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Abstract: The object detection task is usually affected by complex backgrounds. In this paper, anew 1
image object detection method is proposed, which can perform multi-feature selection on multi-scale =
feature maps. By this method, a bidirectional multi-scale feature fusion network is designed to fuse s
semantic features and shallow features to improve the detection effect of small objects in complex 4
backgrounds. When the shallow features are transferred to the top layer, a bottom-up pathis added s
to reduce the number of network layers experienced by the feature fusion network, reducing the loss
of shallow features. In addition, a multi-feature selection module based on the attention mechanism is 7
used to minimize the interference of useless information on subsequent classification and regression,
allowing the network to adaptively focus on appropriate information for classification or regression o
to improve detection accuracy. Because the traditional five-parameter regression method has severe 1o
boundary problems when predicting objects with large aspect ratios, the proposed network treats 11
angle prediction as a classification task. The experimental results on the DOTA dataset, the self-made 1=
DOTA-GF dataset and the HRSC 2016 dataset show that, compared with several popular object 13
detection algorithms, the proposed method has certain advantages in detection accuracy. 14

Keywords: Object detection; Feature fusion network; Multiple feature selection; Angle prediction; 1s
Pixel Attention Mechanism 16

1. Introduction 17

Object detection in remote sensing and UAV (Unmanned Aerial Vehicle) imagery is 1s
important in a variety of sectors, including resource monitoring, national defense, and 1
urban planning][1,2]. Unlike typical optical images, optical remote sensing images always 2o
have their own unique qualities, such as numerous sizes of objects, arbitrary object direction,  2:
and complex backgrounds that take up the majority of the image. Many remote sensing 22
image object detection algorithms borrow ideas from text detection algorithms like RRPN[3]  2s
because the arbitrariness of the object direction in remote sensing images has a lot in 2
common with text detection[4]. However, due to the peculiar nature of remote sensing  zs
images, directly applying text detection algorithms to remote sensing image object detection 26
frequently yields unsatisfactory results. 27

For scale-differences between classes, the feature pyramid network (FPN) [5] is com- 2
monly utilized in object detection of various remote sensing images. Shallow features 2o
in FPN, on the other hand, must transit through numerous layers to reach the top layer, o
resulting in significant information loss. To improve the detection effect of small object- s
s, certain algorithms[6-8] optimize the structure of FPN. The traditional technique to a2
counteract the arbitrariness of object orientation in remote sensing images is to raise the s
regression parameters to estimate the angles[9,10], which has a severe problem of boundary s
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discontinuities[11]. To tackle the boundary problem, the IoU constant factor is added to s
the smooth L; loss to make correct angle predictions. Because the complex background e
contains a lot of noise[12], [13] uses a multi-scale feature extraction method to enhance each 7
feature map with a visual attention mechanism to lessen the impact of background noise s
on object detection. After using the region proposal network (RPN) to acquire regional 3¢
suggestions, [14] uses the location-sensitive score map to anticipate the target’s local loca- 40
tion, and specifies that it can only be classified as a given category after reaching a certain
local feature similarity. To some extent, this strategy can also eliminate the influence of the 4
background. e

In summary, the main issues with remote sensing image object detection are numerous s
scales, complex backgrounds, and poor angle prediction. This paper proposes a new remote 45
sensing image object detection algorithm to address these issues, and the framework is 46
shown in Fig. 1. a7

Figure 1. The network structure of proposed method. It can be divided into four parts: (a)lnput
image, (b)Feature pyramid net, (c)Feature selection module, (d) Multitasking subnets

We use a single-stage rotation detector for multi-scale objects to retain good detection s
accuracy and speed. The first step is to build a bidirectional multi-scale feature fusion s
network. To prevent information loss during the transfer of shallow features to the top layer, so
a bottom-up path is added to merge high-level semantic information and shallow features. s
Second, a multi-feature selection module based on the attention mechanism is designed s
to reduce the complex background’s influence on object detection. The visual attention s
mechanism allows the network to focus on more significant information while avoiding s
background noise, and choose appropriate features for classification and regression tasks. s
Third, to increase the accuracy of direction prediction, the proposed network treats angle e
prediction as a classification problem. The distribution vectors of the category labels are -
smoothed using the circular smooth label, which divides the angles into 180 categories. ss
The majority of the data in open-source remote sensing image object detection datasets s
comes from Google Earth, with only a minor amount coming from domestic satellites. And  eo
there is a lack of military targets. As a result, we gathered some GF-2 and GF-6 images &
and created a new dataset named DOTA-GF. On DOTA [15] dataset and DOTA-GF dataset, e
the proposed method is compared to many popular remote sensing image object detection s
algorithms. This work makes the following contributions: 6a

e A bidirectional multi-scale feature fusion network is built for high-precision multi- s
scale object detection in remote sensing images. It is the first work that we are aware s
of that achieves high-precision object detection in complex backgrounds. o7
e  The multi-feature selection module (MFSM) based on attention mechanism is designed  es
to reduce the influence of useless features in feature maps in complex backgrounds s
with a lot of noise. 70
e  We proposed a novel remote sensing image object detection algorithm that includeda =
bidirectional multi-scale feature fusion network and a multi-feature selection module. 7
With extensive ablation experiments, we validate the effectiveness of our approachon 7
the standard DOTA dataset and a customized dataset named DOTA-GF. Our proposed  7s
method achieves a mAP of 65.1% with ResNet50 backbone in DOTA dataset and 64.1% s
with ResNet50 backbone in DOTA-GF dataset when compared to state-of-the-art 7
methods. 77
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2. Related work 78
2.1. Object Detection Algorithms Based on Deep Learning 70

Object detection algorithms based on deep learning are mainly divided into two cate- o
gories, one-stage algorithms and two-stage algorithms. The series of algorithms of R-CNN &
are typical two-stage method,including R-CNN, Fast R-CNN, and Faster R-CNN [16]. Fast e
R-CNN proposed Rolpooling and used convolution network to achieve regression and s
classification, while Faster R-CNN used the RPN (RegionProposal Network) to replace s
selective search and shared feature map with the subsequent classification network. The s
one-stage methods extract feature maps and predict the categories and locations simul- s
taneously. The SSD and YOLO are two typical one-stage methods [17]. Different from
the two-stage methods, the one-stage methods are influenced by the problem of category s
imbalance during detection. To tackle such problem, focal loss [18] is proposed to suppress  ss
category imbalance in one-stage methods. %

2.2. Arbitrary-oriented object detection o1

Arbitrary-oriented object detection has been widely used in remote sensing image, o=
aerial image, natural scene text, etc. These detectors also use rotated bounding boxes o3
to describe positions of objects, which are more accurate than those using horizontal s
bounding boxes. Recently, many detectors have been proposed. For example, RRPN [3] s
used rotating anchors to improve the qualities of region proposals. R2CNN is a multi- 6
tasking text detector that identifies both rotated and horizontal bounding boxes at the o7
same time. However, object detection in remote sensing images is more difficult, due to s
multiple categories, multiple scales, complex backgrounds. So many Arbitrary-oriented e
object detection in remote sensing images has been proposed. R3Det [10] proposed an o0
improved one-stage rotated object detector for accurate object localization by solving the 101
feature misalignment problem. SCRDet [19] proposed an IoU-smooth L; loss to solve the o2
loss discontinuity caused by the angular periodicity. [20] proposed a Anchor-free Oriented 103
Proposal Generator (AOPG) that abandoned the horizontal boxes-related operations from 104
the network architecture. The AOPG produced coarse oriented boxes by Coarse Location  10s
Module in an anchor-free manner and refined them into high-quality oriented proposals. 106
[21] proposed an effective oriented object detection method, termed Oriented R-CNN. 107
Oriented R-CNN is a general two-stage oriented detector. In the first stage, the oriented  10s
Region Proposal Network directly generates high-quality oriented proposals in a nearly 100
cost-free manner. The second stage is oriented R-CNN head for refining oriented regions of 110
interest and recognizing them. 111

3. The proposed algorithm 112

We give an overview of our algorithm as sketched in Figure 1. It consists of four s
parts: the backbone, the bidirectional multi-scale feature fusion network, the multi-feature 114
selection module based on attention mechanism and the multi-task subnets. We use the s
ResNet50 [22] as our backbone. The bidirectional multi-scale feature fusion network is 116
responsible for fusing the high-level semantic information and the shallow features output 117
by the backbone. The multi-feature selection module based on the attention mechanism can  11s
select features that are appropriate for classification and regression. After feature selection, 110
the multi-scale feature maps are sent into the classification and regression sub-networks, 120
respectively. Only the center points, width, and height of the bounding boxes are predicted 121
by the regression subnet in this case. Through the classification subnet, the categories and 122
angles are predicted. 123

3.1. Bidirectional multi-Scale feature fusion network 124

In the early object detection algorithms, such as Faster R-CNN [23], the subsequent 125
classification and regression are usually performed on the feature map of the last layer 1z
of the backbone, which is less computationally expensive. But for the multi-scale object 127
detection, the information of a single-layer feature map is not enough. In 2017, He et 12e
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al. proposed FPN [18], which fuses high-level features and low-level features, and uses 120
multi-scale fusion feature maps for subsequent detection. RetinaNet [24] also follows the 130
idea of FPN to build a feature pyramid net, as shown in Figure 2(a). 131

(a) Feature pyramid structure in RetinaNet (b) Bidirectional multi-scale feature fusion network
network

Figure 2. The network structure of feature fusion network. The red dotted line : the bottom-up path
of the shallow information transmitted to the high level, the yellow dotted : the new bottom-up
path, 1 x 1Conv: convolution operation with 1 X 1 convolution kernel, 2 x UpSample: the double
upsampling operation by bilinear interpolation, 3 x 3/2Conv: convolution operation with 3 x 3
convolution kernel and a stride of 2, 3 x 3Conv: convolution operation with 3 x 3 convolution kernel
and a stride of 1

Compared with the features extracted only through the last layer of convolution, FPN 132
can use more high-level semantic information and detailed information. The red dotted  1s:
line in Figure 2(a) indicates that in FPN, because of the bottom-up path, shallow features 13
need to pass through multilayer networks to reach the top layer, and the information loss is 13
more serious. Taking ResNet50 as an example, the transfer of the C3 layer to the Cs layer 136
needs to go through 27 layers of convolution operations, as shown in Figure 3. The shallow 13
details contained in Ps, Ps and P; are lacking to be used for subsequent detection. With the 138
addition of the bottom-up fusion path, the detailed texture features of the C3 layer can be 130
transferred to P, P, and P, with only a few layers, as indicated by the yellow dotted line in 140
Figure 2(b). Therefore, the loss of shallow features is reduced. 141

Figure 3. ResNet50 network structure, the red arrow indicates the path from Cz to Cs.

Therefore, we design a new feature fusion network, and a bottom-up path is added to 12
reduce the number of network layers experienced when the shallow features are transferred 1
to the top layer, thereby reducing the loss of shallow features. The detailed information of 14
the network is shown in Figure 2(b). 145

As shown in Figure 2(b), 1 x 1Conv represents using 1 x 1 convolution kernel to s
perform convolution operations and change the number of channels in the feature map. 1
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2 xUpSample represents the double upsampling operation of the feature map using bilinear 1as
interpolation. 3 x 3/2Conv means using a 3 X 3 convolution kernel to perform a convolution  1as
operation with a stride of 2, reducing the size of the feature map to half of the original 1so
size. The output of the backbone is C;(i € 3 —5), and the feature map after feature fusion 1s:
is P;(i € 3—7). Using 1 x 1 convolution to reduce the dimension of Cs to get Ps, C5 is  1s2
double downsampled to get Ps, Ps is double downsampled to get P;. The result of double 1ss
upsampling of Ps is fused with Cy4 to obtain Py. The result of double upsampling of Py 1sa
is fused with Cj3 to obtain P;. P;(i € 3 — 7) combines the information of C3, C4, and C5  1ss
at the same time, and contains low-level detailed information and high-level semantic 1se
information. Although it has a strong characterization ability for multi-scale objects, the 1s7
transmission path of shallow features to higher layers is too long, and the feature loss s
is severe. Therefore, we add a bottom-up path, as shown in the yellow dotted line in  1se
Figure 2(b). 3 x 3Conv represents a convolution operation with a strideof 1 and a3 X 3 160
convolution kernel. Perform a 3 x 3 convolution operation on P3 to obtain P§. The result of e
P; after 3 x 3 convolution and the result of double downsampling of P} are fused to obtain e
Pj. Then P, P, and P; are obtained in the same way. 163

3.2. Multi-Feature selection module based on attention mechanism 164

The complex background of satellite remote sensing images occupies a large area of 1es
the whole image. The images taken by domestic satellites, such as GF-2 and GF-6, are 166
not as clear as Google Earth images, which leads to more complex backgrounds of the 16
images, unclear object textures and sometimes interference from cloud and fog. Directly 1es
inputting feature maps of different scales into the subsequent classification and regression  1es
sub-networks often fails to obtain ideal results. In recent years, the attention mechanism 17
has achieved great success in computer vision tasks, such as image classification [24] and 17
semantic segmentation [25]. Here we designed a MFSM. MFSM uses the pixel attention 172
mechanism to select the features suitable for classification and regression, respectively, to 17
reduce the influence of useless information in the feature maps. Different from the spatial 17
attention mechanism, which learns the degree of dependence on different locations in  17s
space[26], the pixel attention mechanism learns the degree of dependence on each pixel, 17
and adjusts the feature map according to the degree of dependence. 177

The general one-stage object detection algorithms directly input P/(i = 3,4,5,6,7) 17
into classification subnet and regression subnet. The classification subnet is to predict the 17
category of the bounding box. The regression subnet is primarily responsible for predicting s
the specific position of the bounding box. The purposes of the two subnets are different. Itis 1s
dinappropriate to use the same feature maps to perform classification and regression tasks sz
at the same time. Therefore, we design the MFSM. As shown in Figure 4, the multi-scale 1es
feature maps are obtained through the feature fusion network, and then are input into two  1ss
feature selection modules respectively. Finally, the feature maps after feature selection are  1ss
input into the classification subnet and regression subnet. 186

Figure 4. Multi-feature selection of multi-scale feature maps
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The network details of the feature selection module for classification and the feature 1er
selection module for regression are the same, as shown in Figure 5. 188

—» CNNs — Sigmoid —»

v
g

Y
(+

Figure 5. Detailed information of the multi-feature selection module. CNNs: four layers of 3 x 3
convolution, ®: hadamard product,® Matrix addition.

The input of the module is the multi-scale feature maps input P/ (i = 3,4,5,6,7) output  1es
by the feature fusion network, and the output of the module is a series of feature maps 100
input D;(i = 3,4,5,6,7) with the same dimensions as the input. The processing process for 1e:

each input input P/ (i = 3,4,5,6,7) is shown in Figure 5 and Equation 1-2: 102
A; = ol¢i(P))] @
D;=A;®P +P 2)

where ¢;(P/) means performing four layers of 3 x 3 convolution on P/. 7 is the sigmoid 103
function which converts the value of ¢;(P/) into [0-1] to get A;, so that it can converge 1ss
faster during training. Finally, the result of multiplying the corresponding elements of P/ 105
and A, is added to P/. The multiplication operation can make the value of the functional  1s
information in P! larger and the value of the useless information smaller. The addition 17
operation refers to the idea of the residual network [22], which can make the network s
converge faster. This design can make the network adaptively select features suitable for 199
classification or regression. 200

Figure 6. Visualization results of multi-scale feature maps.From top to bottom, there are the multi-
scale feature maps Pl-’(i = 3,4,5,6,7), the multi-scale feature maps CLS;(i = 3,4,5,6,7) used for
classification tasks, and the multi-scale feature map REG;(i = 3,4,5,6,7) used for regression tasks.

Figure 6 shows a remote sensing image with cloud interference and visualization 201
results of its feature maps. The feature map Pi/ (i = 3,4,5,6,7) is obtained by the feature zo:


https://doi.org/10.20944/preprints202206.0390.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 June 2022 d0i:10.20944/preprints202206.0390.v1

7 of 14

fusion network. P/ is input into the multi-feature selection network, and the feature map 2o
CLS;(i = 3,4,5,6,7) for the classification prediction task and the feature map REG;(i = =zoa
3,4,5,6,7) for the bounding box prediction task are obtained. In Figure 6, three rows from  zos
top to bottom are P/, CLS;(i = 3,4,5,6,7) and REG;(i = 3,4,5,6,7). Five columns from left 206
to right are feature maps of the 3rd, 4th, 5th, 6th and 7th layers respectively. For the ship in 207
Figure 6, the P; and P, in the multi-scale feature maps have a greater response. From P, zos
Pi, CLS3, CLS, and REG4, REGy, we can see that after feature selection, the feature map 200
has a stronger response in the object area. It shows that the multi-feature selection module =210
based on the attention mechanism can select features suitable for classification tasks and 211
regression tasks from multi-scale feature maps and improve the detection accuracy. 212

3.3. Accurate acquisition of target direction based on angle classification 213

At present, most mainstream algorithms use the idea of regression for angle prediction, =i
and the bounding box is determined by five parameters. The five-parameter regression zis
method has problem of boundary discontinuities [11], which will make prediction box 216
inaccurate. Figure 7 shows the results of the prediction angle based on the five-parameter 217
regression method. As can be seen from the red boxes in the figure, there is a significant = 21s
difference between the angles of the detected bounding boxes and the angles of the actual 210
objects, including the large vehicles on the left and the ships on the right. 220

(a) Large vehicle (b) Ship

Figure 7. The regression inaccuracy of the five-parameter method. RetinaNet is the base model.
The cars and ships in the red box have not been accurately detected, and the angles between the
prediction boxes and the ground truth are much different.

Aiming at the loss discontinuity of five-parameter regression, this paper treats the 22
angle prediction as a classification task [27]. The angles are divided into 180 categories. We = 222
find that directly dividing the angle into 180 categories will lead to low fault tolerance of 223
adjacent angles. Therefore, the circular smooth label (CSL)[27] is used in this paper. The =224
CSL expression is as follows: 225

, if0+T<x<0+T,
S(x) = f(x), ife+7<x< +'T
0, otherwise

®)

where 7 denotes the radius of the window. 6 is the angle of the current ground truth. 226
The circular smooth label is different for each ground truth. f(x) is the window function, =2
and the Gaussian function is used here, as shown in Equation 4: 226

—(x=b)?
Gaussian(x) = ae 22 4)
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where 4, b and ¢ are constants (a > 0), in this paper,a = 1, b = 0, and c is equal to
the radius of the window function which is set to be 6. The CSL [27] can increase the error
tolerance to adjacent angles.

In the paper, the angles of the bounding box are divided into 180 categories. If the
angle of a ground truth is —90°, the traditional label of the angle is as follows:

label = (1,0,0,0,0,0,0,0---0,0,0,0) ®)
The circular smooth label of the angle is as follows:
label .y = (1,0.86,0.71,0.57,0.43,0.29,0.14,0 - - - 0,0,0.14,0.29,0.43,0.57,0.71,0.86) ~ (6)
The detector has two prediction results. In the traditional method, so ftmax is used to
calculate the probabilities of different classes. The corresponding labels are as follows:

{ label; = (0.03,0.4,0.03,0.03,0.03,0.03,0.03,0.03 - - - 0.03,0.03,0.03) @)

label, = (0.03,0.03,0.03,0.03,0.03,0.03,0.4,0.03 - - - 0.03,0.03,0.03)
In the proposed method, sigmoid is used to calculate the probabilities of different
classes. The corresponding labels are as follows:

{ label] = (0.1,0.8,0.1,0.1,0.1,0.1,0.1,0.1,0.1--- 0.1,0.1,0.1,0.1,0.1) ®)

label; = (0.1,0.1,0.1,0.1,0.1,0.1,0.8,0.1,0.1- - - 0.1,0.1,0.1,0.1,0.1)

The predicted angle corresponding to label; and label] is —89°, and the predicted
angle corresponding to label, and label; is —84°. Taking the cross-entropy loss function as
an example. In the traditional method, the losses of label; and label, to the real label are as
follows:

©)

loss; = —(1 x 10g(0.03) +0 x log(0.4) + 0 x 10g(0.03) + - - - ) = —l0g(0.03)
loss) = —(1 x 10g(0.03) + -+ +0 x log(0.4) + 0 x log(0.03) + - - - ) = —log(0.03)

It is found that loss; = lossy, that is, the label; and label, have the same loss to the
ground truth. However, the predicted angle obtained by label; is —89°, which is only 1°
different from the true angle. While the predicted angle obtained by label; is —84°, which
is 6° different from the true angle. The first prediction result is obviously more accurate.
The analysis shows that directly dividing the angle into 180 categories will lead to low fault
tolerance of adjacent angles. In the proposed method, the losses of label; and label; to the
real label are as follows:

loss] = —(1 x log(0.1) 4+ 0.86 x l0g(0.8) + 0.71 x log(0.1) + - - - ) ~ 14.33
loss; = —(1 x log(0.1) 4+ 0.86 x l0g(0.1) + 0.71 x l0g(0.8) + - - -) ~ 16.12

It can be found that loss] < loss3, that is, the circular smooth label makes the losses of
more accurate labels smaller and increase the error tolerance to adjacent angles.

3.4. Loss function

The total loss function is as equation 11:

1 N / / /\l N )\2 N 1
L= N 2 ty 2 Lreg(vnjr Unj) +ﬁ 2 Leis(pnstn) + N Z Legsy (03,00)  (11)
n=1  je{xywh} n=1 n=1

where N indicates the number of anchors, £, has two values, i.e., 0 and 1, respectively
(t;, = 1 for foreground and #,, = 0 for background). v;]. indicates the predicted offset vector.

236
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And vjj indicates the real offset vector. f, indicates the label of object, p, indicates the 2ss
probability distribution of various classes calculated by sigmoid function. Hyperparameter 23
A1 and A, are trade-off factors, which control the weights of different loss functions, and 240
their default values are both 1. L., indicates Smooth L; Loss [23]. L. represents the za
loss of classification in the object category prediction. L, represents the loss of angle  2e
classification in the angle prediction. Both L and L, use Focal loss [18]. 243

4. Experimental results and discussion 244

The GPU used in this paper is GTX1660Ti with 6G memory. The operating system we  2as
used is Ubuntu 16.04. The deep learning framework is Tensorflow. ResNet50 is used as the 246
backbone of the network. Experiments are carried out on DOTA and the self-made dataset 2a7
DOTA-GE. Some visual experiment results are shown in Figure 8. 248

(a) Ship (b) Plane and Small vehicle

(c) Bridge and Storage tank  (d) Small vehicle and Large vehicle

Figure 8. Visual detection results of some typical objects

4.1. Ablation studies 249

In this section, we conduct detailed ablation on DOTA to evaluate the effctiveness of  zso
each module and illustrate the advance and generalization of the proposed method. 251
4.1.1. Bidirectional multi-Scale feature fusion network 252

To verify the effectiveness of the improved feature fusion network, using ResNet50 253
as the backbone and RetinaNet as the embodiment, to compare the detection result of the  2s4
original FPN and the improved feature pyramid network (Improved-FPN) on the DOTA 55
[15] dataset. We mainly consider the average precision (AP) and mean average precision zse
(mAP) of six types of typical objects, including plane (PL), ship (SH), bridge (BG), small =257
vehicle (SV), large vehicle (LV), and storage tank (ST). The experimental results are shown  zss
in Table 1. 250

It can be seen from Table 1 that the Improved-FPN can significantly improve the ze0
detection accuracy of typical objects in remote sensing images. Among them, the AP of the :e
ship has the highest increase of 2.4%. That is because many ships in DOTA is small, and ez
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the shallow features have a greater impact on the detection results and the bidirectional zes
multi-scale feature fusion network can make full use of the shallow features. The AP of zes
the storage tank has the least increase, which is 0.6%. The mAP of 6 types of objects is 265
increased by 1.4%. Experimental results show that the improved feature fusion network is  zes
more suitable for remote sensing image object detection than the original feature fusion 267
network. 268

Table 1. The experimental results of the bidirectional multi-scale feature fusion network

AP(%)
Method mAP(%)
PL SH BG SV LV ST
FPN 834 622 323 657 483 749 61.1

our-FPN 845 646 340 672 492 755 62.5

4.1.2. Multi-Feature selection module based on attention mechanism 260

To further prove the effectiveness of the multi-feature selection module, the multi- 270
feature selection module is added to RetinaNet [18] to conduct experiments on DOTA 27
[22]. The comparative experiments of the MFSM with other attention mechanisms are 272
supplemented too. The experimental results with MFSM, SE[28] and CBAM][26] are shown 273
in Table 2. 274

Table 2. Experimental results of different attention mechanisms

AP(%)
Mthod mAP(%)
PL SH BG SV LV ST
Baseline 834 622 323 657 483 749 61.1
SE 83.6 643 334 661 501 741 61.9
CBAM 844 645 337 670 491 752 62.3

MFSM 847 634 336 673 495 761 62.4

Compared with RetinaNet [18], after adding the multi-feature selection module, the =75
detection accuracy of the six types of typical objects has been significantly improved with 276
an AP increase of 1.2% to 1.6%. The mAP has increased by 1.3%. Among them, the detection 277
accuracy of small vehicle has the greatest improvement, and the AP increases by 1.6%. At 27
the same time, MFSM has better detection performance than SE and CBAM. In SE and 27
CBAM, an attention module is used to process the feature map, and the classification and  2s0
regression subnets share the feature map. MFSM processes feature maps for classification ze:
and regression respectively, which can alleviate the conflict between classification tasks ze2
and regression tasks to a certain extent. Therefore, MFSM has a simpler structure, but has  2es
better performance. 204

4.1.3. Accurate acquisition of target direction based on angle classification 285

To further prove that turning the angle regression problem into a classification task can  2es
improve the remote sensing images detection effect, the angle prediction in RetinaNet is  2e7
regarded a classification task with 180 categories, and CSL is used for smoothing. Compar-  2ss
ative experiments are performed on the DOTA, and the experimental results are shown in  zes
Table 3. It can be seen from Table 3 that treating the angle prediction as a classification task 200
can significantly improve the detection effect. Among the six types of typical targets, the AP 20
of ships, bridges, small vehicles, and large vehicles increased by 2.7%, 2.2%, 1.9%, and 3.2%  2e2
respectively. This is because the aspect ratios of these four types of objects are relatively o3
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large, and the use of regression to predict angles has more serious loss discontinuity. For 2ea
planes and storage tanks with an aspect ratio close to 1, the AP also increased by 0.8% and 295
0.9%. The experimental results prove that treating the angle prediction as a classification 2e6
task can effectively improve the detection accuracy of objects with larger aspect ratios. 207

Table 3. Experimental results of RetinaNet using classification and regression methods to predict

angles
AP(%)
Mthod mAP(%)
PL SH BG SV LV ST
Regression 834 622 323 657 483 749 61.1
Classification 84.2 649 345 676 515 758 63.1
4.2. Results on DOTA 208

The DOTA [15] dataset contains 15 categories. This paper mainly analyzes six typical 2e0
objects, including ships, planes, bridges, small vehicles, large vehicles, and storage tanks. 300
The evaluation indicators used are AP and mAP. CSL [27], RRPN [3], RetinaNet [18] and 3o
Xiao [9] were selected as comparative algorithms. The comparison results of different 3o
algorithms are shown in Table 4. 303

Table 4. Comparison results of different algorithms on the DOTA dataset

Category CSL  RRPN  RetinaNet Xiao  Proposed

PL 842 839 83.4 78 85.7
SH 649 472 62.2 65 66.5
BG 345 323 323 38 375
LV 515 497 483 59 54.2
SV 676 347 65.7 37 69.2
ST 758 488 74.9 50 773

mAP(%) 631 480 61.1 55 65.1

The data in Table 4 shows that mAP of the proposed method is better than most of the  sos
mainstream object detection algorithms. The algorithm proposed has achieved the highest o5
AP in four types of objects: planes, ships, small vehicles, and storage tanks. Besides, the 306
APs of large vehicles and bridges are second only to the highest. The large vehicles in the  sor
DOTA dataset are often placed very closely, and adjacent objects have occlusion problems. os
This is also a problem that we will study in the future. These comparison results show that sos
the algorithm proposed in this paper can effectively detect typical objects in remote sensing  s1o
images. a11

4.3. Results on DOTA-GF 312

At present, the remote sensing images in public remote sensing datasets such as s
DOTA [15] and NWPU VHR-10 [29] are mainly derived from Google Earth, with only a 314
small amount of data derived from domestic data and lack of military objects. Therefore, sis
we collected 188 GF-2 Satellite images and GF-6 Satellite images with a resolution of s
1000 x 1000 to 4000 x 4000 and labeled them using the four-point method. 317

138 domestic remote sensing images were added to the training set of DOTA as the 1.
DOTA-GF training set. The remaining 50 domestic remote sensing images are added to the 310
DOTA testing set as the DOTA-GF testing set. Then select the data containing six types of 320
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objects: ships, planes, bridges, small vehicles, large vehicles, and storage tanks, and crop sz
them to pieces of size 600 x 600 for training. To illustrate the effectiveness of the proposed 322
algorithm, four representative object detection algorithms, CSL [27], RRPN [3], RetinaNet 323
[18] and R3Det [10] were selected for comparison experiments. The detection results of = s2a
different algorithms are shown in Table 5. 325

Table 5. Comparison results of different algorithms on the DOTA-GF dataset

Category CSL  RRPN  RetinaNet R3Det  Proposed

PL 83.6 81.7 83.2 85.2 84.6
SH 64.1 46.8 61.0 66.1 66.3
BG 35.3 34.8 325 35.5 37.2
LV 50.4 48.2 50.2 61.5 53.8
SV 64.7 33.8 64.5 59.8 68.6
ST 72.9 48.6 72.7 70.5 74.1
mAP(%) 56.5 49.0 60.7 63.1 64.1

It can be seen from Table 5 that compared with the four representative algorithms, sz
the algorithm proposed in this paper has achieved the highest AP in four types of objects: 27
ships, bridges, small vehicles, and storage tanks. The APs of planes and large vehicles s2s
are also close to the highest AP of the four types of algorithms. However, the network 2o
structure of R3Det is more complex. Both the training time and the testing time of a 330
single image are longer than the proposed algorithm. Compared with the four comparison s
algorithms, the mAP of the six typical objects of the proposed algorithm is also the highest. 332
The experimental results show that the algorithm proposed in this paper still has certain = sss
advantages on the self-made DOTA-GF dataset. 334

4.4. Results on HRSC 2016 335

HRSC 2016 [30] contains lots of remote sensing ships with a large aspect ratio, s- s3e
cales and arbitrary orientations. Our method achieves competitive performances on the 37
HRSC2016 dataset. The comparison results are shown in Table 6. 338

Table 6. comparisons with different methods on the HRSC2016 dataset

Methods Size mAP (%)
R2CNN 800800 73.7
RRPN 800800 79.1
RetinaNet 800800 81.7
Rol-Transformer  512x800 86.2
Proposed 800 %800 87.1

From Table 6, it can be seen that compared with R2ZCNN [31], RRPN [3], RetinaNet [18], 330
and Rol-Transformer [32], the algorithm in this paper achieves the best detection results, 40
with a mAP of 87.1%. The experimental results verify the effectiveness of the proposed  sa:
algorithm on HRSC 2016 dataset. 242

5. Conclusion 343

Aiming at the challenges such as multi-scale objects, complex backgrounds, and s
boundary problems, we propose a new remote sensing image object detection algorithm. s
In this algorithm, a bidirectional multi-scale feature fusion network is designed to combine 4
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the semantic features and shallow detailed features to reduce the loss of information in
the process of transferring shallow features to the top layer. A multi-feature selection
module based on the attention mechanism is designed to make the network focus on
valuable information and assist to select the feature maps appropriate for classification
and regression tasks. To avoid boundary discontinuities problem in the regression process,
we treat angle prediction as a classification task rather than a regression task. Finally,
experimental results on the DOTA dataset, the DOTA-GF dataset and the HRSC 2016
dataset show that the proposed algorithm has certain advantages in remote sensing image
object detection. However, our proposed method still has limitations in detecting dense
objects. In the future, we will outlook the situation of dense object occlusion, and improve
our network model to better detect dense objects. The results reported in this paper can
be downloaded from the URL https://github.com/xia0js18/ObjectDetection/tree /main/
Remote-Detection.
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