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Abstract: The object detection task is usually affected by complex backgrounds. In this paper, a new 1

image object detection method is proposed, which can perform multi-feature selection on multi-scale 2

feature maps. By this method, a bidirectional multi-scale feature fusion network is designed to fuse 3

semantic features and shallow features to improve the detection effect of small objects in complex 4

backgrounds. When the shallow features are transferred to the top layer, a bottom-up path is added 5

to reduce the number of network layers experienced by the feature fusion network, reducing the loss 6

of shallow features. In addition, a multi-feature selection module based on the attention mechanism is 7

used to minimize the interference of useless information on subsequent classification and regression, 8

allowing the network to adaptively focus on appropriate information for classification or regression 9

to improve detection accuracy. Because the traditional five-parameter regression method has severe 10

boundary problems when predicting objects with large aspect ratios, the proposed network treats 11

angle prediction as a classification task. The experimental results on the DOTA dataset, the self-made 12

DOTA-GF dataset and the HRSC 2016 dataset show that, compared with several popular object 13

detection algorithms, the proposed method has certain advantages in detection accuracy. 14

Keywords: Object detection; Feature fusion network; Multiple feature selection; Angle prediction; 15

Pixel Attention Mechanism 16

1. Introduction 17

Object detection in remote sensing and UAV (Unmanned Aerial Vehicle) imagery is 18

important in a variety of sectors, including resource monitoring, national defense, and 19

urban planning[1,2]. Unlike typical optical images, optical remote sensing images always 20

have their own unique qualities, such as numerous sizes of objects, arbitrary object direction, 21

and complex backgrounds that take up the majority of the image. Many remote sensing 22

image object detection algorithms borrow ideas from text detection algorithms like RRPN[3] 23

because the arbitrariness of the object direction in remote sensing images has a lot in 24

common with text detection[4]. However, due to the peculiar nature of remote sensing 25

images, directly applying text detection algorithms to remote sensing image object detection 26

frequently yields unsatisfactory results. 27

For scale-differences between classes, the feature pyramid network (FPN) [5] is com- 28

monly utilized in object detection of various remote sensing images. Shallow features 29

in FPN, on the other hand, must transit through numerous layers to reach the top layer, 30

resulting in significant information loss. To improve the detection effect of small object- 31

s, certain algorithms[6–8] optimize the structure of FPN. The traditional technique to 32

counteract the arbitrariness of object orientation in remote sensing images is to raise the 33

regression parameters to estimate the angles[9,10], which has a severe problem of boundary 34
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discontinuities[11]. To tackle the boundary problem, the IoU constant factor is added to 35

the smooth L1 loss to make correct angle predictions. Because the complex background 36

contains a lot of noise[12], [13] uses a multi-scale feature extraction method to enhance each 37

feature map with a visual attention mechanism to lessen the impact of background noise 38

on object detection. After using the region proposal network (RPN) to acquire regional 39

suggestions, [14] uses the location-sensitive score map to anticipate the target’s local loca- 40

tion, and specifies that it can only be classified as a given category after reaching a certain 41

local feature similarity. To some extent, this strategy can also eliminate the influence of the 42

background. 43

In summary, the main issues with remote sensing image object detection are numerous 44

scales, complex backgrounds, and poor angle prediction. This paper proposes a new remote 45

sensing image object detection algorithm to address these issues, and the framework is 46

shown in Fig. 1. 47

Figure 1. The network structure of proposed method. It can be divided into four parts: (a)Input
image, (b)Feature pyramid net, (c)Feature selection module, (d) Multitasking subnets

We use a single-stage rotation detector for multi-scale objects to retain good detection 48

accuracy and speed. The first step is to build a bidirectional multi-scale feature fusion 49

network. To prevent information loss during the transfer of shallow features to the top layer, 50

a bottom-up path is added to merge high-level semantic information and shallow features. 51

Second, a multi-feature selection module based on the attention mechanism is designed 52

to reduce the complex background’s influence on object detection. The visual attention 53

mechanism allows the network to focus on more significant information while avoiding 54

background noise, and choose appropriate features for classification and regression tasks. 55

Third, to increase the accuracy of direction prediction, the proposed network treats angle 56

prediction as a classification problem. The distribution vectors of the category labels are 57

smoothed using the circular smooth label, which divides the angles into 180 categories. 58

The majority of the data in open-source remote sensing image object detection datasets 59

comes from Google Earth, with only a minor amount coming from domestic satellites. And 60

there is a lack of military targets. As a result, we gathered some GF-2 and GF-6 images 61

and created a new dataset named DOTA-GF. On DOTA [15] dataset and DOTA-GF dataset, 62

the proposed method is compared to many popular remote sensing image object detection 63

algorithms. This work makes the following contributions: 64

• A bidirectional multi-scale feature fusion network is built for high-precision multi- 65

scale object detection in remote sensing images. It is the first work that we are aware 66

of that achieves high-precision object detection in complex backgrounds. 67

• The multi-feature selection module (MFSM) based on attention mechanism is designed 68

to reduce the influence of useless features in feature maps in complex backgrounds 69

with a lot of noise. 70

• We proposed a novel remote sensing image object detection algorithm that included a 71

bidirectional multi-scale feature fusion network and a multi-feature selection module. 72

With extensive ablation experiments, we validate the effectiveness of our approach on 73

the standard DOTA dataset and a customized dataset named DOTA-GF. Our proposed 74

method achieves a mAP of 65.1% with ResNet50 backbone in DOTA dataset and 64.1% 75

with ResNet50 backbone in DOTA-GF dataset when compared to state-of-the-art 76

methods. 77
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2. Related work 78

2.1. Object Detection Algorithms Based on Deep Learning 79

Object detection algorithms based on deep learning are mainly divided into two cate- 80

gories, one-stage algorithms and two-stage algorithms. The series of algorithms of R-CNN 81

are typical two-stage method,including R-CNN, Fast R-CNN, and Faster R-CNN [16]. Fast 82

R-CNN proposed RoIpooling and used convolution network to achieve regression and 83

classification, while Faster R-CNN used the RPN (RegionProposal Network) to replace 84

selective search and shared feature map with the subsequent classification network. The 85

one-stage methods extract feature maps and predict the categories and locations simul- 86

taneously. The SSD and YOLO are two typical one-stage methods [17]. Different from 87

the two-stage methods, the one-stage methods are influenced by the problem of category 88

imbalance during detection. To tackle such problem, focal loss [18] is proposed to suppress 89

category imbalance in one-stage methods. 90

2.2. Arbitrary-oriented object detection 91

Arbitrary-oriented object detection has been widely used in remote sensing image, 92

aerial image, natural scene text, etc. These detectors also use rotated bounding boxes 93

to describe positions of objects, which are more accurate than those using horizontal 94

bounding boxes. Recently, many detectors have been proposed. For example, RRPN [3] 95

used rotating anchors to improve the qualities of region proposals. R2CNN is a multi- 96

tasking text detector that identifies both rotated and horizontal bounding boxes at the 97

same time. However, object detection in remote sensing images is more difficult, due to 98

multiple categories, multiple scales, complex backgrounds. So many Arbitrary-oriented 99

object detection in remote sensing images has been proposed. R3Det [10] proposed an 100

improved one-stage rotated object detector for accurate object localization by solving the 101

feature misalignment problem. SCRDet [19] proposed an IoU-smooth L1 loss to solve the 102

loss discontinuity caused by the angular periodicity. [20] proposed a Anchor-free Oriented 103

Proposal Generator (AOPG) that abandoned the horizontal boxes-related operations from 104

the network architecture. The AOPG produced coarse oriented boxes by Coarse Location 105

Module in an anchor-free manner and refined them into high-quality oriented proposals. 106

[21] proposed an effective oriented object detection method, termed Oriented R-CNN. 107

Oriented R-CNN is a general two-stage oriented detector. In the first stage, the oriented 108

Region Proposal Network directly generates high-quality oriented proposals in a nearly 109

cost-free manner. The second stage is oriented R-CNN head for refining oriented regions of 110

interest and recognizing them. 111

3. The proposed algorithm 112

We give an overview of our algorithm as sketched in Figure 1. It consists of four 113

parts: the backbone, the bidirectional multi-scale feature fusion network, the multi-feature 114

selection module based on attention mechanism and the multi-task subnets. We use the 115

ResNet50 [22] as our backbone. The bidirectional multi-scale feature fusion network is 116

responsible for fusing the high-level semantic information and the shallow features output 117

by the backbone. The multi-feature selection module based on the attention mechanism can 118

select features that are appropriate for classification and regression. After feature selection, 119

the multi-scale feature maps are sent into the classification and regression sub-networks, 120

respectively. Only the center points, width, and height of the bounding boxes are predicted 121

by the regression subnet in this case. Through the classification subnet, the categories and 122

angles are predicted. 123

3.1. Bidirectional multi-Scale feature fusion network 124

In the early object detection algorithms, such as Faster R-CNN [23], the subsequent 125

classification and regression are usually performed on the feature map of the last layer 126

of the backbone, which is less computationally expensive. But for the multi-scale object 127

detection, the information of a single-layer feature map is not enough. In 2017, He et 128
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al. proposed FPN [18], which fuses high-level features and low-level features, and uses 129

multi-scale fusion feature maps for subsequent detection. RetinaNet [24] also follows the 130

idea of FPN to build a feature pyramid net, as shown in Figure 2(a). 131

(a) Feature pyramid structure in RetinaNet
network

(b) Bidirectional multi-scale feature fusion network

Figure 2. The network structure of feature fusion network. The red dotted line : the bottom-up path
of the shallow information transmitted to the high level, the yellow dotted : the new bottom-up
path, 1× 1Conv: convolution operation with 1× 1 convolution kernel, 2×UpSample: the double
upsampling operation by bilinear interpolation, 3× 3/2Conv: convolution operation with 3× 3
convolution kernel and a stride of 2, 3× 3Conv: convolution operation with 3× 3 convolution kernel
and a stride of 1

Compared with the features extracted only through the last layer of convolution, FPN 132

can use more high-level semantic information and detailed information. The red dotted 133

line in Figure 2(a) indicates that in FPN, because of the bottom-up path, shallow features 134

need to pass through multilayer networks to reach the top layer, and the information loss is 135

more serious. Taking ResNet50 as an example, the transfer of the C3 layer to the C5 layer 136

needs to go through 27 layers of convolution operations, as shown in Figure 3. The shallow 137

details contained in P5, P6 and P7 are lacking to be used for subsequent detection. With the 138

addition of the bottom-up fusion path, the detailed texture features of the C3 layer can be 139

transferred to P′5, P′6 and P′7 with only a few layers, as indicated by the yellow dotted line in 140

Figure 2(b). Therefore, the loss of shallow features is reduced. 141

Figure 3. ResNet50 network structure, the red arrow indicates the path from C3 to C5.

Therefore, we design a new feature fusion network, and a bottom-up path is added to 142

reduce the number of network layers experienced when the shallow features are transferred 143

to the top layer, thereby reducing the loss of shallow features. The detailed information of 144

the network is shown in Figure 2(b). 145

As shown in Figure 2(b), 1 × 1Conv represents using 1 × 1 convolution kernel to 146

perform convolution operations and change the number of channels in the feature map. 147
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2×UpSample represents the double upsampling operation of the feature map using bilinear 148

interpolation. 3× 3/2Conv means using a 3× 3 convolution kernel to perform a convolution 149

operation with a stride of 2, reducing the size of the feature map to half of the original 150

size. The output of the backbone is Ci(i ∈ 3− 5), and the feature map after feature fusion 151

is Pi(i ∈ 3− 7). Using 1× 1 convolution to reduce the dimension of C5 to get P5, C5 is 152

double downsampled to get P6, P6 is double downsampled to get P7. The result of double 153

upsampling of P5 is fused with C4 to obtain P4. The result of double upsampling of P4 154

is fused with C3 to obtain P3. Pi(i ∈ 3− 7) combines the information of C3, C4, and C5 155

at the same time, and contains low-level detailed information and high-level semantic 156

information. Although it has a strong characterization ability for multi-scale objects, the 157

transmission path of shallow features to higher layers is too long, and the feature loss 158

is severe. Therefore, we add a bottom-up path, as shown in the yellow dotted line in 159

Figure 2(b). 3× 3Conv represents a convolution operation with a stride of 1 and a 3× 3 160

convolution kernel. Perform a 3× 3 convolution operation on P3 to obtain P′3. The result of 161

P′4 after 3× 3 convolution and the result of double downsampling of P′3 are fused to obtain 162

P′4. Then P′5, P′6 and P′7 are obtained in the same way. 163

3.2. Multi-Feature selection module based on attention mechanism 164

The complex background of satellite remote sensing images occupies a large area of 165

the whole image. The images taken by domestic satellites, such as GF-2 and GF-6, are 166

not as clear as Google Earth images, which leads to more complex backgrounds of the 167

images, unclear object textures and sometimes interference from cloud and fog. Directly 168

inputting feature maps of different scales into the subsequent classification and regression 169

sub-networks often fails to obtain ideal results. In recent years, the attention mechanism 170

has achieved great success in computer vision tasks, such as image classification [24] and 171

semantic segmentation [25]. Here we designed a MFSM. MFSM uses the pixel attention 172

mechanism to select the features suitable for classification and regression, respectively, to 173

reduce the influence of useless information in the feature maps. Different from the spatial 174

attention mechanism, which learns the degree of dependence on different locations in 175

space[26] , the pixel attention mechanism learns the degree of dependence on each pixel, 176

and adjusts the feature map according to the degree of dependence. 177

The general one-stage object detection algorithms directly input P′i (i = 3, 4, 5, 6, 7) 178

into classification subnet and regression subnet. The classification subnet is to predict the 179

category of the bounding box. The regression subnet is primarily responsible for predicting 180

the specific position of the bounding box. The purposes of the two subnets are different. It is 181

dinappropriate to use the same feature maps to perform classification and regression tasks 182

at the same time. Therefore, we design the MFSM. As shown in Figure 4, the multi-scale 183

feature maps are obtained through the feature fusion network, and then are input into two 184

feature selection modules respectively. Finally, the feature maps after feature selection are 185

input into the classification subnet and regression subnet. 186

Figure 4. Multi-feature selection of multi-scale feature maps
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The network details of the feature selection module for classification and the feature 187

selection module for regression are the same, as shown in Figure 5. 188

Figure 5. Detailed information of the multi-feature selection module. CNNs: four layers of 3× 3
convolution, �: hadamard product,⊕Matrix addition.

The input of the module is the multi-scale feature maps input P′i (i = 3, 4, 5, 6, 7) output 189

by the feature fusion network, and the output of the module is a series of feature maps 190

input Di(i = 3, 4, 5, 6, 7) with the same dimensions as the input. The processing process for 191

each input input P′i (i = 3, 4, 5, 6, 7) is shown in Figure 5 and Equation 1-2: 192

Ai = σ[φi(P′i )] (1)

Di = Ai � P′i + P′i (2)

where φi(P′i ) means performing four layers of 3× 3 convolution on P′i . σ is the sigmoid 193

function which converts the value of φi(P′i ) into [0-1] to get Ai, so that it can converge 194

faster during training. Finally, the result of multiplying the corresponding elements of P′i 195

and Ai is added to P′i . The multiplication operation can make the value of the functional 196

information in P′i larger and the value of the useless information smaller. The addition 197

operation refers to the idea of the residual network [22], which can make the network 198

converge faster. This design can make the network adaptively select features suitable for 199

classification or regression. 200

Figure 6. Visualization results of multi-scale feature maps.From top to bottom, there are the multi-
scale feature maps P′i (i = 3, 4, 5, 6, 7), the multi-scale feature maps CLSi(i = 3, 4, 5, 6, 7) used for
classification tasks, and the multi-scale feature map REGi(i = 3, 4, 5, 6, 7) used for regression tasks.

Figure 6 shows a remote sensing image with cloud interference and visualization 201

results of its feature maps. The feature map P′i (i = 3, 4, 5, 6, 7) is obtained by the feature 202
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fusion network. P′i is input into the multi-feature selection network, and the feature map 203

CLSi(i = 3, 4, 5, 6, 7) for the classification prediction task and the feature map REGi(i = 204

3, 4, 5, 6, 7) for the bounding box prediction task are obtained. In Figure 6, three rows from 205

top to bottom are P′i , CLSi(i = 3, 4, 5, 6, 7) and REGi(i = 3, 4, 5, 6, 7). Five columns from left 206

to right are feature maps of the 3rd, 4th, 5th, 6th and 7th layers respectively. For the ship in 207

Figure 6, the P′3 and P′4 in the multi-scale feature maps have a greater response. From P′3, 208

P′4, CLS3, CLS4 and REG4, REG4, we can see that after feature selection, the feature map 209

has a stronger response in the object area. It shows that the multi-feature selection module 210

based on the attention mechanism can select features suitable for classification tasks and 211

regression tasks from multi-scale feature maps and improve the detection accuracy. 212

3.3. Accurate acquisition of target direction based on angle classification 213

At present, most mainstream algorithms use the idea of regression for angle prediction, 214

and the bounding box is determined by five parameters. The five-parameter regression 215

method has problem of boundary discontinuities [11], which will make prediction box 216

inaccurate. Figure 7 shows the results of the prediction angle based on the five-parameter 217

regression method. As can be seen from the red boxes in the figure, there is a significant 218

difference between the angles of the detected bounding boxes and the angles of the actual 219

objects, including the large vehicles on the left and the ships on the right. 220

(a) Large vehicle (b) Ship

Figure 7. The regression inaccuracy of the five-parameter method. RetinaNet is the base model.
The cars and ships in the red box have not been accurately detected, and the angles between the
prediction boxes and the ground truth are much different.

Aiming at the loss discontinuity of five-parameter regression, this paper treats the 221

angle prediction as a classification task [27]. The angles are divided into 180 categories. We 222

find that directly dividing the angle into 180 categories will lead to low fault tolerance of 223

adjacent angles. Therefore, the circular smooth label (CSL)[27] is used in this paper. The 224

CSL expression is as follows: 225

S(x) =

{
f (x), i f θ + τ ≤ x ≤ θ + τ,

0, otherwise
(3)

where γ denotes the radius of the window. θ is the angle of the current ground truth. 226

The circular smooth label is different for each ground truth. f (x) is the window function, 227

and the Gaussian function is used here, as shown in Equation 4: 228

Gaussian(x) = ae
−(x−b)2

2c2 (4)
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where a, b and c are constants (a > 0), in this paper, a = 1, b = 0, and c is equal to 229

the radius of the window function which is set to be 6. The CSL [27] can increase the error 230

tolerance to adjacent angles. 231

In the paper, the angles of the bounding box are divided into 180 categories. If the
angle of a ground truth is −90◦, the traditional label of the angle is as follows:

label = (1, 0, 0, 0, 0, 0, 0, 0 · · · 0, 0, 0, 0) (5)

The circular smooth label of the angle is as follows:

labelcsl = (1, 0.86, 0.71, 0.57, 0.43, 0.29, 0.14, 0 · · · 0, 0, 0.14, 0.29, 0.43, 0.57, 0.71, 0.86) (6)

The detector has two prediction results. In the traditional method, so f tmax is used to
calculate the probabilities of different classes. The corresponding labels are as follows:{

label1 = (0.03, 0.4, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03 · · · 0.03, 0.03, 0.03)

label2 = (0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.4, 0.03 · · · 0.03, 0.03, 0.03)
(7)

In the proposed method, sigmoid is used to calculate the probabilities of different
classes. The corresponding labels are as follows:{

label∗1 = (0.1, 0.8, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1 · · · 0.1, 0.1, 0.1, 0.1, 0.1)

label∗2 = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.8, 0.1, 0.1 · · · 0.1, 0.1, 0.1, 0.1, 0.1)
(8)

The predicted angle corresponding to label1 and label∗1 is −89◦, and the predicted
angle corresponding to label2 and label∗2 is −84◦. Taking the cross-entropy loss function as
an example. In the traditional method, the losses of label1 and label2 to the real label are as
follows:{

loss1 = −(1× log(0.03) + 0× log(0.4) + 0× log(0.03) + · · · ) = −log(0.03)

loss2 = −(1× log(0.03) + · · ·+ 0× log(0.4) + 0× log(0.03) + · · · ) = −log(0.03)
(9)

It is found that loss1 = loss2, that is, the label1 and label2 have the same loss to the
ground truth. However, the predicted angle obtained by label1 is −89◦, which is only 1◦

different from the true angle. While the predicted angle obtained by label2 is −84◦, which
is 6◦ different from the true angle. The first prediction result is obviously more accurate.
The analysis shows that directly dividing the angle into 180 categories will lead to low fault
tolerance of adjacent angles. In the proposed method, the losses of label1 and label2 to the
real label are as follows:{

loss∗1 = −(1× log(0.1) + 0.86× log(0.8) + 0.71× log(0.1) + · · · ) ≈ 14.33

loss∗2 = −(1× log(0.1) + 0.86× log(0.1) + 0.71× log(0.8) + · · · ) ≈ 16.12
(10)

It can be found that loss∗1 < loss∗2 , that is, the circular smooth label makes the losses of 232

more accurate labels smaller and increase the error tolerance to adjacent angles. 233

3.4. Loss function 234

The total loss function is as equation 11: 235

L =
1
N

N

∑
n=1

t′n ∑
j∈{x,y,w,h}

Lreg(v′nj, vnj) +
λ1

N

N

∑
n=1

Lcls(pn, tn) +
λ2

N

N

∑
n=1

Lclsθ
(θ′n, θn) (11)

where N indicates the number of anchors, t′n has two values, i.e., 0 and 1, respectively 236

(t′n = 1 for foreground and t′n = 0 for background). v′ij indicates the predicted offset vector. 237
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And vij indicates the real offset vector. tn indicates the label of object, pn indicates the 238

probability distribution of various classes calculated by sigmoid function. Hyperparameter 239

λ1 and λ2 are trade-off factors, which control the weights of different loss functions, and 240

their default values are both 1. Lreg indicates Smooth L1 Loss [23]. Lcls represents the 241

loss of classification in the object category prediction. Lclsθ
represents the loss of angle 242

classification in the angle prediction. Both Lcls and Lclsθ
use Focal loss [18]. 243

4. Experimental results and discussion 244

The GPU used in this paper is GTX1660Ti with 6G memory. The operating system we 245

used is Ubuntu 16.04. The deep learning framework is Tensorflow. ResNet50 is used as the 246

backbone of the network. Experiments are carried out on DOTA and the self-made dataset 247

DOTA-GF. Some visual experiment results are shown in Figure 8. 248

(a) Ship (b) Plane and Small vehicle

(c) Bridge and Storage tank (d) Small vehicle and Large vehicle

Figure 8. Visual detection results of some typical objects

4.1. Ablation studies 249

In this section, we conduct detailed ablation on DOTA to evaluate the effctiveness of 250

each module and illustrate the advance and generalization of the proposed method. 251

4.1.1. Bidirectional multi-Scale feature fusion network 252

To verify the effectiveness of the improved feature fusion network, using ResNet50 253

as the backbone and RetinaNet as the embodiment, to compare the detection result of the 254

original FPN and the improved feature pyramid network (Improved-FPN) on the DOTA 255

[15] dataset. We mainly consider the average precision (AP) and mean average precision 256

(mAP) of six types of typical objects, including plane (PL), ship (SH), bridge (BG), small 257

vehicle (SV), large vehicle (LV), and storage tank (ST). The experimental results are shown 258

in Table 1. 259

It can be seen from Table 1 that the Improved-FPN can significantly improve the 260

detection accuracy of typical objects in remote sensing images. Among them, the AP of the 261

ship has the highest increase of 2.4%. That is because many ships in DOTA is small, and 262
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the shallow features have a greater impact on the detection results and the bidirectional 263

multi-scale feature fusion network can make full use of the shallow features. The AP of 264

the storage tank has the least increase, which is 0.6%. The mAP of 6 types of objects is 265

increased by 1.4%. Experimental results show that the improved feature fusion network is 266

more suitable for remote sensing image object detection than the original feature fusion 267

network. 268

Table 1. The experimental results of the bidirectional multi-scale feature fusion network

Method
AP(%)

mAP(%)
PL SH BG SV LV ST

FPN 83.4 62.2 32.3 65.7 48.3 74.9 61.1

our-FPN 84.5 64.6 34.0 67.2 49.2 75.5 62.5

4.1.2. Multi-Feature selection module based on attention mechanism 269

To further prove the effectiveness of the multi-feature selection module, the multi- 270

feature selection module is added to RetinaNet [18] to conduct experiments on DOTA 271

[22]. The comparative experiments of the MFSM with other attention mechanisms are 272

supplemented too. The experimental results with MFSM, SE[28] and CBAM[26] are shown 273

in Table 2. 274

Table 2. Experimental results of different attention mechanisms

Mthod
AP(%)

mAP(%)
PL SH BG SV LV ST

Baseline 83.4 62.2 32.3 65.7 48.3 74.9 61.1

SE 83.6 64.3 33.4 66.1 50.1 74.1 61.9

CBAM 84.4 64.5 33.7 67.0 49.1 75.2 62.3

MFSM 84.7 63.4 33.6 67.3 49.5 76.1 62.4

Compared with RetinaNet [18], after adding the multi-feature selection module, the 275

detection accuracy of the six types of typical objects has been significantly improved with 276

an AP increase of 1.2% to 1.6%. The mAP has increased by 1.3%. Among them, the detection 277

accuracy of small vehicle has the greatest improvement, and the AP increases by 1.6%. At 278

the same time, MFSM has better detection performance than SE and CBAM. In SE and 279

CBAM, an attention module is used to process the feature map, and the classification and 280

regression subnets share the feature map. MFSM processes feature maps for classification 281

and regression respectively, which can alleviate the conflict between classification tasks 282

and regression tasks to a certain extent. Therefore, MFSM has a simpler structure, but has 283

better performance. 284

4.1.3. Accurate acquisition of target direction based on angle classification 285

To further prove that turning the angle regression problem into a classification task can 286

improve the remote sensing images detection effect, the angle prediction in RetinaNet is 287

regarded a classification task with 180 categories, and CSL is used for smoothing. Compar- 288

ative experiments are performed on the DOTA, and the experimental results are shown in 289

Table 3. It can be seen from Table 3 that treating the angle prediction as a classification task 290

can significantly improve the detection effect. Among the six types of typical targets, the AP 291

of ships, bridges, small vehicles, and large vehicles increased by 2.7%, 2.2%, 1.9%, and 3.2% 292

respectively. This is because the aspect ratios of these four types of objects are relatively 293
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large, and the use of regression to predict angles has more serious loss discontinuity. For 294

planes and storage tanks with an aspect ratio close to 1, the AP also increased by 0.8% and 295

0.9%. The experimental results prove that treating the angle prediction as a classification 296

task can effectively improve the detection accuracy of objects with larger aspect ratios. 297

Table 3. Experimental results of RetinaNet using classification and regression methods to predict
angles

Mthod
AP(%)

mAP(%)
PL SH BG SV LV ST

Regression 83.4 62.2 32.3 65.7 48.3 74.9 61.1

Classification 84.2 64.9 34.5 67.6 51.5 75.8 63.1

4.2. Results on DOTA 298

The DOTA [15] dataset contains 15 categories. This paper mainly analyzes six typical 299

objects, including ships, planes, bridges, small vehicles, large vehicles, and storage tanks. 300

The evaluation indicators used are AP and mAP. CSL [27], RRPN [3], RetinaNet [18] and 301

Xiao [9] were selected as comparative algorithms. The comparison results of different 302

algorithms are shown in Table 4. 303

Table 4. Comparison results of different algorithms on the DOTA dataset

Category CSL RRPN RetinaNet Xiao Proposed

PL 84.2 83.9 83.4 78 85.7

SH 64.9 47.2 62.2 65 66.5

BG 34.5 32.3 32.3 38 37.5

LV 51.5 49.7 48.3 59 54.2

SV 67.6 34.7 65.7 37 69.2

ST 75.8 48.8 74.9 50 77.3

mAP(%) 63.1 48.0 61.1 55 65.1

The data in Table 4 shows that mAP of the proposed method is better than most of the 304

mainstream object detection algorithms. The algorithm proposed has achieved the highest 305

AP in four types of objects: planes, ships, small vehicles, and storage tanks. Besides, the 306

APs of large vehicles and bridges are second only to the highest. The large vehicles in the 307

DOTA dataset are often placed very closely, and adjacent objects have occlusion problems. 308

This is also a problem that we will study in the future. These comparison results show that 309

the algorithm proposed in this paper can effectively detect typical objects in remote sensing 310

images. 311

4.3. Results on DOTA-GF 312

At present, the remote sensing images in public remote sensing datasets such as 313

DOTA [15] and NWPU VHR-10 [29] are mainly derived from Google Earth, with only a 314

small amount of data derived from domestic data and lack of military objects. Therefore, 315

we collected 188 GF-2 Satellite images and GF-6 Satellite images with a resolution of 316

1000× 1000 to 4000× 4000 and labeled them using the four-point method. 317

138 domestic remote sensing images were added to the training set of DOTA as the 318

DOTA-GF training set. The remaining 50 domestic remote sensing images are added to the 319

DOTA testing set as the DOTA-GF testing set. Then select the data containing six types of 320
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objects: ships, planes, bridges, small vehicles, large vehicles, and storage tanks, and crop 321

them to pieces of size 600× 600 for training. To illustrate the effectiveness of the proposed 322

algorithm, four representative object detection algorithms, CSL [27], RRPN [3], RetinaNet 323

[18] and R3Det [10] were selected for comparison experiments. The detection results of 324

different algorithms are shown in Table 5. 325

Table 5. Comparison results of different algorithms on the DOTA-GF dataset

Category CSL RRPN RetinaNet R3Det Proposed

PL 83.6 81.7 83.2 85.2 84.6

SH 64.1 46.8 61.0 66.1 66.3

BG 35.3 34.8 32.5 35.5 37.2

LV 50.4 48.2 50.2 61.5 53.8

SV 64.7 33.8 64.5 59.8 68.6

ST 72.9 48.6 72.7 70.5 74.1

mAP(%) 56.5 49.0 60.7 63.1 64.1

It can be seen from Table 5 that compared with the four representative algorithms, 326

the algorithm proposed in this paper has achieved the highest AP in four types of objects: 327

ships, bridges, small vehicles, and storage tanks. The APs of planes and large vehicles 328

are also close to the highest AP of the four types of algorithms. However, the network 329

structure of R3Det is more complex. Both the training time and the testing time of a 330

single image are longer than the proposed algorithm. Compared with the four comparison 331

algorithms, the mAP of the six typical objects of the proposed algorithm is also the highest. 332

The experimental results show that the algorithm proposed in this paper still has certain 333

advantages on the self-made DOTA-GF dataset. 334

4.4. Results on HRSC 2016 335

HRSC 2016 [30] contains lots of remote sensing ships with a large aspect ratio, s- 336

cales and arbitrary orientations. Our method achieves competitive performances on the 337

HRSC2016 dataset. The comparison results are shown in Table 6. 338

Table 6. comparisons with different methods on the HRSC2016 dataset

Methods Size mAP (%)

R2CNN 800×800 73.7

RRPN 800×800 79.1

RetinaNet 800×800 81.7

RoI-Transformer 512×800 86.2

Proposed 800×800 87.1

From Table 6, it can be seen that compared with R2CNN [31], RRPN [3], RetinaNet [18], 339

and RoI-Transformer [32], the algorithm in this paper achieves the best detection results, 340

with a mAP of 87.1%. The experimental results verify the effectiveness of the proposed 341

algorithm on HRSC 2016 dataset. 342

5. Conclusion 343

Aiming at the challenges such as multi-scale objects, complex backgrounds, and 344

boundary problems, we propose a new remote sensing image object detection algorithm. 345

In this algorithm, a bidirectional multi-scale feature fusion network is designed to combine 346
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the semantic features and shallow detailed features to reduce the loss of information in 347

the process of transferring shallow features to the top layer. A multi-feature selection 348

module based on the attention mechanism is designed to make the network focus on 349

valuable information and assist to select the feature maps appropriate for classification 350

and regression tasks. To avoid boundary discontinuities problem in the regression process, 351

we treat angle prediction as a classification task rather than a regression task. Finally, 352

experimental results on the DOTA dataset, the DOTA-GF dataset and the HRSC 2016 353

dataset show that the proposed algorithm has certain advantages in remote sensing image 354

object detection. However, our proposed method still has limitations in detecting dense 355

objects. In the future, we will outlook the situation of dense object occlusion, and improve 356

our network model to better detect dense objects. The results reported in this paper can 357

be downloaded from the URL https://github.com/xiaojs18/ObjectDetection/tree/main/ 358

Remote-Detection. 359
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