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Abstract: Electrical microgrids are deemed to be the future of modern power systems.
Microgrids are sophisticated, decentralized, and self-sufficient small-scale power systems
consisting of various resources ranging from wind turbines, solar photovoltaics, electric
vehicles, smart energy storage, and complex communication infrastructure. However,
renewable energy sources such as solar photovoltaics and wind-based generators are highly
intermittent, and if not appropriately planned, they can compromise the stability of the grid.
Formal methods can define and analyze the functionality and behavior of any system and
show if the system design is correct before the actual system is implemented. Although
formal methods have been around for many years, it is surprising that little to none are
utilized in the design of safety-critical electrical power systems. Currently, in modeling
microgrids, few to no attempts of formalization are being used to improve the design
reliability and reduce system operating costs and time. This work demonstrates how
complex systems such as microgrids can be modeled elegantly using a formal specification
method. In this work, the Z state-based formal specification language (Z-Method) is used
to model and verify microgrid designs. In this work, 3-interconnected microgrid systems
with a high penetration level of solar and wind-based renewable energy sources with plug-
in hybrid electric vehicles (PHEV) as battery energy storage systems (BESS) are modeled
using the Z-method. To the best of authors, the knowledge presented formal method is one
of the first reported attempts in modeling microgrid communities using Software
Engineering formalism.

Index Terms: Formal Specification, Microgrid, Battery Energy Storage Systems,
Software Engineering, Plug-in Hybrid Electric Vehicle, Modeling, Renewable Energy,
Safety-Critical systems, Microgrid Community
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I. Introduction
The U.S. Department of Energy defines a Microgrid (MG) as ‘a group of interconnected loads and

distributed energy resources within clearly defined electrical boundaries that act as a single controllable
entity with respect to the grid’ [1]. The term MG exemplifies the usage of complex control systems,
bidirectional communication, advanced power electronics, and more installed with the aging conventional
power grid to convert into an advanced proactive and mercurial system. The focus of the MG is to integrate
renewable energy sources into the system. With the dramatic decrease in the cost of disposition, the share
of renewables and energy storage will continue to grow in the future, improving the reliability, flexibility
of the system and will enhance the economics of the system. With advanced communication systems,
MG’s can communicate and coordinate with each other, thereby increasing the overall reliability of the
system and decreasing the total operational cost. Intermittent nature of the renewables can disrupt the
conventional methods used for operating the utility grid, forcing the grid operators to adjust the real-time
operating procedures. With minimal energy storage capacity available to maintain the stability of the grid,
operators are forced to increase the reserve capacity to maintain the critical balance between demand and
supply and to avoid the blackouts, which in turn will increase the operating cost. An effective way to
decrease the effect of intermittency is to implement the theory from the law of large numbers. This
probability theorem states that output from random events becomes closer to the expected value as a
greater number of trials are performed. Similarly, the output from renewable energy becomes more
predictable as the number of generators increases and they can be modeled effectively. To accommodate
a large number of renewable energy generators MG’s are a perfect solution as it eliminates the necessity
for redesigning the distribution system and is scalable while leaving a small footprint on the system in
case of an outage.

The energy management system is the heart and soul of the MG as it monitors, controls, and
optimizes the performance of the MG to improve the resiliency and efficiency. The authors of this work
are working to develop a self-healing MG energy management system by combining complex
optimization techniques and multi agent systems and initial results for a simple 3-MG system in [2]
demonstrates the effectiveness of the proposed approach. Each component in the MG is dynamic in nature
and the behavior of the MG is governed by the dynamics of its components. MG community can be
compared to a Complex Adaptive System (CAS) because it can exhibit global change as a result of local
action [3]. It is clear at this point that MG is a complex system with so much complication at hand there

is a necessity to model each component of the system. With the help of different types of formalism,
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modeling the system in a sophisticated way is possible which will help to understand the system better.
Formalism domain when applied MG’s will decrease the complexity of the system thus making it easy to
implement the system. Although formal specification methods are around for a while it is surprising to
see that little to no went into implementing the formalism for the microgrid domain which is a safety-
critical system.

A formal specification is a mathematical based technique in which a statement is expressed in
formally defined syntax and vocabulary to define the properties of the system. Formal specification is not
an actual implementation of the system, but it is used to develop an implementation of the system. It
provides the mathematical analysis for creating a system and will help to detect flaws in the system before
actual implementation thus improving the reliability of the system. Objectives of the formal methods are
verification, validation and documentation and it has broad range of effects making the system error prone
and mathematically precise. While Formal specification has many advantages, critics claim that it will
increase the cost of the system, requires highly trained mathematicians, lack of user-friendly tools and
limitations for implementation on large scale software’s [4].

Formalism has been applied to many domains in the past some key examples include developing
a formal specification for railway signaling systems with the help of the configuration data (Geographical
data) in [5]. A case study for developing a system that monitors the operation of UAV’s in US airspace
with the help of formally defined requirements was proposed in [6] proves that formal specification
techniques (FST) are suitable for health & status monitoring of safety critical systems. A model-based
software engineering methodology that incorporates FST was applied for aircraft software systems in [7].
Formal agent-based framework for AIDS proposed in [8] uses a formal specification model in
combination with agent-based simulation for developing a CAS model. Formal method for earthquake
disaster mitigation and management system using Vienna Development Method-Specification language
is proposed in [9]. Using UML language supported by specification methods a methodological framework
was developed for mechatronic models for industrial control systems in [10]. Usage of a formal
specification for the smart grid has been mentioned in the literature [11]. Formalized method-based state
machine software in smart microgrid control systems is implemented in [12]. A formal specification
framework for smart grid components using CAS is presented in [13].

The rest of the paper is organized as follows. FSM using Z-method in section II, section III
discusses application of Z-method schema for a MG community. Finally, conclusions and future work are

presented in section IV.
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I1. Formal Specification

A. Formal Specification Method:
Formal specification techniques (FST) have been in existence for decades it employs mathematical

models for writing specifications, development, and verification of software and hardware systems. Using
mathematical analysis for an engineering system will increase the robustness and reliability of the system.
As mentioned previously, it reveals flaws and errors in the system before actual implementation, and if
errors are found, modifications can be done, thereby saving valuable money and time. There are two
fundamental approaches for implementing the formal specifications they are:

a. Algebraic Approach: In this approach, a system is described in terms of operations and their
relations.

b. Model-Based Approach: In this approach, a model is built using mathematical constraints, and the
system operations are defined by modifying the system state and looking for flaws in the system.

In this work, the authors have implemented the model-based approach.
For implementing any formal design, there are three steps involved:

a. Formal Specification: During this phase, the engineer will define the system using a modeling
language (Z-Method in this case). This step converts a word problem into mathematical notation.
Modeling a system using formal specifications is tough as modeling languages are fixed grammars.

b. Verification: Verification is the toughest of all the phases because even the simplest systems need
to develop dozens of theorems, and they must be proven to emphasize the provability and
correctness of the system.

c. Implementation: Once the system is defined and verified, then the specification is converted into
code using different approaches.

While formal methods are around for a long time, Engineers don’t use them as the formal methods are

extremely descriptive. But for large complex systems, some form of formalism is necessary.

B. Z-Specification Language
The Z-specification language is one of the popular and widely accepted formal language and is

typically used for software and hardware systems. It is based on Zermelo-Fraenkel set theory and typed
first-order predicate logic. By describing the states and the ways they can be changed, a system is modeled
using the Z-method. Z-method is just a notation and not a method; it is an abstract formal specification.
While Z is not a programming language, it is a model-based notation and uses a combination of boxes,

Greek letters, and pictographic symbols.
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To model a system in Z, it must be represented by its state, which is an assortment of state variables
and its values. To model the complex physical systems such as MG community Z is a good fit as the
models can be characterized by abstract data type (ADT). Mathematical objects are used to model the
components of the proposed system as well as to model the data structures. A most distinguishable feature
of Z, when compared to other methods is it uses schema which is a macro-like abbreviation and it uses
smaller schemas to build bigger ones.

Z specification typically has multiple numbers of state schemas and operation schemas. Information

about syntax and semantics are described in [14]. The flow chart for Z-Specification implementation is as

Start

N

follows.

~» Gathering requirements

A
Formal Methods
(Z-Notation)

N

Simulation

Yes

System Implementation

Y
End

Fig 1. Flowchart of Z-Specification Language
The key difference between standard implementation and Z-schemas used in this work is that
schema describes a type, but its description will not introduce any state to the system under
implementation.
The Z formalization in the form of a vertical-form schema is as follows:
Schema Name

Declaration Part

Predicate Part

Figure 2. Z-Specification Schema
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The above figure shows the generic way of the axiomatic definition of the Z schema. The schema
introduces a universal constant in the declaration part, satisfying the predicate part. The set-in part schema
name is a formal parameter and is the scope of the body of the definition. After the models are transformed
into Z notation, they are analyzed by the Z word tools to test the syntax and semantics of the schema. Then
the system is checked for errors if any faults are found in the model they can be rectified before actual
implementation saving valuable time and money. It is impossible to find all the errors and faults in the
system using formalism or any other method. However, it is still essential to test the systems with some
manner of testing, especially if the system is a complex system like a microgrid community. The relevant

conventions, declarations, sets, relations, functions and schema definitions are discussed in [15].

I1. Formal Specification framework for a Microgrid Community

In this section, the formal specification framework is applied to the microgrid community and its
components. The MG states considered in this work are islanded, Grid-tied, and Transition mode
(Transition between both mode0-s). Components considered in this work are Solar Panel, Wind turbines,
Battery Energy storage system, Plug-in Electric vehicle, and Load. A simple MG community with all the
components looks as in fig 3. To maintain the voltage/frequency stability in the MG energy storage system
within acceptable ranges and to improve the power quality and to increase the dynamic response of the
system towards disturbances, BESS is installed. Research states that EV’s sit idle in parking lots about
70%o0f the time, and the big battery packs with high energy and power densities can act as energy storage

systems which will eliminate the high capital investment for conventional Li-ion storage systems.

Figure 3. 3-MG community with RES, PHEV, and BESS
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A. Microgrid community mode of operation

A microgrid can operate in two modes grid-tied where it is connected to the utility grid, Islanded
mode, where MG is operating as independent entity, in this work authors, are considering a third mode,
1.e., transition mode (transition between grid-tied and island mode). Although this mode lasts for a concise
period (in order of milliseconds to microseconds), it is still vital as it will introduce several transients into
the system. Each mode and component have different states and events that cause state transitions.

In Grid-Tied or Grid-connected mode, MG is connected to the utility grid at the point of common
coupling (PCC) and exchanges power with it depending on generation, demand, and electricity price.
When the load in MG is greater than a generation from distributed generators (DG) it buys power from
the utility grid or neighboring MG’s. During excess generation, it injects the power back into the utility
grid or sells the power to neighboring MG’s. Grid-connected MG’s earn revenue by selling the ancillary
services to the utility grid. Some of the well-known services are demand response, voltage and frequency
regulation, and black start capability.

Following a grid failure or schedule MG changes its operational mode to islanded mode where the
DG’s, BESS, and loads operate as an independent entity. When the MG enters an islanded mode, the
energy management system (EMS) is responsible for voltage control and power-sharing between critical
and non-critical loads and balancing within the MG. In the islanded mode of operation, there is no voltage
and frequency support from the utility grid, and MG, which is a power electronic-based grid, lacks the
inertia, and there must be other units to support the voltage and frequency fluctuations.

To model the MG mode of operation using Z-Specification, a free type “MICROGRID " is used to
represent different states of the MG that are Grid-Tied, Islanded, and Transition.

[MICROGRID] = {GridTied, Islanded, Transition}

After the free type, a schema named MG is defined that contains “MGState” variable of type

“MICROGRID”. The value of the MGState can be GridTied, Islanded or Transition.

MG
MGState: MICROGRID

After defining the MG mode of operation and MG schema next step is to define the operational
schemas. By presenting the initialization schema named /nitMG and schema, MG is declared as a variable.

In the predicate section of the schema upon initialization state of the MG is equal to GridTied.
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InitMG
MGCondition

MGState = GridTied

An operational schema FaultCondition is defined to show the stressed conditions in the MG, state
of the MG changes to Islanded, and change of the state is shown by AMG. In the predicate section, state

changes from grid-tied to island mode.

_FaultCondition
AMG

MGState = GridTied
MGState' = Islanded

After the fault clears, MG goes back into grid-connected mode to model that an operational schema
named NormalCondition is declared. In the predicate section, state of the microgrid changes from Islanded

mode to grid-tied mode.

_NormalCondition

AMG

MGState = Islanded
MGState' = GridTied

For the efficient operation of the microgrid, a control strategy is required for smooth microgrid’s
state transition from islanded to grid-tied and vice versa. To model that an operational schema named
TransitionMode is defined. In the predicate, the initial state is either grid-tied or islanded mode, and the

final state is Islanded or grid-tied depending on the initial mode of operation.

_TransitionMode

MG

MGState: GridTied U Islanded
MGState': Islanded

Similarly,
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_TransitionMode

AMG

MGState: GridTied U Islanded
MGState': GridTied

The schemas for the MG and state changes are as shown in figure 4.

MG
Normal
Operation
Grid Tied
Fault Fault
Cleared
.. Fault
T t
ransition Cleared
Fault Fault
Cleared
Islanded

Figure 4. MG state changes
B. Power Transfer

For the MG to be reliable and profitable energy exchange with the neighboring MG’s and utility
grid is considered in this work. Different states and events involved in the energy transfer between MG’s
and with utility grid are shown in Figure 5. Whenever MG needs to buy power, it communicates with
neighboring MG’s and utility grid to check for the electricity prices, and it starts buying power from the
lowest price provider. When there is a nominal price or no demand, there is no power exchange. In this
work, power transfer has only been viewed from a price perspective, power transfer by demand response

(DR) together will be included in future work.
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Power
Exchange

Between MG’s
With
Low Electricity Price in Utility
MG’s Grid
A
High Electricity Price | ) No Exchange

in MG’s

A

Nominal Electricity )
Price in MG

Figure 5. Power Exchange Schema
A free type EnergyTransfer is used to define the different states of the energy transfer.
[ET] == {BetweenMG'’s, WithUtilityGrid, NoTransfer}
After defining the ETState, schema is initialized with variable /nitET. Initial state in the schema is

NoTransfer.

_FEnergyTransfer
| ETState: ET

After defining the ETState schema is initialized with variable /nitET. Initial state in the proposed schema
is NoTransfer.

_InitET
EnergyTransfer

ETState: Notransfer

If the neighboring MG’s offer a better price, then energy is transferred with in the MG community. so, the
initial state here is NoTransfer and the final state is BetweenMG'’s in the predicate and the transition is

shown by defining LowElectricityPriceinMG’s schema.

_LowElectricityPriceinMG's
AEnergyTransfer

ETState : NoTransfer
ETState’ . BetweenMG's
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If the electricity price is higher in MG community than the utility grid, then the power exchange is done
between MG and utility grid. To model the transition schema HighElectricityPriceinMG s is declared and
in the predicate initial state is BetweenMG'’s and the final state is WithUtilityGrid

_HighElectricityPriceinMG's
AEnergyTransfer

ETState : BetweenMG's
ETState' . WithUtilityGrid

If the price of electricity is nominal, then there is no power transfer, final state in this schema is NoTransfer
with initial state as either BetweenMG’s or WithUtilityGrid in the predicate section and the transition is

represented by defining the schema NominalElectricityPrice.

_NominalElectricityPrice

AEnergyTransfer

ETState : BetweenMG's U WithUtilityGrid
ETState’: NoTransfer

C. Battery Energy Storage System

Due to the intermittent nature of RES, voltage, and frequency fluctuations occur in the power grid,
and BESS is a perfect solution to answer that problem. Although PHEV’s are considered as BESS in this
work, the problem is that they are mobile and not plugged in all the time, so a BESS is installed at the
point of common coupling. 100 MW/ 129 MWh Hornsdale Power Reserve in Australia is the world’s
largest Li-ion battery; it helped in stabilizing the grid, avoid outages and reduces system costs, and surged
fast response systems across the continent and saved $40 million [15]. That proves the effectiveness of
the BESS in the system. The schema for BESS is like that of PHEV’s.

BESS can provide ancillary services like frequency regulation, voltage support, black start, load
shifting, and reserve provision. So, a schema is provided for ancillary services using BESS. Battery energy
storage systems (BESS) are rechargeable batteries that store energy from renewable energy sources in the
microgrid when there is an excess generation for utilization later when the demand is high or high
electricity price. To smooth out intermittency from the renewable sources and to assist the grid by
providing services like peak shaving, black start, voltage control, and frequency regulation energy storage

system is a perfect choice. Energy storage is of many types Flywheel, hydroelectric dams, superconducting
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magnetic energy, thermal storage, compressed air, and grid oriented large-scale battery technologies (Li-
ion batteries).

For modeling the battery energy storage system state of charge (SoC) is used, it is defined as the
percentage of the level of the charge left in the battery relative to its capacity. It is a measure of the rated
capacity of the battery rather than the current capacity of the battery. As the battery nears the end of its
lifetime actual capacity of the battery deteriorates and can only charge up to 80% of its rated capacity
when fully charged so, SoC is a good measure for estimation when taking battery aging and depth of
discharge into consideration. If the SoC is high, BESS can discharge to provide intended services, and
when the SoC is low, it switches to idle mode, and when there is excess generation BESS gets charged
and when it’s fully charged it goes back into idle mode.

To present the formal specification for a BESS, a free type is defined by the name BESSState that
comprises the different states of the BESS.

[BESSState] == {Charging, Discharging, Idle}
To define BESS schema, a variable is declared by name ESSState of type BESSState that has any single

value from the above-defined state set.

_BESS
BESSState: ESS

By introducing the initialization schema named /nitBESS, this schema calls the BESS as a variable and in

the predicate to show the stage of the storage Id/e is used at the initial time.

_InitBESS
BESS

BESSState = Idle

When an energy storage event occurs, BESS goes into the Charging state. This process is shown by the
LowSoC schema. Change of the state is shown by delta (A) sign, and in predicate current state is either
Idle or Discharging, which is changed to Charging.

_LowSoC
ABESS

BESSState = Idle U Discharging
BESSState' = Charging
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When the BESS charges and reaches High SoC it changes it’s state from Charging it enters Idle or
Discharging depending on the grid conditions. To model that a schema named HighSoC is declared and in
the predicate section state change is declared.

_HighSoC
ABESS

BESSState = Charging
BESSState' = Idle U Discharging

After clearing the fault in the grid or after fully charging BESS enters idle state to model that IdleState

schema is declared and in the predicate section the state changes from either charging to discharging to
Idle

_IdleState
ABESS

BESSState = Charging U Discharging
BESSState' = Idle

As mentioned previously, BESS can also provide ancillary services, so to model the ancillary services
using Z follow schema has been written. Frequency must be maintained within limits, and when violated,
it can impose hefty fines on the MG owner. The authors of this work have proposed a proportional integral
derivative (PID) controller with the design based on neural networks to control the frequency deviations
in the MG community. To obtain the proper PID parameters in [17], they have used a multilayer
feedforward neural network with random numbers as inputs, and the results prove the effectiveness of the
method. To model the frequency regulation, a transition FrequencyRegulation is defined. Then a change
in the state was declared with a delta sign, and in the predicate section, the initial state will be /dle or

Charging, which then changes to Discharging.

_FrequencyRegulation
ABESS

BESSState: Idle U Charging
BESSState': Discharging

When the voltage event occurs, BESS goes into discharging state to show this transition, a schema called
VoltageSupport is called. In the predicate section, the state of the BESS changes from either idle or
charging to Discharging.
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_VoltageSupport
ABESS

BESSState:ldle U Charging
BESSState':Discharging

Black start is the process of restoring power to an MG or a part of MG without relying on the utility grid.
To model that a transition BlackStart schema is declared, with the initial state as Idle or Charging in the

predicate section, and the final state is Discharging.

_BlackStart
ABESS

BESSState:ldle U Charging
BESSState':Discharging

Reserve provision allows conventional thermal generators to go into offline mode so that renewables can
supply the demand during the peak generation hours of solar and wind. To model reserve provision using
formal specifications, a transition schema named ReserveProvision is introduced, and in the predicate, the

initial state is /dle, and the final state is Discharging.

_ReserveProvision
ABESS

BESSState:ldle U Charging
BESSState':Discharging

D. Plug-in Hybrid Electric Vehicle

PHEV’s are penetrating the market every year, and if not planned properly, they can have adverse
effects on the power grid. According to research, electric vehicles spend only 10% of the time on the
roads. They are essentially big battery packs sitting idle for 90% of the time. If planned properly, they can
act as a battery energy storage system and help in mitigating the voltage and frequency fluctuations in the
MG and earning income for the owners.

There are three states, namely “Charging, Discharging and Idle” for the PHEV. First, we start by
defining free type PHEV that comprises the different states of the EV.

[EV] == {Charging, Discharging, Idle}
For initializing schema, a variable PHEVState is declared that has a single value PHEVSTATE.
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_PHEV
PHEVState:EV

Defining the operational schema by introducing the initialization schema called /nitPHEV. By calling the
PHEYV as a variable and Idle as predicate at the initial time.

_InitPHEV.
PHEV

PHEVState: Idle

When price of electricity is low, and BESS is at medium or low SoC then it starts charging to model this
condition a LowElectricityPrice schema is declared and changing in PHEV is shown by delta sign. In

predicate the current state is /dle, and the final state is Charging.

_LowElectricityPrice
APHEV

PHEVState: Idle
PHEVState': Charging

If the generation is low or demand is high utilities following spot pricing will raise the electricity price.
So, when the price of electricity is high BESS starts discharging bringing down the electricity price. A
schema named HighElectricityPrice is declared and in the predicate section state of the BESS changes
from Charging to Discharging

_HighElectricityPrice
APHEV

PHEVState: Charging
PHEVState': Discharging

During a fault condition MG enters the islanded mode, to supply the critical loads BESS will start
discharging to model this condition. This process is defined by declaring a schema named FaultCondition
and in the predicate section state of the PHEV changes from either Charging or Idle to Discharging.

_FaultCondition
APHEV

PHEVState: Charging U Idle
PHEVState': Discharging
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After the fault is cleared BESS is in low SoC condition and should start charging to model this a schema
named AfterFault is declared and in the predicate section state of the PHEV changes from Discharging to
Charging

_AfterFault
APHEV

PHEVState: Discharging
PHEVState': Charging

Like BESS, PHEV follows the charging and discharging conditions based on the SoC. This part of the
schema looks like that of the PHEV. When SoC is low, an event named LowSoC occurs and in the

predicate state changes from Idle to Charging.

_LowSoC
APHEV

PHEVState: Idle
PHEVState': Charging

After charging PHEV reaches high SoC and stops charging. A schema named HighSoC is declared with

Charging as initial state and /dle as final state in the predicate

_HighSoC
APHEV

PHEVState: Charging
PHEVState': Idle

To enter idle state after a fault is cleared or charging schema IdleState is declared. In the predicate section

initial state is either Charging or Discharging and final state is Idle

_IdleState
APHEV

PHEVState: Charging U Discharging
PHEVState' : Idle

PHEV with distinct states and events is shown in figure 6.
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Figure 6. PHEV states and events

E. Solar Cell

Renewables considered in this work are the Solar Panels and Wind Turbine. In [13], a simple
framework is presented for solar panel and wind generation based on the type of day, i.e., Sunny, Cloudy,
and Night, and the states are NoGeneration, Partial Generation, and Full Generation. But a solar panel
generation depends on many other factors like the type of solar cell, temperature, orientation, irradiance,
Dirt, and Snow. These factors are included in this work to make the system realistic.

A free type PVCell is defined for presenting different states, which comprise of states
FullGeneration, PartialGeneration, and LowGeneration.

[PVCell] == {LowGeneration, NominalGeneration, HighGeneration}

Then a PV system schema is initialized. Schema takes a variable PVState of type PVCell is introduced,

which takes the value mentioned above.

_SolarPanel
| PVState: PVCell

The next step is declaring operational schema by initializing /nitPV schema. Initially, a schema SolarPanel

is introduced in the declaration part, and in the predicate, LowGeneration is considered as an initial state.

_InitSolar
SolarPanel

PVState: LowGeneration

Temperature affects the generation of solar panels, as excessive heat can reduce the output of a PV

system. As the temperature of the solar panel increases, output current increases exponentially while the


https://doi.org/10.20944/preprints202206.0431.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2022 d0i:10.20944/preprints202206.0431.v1

voltage decreases linearly. Most of the solar cells are tested at a temperature of 25°C. For modeling the
solar panel characteristics based on the temperature in this work, Panasonic HIT 330W N-Type 96 is
considered, and its product specifications are documented in [18]. For raise in every 1°C, solar panel
efficiency is decreased by 0.0258% and vice versa.

For a temperature equal to 25°C, the solar panel is operating normally to model that a schema
called TempEqualTo25C is declared, and in the predicate, the state change is indicated by ASolarPanel in

with initial state LowGeneration while the final state is PartialGeneration.

_TempEqualTo25C
ASolarPanel

PVState= LowGeneration
PVState'= NominalGeneration

When the temperatures are below 25°C, solar panels will generate more electricity. By declaring schema
TempBelow25C and in the predicate section with initial state NominalGeneration and final state

FullGeneration schema is as follows.

_TempBelow25C
ASolarPanel

PVState= NominalGeneration
PVState'= HighGeneration

Whenever temperatures are above 25°C, solar panels efficiency decreases, which means less power is
generated to model that schema named TempAbove25C is introduced with initial state HighGeneration

and final state LowGeneration in the predicate.

_TempAbove25C
ASolarPanel

PVState= HighGeneration
PVState'= LowGeneration

Dust and Snow can affect the generation of solar cell studies that are performed to estimate the losses
taking these factors into consideration. So, it is important to include them in the model. The type of
material used in the manufacturing process of solar panels can determine the efficiency of the panel.

Traditionally they are made out of silicon as they are more efficient and long-lasting. There are currently


https://doi.org/10.20944/preprints202206.0431.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2022 d0i:10.20944/preprints202206.0431.v1

three types of silicon-based panels used they are Monocrystalline (24.2% Efficiency), Polycrystalline
(19.3% Efficiency), and Amorphous silicon cell (10% Efficiency). There is also the fourth kind of solar
cell named Hybrid Silicon Cell with an efficiency of 33% per unit area but is ignored in this work as it is
still work in progress. When modeled using Z-Method schema is as follows.

The polycrystalline solar cell has a moderate efficiency to model that a schema named
Polycrystalline is introduced and in predicate initial state is LowGeneration, and the final state is

NominalGeneration.

_PolyCrystalline
ASolarPanel

PVState=LowGeneration

PVState'= NominalGeneration

Monocrystalline cells are the most efficient among all the cells, so they generate more power to model
them. A schema Monocrystalline is declared with LowGeneration as initial state and HighGeneration as

the final state in the predicate

_Monocrystalline
ASolarPanel

PVState= LowGeneration
PVState'= HighGeneration

Amorphous cells are the least efficient, so they generate less electricity per unit area than any other cell.
A schema named Amorphous is declared with the initial state as NominalGeneration and final state

LowGeneration in the predicate.

_Amorphous
ASolarPanel

PVState= NominalGeneration
PVState'= LowGeneration

Solar panels generate maximum power when the surface is perpendicular to the sun. The position of the
sun is plotted using two angles, namely Azimuth (Angle of the sun as it moves from East to West) and
Zenith (Angle of the sun measured between ground and horizon). It is important for solar panels to be
mounted at the correct angle for them to point them at the sky directly. Solar panel orientation refers to

the azimuth setting; it is ignored in this work because the solar panel is assumed to be stationary on the
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vertical axis. Solar panel tilt refers to a zenith setting and is key for the efficient operation of a solar cell.
Authors of this work are located in Grand Forks, ND and from [19] ideal solar tilt is calculated, and the
values are as follows for optimal year-round generation tilt angle is 42°, for best performance in winter
tilt angle is 27° and in summer best tilt angle is 57°.

To model the tilt angle, a schema names 7TiltAngleAbove42Deg is introduced, and in the predicate
section initial state is LowGeneration, and the final state is NominalGeneration. This schema is for angles

above 42° where solar panels are operating at moderate efficiency.

_TiltAngleAboved2Deg
ASolarPanel

PVState= LowGeneration
PVState' = NominalGeneration

For tilt angles equal to 42 degrees, solar panels are operating at maximum efficiency to model that a
schema TitleAngle24Deg is declared with initial state NominalGeneration and final state HighGeneration

in the predicate.

_TiltAngle4d2Deg
ASolarPanel

PVState=NominalGeneration
PVState'= HighGeneration

To model the solar panel with a tilt angle less than 42 degrees, a schema TiltAngleBelow42Deg is
initialized, and in predicate initial state is HighGeneration, and the final state is LowGeneration. In this

work, all the tilt angles are taken for Grand Forks Location, and they vary from place to place.

_TiltAngelBelow42Deg
ASolarPanel

PVState= HighGeneration
PVState' = LowGeneration

Solar irradiance is the power generated at a particular location, and it varies depending on the
season. It is measured in kWh/m? and for Grand Forks location for a Flat lying solar panel average solar
insolation values calculated from [19] are as follows: Jan-1.36, Feb-2.30, Mar-3.38, Apr-4.68, May-5.66,
Jun-5.99, Jul-6.05, Aug-5.22, Sep-3.76, Oct-2.49, Nov-1.58, and Dec-1.17.
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During Jan-Mar generation is Nominal to model that a schema named JanToMar is declared and in

predicate initial state is LowGeneration and final state is NominalGeneration in the predicate

_JanToMar
ASolarPanel

PVState= LowGeneration

PVState' = NominalGeneration

During the summer solar panels generate maximum power. For Apr-Aug transition is implemented by
decalring schema named AprToAug, with initial state NominalGeneration and final state HighGeneration

in the predicate.

_AprToAug
ASolarPanel

PVState= NominalGeneration
PVState' = HighGeneration

During the spring and winter solar panels have a low generation to include them as a part of the model
and to demonstrate the transition a schema named SepToDec is declared, and in the predicate section

initial state is HighGeneration, and the final state is LowGeneration

_SepToDec
ASolarPanel

PVState= NominalGeneration U HighGeneration
PVState' = LowGeneration

Accumulation of dust, snow, and water can distract the light from reaching the surface of the solar panels
and can affect the generation of the solar panel, in extreme cases, generation was reduced by up to 85%.

A slightly dirt-covered solar panel can’t generate electricity at full capacity, and the transition is shown
by declaring with a schema SlightlyDirty with initial state LowGeneration and NominalGeneration as the

final state in the predicate, and the schema is as follows

_SlightlyDirty
ASolarPanel

PVState= LowGeneration

PVState' = NominalGeneration
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A clean solar panel generates power at full capacity, and to model the transition, a schema named Clean

and in predicate initial state is NominalGeneration, and the final state is HighGeneration.

_Clean
ASolarPanel

PVState= NominalGeneration
PVstate' = HighGeneration

If a solar panel is covered completely in the dirt it produces little to no electricity, which is highly

undesirable. To represent the and to model it, a schema named CompletelyCoveredWithDust is declared

while in the predicate section initial state is NominalGeneration, while the final state is LowGeneration.

_CompletelyCoveredWithDirt
ASolarPanel

PVState= NominalGeneration
PVState' = LowGeneration

Solar panel states, and the events that trigger the state changes are shown in figure 7.

Cloudy
Day

Low Generation

Slightly
y Dirty
Partial
Generation
Clean
Panel v
High
Generation

Sunny
Day

Figure 7. Solar panel cell states and events

F. Wind Turbines

A simple framework for wind turbines based on wind speed is presented in [13]. In this work taking

temperature into consideration, a formal framework is presented. When temperature drops from +20°C to
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-20°C turbine output will increase by 16%. The power generated by a wind turbine in terms of density of

air and area swept out by turbines is given by.
1
P = 5 * Density of Air x Area Swept by Turbines * (Windspeed)3

The air is denser when it is cold and vice versa. As air density is dependent on the temperature, it
is important to model the temperature using formalism. To present the formal specification for the wind
turbine, a free type WINDGEN is defined, and the set comprises different states of wind turbines, namely
LowOQutput, NominalOutput, and HighOutput.

[WindGen] == {LowQutput, NominalOutput, HighOutput}

A wind turbine schema is developed by declaring WindGenerator and a schema consisting of variable

WTState of type WINDGEN. The value of this variable is presented in the above set.

_WindGenerator
WTState: WindGen

Schema is initialized by presenting /nitWT and calling the WindGenerator, and in the predicate initial state

is LowQutput

_InitWind
WindGenerator

WTState: LowQOutput

At room temperatures, wind turbines produce nominal output. Transition is represented by declaring
RoomTemperature as the schema, and the change of state is indicated by AWindGenerator in the predicate
initial state is LowQutput, and the final state is NominalOutput.

_RoomTemperature
AWindGenerator

WTState= LowQOutput
WTState'= NominalOutput

Low temperatures improve the performance of the wind turbine and can ramp up the power production to
capture the transition a schema named LowTemperature is defined, and in the predicate, the initial state is

NominalOutput while the final state is HighOutput.
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_LowTemperature
AWindGenerator

WTState= Nominal Output
WTState'= HighOutput

To model the high temperatures schema named HighTemperature is declared to show the transition, and
in the predicate, the initial state is either NominalOutput and the final state is LowQutput. This schema

presents the output for a wind turbine at high temperatures at which their efficiency is low.

_HighTemperatures
ASolarPanel

PVState= Nominal U HighOutput
PVState'= LowOutput

Figure 8. demonstrate the states, events that trigger the change if states of a wind turbine.

State

Low Output

Medium Temp ZeroDeg
Winds .

Nominal
Output
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Deg y Winds
High
Output

Figure 8. Wind turbine states and events

Conclusion and Future work

In this work formal specification framework for MG components is developed. This work proves that
complex power systems like MG community can be modeled using software engineering methods like
Formal specifications. this paper only includes part of the MG and can be expanded to include more
components. future work includes other key factors that can influence the reliability of the MG and also

using other formalism approaches like petrinets and B-method.
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