput 

WTState′= HighOutput 
 

To model the high temperatures schema named HighTemperature is declared to show the transition, and 

in the predicate, the initial state is either NominalOutput and the final state is LowOutput. This schema 

presents the output for a wind turbine at high temperatures at which their efficiency is low. 

 HighTemperatures         

ΔSolarPanel 
 

PVState= Nominal ∪ HighOutput 

PVState′= LowOutput 
 

Figure 8. demonstrate the states, events that trigger the change if states of a wind turbine. 

Wind 
Turbine

Low Output

Nominal
Output

High
Output

Temp ZeroDegMedium
Winds

State

Fast
Winds

Temp Minus20
Deg

 

Figure 8. Wind turbine states and events 

Conclusion and Future work 
 
In this work formal specification framework for MG components is developed. This work proves that 

complex power systems like MG community can be modeled using software engineering methods like 

Formal specifications. this paper only includes part of the MG and can be expanded to include more 

components. future work includes other key factors that can influence the reliability of the MG and also 

using other formalism approaches like petrinets and B-method.
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