Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2022 d0i:10.20944/preprints202206.0414.v1

Article

Optimizing Hyperparameters and Architecture of Deep Energy
Method

Charul Chadha!, Diab Abueidda’?”, Seid Koric'?, Erman Guleryuz? and Iwona Jasiuk!

1. Department of Mechanical Science and Engineering, the University of Illinois at Urbana-Champaign, IL,
USA

2 National Center for Supercomputing Applications, the University of Illinois at Urbana-Champaign, IL,
USA

Abstract:

The deep energy method (DEM) employs the principle of minimum potential energy to train neural network models to predict
displacement at a state of equilibrium under given boundary conditions. The accuracy of the model is contingent upon choosing
appropriate hyperparameters. The hyperparameters have traditionally been chosen based on literature or through manual iterations.
The displacements predicted using hyperparameters suggested in the literature do not ensure the minimum potential energy of the
system. Additionally, they do not necessarily generalize to different load cases. Selecting hyperparameters through manual trial and
error and grid search algorithms can be highly time-consuming. We propose a systematic approach using the Bayesian optimization
algorithms and random search to identify optimal values for these parameters. Seven hyperparameters are optimized to obtain the
minimum potential energy of the system under compression, tension, and bending loads cases. In addition to Bayesian optimization,
Fourier feature mapping is also introduced to improve accuracy. The models trained using optimal hyperparameters and Fourier
feature mapping could accurately predict deflections compared to finite element analysis for linear elastic materials. The deflections
obtained for tension and compression load cases are found to be more sensitive to values of hyperparameters compared to bending.
The approach can be easily extended to 3D and other material models.

Keywords: Elasticity; Machine learning; Minimum potential energy; Partial differential equations (PDEs); Physics-informed
neural network

1. Introduction

With the advancement in computational technology and complexity in design, engineers seek to predict the component’s
performance before manufacturing it. These predictions involve complex boundary value problems (BVP), which require solutions
to partial differential equations (PDEs). Typically, these PDEs are solved through numerical approximations. In solid mechanics,
conventional methods to solve PDEs include mesh-free methods!?, finite element analysis (FEA)®, and isogeometric analysis*®.
However, these methods are posed with challenges such as obtaining robust and accurate solutions for ill-posed, high-dimensional,
or coupled problems, to name a few.

Machine learning methods are rapidly developing as an alternative to traditional approaches to overcome the issues mentioned
above. Machine learning methods can be classified as data-driven models®¢ and physics-informed neural networks (PINNs)'-24,
In data-driven models, data from experimental and computational results are used to train the models. Although this method can
capture complex physical phenomena, the amount of data required to train the models, data quality, and data generation process
impede its widespread implementation?®. Another application of data-driven models in mechanics is to provide an automated
framework for predicting constitutive models for material behavior, as discussed by Flaschel et al.? , Yang et al. 2" and Chen®,
Alternatively, PINNs with automatic differentiation were first introduced by Raisi et al.'”. They used a deep neural network (DNN)
to train the model based on physical laws at random points in the domain. PINNs hold several advantages over data-driven models
as they do not necessarily require data labeling. Even if data are used in addition to the physical laws, PINNs do not need large
quantities of datasets compared to entirely data-driven models. Two types of PINNs models are rapidly developing in solid
mechanics: deep collocation method (DCM)?>242° and deep energy methods (DEM)3*°-%2, In DCM, residuals of strong form define
the loss function at points sampled from the physical domain, corresponding boundary, and initial conditions (collocation points).

* Corresponding author: Diab Abueidda
E-mail address: abueidd2@illinois.edu

© 2022 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202206.0414.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2022 d0i:10.20944/preprints202206.0414.v1

2 of 34

This method, introduced by Raisi et al.'?, has been extended and improved by researchers®***, Haghighat et al. have used a PINN
technique to solve the equations of coupled flow and mechanical deformation in porous media for single-phase and multiphase
flows®. Though the DCM has been widely successful in predicting outcomes, the approach requires higher-order gradients than the
DEM.
Exploring applications of deep neural networks (DNN), Weinan and Bing*® developed the deep ritz method to solve variational
problems. Nguyen-Thanh et al.3! expanded the work proposed by Weinan and Bing to develop DEM. In DEM, the system’s potential
energy, expressed as a loss function, is minimized to predict the system’s displacements. The DEM method is suited for problems
where an energy functional exists and reduces dependencies on PDEs of the base function. Implementation of DEM for several
BVPs has been reported in the literature 33237, Extending this work, Fugh et al.*® demonstrated that DEM and DCM fail to accurately
resolve displacement and stresses at stress concentration regions. To overcome this issue, they proposed modified DEM (mDEM),
in which they added stresses to the loss function. The modification allowed the successful resolution of stresses around the stress
concentration regions. Abueidda et al.®® enhanced the model by developing PINN that combines residuals of the strong form and
the system’s potential energy. The proposed formulation yielded a loss function with many loss terms. As a result, the coefficient
of variation weighting scheme was also introduced in the loss function to assign the weight dynamically and adaptively for each
term.
The accuracy of the DNN-based algorithms described above depends on the hyperparameters selected for the model. These
hyperparameters define the architecture of the DNN and affect the weights and biases obtained while training the models. The
optimal values of hyperparameters are problem-specific and may not be the same for different BVPs. Due to this, recent results
demonstrate that challenges in the optimization of hyperparameters in large and multi-layered models impede scientific progress*.
Tuning these hyperparameters through manual trial and error is time-consuming. As a result, researchers have employed grid search,
random search, and optimization algorithms to obtain best combination of hyperparameters 2%40-43_ Still, the studies on optimizing
hyperparameters and architectures of PINNSs for solving mechanics problems remain uncommaon.
This paper utilizes DEM and develops a systematic approach using Bayesian optimization algorithms and random search to identify
optimal values for hyperparameters when using the PINN method. A two-loop framework is employed for the hyperparameter
optimization process to search a non-convex optimization space containing both discrete and continuous variables.
Also, Fourier feature mapping was employed to improve the model’s accuracy. Tancik et al.** showed that passing input points
through a simple Fourier feature mapping enables a multilayer perceptron (MLP) to learn high-frequency functions in low-
dimensional problem domains. However, based on the neural tangent kernel (NTK) theory, they have indicated that a standard MLP
fails to learn high frequencies. Therefore, they have employed a Fourier feature mapping to mitigate this spectral bias to transform
the effective NTK into a stationary kernel with a tunable bandwidth. The modifications done in our paper demonstrate significant
improvement in displacement and strain distribution obtained for 2D load cases for elastic materials compared to results obtained
when hyperparameters specified in the literature were used. Though the current study focuses on 2D- plane stress elastic materials,
the approach can easily be extended to 3D and to materials with non-elastic material properties (e.g., hyperelastic materials)
The paper is divided into six sections. Section 2 details governing equations for BVPs and DEM. The modifications to the DEM
process to improve its performance are described in Section 3. Section 4 compares the hyperparameters obtained for three different
load cases (uniform compression, uniform tension, and uniform bending). The best hyperparameters obtained in Section 4 are used
to solve numerical problems involving different geometry, partial loading, and 2D cross-section with a hole in the geometry in
Section 5. Finally, we conclude the paper in Section 6 by stating important observations and highlighting possible future work
directions.

2. Mathematical formulation

2.1 Boundary value problem

Let us consider an elastic body B = R? bounded by the boundary 6B in the initial configuration, as shown in Figure 1. The body is
subjected to the Dirichlet boundary and Neumann boundary conditions on boundaries B, and 6By, respectively, such that B,UdBy
= 0B and 0B ,NJEB= @. Due to the applied boundary conditions, the body undergoes deformations which can be found using the
following governing equations, assuming negligible inertial forces:

Equilibrium: Vio+f,=0 inB
Dirichlet boundary: u=t on 0By
Neumann boundary: on=t on 0B, (3)

where & and f;, denote Cauchy stress tensor and body force, respectively. n is the outward normal along the boundary
B;, wis the displacement field, and % is displacement prescribed on dB,. In the case of linear elastic materials, the Cauchy stress
tensor is related to the linear strain tensor using Hooke’s law (equation 4).
Oij = Cijklekl

(4)

https://doi.org/10.20944/preprints202206.0414.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2022 d0i:10.20944/preprints202206.0414.v1

3of34

where Cjjy, is the fourth-order stiffness tensor. The stiffness tensor for linear elastic material can be calculated using elastic
material’s strain energy density function (y) (Equation 5).

B,
u=1u

Figure 1: Solid body with boundary conditions.

1
Y(e) = u(e:e) + El(e: 1)2

9s 9*P(e))
de dede
o= alg—ie) = 2ue + Atr(e)l (6)
In the above equations, u and A are the Lame’s constants. The strain tensor (small deformations) relates to displacements
by: (7

1
€= E(Vu + vu’)

In the case of 2D plane stress condition, the relation between Cauchy stress tensor and strain tensor can be reduced to:

Oxx 2u+ A A A7 (Exx
{ny} = {Eyy}
Oxy Exy

A 2u+1 2
2.2 Principle of minimum potential energy

0 0 2u ®)

The boundary value problem stated above is the strong form of the governing equations, which can be challenging to solve. As a
result, a weak form based on the principle of minimum potential energy is often employed. According to the principle of minimum
potential energy, out of all the possible kinematically admissible deformations, a conservative structural system assumes
displacements that minimize total potential energy at equilibrium . For a linear elastic body (shown in Figure 1), the total energy
of the system can be expressed as:

. 9)
N=U-WwW= fz/)(e)dV— ffb.vdV— ft.vdA
B B 0Bt
where U is the system’s internal energy, W is the energy due to externally applied load, and v is a kinematically admissible
displacement field. The total potential energy is treated as the loss function (£) in DEM, with an objective to obtain v such that the
system’s potential energy is minimum.
LW) = rnEiISlH(v) = ftp(e)dV— ffb.v dv — J-f.v dA
v
B B OB¢ (10)
where H is the space of admissible functions. The Gauss-quadrature integration rule (described in Appendix A) was

employed to calculate integrations listed in Equation 10.
2.3 Architecture for DEM

The DEM consists of a feedforward artificial neural network (ANN), as shown in Figure 2. ANN can be used as universal
approximators for a number of functions “¢#’. In general, ANN consists of sets of neurons arranged in layers. Each neuron is
connected to all the neurons in adjacent layers. The number of layers (N) and neurons in each layer are predefined according to
specific applications. In DEM, the number of neurons in the first and last layer (also known as input and output layers, respectively)
is determined by the system’s dimension (two in the case of 2D and three in 3D). The programmer predefines the number of neurons
in the layers between the input and output layers (also called hidden layers).

https://doi.org/10.20944/preprints202206.0414.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2022 d0i:10.20944/preprints202206.0414.v1

4 of 34

Mathematically, the value of each neuron connecting the previous layer (n;_,) is calculated using a linear combination of weights
(w) and biases (b), as shown in Equation 11. An activation function (¢: R— R) then operates on the calculated value to determine
the value passed by the neuron.

zl = p(w'z!™1 + b))

The values of weights and biases are determined such that the loss function (L(Zl (w, b)) or £(0)) is minimized. Inaso- (11)
called backpropagation procedure, an optimization algorithm can be used to iterate over the loss function to predict values

of weights and biases such that:

@ = arge min L(0O)

Limited-memory Broyden—Fletcher-Goldfarb—Shanno (L-BFGS) algorithm is used in the examples shown in the (12)
following sections to minimize the loss function and demonstrate the performance of DEM. However, other algorithms

can also be used. The backpropagation capabilities of PyTorch are used to calculate gradients of the loss function.

In the above description, parameters like the number of layers and number of neurons in each layer need to be defined before ANN
can be trained. These parameters, called hyperparameters, define the architecture of the ANN and control the learning process of
the model. It is essential to obtain optimal values for the hyperparameters to obtain a minimum value for the loss function. The
number of hyperparameters and their values vary according to the given problem statement. Thus, it can be time-consuming to
predict optimal values for these parameters. Six hyperparameters based on the architecture of DEM were determined. These are the
total number of layers, number of neurons in hidden layers, activation function, standard deviation in predicting weights and biases,
learning rate for the L-BFGS algorithm, and the number of epochs for the L-BFGS algorithm to achieve convergence.

Weights and biases [L Learning rate
- — Optimization loo; =
J Standard Deviation | p p

| e
l I

Constitutive l_[
aw

Neurons in a layer

AN /
Y

Lavers in Neural Network

Figure 2: ANN for DEM (Hyperparameters marked in blue).

3. Modifications to the deep energy method
b) ‘

-50 N/mm? 50 N/mm?

c)

Figure 3: The three load cases: (a) uniform compression, (b) uniform tension, (c) and bending.
We start by implementing the DEM discussed in the work of Nguyan et al.?>. The DEM model was developed to predict deflections
in a 2D elastic rectangular plate under plane stress conditions. An elastic plate of dimensions 4x1 mm?, with Young’s modulus of
1000 MPa, and the Poisson’s ratio of 0.3, was fixed at one end. Compression, tension, and bending loads were applied on the other
end of the plate, as shown in Figure 3. The predicted deflections in the plate under the three load cases for plane stress are shown in

a)

RN

https://doi.org/10.20944/preprints202206.0414.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2022 d0i:10.20944/preprints202206.0414.v1

5 of 34

Appendix B. We noticed that though displacements predicted by DEM closely matched with displacements obtained from FEM
along the x-axis, a significant loss in symmetry was observed in predicted displacements along the y-axis, under tension and
compression. This deviation also resulted in inaccurate predictions of strain.

Three areas of improvement were identified to overcome this issue and improve the accuracy: (i) improve the accuracy of the
integration method, (ii) improve performance using learnings from coordinate-based machine learning processes, and (iii) determine
appropriate values for the hyperparameters listed in Section 2.3. Gauss-quadrature integration was employed to improve the
accuracy of integration (described in Appendix A). However, a significant increase in accuracy over the trapezoidal rule (used by
Nguyen-Thanh et al.®t) was not observed. Thus, Fourier features mapping and optimization of hyperparameters were simultaneously
employed to improve the accuracy. Fourier feature mapping was used to improve calculations during training weights and biases
for ANN, as discussed in section 3.1. The optimal values for hyperparameters were obtained using optimization algorithms discussed
in Section 3.2.

3.1 Random Fourier Features

Fourier transformation helps convert functions dependent on space or time domain into functions dependent on spatial frequency or
temporal frequency. This transformation is widely used in mathematics and digital image processing to simplify calculations. Tancik
et al.** demonstrated that the standard MLP fails to learn high frequencies, and Fourier features mapping can be used to mitigate
this bias. Wang et al.*® expanded the work of Tancik et al.* to PINNSs, discussed the limitations of PINNs via the neural tangent
kernel theory, and illustrated how PINNs are biased towards learning along the dominant eigenvectors of their limiting NTK.
Correspondingly, they have demonstrated that using Fourier feature mappings with PINNs helps modulate the frequency of the
NTK eigenvectors.

X —r » Output

‘ Fourier Features Mapping (y) ‘

Figure 4: Fourier features mapping in artificial neural network.

Figure 4 shows the implementation of the Fourier feature mapping. The input layer (coordinates of the training points from the
physical domain) is passed through a Fourier mapping y before passing through a multilayer perception. The function y maps the
input coordinates to a higher-dimensional hypersphere using a set of sinusoids:

y = [a; cos(2rhl X), a, sin(2eh! X), , @y, cos(2mhl X)), a,, sin(2rhl X)]
where h;’s are the Fourier basis frequencies used for approximation and a; represent the corresponding coefficients in the
Fourier series. Here, we adopted Gaussian random Fourier features (RFF). Each entry in h is sampled from a normal (13)
distribution N (0, 62), where 6 is the variance. o is a hyperparameter that needs to be specified for each problem.

3.2 Tuning of hyperparameters

Another area identified to improve the code’s accuracy is tuning the hyperparameters. As described earlier, hyperparameters are a
set of predefined parameters that control the learning process and affect the model’s accuracy. Best combinations of hyperparameters
should be used in an ANN to get optimal results. Four primary strategies can be used to obtain the best combinations of
hyperparameters. These include manual search, grid search, randomized search, and informed search. Out of the four strategies,
manual search involves varying the hyperparameters manually. This approach can reduce search time if the programmer is familiar
with the problem and has prior experience with similar models. Otherwise, the manual search can be tedious and time-consuming.
In the case of the grid search, the search space defined for hyperparameters is divided into grids. All combinations of
hyperparameters are tested to find the best model. This brute force approach can be time-consuming and increases exponentially
with the number of variables. The random search is similar to the grid search but reduces the runtime by limiting itself to a predefined
number of combinations. The search, however, is random and does not guarantee an optimal set of hyperparameters. Lastly,

https://doi.org/10.20944/preprints202206.0414.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2022 d0i:10.20944/preprints202206.0414.v1

6 of 34

informed search utilizes optimization algorithms to obtain the optimal combination for given hyperparameters. The latter is one of
the most efficient ways to tune hyperparameters if the programmer does not have prior experience with a similar problem.

A two-loop architecture was employed to develop a systematic approach to tune hyperparameters for DEM, as shown in Figure 5.
The inner loop runs DEM to obtain weights and biases for the ANN by training the network over the epochs. The optimal weight
and biases obtained after training the ANN provide minimum potential energy of the system for the given ANN architecture. The
minimum potential energy of the system is then transferred to the outer loop. The outer loop varies the architecture of ANN by
varying hyperparameters (thereby varying the minimum potential energy obtained after training ANN). The objective of the outer
loop is to determine values for the hyperparameters for which minimum potential energy of the system is achieved.

—‘ Updated hyperparameters l
3

Weights and biases | PR, | Learning rate
l Standard Deviation | Optimization loop

- Constitutive I
£ aw

| Outer optimization loop |

Neurons in a layer

A S
~

Layers in Neural Network

4{ Minimum potential energy }—

Figure 5: Modified deep energy method.
Several open-source python libraries have been developed to aid in tuning hyperparameters (example: Scikit-learn, Optuna, Keras
Tuner, and GPyOpt). For the current study, HyperOpt was chosen as it uses Bayesian optimization algorithms and random search
to obtain optimal parameters. Bayesian optimization works well in non-convex optimization problems. Another advantage of
HyperOpt is that it can accommodate different types of variables (continuous, ordinal, categorical), different sensitivity profiles
(e.g., uniform vs. log scaling), and conditional structure *°. The underlying algorithm used to obtain optimal hyperparameter is
shown in Figure 5.

Table 1: Sensitivity profile and range used for various hyperparameters.

Variable Sensitivity profile Range

Learning Rate loguniform Exp(0-2)
Neurons guniform 20-120
Standard Dev (DNN) uniform 0-1

Standard Dev (FFT) uniform 0-1

Epochs for L-BFGS optimizer guniform 40-150

Total number of layers guniform 3-5
Activation function choice Tanh, relu, rrelu, sigmoid

Three main things need to be defined to optimize the hyperparameters: a search domain, an objective function, and the selection of
an optimization algorithm. Seven hyperparameters were chosen to be optimized and defined in the search space: total number of
layers, number of neurons in hidden layers, standard deviation while choosing weights and biases, activation function, learning rate
used for LBFG optimizer, number of iterations for LBFG optimize, and standard deviation used for Fourier features mapping. The
search range and sensitivity profile used for these parameters are mentioned in Table 1. The descriptions of the four activation
functions mentioned in Table 1 are provided in Appendix C. A profile of loguniform returns values drawn from the natural log, such
that the natural log of the returned value is uniformly distributed. Quniform returns discrete values between upper and lower bounds

https://doi.org/10.20944/preprints202206.0414.v1

d0i:10.20944/preprints202206.0414.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2022

7 of 34

specified for the variable. A uniform profile returns a value uniformly between the upper and lower bounds, and choice is used to
sample discrete variables where one of the options specified in the variable space is used for sampling.

The optimization objective was to obtain hyperparameters that minimize the system’s potential energy after training DEM. Two
optimization algorithms (Tree-structured Parzen Estimator (TPE), adaptive Tree-structured Parzen Estimator (ATPE)) and a random
search method were used and compared to determine the best process for optimizing hyperparameters. The details about these
algorithms are given in Appendix D. The performance of DEM after obtaining optimal values obtained under different load cases
and training algorithms are described in the subsequent section.

4. Tuning hyperparameters for different load cases

The proposed framework, described in Section 3, was used to capture the mechanical deformation for three different load cases
specified in Figure 3 and determine optimal hyperparameters for these different BVPs. The optimized hyperparameters for the three
load cases obtained using different optimization algorithms are shown in Tables 2-4. All the cases were analyzed using 200x100
training points over the computational domain, as shown in Figure 6. The error in the predicted values from the ones obtained
through FEA is calculated using the Ly-error, which is defined as follows:

2
Ztraining points Yi=12 (ui(DEM) - ui(FEA))
|| L2|| =) -
number of training points
Applied boundary conditions and the results for each load case are described in detail in the following subsections. The (14)
Lo-error obtained from the three hyperparameter optimization schemes (TPE, ATPE, and random search) were compared
with the hyperparameters reported in the literature3l. The previously used hyperparameters in the literature are referred to as the
‘original’ hyperparameters in the paper henceforth.

10 =

0.8 =

0.6 =

04 =

0.2 =

0.0 =

T T T T T T T T T
0.0 0.5 10 15 2.0 2.5 3o 33 4.0

X
Figure 6: Positions of training points for all load cases studied in Section 4.
4.1 Compressive load case

A uniform compressive load of -50N along the x-axis was distributed uniformly along the right edge of a 4x1 mm? rectangular plate.
The left edge of the plate was fixed in all degrees of freedom to obtain hyperparameters under compressive loading. The TPE,
ATPE, and random search algorithms were employed to predict optimal values for hyperparameters. The results obtained from the
three algorithms are shown in Table 2. Figure 7 shows the variation in Lp-error (on log-scale) when the hyperparameters stated in
Table 2 are used. As seen in the figure, the Lo-error is reduced by a factor of 10 when optimal hyperparameters are used.

The displacements along the x- and y-axis for the three sets of hyperparameters (listed in Table 2) and their deviations from FEA
are shown in Appendix E. We can notice that hyperparameters obtained from all three algorithms can accurately predict
displacements up to an order of 10 compared to FEA.

Table 2: Optimized hyperparameters for compressive load case.

Optimal Values

Variable TPE ATPE Random Original
Learning Rate 5.6322731974 1.7276388866 4,02118946 0.5
Neurons 110 108 82 30
Standard Dev (DNN) 0.00399032891 | 0.008570979503 | 0.02152887 0.1
Standard Dev (FFT) 0.76073346011 | 0.17838495907 0.38436288 -
Epochs for L-BFGS optimizer 88 93 83 80
Total number of layers 4 4 5 4
Activation function rrelu rrelu rrelu thanh
Lo-error 3.385649¢-05 6.396267e-05 6.3503781e-05 0.1034885

https://doi.org/10.20944/preprints202206.0414.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2022

do0i:10.20944/preprints202206.0414.v1

8 of 34

1.00E+00

1.00E-01

1.00E-02

L,-error

1.00E-03

1.00E-04

== IR

TPE ATPE

Random

1.00E-05

Original

Figure 7: Variation in Lo-error for optimal hyperparameters obtained under compressive loads.
4.2 Tensile load case

A uniform tensile load of 50N along the x-axis was distributed uniformly along the right edge of a 4x1 mm? rectangular plate. The
left edge of the plate was fixed in all degrees of freedom to obtain hyperparameters under tensile load case. The three algorithms
(TPE, ATPE, and random search) were used to predict optimal hyperparameters. The optimal values for different hyperparameters
are shown in Table 3. The hyperparameters obtained from random search are the same as those obtained under compression load

case.
Table 3: Optimized hyperparameters for tensile load case.
Optimal Values
Variable TPE ATPE Random Original
Learning Rate 7.018489 1.577630871 4.021189 0.5
Neurons 108 116 82 30
Standard Dev (DNN) 0.000702 0.354804634 0.021529 0.1
Standard Dev (FFT) 0.78729 0.166661609 0.384363 -
Epochs for L-BFGS optimizer 94 75 83 80
Total number of layers 4 5 5 4
Activation function rrelu sigmoid rrelu thanh
Lo-error 4.518824e-05 0.000394658 5.73980385e-05 | 0.1265225

Figure 8 shows the variation in Lp-error (on log-scale) when the hyperparameters stated in Table 3 are used. As seen in the figure,
the Lo-error is reduced by a factor of 10 compared to the initial value when TPE and random search algorithms are used and by a
factor of 10 when ATPE is used. The displacements along the x- and y-axis for the three set of hyperparameters (listed in Table 3)
are shown in Appendix E. We can notice that hyperparameters obtained from all three algorithms can accurately predict
displacements up to an order of 10 compared to FEA. (The error plots are shown in Appendix E.)

https://doi.org/10.20944/preprints202206.0414.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2022

do0i:10.20944/preprints202206.0414.v1

9 of 34

1.00E+00

1.00E-01

1.00E-02

L,-error

1.00E-03

1.00E-04

1.00E-05
TPE ATPE

Random Original

Figure 8: Variation in Lp-Error for optimal hyperparameters obtained under tensile load case.
4.3 Bending load case

A uniform bending load of -10N along the y-axis was distributed uniformly along the right edge of a 4x1 mm? rectangular plate.
The left edge of the plate was fixed in all degrees of freedom. The three algorithms (TPE, ATPE, and random search) were used to
predict optimal hyperparameters. The optimal values for different hyperparameters are shown in Table 4.

Figure 9 shows the variation in L>-Error (on log-scale) for optimal hyperparameters obtained under compressive loads. From Figure
9, we can notice that, in general, the L,-Error reduces when optimal hyperparameters are used. However, the reduction in the L,-
Error is not as significant as observed in tension and compression load cases. The displacements along the x- and y-axis for the three
sets of hyperparameters (listed in Table 4) and corresponding deviations from FEA are shown in Appendix E. We notice that the
hyperparameters obtained from all three algorithms predict displacements accurately up to an order of 10 when compared to FEA.
Tables 2-4 show that the deviation of displacement predicted by DEM when compared to FEA is high for bending load case, even
for optimal parameters. Also, it can be observed that the displacements in the case of bending are less susceptible to hyperparameters
when compared to compression and tension load cases.

Table 4: Optimized hyperparameters for bending load case.

Optimal Values
Variables TPE ATPE Random Original
Learning Rate 3.7593948 1.661879 1.136364 0.5
Neurons 120 116 78 30
Standard Dev (DNN) 0.2298224 0.364806 0.008813 0.1
Standard Dev (RNN) 0.1494122 0.396999 0.275733 -
Epochs for L-BFGS optimizer 88 100 95 80
Total number of layers 5 5 3 4
Activation function tanh sigmoid relu thanh
Lo-error 0.00117923962 | 0.00190703372 0.00191749373 0.0031548248

https://doi.org/10.20944/preprints202206.0414.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2022 d0i:10.20944/preprints202206.0414.v1

10 of 34

0.01

L,-error

0.001
TPE ATPE Random Original

Figure 9: Variation in Ly-error for optimal hyperparameters obtained under bending load case.
5. Transferability of hyperparameters

Though hyperparameters can be optimized for different load cases and geometry of the plate, as shown in Section 4, the optimization
process is time-consuming. Thus, in this section, we analyse the transferability of the hyperparameters to different geometries and
load cases.

5.1 Transferability of hyperparameters obtained from compression and tension load cases to bending

The optimal hyperparameters obtained from the random search under tension and compression load cases were used to predict
displacements under bending loads. Figure 10 shows predicted displacements for all three load cases when hyperparameters obtained
from the random search under compression and tension load cases are used to define the architecture of DEM. Even though the
parameters were optimized for compressive load case, we notice that it can also predict deformation under uniform tensile and
bending loading with Lo-error of 5.73980e-05 and 0.0020859, respectively. Figure 12 compares the Ly-error obtained using these
hyperparameters against the optimal ones obtained for bending load case.

5.2 Transferability of hyperparameters obtained from bending load case to compression and tension

The hyperparameters obtained from TPE under bending load case are used to predict displacements under compression and tension
loads. The displacements obtained from this hyperparameter set under the three load cases are shown in Figure 11. From solid
mechanics, we know that when uniform tensile and compressive loads are applied to a symmetric geometry, the deformation of the
geometry perpendicular to the applied load should also be symmetric (along the y-axis in this case). From Figure 11, we can notice
that this condition is not met when tensile and compression loads are applied. As a result, the Lo-error is also higher for these loading
conditions (Figure 12).

The results presented in sections 5.1 and 5.2 show that the optimal hyperparameters obtained using either tensile or compressive
load cases are transferable to bending load case. The values of hyperparameters mentioned in table 2 for the random search algorithm
are used to predict deformation in the following sections. The predicted deflections are compared with the results obtained from the
finite element analysis undertaken in Abaqus using element type CPS4R. The same mesh density was used between modified DEM
and FEA.

https://doi.org/10.20944/preprints202206.0414.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2022 do0i:10.20944/preprints202206.0414.v1

11 of 34

Compressive loading

a) o0 b) 0.009
0.006
Us u
-0.04 ¥
0 0003 {| *°
0081 05 0.0004| 05
-0.12
0.0 -0.003 0.0
—0.16 0.5 1.0 15 2.0 2.5 3.0 35 ~0.006 0.5 1.0 1.5 20 25 3.0 35
Ux (Min)= -0.1994, Ux (Max)= 0.000 Uy (Min) = - 0.00761, Uy (Max) = 0.00761
-0.20 -0.009
Tensile loading
C) 0.20 d) 0.009
0.006
0.16 U u,
10 0.0034 | 10
0.12
05 0.0004 | 05
0.08 0,003
1 2 3 4
0.04 ! 2 3 4 -0.006 .
Ux (Min)= 0.000, Ux (Max)= 0.19941 Uy (Min) = - 0.00762, Uy (Max) = 0.00762
0.00 -0.009
Bending loads
1.0 Us | Uy
e) iy
0.4 937 0.0 '
0.32 1] 0.0 o !
0.16
~0.5 1o
0.00 -1.04 1.0 4
-0.16 -3 '
0 B _a04-151
~0.48 1207 Yy EXE
—2.5 554
I T2 3 s
Ux (Min)= -0.48244, Ux (Max)= 0.48236 Uy (Min) = -2.67219, Uy (Max) = 0.00014

Figure 10: Predicted displacements under compressive (a-b) tensile (c-d) and bending (e-f) loads using optimal hyperparameters
obtained from Random search (under tensile and compressive load cases).

https://doi.org/10.20944/preprints202206.0414.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2022 d0i:10.20944/preprints202206.0414.v1

12 of 34

Compressive loading

) 0.0 b) 0.009
—0.04 1o DEM: U, 0.006 10 DEM: U,
0.003
-0.08
05 0000{| %°
-0.12
0.0 =0.003 4 0.0
016 05 10 15 20 25 30 35 0006 05 10 15 20 25 3.0 35
020 Ux (Min)=-0.19989, Ux (Max)= 0.000 0,000 Uy (Min) = -0.00750, Uy (Max) = 0.00970
Tensile loading
c) d) 6,008
0.20
0164 14 DEM: U, o0t Lo DEM: U,
s 0.000 ’
' 0.5
—0.00a1| *°
0.08
- 1 2 3 4 ~0.008 1 3] .
' Ux (Min)= 0.000, Ux (Max)=0.20052 M Uy (Min) = -0.01304, Uy (Max) = 0.00739
0.00 ’

Bending loads

€) 1.0 Us f) 1.0 Yy
0.48 | 0> oo °°
03241 0.0 _os | oo
0.1611 g5 10405
0.00
-1.0 15|10
-0.16
—o3z W —2044-15
—0.a8 J-207 o5 W20
—2.51 —25
1 2 3 4 1 2 3 a
Ux(Min)= -0.48282, Ux(Max)= 0.48273 Uy (Min) = -2.67375, Uy (Max) = 0.00009

Figure 11: Predicted displacements under bending (a-b), compressive (c-d), and tensile (e-f) loads using optimal hyperparameters
obtained from TPE (under bending load case).

0.01

L2-Error

0.001

0.0001

Compression Tension Bending

0.00001

B Hyperparameters-compression BC m Hyperparameters-bending BC & Origional Hyperparameters

Figure 12: Lo-error using hyperparameters obtained from bending and compression load cases under different loading conditions.
5.3 Transferability across geometry
A plate of Imm x 1mm cross-section was subjected to uniaxial compression, as shown in Figure 13 a. The training points used for
DEM are shown in Figure 13 b.

https://doi.org/10.20944/preprints202206.0414.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2022 d0i:10.20944/preprints202206.0414.v1

13 of 34

b) 10

-10 N/mm? “*1& =3

00 02 04 06 08 10

Figure 13: a) Immx1mm plate subjected to compressive loads, b) Training points used for DEM.
a) 10 DEM: U, b) 10 DEM: U,

0.0000 0.0000

-0.0016 -0.0016
-0.0032 0.6 -0.0032 0.6
—0.0048 ~0.0048
-0.0064 0.4 -0.0064 44 04
-0.0080 -0.0080

—0.0096 —-0.0096

0.0

0.2 0.4 0.6 08

10 FEA: U,
C) 0.0000 d)
0.0015
-0.0016 8 08
0.0010
-0.0032
0.6 0.00051 | o6
~0.0048 0.0000
-0.0064 4| 0.4 -0.0005
—0.0080 -0.0010
0.2
~0.0096 -0.0015
0.0
02 04 .)
Error, = |U, - U, Error, = |U, - U,
e) N % = |Uxirea) = Uxicem| :D 10 v = |Uyirear - Upoem |

0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

Figure 14: a-b displacements obtained predicted from DEM, c-d displacements obtained from FEA, e-f error in displacements.
From Figure 14, we can conclude that DEM can predict displacement under uniform traction using the optimal hyperparameters
parameters obtained from uniform compression for geometry other than the one it was obtained for. We also notice again that the
error in displacements are proportional to the magnitude of displacement in each direction.

5.4 Transferability to localized traction boundary conditionsin this example, a load is applied locally on the upper
right-hand corner of a plate having a 4x1mm? cross-section (as shown in Figure 15). The same number of domain and
boundary training points are used in Section 4. The displacement obtained from DEM, FEA, and error in prediction
compared to FEA are shown in Figure 16.

a) b)
— i 025 mm]

08

-10 N/mm? S

02 4

Figure 15: a) Boundary conditions of the plate under localized traction. b) Training points used for DEM.

https://doi.org/10.20944/preprints202206.0414.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2022 d0i:10.20944/preprints202206.0414.v1

14 of 34

From Figure 16, we can conclude that DEM can predict displacement under localized traction using the optimal hyperparameters
parameters obtained from uniform compression. We also notice again that the error in displacements is proportional to the magnitude
of displacement in each direction.

a b) 0.096
) 0.008)

0.080
0.000 DEM: Ux DEM: U,

0.064 1.0

—0.008
0.048

-0.016 0.032

bt -y
n o
-
N
w
IS
o
o

—-0.024

0.016 1 2 3 4
-0.032 0.000
0.096
C) 0.008 d)
0.080
0.000 FEA: Uy FEA: U,

0.064

-0.008
0.048

-0.016 0.032

—0.024 0.016

o
w [=]

-

N

w

E=

-0.032 0.000

e) 0.00015 f) 0.0015

Errory = |Uxrea) - Uxioem| Errory, = |Uyrea) - Uyipem)|

0.00012 0.0012

0.00009 0.0009

0.00006 0.0006

it =
wn =}
-
o
w
o
o o -
o n <)

o
-
N]
w
-~

0.00003 0.0003

0.00000 0.0000

Figure 16: a-b displacements predicted from DEM, c-d displacements obtained from FEA, e-f error in displacements for localized
traction.

5.5 Transferability to plate with a circular hole

-10 N/mm?

Figure 17: Plate with a hole loaded under uniform compression.

The circular hole, shown in Figure 17, was introduced using passive elements. The passive elements are present during the analysis
but do not contribute to internal energy. In modified DEM, the passive elements were introduced by multiplying the corresponding
strain energy of the element with their material density. Since passive elements do not contribute to internal energy, the material
density corresponding to passive elements was zero. The generalized equation of ellipse (Equation 15) is used to identify passive
elements in the case of an elliptical and circular hole.

X —x 2 _ 2

(a21) +(y b2y1) -1
(x1, y1) represents the ellipse’s center in the coordinate system. The length of the major and minor axis of the ellipse is (15)
represented by a and b, respectively. A circle is a special case of an ellipse in which a=b=1.
A uniform compressive load of -10N was applied at the right end of a 4x1mm? plate with a circular hole of radius 0.25mm
(as shown in Figure 18). The corresponding displacements were obtained from DEM, FEA, and the error between the two is shown
in Figure 18. In Figure 18 b, we notice a loss in symmetry in displacement along the y-axis towards the right corner of the plate.
However, the model trained using hyperparameters obtained from uniform compressive loads can predict displacements, up to an
order of 103, when compared with FEA.
6 Conclusions

https://doi.org/10.20944/preprints202206.0414.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2022 d0i:10.20944/preprints202206.0414.v1

15 of 34

This paper proposes a two-loop architecture to obtain the best architecture and hyperparameters for DEM. The
inner loop predicts displacements and potential energy using DEM based on hyperparameters chosen by the
outer loop. The outer loop receives the system’s potential energy from the inner loop, which is dependent on
architecture of ANN defined by hyperparameters. The optimization algorithm in the outer loop then searches
the non-convex optimization space to identify hyperparameters for which minimum potential energy can be
achieved. A Fourier features mapping is employed in the inner loop (DEM) to improve accuracy and simplify
calculations. Seven hyperparameters were chosen for the study. It was found that the values of
hyperparameters identified using this approach and the implementation of Fourier feature mapping produce
displacements similar to those observed through FEA (with an order of accuracy of O(h)). Additionally,
based on the examples presented in the paper, we can conclude the following:

The displacements obtained for tension and compression load cases are more sensitive to hyperparam-
eters than displacements obtained for bending loads.

With optimal hyperparameters, the order of accuracy for tension and compression load cases is lower
than for bending loads.

The optimal hyperparameters chosen through compression and tension load cases can predict displace-
ment for various geometry and loading conditions. As a result, the optimal hyperparameters can be
searched for a single condition (depending on the desired accuracy).

The error in predicted displacements is proportional to the magnitude of displacement.

In general, Randomized Leaky Rectified Linear Unit (rrelu) was found to be the best choice for acti-
vation function.

rrelu, along with five layers and ~80 neurons, produce the least potential energy under all three loading
conditions.

https://doi.org/10.20944/preprints202206.0414.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2022 d0i:10.20944/preprints202206.0414.v1

16 of 34

a) 0.000 b) 0.006
~0.008 DEM: Uy 0.004 DEM: U,
1o 1.0
~0.016 0.002
-0.0244| 05 0.0004] %°
o029 -0.002 4 0.0
~0.040 05 1.0 15 20 25 3.0 35 0.004 05 10 15 20 25 30 35
-0.048 ~0.006
0.000
) d) o0.006
—0.008
FEA: U, 0.004 FEA: U,
1o 1.0
-0.016 0.002
-0.0244| 05 0.0004 | 0.5
_ —0.002
0.032 4 ., 0.0
oot 05 1.0 15 20 25 30 35 —0.004 00 05 1.0 15 20 25 30 35
~0.048 0008
e
) 0.00096 D 00020
0.00080 Errory = |Usea) - Usioem| 0.0016 1| 1 Errory = |Uyrea) - Uyipem)|
0.00064
0.0012
05
0.00048
0.0008
0.00032 ®%0 05 10 15 20 25 30 35
0.0004 oo e s
0.00016
0.00000 0.0000

Figure 19: a-b displacements predicted from DEM, c-d displacements obtained from FEA, e-f error in displacements for a plate
with a hole subjected to uniform traction.
Acknowledgments:
The authors would like to thank the National Center for Supercomputing Applications (NCSA) Industry Program and the Centre
for Artificial Intelligence Innovation for funding this research.
Data availability:
The data supporting this study’s findings are available from the corresponding author upon reasonable request.
Code availability:
The code for replication of our experiments will be available upon acceptance.

References:

1. Belytschko T, Rabczuk T, Huerta A, Fernandez-Méndez S. Meshfree Methods. In: Encyclopedia of Computational
Mechanics. John Wiley & Sons, Ltd; 2004. doi:10.1002/0470091355.ecm005

2. Belytschko T, Krysl P, Krongauz Y. A three-dimensional explicit element-free galerkin method. Int J Numer Methods
Fluids. 1997;24(12):1253-1270. doi:10.1002/(SIC1)1097-0363(199706)24:12<1253::AlD-FLD558>3.0.C0O;2-Z

3. Hughes TJR. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Publications; 2012.

4. Hughes TJR, Sangalli G, Tani M. Isogeometric Analysis: Mathematical and Implementational Aspects, with Applications.
In: ; 2018:237-315. doi:10.1007/978-3-319-94911-6_4

5. Hughes TJR, Cottrell JA, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh
refinement. Comput Methods Appl Mech Eng. 2005;194(39-41):4135-4195. doi:10.1016/j.cma.2004.10.008

6. Kim Y, Kim Y, Yang C, Park K, Gu GX, Ryu S. Deep learning framework for material design space exploration using
active transfer learning and data augmentation. npj Comput Mater. 2021;7(1):140. doi:10.1038/s41524-021-00609-2

7. Rong Q, Wei H, Huang X, Bao H. Predicting the effective thermal conductivity of composites from cross sections images
using deep learning methods. Compos Sci Technol. 2019;184:107861. doi:10.1016/j.compscitech.2019.107861

8. Liu WK, Karniadakis G, Tang S, Yvonnet J. A computational mechanics special issue on: data-driven modeling and

simulation—theory, methods, and applications. Comput Mech. 2019;64(2):275-277. do0i:10.1007/s00466-019-01741-z
9. Mozaffar M, Bostanabad R, Chen W, Ehmann K, Cao J, Bessa MA. Deep learning predicts path-dependent plasticity. Proc

https://doi.org/10.20944/preprints202206.0414.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2022 d0i:10.20944/preprints202206.0414.v1

17 of 34

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Natl Acad Sci. 2019;116(52):26414-26420. doi:10.1073/pnas.1911815116

Koric S, Abueidda DW. Deep learning sequence methods in multiphysics modeling of steel solidification. Metals (Basel).
2021;11(3):494. doi:10.3390/met11030494

Fatehi E, Yazdani Sarvestani H, Ashrafi B, Akbarzadeh AH. Accelerated design of architectured ceramics with tunable
thermal resistance via a hybrid machine learning and finite element approach. Mater Des. 2021;210:110056.
d0i:10.1016/j.matdes.2021.110056

Spear AD, Kalidindi SR, Meredig B, Kontsos A, le Graverend J-B. Data-driven materials investigations: the next frontier
in understanding and predicting fatigue behavior. JOM. 2018;70(7):1143-1146. doi:10.1007/s11837-018-2894-0

Gu GX, Chen C-T, Richmond DJ, Buehler MJ. Bioinspired hierarchical composite design using machine learning:
simulation, additive manufacturing, and experiment. Mater Horizons. 2018;5(5):939-945. doi:10.1039/C8MHO00653A
Linka K, Hillgartner M, Abdolazizi KP, Aydin RC, Itskov M, Cyron CJ. Constitutive artificial neural networks: A fast and
general approach to predictive data-driven constitutive modeling by deep learning. J Comput Phys. 2021;429:110010.
d0i:10.1016/j.jcp.2020.110010

Abueidda DW, Koric S, Sobh NA, Sehitoglu H. Deep learning for plasticity and thermo-viscoplasticity. Int J Plast.
2021;136:102852. doi:10.1016/j.ijplas.2020.102852

Qiu H, Yang H, Elkhodary K I., Tang S, Guo X, Huang J. A data-driven approach for modeling tension—compression
asymmetric material behavior: numerical simulation and experiment. Comput Mech. 2022;69(1):299-313.
d0i:10.1007/s00466-021-02094-2

Raissi M, Perdikaris P, Karniadakis GE. Physics-informed neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equations. J Comput Phys. 2019;378:686-707.
d0i:10.1016/j.jcp.2018.10.045

Abueidda DW, Lu Q, Koric S. Meshless physics-informed deep learning method for three-dimensional solid mechanics. Int
J Numer Methods Eng. 2021;122(23):7182-7201. doi:10.1002/nme.6828

Haghighat E, Raissi M, Moure A, Gomez H, Juanes R. A physics-informed deep learning framework for inversion and
surrogate modeling in solid mechanics. Comput Methods Appl Mech Eng. 2021;379:113741.
doi:10.1016/j.cma.2021.113741

Cai S, Wang Z, Wang S, Perdikaris P, Karniadakis GE. Physics-informed neural networks for heat transfer problems. J Heat
Transfer. 2021;143(6). doi:10.1115/1.4050542

Hamdia KM, Zhuang X, Rabczuk T. An efficient optimization approach for designing machine learning models based on
genetic algorithm. Neural Comput Appl. 2021;33(6):1923-1933. d0i:10.1007/s00521-020-05035-x

Henkes A, Wessels H, Mahnken R. Physics informed neural networks for continuum micromechanics. Comput Methods
Appl Mech Eng. 2022;393:114790. doi:10.1016/j.cma.2022.114790

Amini Niaki S, Haghighat E, Campbell T, Poursartip A, Vaziri R. Physics-informed neural network for modelling the
thermochemical curing process of composite-tool systems during manufacture. Comput Methods Appl Mech Eng.
2021;384:113959. doi:10.1016/j.cma.2021.113959

Rao C, Sun H, Liu Y. Physics-informed deep learning for computational elastodynamics without labeled data. J Eng Mech.
2021;147(8):04021043. doi:10.1061/(ASCE)EM.1943-7889.0001947

Himanen L, Geurts A, Foster AS, Rinke P. Data-driven materials science: status, challenges, and perspectives. Adv Sci.
2019;6(21):1900808. doi:10.1002/advs.201900808

Flaschel M, Kumar S, De Lorenzis L. Unsupervised discovery of interpretable hyperelastic constitutive laws. Comput
Methods Appl Mech Eng. 2021;381:113852. doi:10.1016/j.cma.2021.113852

Yang H, Xiang Q, Tang S, Guo X. Learning material law from displacement fields by artificial neural network. Theor Appl
Mech Lett. 2020;10(3):202-206. doi:10.1016/j.taml.2020.01.038

Chen G. Recurrent neural networks (RNNs) learn the constitutive law of viscoelasticity. Comput Mech. 2021;67(3):1009-
1019. doi:10.1007/s00466-021-01981-y

Lin J, Zhou S, Guo H. A deep collocation method for heat transfer in porous media: Verification from the finite element
method. J Energy Storage. 2020;28:101280. doi:10.1016/j.est.2020.101280

Samaniego E, Anitescu C, Goswami S, et al. An energy approach to the solution of partial differential equations in
computational mechanics via machine learning: Concepts, implementation and applications. Comput Methods Appl Mech
Eng. 2020;362:112790. doi:10.1016/j.cma.2019.112790

Nguyen-Thanh VM, Zhuang X, Rabczuk T. A deep energy method for finite deformation hyperelasticity. Eur J Mech -
A/Solids. 2020;80:103874. doi:10.1016/j.euromechsol.2019.103874

Nguyen-Thanh VM, Anitescu C, Alajlan N, Rabczuk T, Zhuang X. Parametric deep energy approach for elasticity
accounting for strain gradient effects. Comput Methods Appl Mech Eng. 2021;386:114096. doi:10.1016/j.cma.2021.114096
Wang S, Yu X, Perdikaris P. When and why PINNSs fail to train: A neural tangent kernel perspective. J Comput Phys.
2022;449:110768. doi:10.1016/j.jcp.2021.110768

Wang S, Teng Y, Perdikaris P. Understanding and Mitigating Gradient Flow Pathologies in Physics-Informed Neural
Networks. SIAM J Sci Comput. 2021;43(5):A3055-A3081. d0i:10.1137/20M1318043

Haghighat E, Amini D, Juanes R. Physics-informed neural network simulation of multiphase poroelasticity using stress-
split sequential training. Comput Methods Appl Mech Eng. 2022;397:115141. doi:10.1016/j.cma.2022.115141

https://doi.org/10.20944/preprints202206.0414.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2022 d0i:10.20944/preprints202206.0414.v1

18 of 34

36.

37.

38.

39.

40.

41.

42,

43.

44,

45,
46.

47.

48.

49,

50.

51.

52.

53.

E W, Yu B. The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems.
Commun Math Stat. 2018;6(1):1-12. doi:10.1007/s40304-018-0127-z

Abueidda DW, Koric S, Al-Rub RA, Parrott CM, James KA, Sobh NA. A deep learning energy method for hyperelasticity
and viscoelasticity. Eur J Mech - A/Solids. 2022;95:104639. doi:10.1016/j.euromechsol.2022.104639

Fuhg JN, Bouklas N. The mixed Deep Energy Method for resolving concentration features in finite strain hyperelasticity. J
Comput Phys. 2022;451:110839. doi:10.1016/j.jcp.2021.110839

Abueidda DW, Guleryuz E, Sobh NA. Enhanced physics-informed neural networks for hyperelasticity a preprint. arXiv
preprint arXiv:2205.14148; 2022.

Bergstra J, Bardenet R, Bengio Y, Kegl B. Algorithms for hyper-parameter optimization. In: Proceedings Neural
Information and Processing Systems. ; 2011:2546-2554.

Yu T, Zhu H. Hyper-parameter optimization: A review of algorithms and applications. arXiv Prepr arXiv200305689.
Published online 2020.

Luo G. A review of automatic selection methods for machine learning algorithms and hyper-parameter values. Netw Model
Anal Heal Informatics Bioinforma. 2016;5(1):18. doi:10.1007/s13721-016-0125-6

Shahriari B, Swersky K, Wang Z, Adams RP, de Freitas N. Taking the human out of the loop: a review of bayesian
optimization. Proc IEEE. 2016;104(1):148-175. d0i:10.1109/JPROC.2015.2494218

Tancik M, Srinivasan PP, Mildenhall B, et al. Fourier features let networks learn high frequency functions in low
dimensional domains. Adv Neural Inf Process Syst. 2020;33:7537-7547.

Rao SS. The Finite Element Method in Engineering. Elsevier Science; 2011.

Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Networks.
1989;2(5):359-366. doi:10.1016/0893-6080(89)90020-8

Funahashi K-1. On the approximate realization of continuous mappings by neural networks. Neural Networks.
1989;2(3):183-192. doi:10.1016/0893-6080(89)90003-8

Wang S, Wang H, Perdikaris P. On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale
PDEs with physics-informed neural networks. Comput Methods Appl Mech Eng. 2021;384:113938.
doi:10.1016/j.cma.2021.113938

Komer B, Bergstra J, Eliasmith C. Hyperopt-sklearn: automatic hyperparameter configuration for scikit-learn. In: ; 2014:32-
37. doi:10.25080/Majora-14hd3278-006

Smith M. ABAQUS/Standard User’s Manual, Version 6.9. Dassault Systémes Simulia Corp; 2009.

Bergstra J, Bardenet R, Bengio Y, Kégl B. Algorithms for Hyper-Parameter Optimization. In: Shawe-Taylor J, Zemel R,
Bartlett P, Pereira F, Weinberger KQ, eds. Advances in Neural Information Processing Systems. Vol 24. Curran Associates,
Inc.; 2011. https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf

Wen L, Ye X, Gao L. A new automatic machine learning based hyperparameter optimization for workpiece quality
prediction. Meas Control. 2020;53(7-8):1088-1098. doi:10.1177/0020294020932347

Jones DR. A Taxonomy of Global Optimization Methods Based on Response Surfaces. Vol 21.; 2001.

https://doi.org/10.20944/preprints202206.0414.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2022 d0i:10.20944/preprints202206.0414.v1

19 of 34

Appendix A: Gauss-quadrature integration scheme

a-n * (1,1)
H
|

(-1.-1) ! (I-1)

X

Figure Al: Isoparametric mapping
Gauss-quadrature integration is used in numerical analysis to evaluate the definite integral of a function. An n-point Gauss
quadrature can accurately evaluate a definite integral for a degree 2n-1 or less polynomial by finding the value of the polynomial at
the suitable choice of nodes x;. The integration value is found by summing the value of the polynomial at x; for all n nodes after
multiplying it with their respective weights (Equation 13). Such approach is widely used in FEA. The current study used the
formulation for isoparametric square elements inspired by FEA to find the system’s internal energy (Equation 14).
n

| 11f(x)dx ~ Z wif (x)

N
U= f Y)Y, = ;wemdvx - ;IP@)UW‘Q "

where J is the Jacobian defined by:

J= 0¢, 651] A2
lox, ox,| .
135, 3¢,

Isoparametric elements use natural (or intrinsic) coordinate systems to formulate equations defined by the element’s geometry and
not the orientation or placement of the element in the global coordinate system using shape functions. As shown in Figure 7,
transformation mapping using the Jacobian matrix is used to develop relationships between the natural coordinates and the

coordinate system. Shape functions for an isoparametric first order square function are defined as:
N = (1-8)A=$2)
| = 2%

4
N, = 1- 511(1 +$2)
N, = 1+&)A-¢)

4

N4 — (1 + 511(1 + 52) Al
The necessary derivatives with respect to the physical coordinate system can be obtained using the chain rule:

aNL' aNL

ax =]_1 afl
JdN; oN;

ay ¢,
Using the above relationship, the strains in the system can be calculated by
€ = [B{u}
where,

A5

A6

https://doi.org/10.20944/preprints202206.0414.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2022 d0i:10.20944/preprints202206.0414.v1

20 of 34

9, 9, 9, 9,
oN. ON. ON. oN,

Bl=]l0o =—= 0 =—= 0o — 0 —

9¢; 98, 98, 9¢,
108, 081 05, 0§ 0%, 0§ 0%, 04
The corresponding stresses and strain energy density function are calculated using Equations 8 and 5. The total internal energy is
the submission of the strain energy density for all elements.

4 4

U =sz¢(5)|}|(lef =ZZZMVV,-¢(€1,€2)I]Ist A7

Qg i=1j=1

0

https://doi.org/10.20944/preprints202206.0414.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2022 d0i:10.20944/preprints202206.0414.v1

21 of 34

Appendix B: Deflections obtained before including Fourier feature mapping and optimizing hyperparameters
Figures B1 and B2 show the deflection of the plate and strains along the x-axis and y-axis for the three loading conditions (shown
in Figure 3). From Figure B1, we can notice that the displacement in the y-axis is not symmetric around the middle of the plate
under compression and tension, which should be the case under symmetric loading. The discrepancy in displacements results in an
inaccurate prediction of stains in Figure B2. Error in displacements from FEA is shown in Figure B3. Figure B4 shows the results
obtained from Abaqus® under three different loading conditions. We can notice that even though the code accurately predicts
deflections in bending, it has a high error in prediction in the case of compression and tension.

) Compression loading
a
b
0.00 y) 0.009
X 0.006
-0.04{| 1 1 Uy
0.003
—0.08 0.000
-0.16 1 2 3 —0.006 1 2 3
—0.20 WUx (Min)= -0.1995 Ux (Max)= 0.0000 _0.009 8 Uy (Min) = -0.0076, Uy (Max) = 0.0080
Tensile loading
C d
) 0.20) 0.009
0.16 Ux 0.006 U
0.003{/1-0
0.12
0.0001/0.5
0.08 _0_003
0.04 2 4 ~0.006 . 2 4
Ux (Min)= 0.0000 Ux (Max)= 0.1993 0,009 Uy (Min) = -0.0083 , Uy (Max) = 0.0076
0.00 :
Bending loads
€) . Ux f)
0.48
0.321] o
0.16
0.001|_,
-0.16
-0.32
-0.48 472
_ 2 4 2 4
Ux (Min)= -0.4803 Ux (Max)= 0.4816 Uy (Min) = -2.6706, Uy (Max) = 0.0001

Figure B1: Displacement obtained in x and y directions from DEM without modifications

https://doi.org/10.20944/preprints202206.0414.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2022 d0i:10.20944/preprints202206.0414.v1

22 of 34

2) —0.0456
—~0.0472
~0.0488
~0.0504
~0.0520
~0.0536

¢) 0.0504
0.0496
0.0488
0.0480
0.0472
0.0464
0.0456

0.24
0.16
0.08
0.00
—0.08
—-0.16
-0.24

Compression loading

b)
E1

0.015
0.0121] 1
0.009
0.006
0.003
0.000

0

Tensile loading

d)

Bending loads

1 S f)

2 4

0.000
~0.003
~0.006
-0.009{9-5
-0.012
~0.015

1.0

0.09
0.06
0.03
0.00
-0.03
-0.06
-0.09

2 4

Figure B2: Strains (exx and &yy) obtained from DEM without modifications for compressive loads (a-b), tension loads (c-d), and
bending loads (e-f)

https://doi.org/10.20944/preprints202206.0414.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2022

23 of 34

a)

Compression Loading
0.18 b) 0.0072
0.15 Errory = |Ux(rea) - Uxoem)| 0.0060 1| , Errory = |Uyirea) - Uyioem)|
0.09 0.0036
0.06 0 0.0024
0.03 1 2 3 0.0012
0.00 0.0000
Tension Loading
0.20 d) 0.0096
0.16 {1 o Errory = |Ux(rea) - Ux(pem)| 0-0080 0 Errory = |Uy(rea) - Uypem)|
0.0064
01215 0.004810.5
0.08 0.0032
0.04 2 4 0.0016 2 4
0.00 0.0000
Bending Loads
1Err0f'x = |Ux(rea) - Uxipem)| f) lErfOFy = |Uy(rea) - Uy(pem)|
0.0030 0.0096
0.0025 0.0080
0.0020 0.0064
0.0015 0.0048
0.0010 0.0032
0.0005 0.0016 7
0.0000 0.0000 /
2 4 2 4

Figure B3: Error in displacements in x and y directions when compared to FEA

do0i:10.20944/preprints202206.0414.v1

https://doi.org/10.20944/preprints202206.0414.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2022 do0i:10.20944/preprints202206.0414.v1

24 of 34

) Compression loading
a
b)
0.00 0.009
0.006
-0.041] 1 Ux . Uy
0.003
—0.20 8 Ux (Min)= -0.1994 Ux (Max)= 0.000 —0.009 M Uy (Min) = - 0.00758, Uy (Max) = 0.00758
Tensile loading
0.20
c) 4 0.009
0.16 0.006 U
0.12 0.00341.0
0.08 0.00010.5
0.04 -0.003
—0.0064 ° 2 4
Ux (Min)= 0.0000 Ux (Max)= 0.1993 —0.009 @ Uy (Min) = -0.00758, Uy (Max) = 0.00758
U Bending loads U
€) 1 X) y
0.48 0.0
0.32 04 —-0.5
0.16 ~10
0.00
-1 -1.54|—11
-0.16 1.5
-0.32 —2.0
—0.48 -2 -2.5 821
0 2 4 0 2 4
Ux (Min)= -0.48356 Ux (Max)= 0.48356 Uy (Min) = -2.6764, Uy (Max) = 0.0000

Figure B4: Displacements obtained from FEA

https://doi.org/10.20944/preprints202206.0414.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2022 d0i:10.20944/preprints202206.0414.v1

25 of 34

Appendix C: Activation functions

Tanh:
e*—e”
r= e*+e™*
Rectified linear activation function (ReLU):
_(x x=20
y= {0 x<0
Randomized rectified linear activation function (RReLU):
_(x ,x=0
y= {a *x ,x<0
where, a is a random number sampled from a uniform distribution
Sigmoid:

X

o) = 1+e™™

https://doi.org/10.20944/preprints202206.0414.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2022 d0i:10.20944/preprints202206.0414.v1

26 of 34

Appendix D: Hyperparameters optimization algorithms
Two algorithms, tree pazen estimator (TPE) and adaptive tree pazen estimator (ATPE) are used to obtain optimal hyperparameters.
Both algorithms are based on the Bayesian optimization technique. Bayesian optimization used the Bayes theorem to direct the
search for optimal parameters to an objective function’s global maximum or minimum value*. A probability-based surrogate model
of the objective function is constructed from the posterior probability distribution to direct the search. The surrogate model is used
to select possible candidates to be sampled. The surrogate model is then updated based on the sampled points. The process continues
till the termination criterion for the algorithm is met. Bayesian optimization is beneficial when evaluations of the objective function
are costly and the search space is non-convex .
The main algorithm for tree pazen estimator (TPE) and adaptive tree pazen estimator (ATPE) is shown below. The readers are
directed to publications by Bergstra et al.>*and Wen et al.>? for a detailed description of TPE and ATPE, respectively.
D.1 Tree pazen estimator
TPE was proposed by Bergstra et al. 5. The estimator models both p(x]y) and p(y) to reduce computations. It transforms the prior
distribution of the search space into truncated Gaussian distribution and modifies the posterior distribution based on observations.
It then sorts the target value (y) and divides it into two, as shown in Equation D1.
I(x) ,y<y”
P =) Ta
Where y* is the boundary used to segregate the target value, I(x) is the density formed by observations that are lessthan 5,
y*and g(x) is the density formed by the remaining observations. The TPE algorithm chooses y* to be some quantile y of
the observed y values so that p(y < y*) = y. The next promising point is chosen based on the criterion of Expected Improvement
(ED®.
y* v
Ely(x) = f_w(y* - »plx)dy = f_w(y* - y)%i};mdy D
The main algorithm is shown in Figure D.1.

Algorithm 1: Tree pazen estimator

Input: Configuration space, Objective function
Output: Sample and evaluate some points, construct observation set D; (xi, i) € D
Start:
Fit D by probabilistic surrogate model
Determine the next point to be evaluated based on EI (Xi+1)
Evaluate the chosen point (yi+1)
Update the observation set D
5. Incrementi
if i<n: gotostep 1
Else: Output the best hyperparameters and function values
End

il

Figure D.1 Algorithm for TPE

D.2 Adaptive tree pazen estimator

https://doi.org/10.20944/preprints202206.0414.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2022 d0i:10.20944/preprints202206.0414.v1

27 of 34

Adaptive warm-up process

Yes

Model and fit dataset D by TPE

|

Generate next evaluation pomt (x;.;) by EI

'

Evaluate objective function (yj.,) for the chosen pomt

!

Update dataset (D)

!

=il

Output the best hyperparameters and value
of the objective function

A

Figure D.2 Work for ATPE
An adaptive warm-up process is used for TPE to generate the initial evaluation set D in the case of ATPE®. The warm-up process

adjusts the interval width (w,) for hyperparameters according to equation D.3.
(1

1+ 0075n . Vmin + VYmedian)
Y 1100750 S Vnew Sw
Wn - 1 yTlEW (
* * . VYmin T Ymedi)
kwn 1400750 min + Ymedian) »if Ynew > w D3

where, Ymean and Ymedian are the mean and median of objgctive function values in the observation dataset, respectively. Wy is the
initial interval width, and ynew is the newest value of the objective function. If the updated interval exceeds the original range, the
original interval width is used for the subsequent evaluation. ATPE consists of three modules: adaptive warm-up process, TPE, and
El. Figure D.3 shows the algorithm used for the adaptive warm-up process, and Figure D.2 depicts the workflow of the three modules
used in ATPE.

Algorithm 2: Adaptive warm-up process

Input: Configuration space, Objective function, the number of points for the start-up process (m)
Output: Observation data set D; (X, yi)e D
1. Sample a point randomly from the configuration space
2. Evaluate the point and add it to the data set D
for:i=1tom
1. Select the best point (xpest) from the dataset as the interval center
Compute Yhest, Ymedian from D
3. Update the interval width w; If the updated interval is beyond the original range, use the
original width
4. Sample one point Xi+1 from ©(Xpest, Wi) and evaluate it to get yis1
5. Update the observation set D

N

end for

https://doi.org/10.20944/preprints202206.0414.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2022 d0i:10.20944/preprints202206.0414.v1

28 of 34

Return D

Figure D.2 Algorithm of Adaptive warm-up process for ATPE

https://doi.org/10.20944/preprints202206.0414.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2022

29 of 34

Appendix E: Displacements and errors for optimal hyperparameters

Hyperparameters optimized under compression boundary conditions.
Using optimal parameters obtained using TPE

a)

0.00
-0.04
-0.08
-0.12
-0.16

-0.20

c) 0.00
-0.04
-0.08
-0.12
-0.16

=0.20

0.00
—-0.04
=0.08
-0.12
-0.16

=0.20

b)
Ux
1.0
0.5
0.0
05 1.0 15 20 25 3.0 35
Ux (Min)= -0.1994, Ux (Max)= 0.000

0.009

0.006

0.003

0.000

-0.003

—-0.006

-0.009

1.0
0.5

0.0
05 10 15 20 25 30 35

Uy (Min) = - 0.00760, Uy (Max) = 0.00759

Using optimal parameters obtained using ATPE

05 10 15 20 25 3.0 35

Ux (Min)= -0.1994, Ux (Max)= 0.000

0.009

0.006

0.003

0.000

-0.003

-0.006

-0.009

05 1.0 15 20 25 3.0 35

Uy (Min) = -0.00764, Uy (Max) = 0.00764

Usmg optimal parameters obtained using Random selection

f)

1.0
0.5

0.0
05 10 15 20 25 3.0 35

Ux (Min)= -0.1994, Ux (Max)= 0.000

0.009

0.006

0.003

0.000

-0.003

—-0.006

-0.009

05 10 15 20 25 3.0 35

Uy (Min) = - 0.00761, Uy (Max) = 0.00761

Figure E-1: Predicted displacements in x and y directions for different optimal hyperparameters obtained when uniform
compression load is applied
a-b Predicted displacements under compressive loading for hyperparameters obtained using the TPE algorithm.
c-d Predicted displacements under compressive loading for hyperparameters obtained using the ATPE algorithm.
e-f Predicted displacements under compressive loading for hyperparameters obtained using Random search

do0i:10.20944/preprints202206.0414.v1

https://doi.org/10.20944/preprints202206.0414.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2022 d0i:10.20944/preprints202206.0414.v1

30 of 34

Using optimal parameters obtained using TPE

a) 0.00048 b) 0.00040
. Error, = |U -u Error, = |U, -u
0.00040 o v = |Uxirea) - Uxioemy| 0.00032 Lo v = |Uyirea) - Uyioem|
0.00032
0.00024
0.00024 1| %3 05
0.00016
0.00016 1 0.0 0.0
05 10 15 20 25 3.0 35 05 1.0 15 20 25 30 35
0.00008 0.00008
0.00000 0.00000
Using optimal parameters obtained using ATPE
C) 0.00048 d) 0.00036
0.00040 0 Errory = |Uxirea) - Uxipem| 0.00030 Lo Error, = |Uyreay - Uyoem|
0.00032 0.00024
0.00024 {| %3 0.00018 1| %3
0.00016 4l 00 0.00012 1 g0
05 10 15 20 25 30 35 05 10 15 20 25 30 35
0.00008 0.00006
0.00000 0.00000
Using optimal parameters obtained using Random selection
€) 0.0006 ﬂ 0.00040
: Error, = |U -U Error, = |U, -U
0.0005 Lo % = |Uxtreay - Uxipemn| 0.00032 Lo v = |Uyirea) - Uyioem|
0.0004
0.00024
0.0003] 05 0.5
0.00016
0.0002 4 .0 0.0
05 10 15 20 25 30 35 05 1.0 15 20 25 30 35
0.0001 0.00008
0.0000 0.00000

Figure E-2: Error in predicted displacements in x and y directions for different optimal hyperparameters obtained when uniform
compression load is applied
a-b Error in prediction for hyperparameters obtained using the TPE algorithm.
c-d error in prediction for hyperparameters obtained using the ATPE algorithm.
e-f Error in prediction for hyperparameters obtained using Random search

https://doi.org/10.20944/preprints202206.0414.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2022 do0i:10.20944/preprints202206.0414.v1

31 of 34
Hyperparameters optimized under tensile loading.
Using optimal parameters obtained using TPE
a) 020 b) 0.009
0.006
0.16 U'_v
0.003{| 10
0.12
0.000 0.5
0.08
-0.003
1 2 3 4 1 2 3 4
0.04 —0.006
000 Ux (Min)=0.000, Ux (Max)= 0.19944 0008 Uy (Min) = -0.00757, Uy (Max) = 0.00760
Using optimal parameters obtained using ATPE
0.20 0.009
©) o6 d) o.006
) U,
0.0034| 10
0.12
0‘000 0‘5 l:
0.08
=0.003
1 2 3 4 1 2 3 4
0.04 —0.006
000 M Ux (Min)= 0.000, Ux (Max)= 0.19953 _; ., M Uy (Min) = -0.00766, Uy (Max) = 0.00822
Using optimal parameters obtained using Random selection
g) 020) 0.009
0.006
0.16 U, U},
0.0031 | 10
0.12
0.000 0.5
0.08
=0.003
2 3 4 1 2 3 4
0.04 -0.006
000 M Ux (Min)= 0.000, Ux (Max)= 0.19941 0000 M Uy (Min) = - 0.00762, Uy (Max) = 0.00762
Figure E3: Predicted displacements in x and y directions for different optimal hyperparameters obtained when uniform tensile
load is applied.

a-b Predicted displacements under tensile loading for hyperparameters obtained using the TPE algorithm.
c-d Predicted displacements under tensile loading for hyperparameters obtained using the ATPE algorithm.
e-f Predicted displacements under tensile loading for hyperparameters obtained using Random search

https://doi.org/10.20944/preprints202206.0414.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2022 d0i:10.20944/preprints202206.0414.v1

32 of 34

Using optimal parameters obtained using TPE

a) 0.0006 b) 0.0005
0.0005 10 Errory = |Uxirea) - Uxioem)| 0.0004 1.0 Errory, = |Uyrea) - Uyioem|
0.0004
0.0003
0.0003 4| 05 0.5
0.0002
0.0002
1 2 3 4 1 2 3 4
0.0001 0.0001
0.0000 0.0000
Using optimal parameters obtained using ATPE
0.00096
c) d) 0.00072
0.00080
Errory = |Uxirea) - Uxioem| 0.00060 Errory = |Uyrea) - Uyioem|

0.00064 1.0

0.00048 0.5

1.0 -
0.00048 ‘/
0.00036 | °° Q
0.00024 T T —
1 2 3 4

0.00032
1 2 3 4
0.00016 0.00012
Using optimal parameters obtained using Random selection
€) 0.0006 f) 0.00048
0.0005 1.0 Errory = |UXEFEA} - UX{DEMJI 0.00040 1.0 Error,, = |Uy:FEAj - Uy{DEM]I
0.0004 0.00032 -
0.5
0.0003 0.00024 1] 05
0.0002 0.00016
1 2 3 4 1 2 3 4
0.0001 0.00008
0.0000 0.00000

Figure E-4: Error in predicted displacements in x and y directions for different optimal hyperparameters obtained when uniform
tensile load is applied
a-b Error in prediction for hyperparameters obtained using the TPE algorithm.
c-d error in prediction for hyperparameters obtained using the ATPE algorithm.
e-f Error in prediction for hyperparameters obtained using Random search

https://doi.org/10.20944/preprints202206.0414.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2022 do0i:10.20944/preprints202206.0414.v1

33 0f 34

Hyperparameters optimized under bending boundary conditions.
Using optimal parameters obtained using TPE

Uy N Uy
ﬂ) 1.0 b) .0
0.48 0.5 0.0 0.5
0.32 0.0 0.5 0.0
01611 g5 _104[-05
090 10 15410
-=0.16
s B —20B-15
-0.48 P20 s W20
—-2.5 —-2.5
1 2 3 a 1 2 3 4
Ux(Min)= -0.48282, Ux(Max)= 0.48273 Uy (Min) = -2.67375, Uy (Max) = 0.00009
Using optimal parameters obtained using ATPE
‘o U "
C) 0.48 0.5 d) ’
052 M oo 0.0 .
0161 | o5 =05 -
oo o -1.0 -5
~0.16 s 1547107
-0.32 o o151
=0.4
0.48 s s —2.04
1 2 3 K ~2.51
Ux (Min)= -0.1994, Ux (Max)= 0.000 Uy (Min) = -0.00764, 2Uy (Max) = 0.00764
¢) Using optimal parameters obtamed using Random selection
1.0 Us f) 1.0 Yy
0.48 {8 0.5 008 05
0.32 0.0 4 —0.5 0.0
01611 o5 —1.04 |95
0.00 -1.0 154101
-0.16 ’
. -1.5 —204-151
o0u B s 201
-2.54 —2.51
1 2 3 a 1 2 3 a

Ux (Min)= -0.19941, Ux (Max)=0.000 Uy (Min) = - 0.00762, Uy (Max) = 0.00762

Figure E5: Predicted displacements in x and y directions for different optimal hyperparameters obtained when uniform bending
load is applied.
a-b Predicted displacements under bending loading for hyperparameters obtained using the TPE algorithm.
c-d Predicted displacements under bending loading for hyperparameters obtained using the ATPE algorithm.
e-f Predicted displacements under bending loading for hyperparameters obtained using Random search

https://doi.org/10.20944/preprints202206.0414.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2022 d0i:10.20944/preprints202206.0414.v1

34 of 34

Using optimal parameters obtained using TPE

a) 1o Errory = |Uxrea) - Uxioem| b) o Errory = |Uyrea) - Uyipem |
0.0018
0.0025
0.0015
0.0020
0.0012
00009 0.0015
0.0006 0.0010
0.0003 0.0005
=2.0
0.0000
00000 M _,

1 2 3

Using optimal parameters obtained using ATPE

Errory = |Uxirea) - Uxipem|

1.0 Lo Errory, = |Uyrea - Uyioem|
C) 0.0024 d) 0.0036 0.5
-
0.0020 0.0030 1 0.0
0.0016 0.0024 =0.5 1 4,
0.0012 0.0018 1 [-1.0
0.0008 00022 ;5|
0.0004 0000s § 0
0.0000 o000 B __
. 2 3 4 1 2 3 a
Using optimal parameters obtained using Random selection
Error, = |Uy -U
e) 1.0 x = 1Unren xioem)| f) 10 Error, = |Uyrea) - Uyipem|
0.0024 0.0040 '
0.5
0.0020
0.0032 8 .o
0.0016
0.0024 1 |-0.5 1
0.0012
0.0016 4|11
0.0008
-1.51 i
0.0004 0.0008 - /
0.0000 0.0000 W _, _ | /

1 2 3 4 1 2 3 4
Figure E-6: Error in predicted displacements in x and y directions for different optimal hyperparameters obtained when uniform
bending is applied
a-b Error in prediction for hyperparameters obtained using the TPE algorithm.
c-d error in prediction for hyperparameters obtained using the ATPE algorithm.
e-f Error in prediction for hyperparameters obtained using Random search

https://doi.org/10.20944/preprints202206.0414.v1

