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ABSTRACT 

Background 
It is important to be able to predict, for each individual patient, the likelihood of later metastatic 
occurrence, because the prediction can guide treatment plans tailored to a specific patient to 
prevent metastasis and to help avoid under- or over-treatment. Deep Neural Network (DNN) 
learning, commonly referred to as deep learning, has become popular due to its success in image 
detection and prediction, but questions such as whether deep learning outperforms other machine 
learning methods when using non-image clinical data remain unanswered. Grid search has been 
introduced to deep learning hyperparameter tunning for the purpose of improving its prediction 
performance, but the effect of grid search on other machine learning methods are under-studied. 
In this research, we take the empirical approach to study the performance of deep learning and 
other machine learning methods when using non-image clinical data to predict the occurrence of 
breast cancer metastasis (BCM) 5, 10, or 15-years after the initial treatment. We developed DNN 
models as well as models using 9 other machine learning methods including Naive Bayes (NB), 
Logistic Regression (LR), Support Vector Machine (SVM), LASSO, Decision Tree (DT), k-
Nearest Neighbors (KNN), Random Forrest (RF), AdaBoost (ADB), and XGBoost (XGB). We 
used grid search to tune hyperparameters for all methods. We then compared the deep learning 
models to the models trained using the 9 other machine learning methods.  
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Results 
Based on the mean test AUC results, DNN ranks 6th, 4th, and 3rd when predicting 5-year, 10-
year, and 15-year BCM respectively, out of 10 machine learning methods. The top performing 
methods in predicting 5-year BCM are XGB(1st), RF(2nd), and KNN(3rd).  For predicting 10-year 
BCM the top performers are XGB (1st), RF(2nd), and NB(3rd) . Finally, for 15-year BCM the top 
performers are SVM (1st), LR and LASSO (tied for 2nd), and DNN (3rd). The ensemble methods 
RF and XGB outperform other methods when data are less balanced, while SVM, LR, LASSO, 
and DNN outperform other methods when data are more balanced. Our statistical testing results 
show that at a significance level of 0.05 DNN overall performs no worse than other machine 
learning methods when predicting 5-year, 10-year, and 15-year BCM.  

Conclusions 
Our results show that deep learning with grid search overall performs at least as well as other 
machine learning methods when using non-image clinical data. It is interesting to note that some 
of the other machine learning methods such as XGB, RF, and SVM are very strong competitors of 
DNN when incorporating grid search. It is also worth noting that the computation time required to 
do grid search with DNN is way more than that required to do grid search with the other 9 machine 
learning methods.  

Keywords:  deep learning, DNN, machine learning; breast cancer, metastasis; metastatic 
breast cancer; distant recurrence of breast cancer metastasis; prediction, clinical, EHR 

BACKGROUND 
In 2020, female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer 
worldwide, with an estimated 2.3 million new cases in 2020 [1]. Breast cancer remains one of 
main cancer-related causes of death in women globally [2] and was responsible for 685,000 deaths 
worldwide in 2020 [1]. Breast cancer is the second leading cause of cancer death among US 
women after lung cancer, estimated to account for 43,600 deaths in 2021 [3, 5]. It is the number 
one cause of cancer-related deaths for US women aged 20 to 59 [6]. 

Women rarely die of breast cancer confined to the breast or draining lymph nodes; rather, 
they die mainly due to metastasis, a condition in which cancer spreads to other vital organs, such 
as the lung and brain. Metastatic breast cancer (MBC) is the cause of over 90% of breast cancer 
related deaths [7] and remains a largely incurable disease. Although most newly diagnosed breast 
cancer cases are not metastatic, all patients are at risk of developing metastatic cancer in the future, 
even if they are free of cancer for years after the initial treatment. The ability to effectively predict, 
for each individual patient, the likelihood of later metastatic occurrence is important, because the 
prediction can guide treatment plans tailored to a specific patient to prevent metastasis and to help 
avoid under- or over-treatment. 

Clinicians face uncertainty in determining the ideal treatment course for individual patients 
with breast cancer. For example, image-guided core needle biopsy of the breast is a common 
procedure that can return non-definitive results in 5% to 15% of women. In these cases it is difficult 
to determine the subtype of the breast cancer. Variation in breast cancer subtypes has been known 
to be associated with a patient’s drug response, progression of the tumor, and survival of the patient 
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[8, 9]. There can also be significant uncertainty about the treatment and prognosis for breast cancer. 
For example, HER2-amplified breast cancer is a subtype with poor prognosis if untreated, but the 
targeted therapeutic trastuzumab (Herceptin) has vastly improved the survival rate of such patients. 
Although Herceptin is used in the therapy of all patients with HER2-amplified tumors, only some 
respond.  Furthermore, it is expensive and can cause cardiac toxicity [10,11]. Therefore, it is 
important to limit its usage to patients who are likely to benefit from it. Furthermore, histology 
alone does not predict long term outcome well, as most breast cancers are considered localized to 
the breast at the time of diagnosis, with most of these patients ‘cured’ upon excision. Still, up to 
one third of these patients will suffer distant recurrences, often after many years [12]. As treatments 
are toxic, clinical decisions need to account for prognostic predictors of outcome. 

Various learning methods have been developed and applied in biomedical prediction [13-
19]. For instance, machine learning and language processing have been used to identify breast 
cancer local recurrence [13]. A logistic regression model was developed for cancer classification 
and prediction [14]. Various machine learning methods were used for predicting ubiquitination 
sites by training models from physicochemical properties of protein sequences data [15]. Bayesian 
network learning was used to model miRNA-mRNA interactions that cause phenotypic 
abnormality in breast cancer patients [16]. The risk prediction of prostate cancer recurrence was 
investigated through regularized rank estimation in partly linear AFT (Accelerated Failure Time) 
models using high-dimensional gene and clinical data [17]. An automatically derived class 
predictor was presented to determine the class of new leukemia cases based on gene expression 
monitoring by DNA micro-arrays [18]. An effective hybrid approach for selecting marker genes 
was developed for phenotype classification using micro-array gene expression data [19].  

A Neural Network (NN) is one of the machine learning methods that can be used to conduct 
prediction and classification. A NN consists of layers of artificial neurons, also called nodes, 
mimicking structurally in a sense the impulse propagation mechanism in the human nervous 
system [20, 21] , so it is also called an Artificial Neural Network (ANN). ANNs can be used for 
unsupervised learning on unlabeled data or supervised learning on labeled data. Deep learning [22-
24] is the use of Neural Networks composed of more than one hidden layer, which are also referred 
to as Deep Neural Networks (DNNs). 

Artificial Neural Networks (ANNs), including DNNs, are widely used in science and 
information technology due to their notable properties including parallelism, distributed storage, 
and adaptive self-learning capability [25-30]. They have also been used in health care including 
cancer diagnosis and prediction. For example, an ANN was developed to help diagnose breast 
cancer based on the age of the patient, mass shape, mass border, and mass density; it achieved high 
predictive accuracy [30]. A noise-injected neural network was designed for breast cancer diagnosis 
and prognosis using expression data [29]. A hybrid neural network and genetic algorithm method 
was applied to breast cancer detection [27]. In another study, an ANN was used to reduce the 
number of gene signatures for the classification of breast cancer patients and the prediction of 
clinical outcomes, including the capability to accurately predict breast cancer metastases [26]. The 
DNN has obtained significant success in commercialized applications, such as voice and pattern 
recognition, computer vision, and image processing [28, 31-36]. However, its power has not been 
fully explored or demonstrated in clinical applications, such as the prediction of breast cancer 
metastasis (BCM). This is because the sheer magnitude of the number of variables involved in 
these problems presents formidable computational and modeling challenges [37]. 
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Precision medicine promises to help us improve patient outcomes by tailoring healthcare 
to the individual patient [38]. The electronic health record (EHR), a widely available data resource, 
has been underutilized for the purpose of tailoring therapies and providing prognostic information. 
An EHR database contains abundant data about patients’ clinical features, disease status, 
interventions, and clinical outcomes, affording us the opportunity to provide highly-personalized 
medicine beyond only looking at the genomic level. It is believed that, “coupled with new analytics 
tools, they open the door to mining information for the most effective outcomes across large 
populations” [10]. Such data are invaluable to tailoring diagnosis and prognoses to individual with 
diseases such as breast cancer.  

 LSDS (Lynn Sage Dataset) was a de-identified and publicly available clinical dataset about 
breast cancer that was created and published via previous studies [39, 40]. It was curated using 
clinical data from the Lynn Sage Database (LSDB) hosted at Lynn Sage Comprehensive Breast 
Center at Northwestern Memorial Hospital and the EHR data hosted at The Northwestern 
Medicine Enterprise Data Warehouse (NMEDW) Northwestern University Feinberg School of 
Medicine and Northwestern Memorial HealthCare. The LSDS consists of records on 6726 breast 
cancer patients, which span 03/02/1990 to 07/28/2015. The dataset contains 61 patient features, 
including breast cancer metastasis and its follow-up. Three LSM (LSDS for Metastasis) datasets 
were retrieved from LSDS, which focus on 5, 10, and 15-year BCM status respectively  [39,40]. 
A detailed description of the three LSM datasets are presented in the Methods section.  

 In this research, we took the empirical approach to study the performance of deep learning 
when predicting BCM using clinical data. We applied DNN to learn MBC prediction models from 
LSM datasets. These models can be used to predict 5, 10, and 15-year BCM. The performance of 
a DNN model is affected by the number of hidden layers and number of nodes per hidden layer, 
which are called hyperparameters. In addition, there are other hyperparameters that can be used to 
adjust the prediction performance of deep learning. For example, the number of epochs is a 
hyperparameter we consider. It is the number of times in which a deep learning model is trained 
by each of the training set samples exactly one. The learning might not converge when the number 
of epochs is too low, and model overfitting tends to get severe when it is too high. Tuning 
hyperparameters is the process of identifying the set of parameter values that are expected to 
produce the best prediction model from all sets of hyperparameter values examined. Grid search 
is designed to conduct hyperparameter tunning in a systematic way by going through a possible 
set of hyperparameter values automatically during learning.  In this study, we optimized DNN 
model performance by conducting hyperparameter tunning via grid search.  

To evaluate the performance of DNN, we compared our DNN models with the ones that 
we trained using 9 other well-known machine learning methods. We applied hyperparameter 
tunning and grid search to optimize model performance for each of the 9 comparison methods. We 
conjectured that deep learning with grid search would perform no worse than the comparison 
methods when predicting the binary status of BCM. We posit this conjecture because deep learning 
is a very powerful tool for prediction and has been successful in other applications such as image 
recognition [36, 41-49]. In this study we use feed-forward DNN models to predict 5, 10, 15-year 
BCM by learning from non-image clinical EHR data. Through literature searching we found some 
deep learning related studies that use image data to predict BCM [42-46] . But we haven’t found 
a study that resembles ours.  
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METHODS 

Datasets 
In this study, we used three LSM datasets about breast cancer metastasis: LSM-5Year, LSM-
10Year, and LSM-15Year. Metastatic case counts of each of the three datasets are shown in Table 
1. Each of the three datasets contains 32 variables: 31 predictors and the target variable 
“metastasis.” Using LSM-5Year as an example, as described in [40], the value “yes” was assigned 
to “metastasis” if the patient metastasized within 5 years of initial diagnosis, the value “no” to 
“metastasis” if it was known that the patient did not metastasize within 5 years. The 31 predictors 
are defined in Table 2. Our objective was to learn and optimize prediction models from LSM 
datasets using DNN and 9 other machine learning methods, and then to compare the performance 
of these models.  

Table 1. Case counts of the LSM datasets 
 Total # of cases # Positive cases # Negative cases 

LSM-5year 4189 437 3752 

LSM-10year 1827 572 1255 

LSM-15year 751 608 143 

 
Table 2 The variables of the LSM datasets 

Variables included  Description Values 
race race of patient white, black, Asian, American 

Indian or Alaskan native, 
native Hawaiian or other 
Pacific islander 

ethnicity ethnicity of patient not Hispanic, Hispanic 
smoking smoking history of patient ex smoker, non smoker, 

cigarettes, chewing tobacco, 
cigar 

alcohol usage alcohol usage of patient moderate, no use, use but nos 
(non otherwise specified), 
former user, heavy user 

family history family history of cancer cancer, no cancer, breast 
cancer, other cancer, cancer 
but nos 

age_at_diagnosis age at diagnosis of the disease 0-49, 50-69, >69 
menopausal_status inferred menopausal status pre, post 
side side of tumor  left, right 
TNEG triple negative status in terms of 

patient being ER, PR, and HER2 
negative 

yes, no 
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ER estrogen receptor expression neg, pos, low pos 
ER_percent percent of cell stain pos for ER 

receptors 
0-20, 20-90, 90-100 

PR progesterone receptor expression neg, pos, low pos 
PR_percent percent of cell stain pos for PR 

receptors 
0-20, 20-90, 90-100 

P53 whether P53 is mutated neg, pos, low pos 
HER2 HER2 expression neg, pos 
t_tnm_stage prime tumor stage in TNM system 0, 1,2,3,4, IS, 1mic, X 
n_tnm_stage # of nearby cancerous lymph 

nodes 
0,1,2,3,4,X 

stage composite of size and # positive 
nodes 

0,1,2,3 

lymph_nodes_removed number of lymph nodes removed 0-11, 12-22, > 22 
lymph_nodes_positive number of positive lymph nodes 0, 1-8,  >8 
lymph_node_status patient had any positive lymph 

nodes 
neg, pos 

histology tumor histology lobular, duct 
size size of tumor in mm 0-32, 32-70, >70 
grade grade of disease 1, 2, 3 
invasive whether tumor is invasive yes, no 
histology2 tumor histology subtypes IDC, DCIS, ILC, NC 
invasive_tumor_locatio
n 

where invasive tumor is located mixed duct and lobular, duct, 
lobular, none 

DCIS_level type of ductal carcinoma in situ solid, apocrine, cribriform, 
dcis, comedo, papillary, 
micropapillary 

re_excision removal of an additional margin of 
tissue 

yes, no 

surgical_margins whether residual tumor res. tumor, no res. tumor, 
no primary site surgery 

MRIs_60_surgery MRIs within 60 days of surgery yes, no 
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Feedforward Neural Networks 
Our DNNs are fully-connected feedforward neural networks composed of more than one hidden 
layer. Figure 1 shows the general structure of a feed-forward deep neural network that contains n 
hidden layers and an output layer that has two nodes. The inputs to the neural network are the 
observed values of the predictor variables in the dataset, while the outputs are the values of the 
target variable. In this research, we have 31 predictor variables so m, the number of nodes in our 
input layer, is equal to 31. X0 represents the node for the bias passing from the input layer to the 
first hidden layer. The activation function 𝑓(𝑥)	 of a node determines the value to be passed to the 
next node based on the value of the current node x.  We used a rectifier linear unit (ReLU) [37, 
51], in which 𝑓(𝑥) = max	(0, 𝑥)	as the activation function in the input layer. Since our datasets only 
contain positive values, by using ReLU as the activation function, all input values to our neural 
network model are directly passed to the hidden layers. In figure 1, the first hidden layer has 𝑝 
hidden nodes, the second hidden layer has q hidden nodes, and the nth hidden layer has r hidden 
nodes, indicating each hidden layer is allowed to have a different number of hidden nodes. We 
used ReLU as the activation function in each of the hidden layer(s) to avoid the vanishing gradient 
problem [37, 51]. 𝑤!"

[$](𝑖 = 0, 2, … ,m; 		𝑗 = 1, 2,⋯ , p)	 represents the connecting weights between 
the input layer and the first hidden layer, 𝑤&'

[(] (𝑘 = 0, 1, 2,⋯ , 𝑝; 𝑙 = 1, 2,⋯ , 𝑞) represents the 
connecting weights between the first hidden layer and the second hidden layer, and 𝑤)*

[+,$](𝑠 =
0, 2,⋯ , 𝑟; 𝑡 = 1, 2) represents the connecting weights between the last hidden layer and the output 
layer. n is the number of hidden layers. 𝑏[$]"(𝑗 = 1, 2,⋯ , 𝑝) represents the biases of the nodes in 
the first hidden layer, 𝑏[(]'(𝑙 = 1, 2,⋯ , 𝑞) represents the biases of the nodes in the second hidden 
layer, and 𝑏[+,$]-(𝑜 = 1, 2) represents the biases of the nodes in the output layer. We have two 
nodes in the output layer, one for each target value. Recall that “metastasis” is our binary target 
variable, which has two values: “yes” or “no”. We used the binary cross-entropy loss function, and 
sigmoid activation function in the output layer [37, 51]. In this study, the initial values of weights 
and bias are provided by the he_normal [54] weight initializer. He_normal draws samples from a 
truncated normal distribution centered on 0 with stddev	 = 	sqrt(2	/	num_in)	where num_in is 
the number of nodes in a layer. Tensorflow is an open-source library widely used for developing 
deep learning models. Keras is a high-level neural network API built on top of Tensorflow [52, 
53]. Our DNN model learner was coded in Python and implemented using the Keras and 
Tensorflow packages.  
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Figure 1. A feed-forward ANN that contains n hidden layers. 

 

Hyperparameter Tuning with Grid Search  
Deep learning is a powerful machine learning method due to its large number of hyperparameters 
that can be optimized [41]. See Table 3 for the hyperparameters and their values that we tested 
when training our DNN models. The number of hidden layers and number of hidden nodes are 
structural hyperparameters that greatly affect model performance, each of which can assume 
numerous different values.  SGD (Stochastic Gradient Descent) and Adagrad (Adaptive Gradient 
Descent) are two commonly used optimizers. SGD adjusts its learning rate via momentum and 
decay, the two other hyperparameters that can be tuned during training. Adagrad adapts the 
learning rate to the parameters, conducting smaller-step updates for parameters linked to frequently 
appearing features, and larger-step updates for parameters linked to less frequent features. The 
learning rate is a hyperparameter that governs how big of a step it takes each time to update the 
internal model parameters (weights and biases) in response to the estimated error during the model 
training process. It is used by both the SGD and Adagrad. The momentum, a moving average of 
the gradients, is integrated in SGD to help accelerate the convergence of training. The decay is an 
iteration-based decay factor that can be used to decrease learning rate in each epoch during the 
optimization process. It is a hyperparameter incorporated in both SGD and Adagrad to help 
optimize model performance. The batch_size is also a hyperparameter in Keras, which controls 
the number of the training samples that are “fed” to the neural network before internal model 
parameters are updated. Other hyperparameters including epochs, dropout rate, L1, and L2 will be 
discussed in the “Overfitting” subsection below.  

Hyperparameter Tunning is the process of identifying the set of hyperparameter values that 
is expected to produce the best prediction model from all sets of hyperparameter values being 
examined. Hyperparameter tuning gives us the power to optimize model performance but tuning 
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a large number of hyperparameters presents a major challenge in terms of computation time [37, 
55, 56]. Grid search is designed to conduct hyperparameter tunning in a systematic way by going 
through each of the sets of hyperparameter values automatically during the model training process.  
In our study, we tried to improve model performance by conducting grid search implemented in 
python using the scikit-learn package [52, 53]. In a grid search, each of the hyperparameters is 
given a series of values, the program will then iterate through every hyperparameter value 
combination possible to train models. We call a hyperparameter value combination a 
hyperparameter setting. We conducted grid search many times, each time focusing on giving a set 
of values to each of the hyperparameters. The range of values for a hyperparameter are 
predetermined in various ways such as preliminary experiments, literal searching, and computation 
resource and time limitation that we have. For example, we decided to focus on checking up to 4 
hidden layer models, because we found that further extending number of hidden layers takes up 
too much computing power but with overall worse results based on some preliminary experiments 
we conducted. So the deepest model we trained contains 6 layers counting the input and output 
layer. Another example, model performance normally becomes worse once number of epochs 
exceeds  800 based on our preliminary experiments, so we set the maximum number of epochs to 
be 800.  In each grid search, we randomly chose a set of values from the range of values for each 
of the hyperparameters (Table 3) based on the maximum number of hyperparameter settings that 
we can handle in reasonable time.  

 
Overfitting 
Overfitting is a phenomenon in which the model performs well on training data but generalizes 
poorly to unseen data [57–59]. Overfitting occurs when the model is complex and has a large 
number of parameters, such as in a DNN model, but insufficient data to accurately capture the 
underlying relationships between the variables. Overfitting is a common problem in machine 
learning, and it is overwhelmingly discussed in deep learning due to its significant effect on the 
performance of DNN models. A google search using “overfitting in deep learning” identified 
280,000 articles published between 2015 and 2020. This is not only because we are dealing with 
a large set of hyperparameters in deep learning, but also because the number of internal parameters 
increases dramatically as the number of hidden layers and the number of hidden nodes per layer 
increase.  

It is not possible to completely eliminate overfitting, but we took multiple approaches to 
minimize the effect of overfitting. First, we tuned “dropout rate” and “epochs” to reduce the effect 
of overfitting [41]. The “dropout” is a hyperparameter with which neurons are randomly dropped 
out during training to reduce time cost and minimize model overfitting. The number of epochs is 
a hyperparameter that helps balance model convergence and overfitting. It defines the number of 
times that the entire training data are used by the learning algorithm during training. One epoch 
means every sample in the training set has been used exactly once to update the internal model 
parameters. Secondly, we tunned regularization hyperparameters L1 and L2 to reduce overfitting. 
L1, a factor associated with LASSO regularization, can be used to remove the effect of the “noisy” 
input nodes and make the network less complex. L1 is also called a sparsity regularization factor. 
L2 is a regularization factor based on weight-based decay, which penalizes large weights to adjust 
the weight updating step during model training.  We also introduced another parameter named as 
“L1OrL2”, with which we can choose to tune L1 alone, L2 alone, or L1 and L2 simultaneously in 
a grid search. Finally, we used percent_auc_diff to quantify and keep track of the overfitting of a 
model. The percent_auc_diff is an output parameter in our grid search procedure, which represents 
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the percent difference between mean train AUC and mean test AUC. When we selected the best 
DNN models, we not only considered the mean test AUC values, but also made sure the 
percent_auc_diff, was less than 5%.   

 
Table 3: Description of the DNN hyperparameters and Their Values Tested 

Hyperparameter Description Values 
# of Hidden Layers The depth of a DNN 1,2,3,4 
# of Hidden Nodes Number of neurons in a hidden 

layer 
10,20, …,70 75 80 90 … 120, 200, 

300 … 1100 
Optimizer Optimizes internal model 

parameters towards minimizing 
the loss 

SGD, Adagrad 

Learning rate Used by both SGD and Adagrad 0.001 to 0.3, step size: 0.001 

Momentum  Smooths out the curve of gradients 
by moving average. Used by SGD. 

0, 0.4, 0.5, 0.9 

Iteration-based 
Decay 

Iteration-based decay; updating 
learning rate by a decreasing factor 

in each epoch  

0 0.0001, 0.0002, …., 0.001, 0.002, 
… 0.01 

 
Dropout rate Manage overfitting and training 

time by randomly selects nodes to 
ignore 

0, 0.4, 0.5 

Epochs Number of times model is trained 
by each of the training set samples 

exactly one 

20, 30, 50, 80, 100, 200, …, 800 

Batch_size Unit number of samples fed to the 
optimizer before updating weights  

1, 10, 20, …, 100 

L1 Sparsity regularization;  0, 0.0005, 0.0008, 0.001, 0.002, 
0.005, 0.008, 0.01, 0.02, 0.05, 0, 

0.1, 0.2, 0.5 
L2 Weight decay regularization; it 

penalizes large weights to adjust 
the weight updating step 

0, 0.0005, 0.0008, 0.001, 0.002, 
0.005, 0.008, 0.01, 0.02, 0.05, 0, 

0.1, 0.2, 0.5 
L1ORL2  Using L1 and L2 combinations to 

regularize overfitting;  
L1 only, L2 only, L1 and L2 

 
 
Performance Metrics and 5-fold Cross Validation 

We designed an output format for grid search and recorded 64 different output values for each of 
the models trained in a grid search.  Among the output values are information about the 
computer system used, computation time, and measures for model performance. For a given 
binary diagnostic test, a receiver operator characteristic (ROC) curve plots the true positive rate 
against the false positive rate for all possible cutoff values. The area under a ROC curve (AUC) 
measures the discrimination performance of a model. We conducted a 5-fold cross validation to 
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train and evaluate each model in a grid search. The entire dataset was split evenly  into 5 
portions. The division was mostly done randomly except that each portion had approximately 
20% of the positive cases and 20% of the negative cases to ensure that it was a representative 
fraction of the dataset. Training and testing were repeated five times. Each time, a unique portion 
was used as the validation set to test the model learned from the training set, which combined the 
remaining four portions. Training and testing AUCs were reported. The average training and 
testing AUC across all five times were also derived and reported. The best-performing set of 
hyperparameter values was chosen based on the highest mean test AUC. The best model would 
be the one refitted from the entire dataset using the best-performing set of hyperparameters 
values. We used this procedure for all methods involved in this study.  

Comparing to 9 Other Machine Learning Methods 

We compared the performance of the best-performing DNN model to that of a representative set 
of machine-learning methods, each obtained via grid search. The representative set of methods 
include Naïve Bayes (NB), Logistic Regression (LR), Decision Tree (DT), Support Vector 
Machine (SVM), the least absolute shrinkage and selection operator (LASSO), k-Nearest 
Neighbors (KNN), eXtreme Gradient Boosting (XGB), Adaptive Boosting (Adaboost), and 
Random Forest (RF). We used the scikit-learn [52, 53] package in Python to implement these 
machine learning classifiers. Like neural networks, these methods have hyperparameters that can 
be tuned to improve prediction performance. We conducted grid search for each method using 
each of the three LSM datasets. Like we did in our DNN grid-searches, we conducted 5-fold cross 
validation for each set of hyperparameter values and measured the performance by the AUC. 
Below, we provide a summary of the hyperparameters and their values that we tested for each of 
these methods  

NB [60–63] represents a special type of Bayesian network model. Bayesian networks 
(BNs) are used for uncertain reasoning and machine learning in many domains, including 
biomedical informatics. A BN consists of a directed acyclic graph (DAG) 𝐺 = (𝑉, 𝐸), whose 
nodeset V contains random variables and whose edges E represent relationships among the random 
variables. A BN also includes a conditional probability distribution of each node X∈V given each 
combination of values of its parent nodes. Each node V in a BN is conditionally independent of all 
its nondescendents given its parents in the BN. NB is a simplified BN which normally only 
contains one parent node and a set of children nodes. In a basic NB model, there is an edge from 
the parent to each of the children. When a NB model is used to conduct classification, it is called 
a NB classifier. We used BernoulliBN classifier in this study because we have binary classes. 
Alpha is the Laplace smoothing parameter that deals with the problems of zero probability and 
regularize complexity, the larger the alpha, the stronger the smoothing and the lower the 
complexity of the model. We tested 500 alpha values, which are all positive integers from 1 to 
500. 

LR [64, 65] is a supervised learning classification method, which is normally suitable for 
binary classification problems. It is named after the logistic function, a core function of LR for 
nonlinear transformation on the output value. C is the inverse of regularization strength (C=1/λ). 
Smaller values result in stronger regularization. We tested 300 evenly spaced values on a 
logarithmic scale between 10./  and 10/.  Regularization can be used to train models that 
generalize better on unseen data, by preventing the algorithm from overfitting the training dataset. 
We used either L1 or L2 methods to regularize the LR model.  
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Decision Trees [65–67] is one of the most widely used machine learning methods. It 
contains a tree-like structure in which each internal node represents a test on a feature and each 
leaf node represents a class value. It can be used for both classification and regression tasks. This 
parameter max_depth indicates how deep the tree can be. The deeper the tree, the more splits it has, 
which allows it to capture more information about the data. We fit a decision tree with depths 
ranging from 3 to 32. The parameter min_samples_split governs the minimum number of samples 
required to split an internal node. The values we tested in our grid search are 0.1, 0.2, 0.3, 0.4, 0.6, 
0.8, and 1. The parameter  max_features indicates the max features when building a decision tree; 
we tested all values: none, ‘log2’ and ‘sqrt’. The parameter max_leaf_nodes controls the maximum 
number of leaf nodes of each decision tree, we tested 7, 10, 15, and none.  max_depth and 
max_leaf_nodes are important hyperparameters to control overfitting. Criterion is a function for 
measuring the quality of a split, and we tested both values ‘gini’ and ‘entropy’.  

SVM [68–74] is a machine learning method that  identifies a hyperplane with margins 
defined by support vectors. Support vectors are a set of data points that are closer to the hyperplane 
and can influence both the position and direction of the hyperplane, which can be used to classify 
(separate) input samples. SVM can be used for both regression and classification tasks, and it is 
widely applied in the later. The parameter C trades off misclassification of training examples 
against simplicity of the decision surface. Smaller values result in a smoother decision surface, 
while larger values give the model more freedom to select more samples as support vectors. We 
tested values in the range 2-5, 2-3… 215.  The parameter γ defines how far the influence of a single 
training example reaches (inverse of the radius of influence of samples selected by the model as 
support vectors). Low values mean “far” and high values mean “close”. We tested values in the 
range 2-15, 2-13… 23. 

LASSO [75] is a regression-based method classifier that is capable of conducting variable 
selection and regularization in order to enhance prediction performance and control overfitting. 
The parameter alpha is the sum of absolute value of coefficients which provides a trade-off 
between balancing residual sum of squares and magnitude of coefficients. Alpha can take various 
values that are greater than 0. We tested 400 evenly spaced alpha values on a logarithmic scale 
between 10.0 and 100.  

KNN [76–78] is a supervised machine learning method that can be used for both 
classification and regression tasks. KNN predicts the class value of an incoming sample by its k 
nearest neighboring data points. KNN assumes that cases with similar covariate values are near to 
each other. The parameter k_neighbors is the number of training samples closest in distance to a 
query point in order to predict the label of the query. We tested all integers between 1 and 300. 
The parameter weights is the weighting criteria used to assign a value to a query point. We tested 
both the two available values uniform and distance. The value uniform assigns uniform weights to 
each neighbor. The value distance assigns weights to neighbors proportional to the inverse of the 
distance from the query point, so closer neighbors would weigh more. Metric is a parameter for 
choosing the method for calculating distance. We tested all available values, which are eluclidean, 
manhattan, and chebyshev.  

RF [67, 79–82] is a typical model of bagging in ensemble learning, the trainer will 
randomly select a certain amount of sample data and create a corresponding decision tree. Many 
of these decision trees form a random forest. An advantage of RF is that the independent character 
of each decision tree tends to reduce overfitting. The parameter n_estimators is the number of 
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decision trees in the random forest. We tested values 10, 50, 60, 70, ..., 200, and 500; Other 
parameters come from DT, and we tested the same values as we did with DT for them. 

ADB [81–84] is a typical model of boosting in ensemble learning. Unlike the RF model, 
where each decision tree is independent, Adaboost is a classifier with cascade structure which 
means the next learner is based on the result of the previous weak learner. During the learning 
process, if the current sample is classified incorrectly, the degree of difficulty of the sample will 
increase to make the next learner focus on the difficult part on which previous model performed 
poorly. The parameter n_estimators is the number of weak learners. A model tends to overfit for 
large values of n_estimators. The values of n_estimators we tested include 10, 20, …, and 100.  
Learning_rate is used to shrink the contribution of each classifier. We tested all values from 0.002 
to 0.01 with an increment of 0.001. 

  XGB [85–91] is another common approach for boosting in ensemble learning. Unlike 
ADB, it uses gradient boosting. The XGB classifier is based on the difference between true and 
predicted values to improve model performance. The parameter gamma is a pseudo-regularization 
hyperparameter in gradient boosting, and it affects pruning to control the overfitting problem. 
Gamma values we tested are 0, 0.01, 0.1, 0.3, 0.5, and 0.9. The parameter min_child_weight is 
minimum sum of weights of all observations of a child node. The larger the value, the more 
conservative the algorithm will be. The values tested were 1, 2, 4, and 6.  Alpha and lambda are 
both regularization hyperparameters which can help control overfitting. The values we tested for 
each of them are 1e-5, 1e-2, 0.1, 1, and 100. The parameter max_depth is the maximum depth of 
the individual regression estimators. The values of max_depth we tested were 3, 4, 5, …, 30, 31. 
The learning_rate values we tested were 0, 0.01, 0.1, 0.3, and 0.5.  

Statistical Testing 

We conducted the Wilcoxon rank sum tests to determine the statistical significance of the AUC 
results. We conjectured that deep learning with grid search would perform no worse than other 
methods when predicting the binary status of 5, 10, and 15-year BCM. We paired the DNN with 
each of the 9 other machine learning methods, and conducted both the right-tailed (greater) and 
left-tailed (less) Wilcoxon tests for each pair of the methods and repeated these tests for each of 
the three datasets separately. The null hypothesis for all the Wilcoxon tests is that the two methods 
perform indifferently. The alternative hypothesis of the right-tailed Wilcoxon tests is DNN does 
better (greater) than the comparison method, and this is to test whether DNN performs better than 
other method. The alternative hypothesis of the left-tailed Wilcoxon tests is DNN does worse (less) 
than other method, and this is to test whether DNN performs  worse than the comparison method. 
We conducted the Wilcoxon rank sum test in R using the wilcox.test() function included in the R 
package.  
 

RESULTS 
 
Table 4 shows the mean AUCs from 5-fold cross validation of the best-performing model for each 
method and each dataset, selected based the grid search results. Table 5 contains the results of the 
right-tailed Wilcoxon rank sum tests in which the alternative hypothesis is that the first method 
performs better (greater) than the second method in a pair of methods, while Table 6 shows the 
results of the tests in which the alternative hypothesis is the first method performs worse (less) 
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than the second method. As shown in the first row of Table 5, X represents the first method and Y 
represents the second method. For example, in the cell of row 1 and column 2, DNN is the first 
method and BN is the second method. We included in Tables 5 and 6 W, the p-value, and the 95% 
confidence interval (CI) for each of the Wilcoxon tests we conducted. W is the test statistic used 
in the Wilcoxon rank sum test.  

Table 7 contains the hyperparameter values of the best-performing DNN models learned 
from grid search using each of the three datasets. For example, the best model trained using the 
LSM-15year dataset contains 3 hidden layers, and each of them contains 300 hidden nodes; When 
we selected the best models, we not only considered the mean test AUC values, but also considered 
the percent_auc_diff as defined previously. To identify the best-performing DNN model, we first 
ordered the result table according to the mean test AUC values going from the highest to lowest. 
Then we looked at the percent_auc_diff values from the top of the ordered results and selected as 
the best model the first model whose percent_auc_diff value was less than 5%. Table 8 shows the 
average experiment time per model (in seconds), the number of all models trained via grid search, 
and total experiment time (in days) for each method and dataset.  

We compared side by side the ROC curves of the best-performing models of DNN and the 
9 comparison methods. Figures 2, 3, and 4 show these comparisons in the prediction of 5, 10, and 
15-year BCM, each respectively. Figure 5 contains 4 panels of boxplots for comparing mean test 
AUC values of all methods side by side, one for each dataset separately and one for all datasets 
combined. We notice that for each of the methods, including deep learning, the prediction 
performance improves in general as the number of years it takes to metastasize increases. We also 
notice that LR, LASSO, SVM, and DNN perform extremely well when predicting the 15-year 
BCM. We demonstrate this using a bar graph as shown in Figure 6. 
 
 

Table 4: The mean test AUCs and mean train AUCs of the best-performing models   

Mean Test AUC/Mean Train AUC LSM-5year LSM-10year LSM-15year 

DNN 0.769/0.806 0.793/0.830 0.842/0.873 

Naïve bayes 0.751/0.753 0.797/0.798 0.763/0.826 

Logistic Regression 0.771 /0.773 0.777/0.809 0.844/0.884 

Decision Tree 0.762/0.780 0.783/0.827 0.783/0.838 

SVM 0.739/0.811 0.771/0.808 0.845/0.867 

LASSO 0.772/0.774 0.778/0.806 0.844/0.887 

K nearest neighbor 0.789/0.816 0.793/0.819 0.799/0.832 

Random Forest 0.789/0.801 0.804/0.840 0.802/0.849 

Adaboost 0.759/0.754 0.792/0.800 0.796/0.829 

Xgboost 0.793/0.813 0.806/0.845 0.800/0.854 
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Table 5: Significance test results: one-tailed (greater) Wilcoxon rank sum tests  
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Table 6: Significance test results: one-tailed (less) Wilcoxon rank sum tests  
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Table 7: The hyperparameter values of the best-performing DNN models learned from 5-year, 10-year, 
and 15-year datasets, respectively. 

Hyperparameter Values of 
the Best-performing Model 

LSM-5 Year LSM-10 Year LSM-15 Year 

Number of hidden layers. 2 1 3 
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Table 8: Experiment time per model per dataset, number of models trained, and total experiment time 

Method LSM-5(sec) LSM-10(sec) LSM-15(sec) # of Models 
Trained 

Total Time 
(days) 

DNN 117.430 45.021 20.212 24111 50.974 

NB 0.060 0.046 0.026 18109 0.028 

LR 0.563 0.353 0.253 22399 0.303 

DT 0.048 0.037 0.032 107351 0.145 

LASSO 0.860 0.372 0.189 1024 0.017 

SVM 12.197 2.876 0.362 1799 0.321 

KNN 1.636 0.436 0.132 42341 1.080 

RF 0.774 0.603 0.549 27000 0.602 

ADB 0.655 0.508 0.403 13 0.000 

XGB 4.710 4.566 3.850 46980 7.137 

 

Number of hidden nodes {75, 75} {75} {300, 300, 300} 
Kernel initializer he_normal he_normal he_normal 

Optimizer SGD SGD SGD 
Learning rate 0.005 0.01 0.005 
Momentum 

Beta 
0.9 0.9 0.9 

Iteration-based decay 0.01 0.01 0.01 
Dropout rate 0.5 0.5 0.5 

Epochs 100 100 100 
L1 0 0 0 

L2 0.008 0.008 0.008 

L1 and L2 combined No No No 
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Figure 2: ROC curves of the best-performing models for all methods each respectively for 

predicting 5-year metastasis. 

 
Figure 3: ROC curves of the best-performing models for all methods each respectively for 

predicting 10-year metastasis. 
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Figure 4. ROC curves of the best-performing models for all methods each respectively for 

predicting 15-year metastasis. 

 

 
Figure 5: Boxplots to compare the mean test AUCs of all methods 
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Figure 6: Side by side comparisons of the mean test AUCs of all methods when predicting 5, 10, 

and 15-year breast cancer metastasis 
 

DISCUSSION 
 

Based on the mean test AUC values shown in Table 4, XGB (1st),  RF (2nd), and KNN (3rd) 
are the top three methods in predicting 5-year BCM. DNN ranks 6th and performs better than NB, 
DT, SVM, and ADB in this category. When predicting 10-year BCM, XGB (1st), RF (2nd), and NB 
(3rd) are the top three performers. DNN and KNN tie as the number 4 performers, so DNN performs 
better than LR, DT, SVM, LASSO, and ADB in this category. When predicting 15-year BCM, 
SVM (1st), LR and LASSO (tie for 2nd) and DNN (3rd) are the top three performers, so in this 
category, DNN outperforms the other 6 methods including NB, DT, KNN, RF, ADB, and XGB.  

We notice that in each of the three metastasis categories, the mean test AUC values of the 
top performers are quite close to each other. For instance, when predicting 15-year BCM, the mean 
test AUC values of the top four performers are 0.842 (DNN), 0.844 (LR), 0.844 (LASSO), and 
0.845 (SVM). We further look at the statistical testing results shown in Tables 5 and 6 to compare 
DNN with each of the 9 other machine learning methods. As shown in Table 5, the p-values we 
obtained for each pair methods range from 0.111 (DNN vs NB) to 0.925 (DNN vs KNN) in 
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predicting 5-year BCM, which indicates that at a significance level of 0.05, we are not confident 
in rejecting the null hypothesis which states that DNN performs no difference from the comparison 
methods. Table 5 also shows that DNN performs better than both LASSO (p-value 0.028) and 
SVM (p-value 0.028) but no difference from other methods at a significance level of 0.05 when 
predicting 10-year BCM.  Again according to Table 5, DNN performs better than NB, DT with a 
p-value of 0.011 and 0.030 each respectively, but no difference from other methods at a 
significance level of 0.05 when predicting 15-year BCM. Based on Table 6, DNN performs no 
worse than any of the comparison methods at a significance level of 0.05 for any of the three BCM 
categories. Overall, our statistical testing results support our conjecture that deep learning with 
grid search perform no worse than the comparison methods when predicting the binary status of 
BCM.  

The Potential Effects of Imbalance Data 

As demonstrated in Figure 5, the prediction performance of all methods improves in general as the 
number of years to metastasis increases. Concurrently, as shown in Table 1, the data become more 
balanced as the number of years to metastasis increases. This may indicate that data balance has 
in general a positive effect on the prediction performance of these machine learning methods. 
Additionally, we observe that the mean test AUCs of DNN, SVM, LASSO and LR, when 
predicting the 15-year BCM, are significantly higher than that of these methods when predicting 
the 5-year and 10-year BCM. An explanation for this is the 15-year dataset is much more balanced 
than the 5-year and 10-year dataset. This may indicate that these four methods are more sensitive 
to imbalanced data and potentially superior methods for predicting breast cancer metastasis when 
a dataset is well balanced. The two ensemble methods XGB and RF outperform all other methods 
when predicting the 10-year and 15-year BCM, for which data are less balanced. This may indicate 
that these ensemble methods tend to handle imbalanced data better. 

Computation time 

Table 8 shows that the average experiment time per model of DNN is way higher than that of any 
other method. This is perhaps because DNN has a large number of hyperparameters, and its 
internal parameters (weights and biases) rapidly increase as the number of hidden nodes and the 
number of hidden layers are increased.  

CONCLUSIONS 
 
Based on the statistical testing results, we conclude that at a significance level of 0.05, DNN 
performs no worse than any of the 9 comparison methods when predicting the 5, 10, and 15-year 
BCM. This is consistent with our conjecture that deep learning with grid search perform no worse 
than the comparison methods when predicting the binary status of BCM. On the other hand, it is 
interesting to learn that some of the other machine learning methods such as XGB, RF, and SVM 
are very strong competitors of DNN. Besides, obtaining the best-performing DNN models required 
much more computation time than doing so for the 9 comparison methods.  
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FIGURE LEGEND 
 
Figure 1: A feed-forward ANN that contains one hidden layer. 
 
Figure 2: ROC curves of the best-performing models for all methods each respectively for 
predicting 5-year metastasis. 

 
Figure 3: ROC curves of the best-performing models for all methods each respectively for 
predicting 10-year metastasis. 

 
Figure 4: ROC curves of the best-performing models for all methods each respectively for 
predicting 15-year metastasis. 
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Figure 5: Boxplots to compare the mean test AUCs of all methods side by side, each dataset 
separately and all datasets combined. 
 
Figure 6: Side by side comparisons of the mean test AUCs when predicting 5, 10, and 15-year 
metastasis, for each of the methods respective. 

 

TABLE LEGEND 
 
Table 1:  Case counts of the LSM datasets. 
 
Table 2: The variables of the LSM datasets. 
 

Table 3: Description of the DNN hyperparameters. 

 
Table 4: The mean test AUCs and mean train AUCs of the best-performing models. 

 
Table 5: Significance test results: one-tailed (greater) Wilcoxon rank sum tests. 
 
Table 6: Significance test results: one-tailed (less) Wilcoxon rank sum tests. 
 

Table 7: The hyperparameter values of the best-performing DNN models learned from 5-year, 
10-year, and 15-year datasets, respectively. 
 
Table 8: Experiment time per model per dataset, number of models trained, and total experiment 
time. 
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