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Abstract: The quest for accurate and more efficient methods for solving periodic/oscillatory problems 1

is gaining more attention in recent time. This paper presents the construction and implementation 2

of a family of exponentially–fitted Obrechkoff methods using a six–step flowchart discussed in the 3

literature. A single–step Obrechkoff method involving terms up to the fourth derivatives was used 4

as the base method. We also present the stability and convergence properties of the constructed 5

family of methods. Two numerical examples were use to illustrate the performance of the constructed 6

methods. 7
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1. Introduction 10

Ordinary Differential Equations (ODEs) that exhibit pronounced oscillatory or periodic 11

behaviour in their solutions are often encountered in fields like chemistry, engineering, 12

electronic, mechanics and astrophysics [1–3]. Many of the classical methods for solving 13

prominent classes of problems in ODE have been developed using only monomials as 14

basis [1,4–8]. In [9], the authors used a hybrid method to examine the direct solution 15

of higher order (second, third and fourth order) initial value problem (IVP) of ordinary 16

differential equations. However, in practice, many classical methods usually perform 17

poorly when applied to problems with pronounced periodic or oscillatory behaviour in 18

their solution [3,10,11]. This is due to the fact that for better accuracy to be achieved, a very 19

small step size would be required with corresponding decrease in performance, especially 20

in terms of efficiency [1]. One way to overcome this barrier is to adapt classical methods for 21

such problems. The adaptation which is called "exponential/trigonometric fitting" involves 22

the replacement of some of the highest order monomials of the basis by exponentials or 23

trigonometric [3,11]. Detailed analysis of the oscillation–preserving behaviour of some 24

existing RKN–type methods were analysed from the point of view of geometric integration 25

in [12]. Authors in [13] presented surveys on recent advances in the allied challenges of 26

discretizing highly oscillatory ordinary differential equations and computing numerical 27

quadrature of highly oscillatory integrals. They also, attempted to sketch the mathematical 28

foundations of a general approach to these issues [13]. A pioneer work in the use of 29

exponentially–fitted formulae for differential equations was due to [14]. The authors in 30

[14] constructed integration formulae which contains free parameters - chosen so that 31

a given function exp(q) where q is real, satisfies the integration formulae exactly. The 32

proposed methods in [14] was on a 1–step formulae, however, in [15], A–stable fourth order 33

exponentially–fitted formulae based on a linear 2-step formula were derived. Using the 34

concept proposed in [15], the author in [16] proposed a Multiderivative Linear Multistep 35

Method (MLMM) with k=1 in the second derivative formulae. Many authors have proposed 36
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specially adapted Runge—Kutta (RK) algorithms to solve this class of problems [17–20]. In 37

this direction, exponentially–fitted RK (EFRK) methods which integrate exactly first–order 38

systems whose solutions can be expressed as linear combinations of functions of the form 39

{exp(λt), exp(−λt)} or {cos(ωt), sin(ωt)} were introduced in [21,22]. The construction of 40

an implicit trigonometrically–fitted single–step method having second derivative using 41

trigonometric basis function was proposed in [23]. 42

In this work, we used the six–step flowchart described in [3] to construct a class of 43

exponentially–fitted single–step fourth–derivative Obrechkoff methods suitable for solving 44

y′ = f (x, y), x ∈ [x0, X], y(x0) = y0. (1)

2. Construction of Method 45

A classical fourth–derivative single–step Obrechkoff method for solving the first order
initial value problem (1) can generally be written as

yj+1 = a0yj + h
(
b1 f j+1 + b0 f j

)
+ h2

(
c1 f ′j+1 + c0 f ′j

)
+

h3
(

d1 f ′′j+1 + d0 f ′′j
)
+ h4

(
e1 f ′′′j+1 + e0 f ′′′j

) (2)

where a0, b0, b1, c0, c1, d0, d1, e0 and e1 are coefficients to be determined. 46

Here, we present the construction of the exponentially–fitted variants of (2) using the
six–step flowchart described in [3]. Following the six–step flowchart, the corresponding
linear difference operator L[h, a] is obtained as

L[h, a]y(x) = y(x + h)− a0y(x)− h
(
b1y′(x + h) + b0y′(x)

)
−

h2(c1y′′(x + h) + c0y′′(x)
)
−

h3(d1y′′′(x + h) + d0y′′′(x)
)
−

h4(e1y′′′′(x + h) + e0y′′′′(x)
) (3)

where a := (a0, b0, b1, c0, c1, d0, d1, e0, e1). 47

Step II of the procedure requires that we get the maximum value of M such that the
algebraic system {

L∗
m(a) = h−mL[h, a]xm|x=0 = 0|m = 0, 1, 2, · · · M − 1

}
can be solved. The above results in 48

L∗
0(a) = 1 − a0 = 0 (4)

L∗
1(a) = −b0 − b1 + 1 = 0 (5)

L∗
2(a) = −2b1 − 2c0 − 2c1 + 1 = 0 (6)

L∗
3(a) = −3b1 − 6c1 − 6d0 − 6d1 + 1 = 0 (7)

L∗
4(a) = −4b1 − 12c1 − 24d1 − 24e0 − 24e1 + 1 = 0 (8)

L∗
5(a) = −5b1 − 20c1 − 60d1 − 120e1 + 1 = 0 (9)

L∗
6(a) = −6b1 − 30c1 − 120d1 − 360e1 + 1 = 0 (10)

L∗
7(a) = −7b1 − 42c1 − 210d1 − 840e1 + 1 = 0 (11)

L∗
8(a) = −8b1 − 56c1 − 336d1 − 1680e1 + 1 = 0 (12)

and the algebraic system is compatible when M = 9. Also, the solution only results in the 49

coefficients of the associated classical method to be adapted. 50
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To exponentially fit the associated classical method, we proceed to step III of the six– 51

step flowchart and obtain expressions for G+(Z, a) and G−(Z, a) which are respectively 52

defined as 53

G+(Z, a) =
1
2
(E∗

0 (z, a) + E∗
0 (−z, a)) (13)

G−(Z, a) =
1
2z

(E∗
0 (z, a)− E∗

0 (−z, a)) (14)

where E∗
0 (±z, a) = e∓ωxL[h, a]e±ωx and Z = z2. The expressions for G+(Z, a) and G−(Z, a) 54

are respectively obtained as 55

G+(Z, a) = −a0 + sinh
(√

Z
)(

−b1
√

Z − d1Z3/2
)
+

cosh
(√

Z
)(

−c1Z − e1Z2 + 1
)
− c0Z − e0Z2 (15)

G−(Z, a) = cosh
(√

Z
)
(−b1 − d1Z)− b0 +

sinh
(√

Z
)(

−c1
√

Z − e1Z3/2 +
1√
Z

)
− d0Z (16)

where ω, the frequency of oscillation is real or imaginary, z = ωh = ωh. (For the trigono- 56

metric case, i.e, ω is imaginary, we choose z = ωh = iµh, i.e z2 = −µ2h2 = Z.) 57

To implement step IV, consider the reference set of M functions:{
1, x, · · · , xK, exp (±ωx), x exp (±ωx), · · · , xP exp (±ωx)

}
with K + 2P = M − 3. Since for our method M = 9, we have five possibilities, which we 58

shall respectively refer to as S1, S2, S3, S4 and S5: 59

• S1: K = 8, P = −1, the classical case with the set

1, x, x2, x3, x4, x5, x6, x7, x8

• S2: K = 6, P = 0, the mixed case with the set

1, x, x2, x3, x4, x5, x6, exp(±ωx)

• S3: K = 4, P = 1, the mixed case with the set

1, x, x2, x3, x4, exp(±ωx), x exp(±ωx)

• S4: K = 2, P = 2, the mixed case with the set

1, x, x2, exp(±ωx), x exp(±ωx), x2 exp(±ωx)

• S5: K = 0, P = 3, the mixed case with the set

1, exp(±ωx), x exp(±ωx), x2 exp(±ωx), x3 exp(±ωx)

In order to get the corresponding coefficients of the method associated with each case, we
implement step V of the algorithm by solving the algebraic system

L∗
k = 0, 0 ≤ k ≤ K, G(p)±(Z, a) = 0, 0 ≤ p ≤ P

and the coefficients of the methods associated with each case are respectively obtained as 60

follows: 61
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S1 :: (K,P) = (8,-1)

a0 = 1
b0 = b1 = 1

2
c0 = −c1 = 3

28
d0 = d1 = 1

84
e0 = −e1 = 1

1680

 (17)

Equ. (17) gives the coefficients of the classical method associated with Equ. (2). 62

S2 :: (K,P) = (6,0)

a0 = 1
b0 = b1 = 1

2

c0 = −c1 =
(z4−120) sinh( z

2 )−5z(z2−12) cosh( z
2 )

10z2((z2+12) sinh( z
2 )−6z cosh( z

2 ))

d0 = d1 =
(z4−60z2−720) sinh( z

2 )+360z cosh( z
2 )

120z2((z2+12) sinh( z
2 )−6z cosh( z

2 ))

e0 = −e1 =
z(z2+60) cosh( z

2 )−12(z2+10) sinh( z
2 )

120z2((z2+12) sinh( z
2 )−6z cosh( z

2 ))


(18)

S3 :: (K,P) = (4,1)

a0 = 1
b0 = b1 = 1

2

c0 = −c1 =
z4−12z2+(z2−36)z sinh(z)+96 cosh(z)−96

12z2(z2+z sinh(z)−4 cosh(z)+4)

d0 = d1 =
−4(z2+6)+(z2+24) cosh(z)−9z sinh(z)

6z2(z2+z sinh(z)−4 cosh(z)+4)

e0 = −e1 = − z4+12z2−(z2+48)z sinh(z)+12(z2+4) cosh(z)−48
12z4(z2+z sinh(z)−4 cosh(z)+4)


(19)

S4 :: (K,P) = (2,2)

a0 = 1
b0 = b1 = 1

2

c0 = −c1 =
sinh( z

2 )(2z3+21z+24 sinh(z))−18z2 cosh( z
2 )−3z sinh( 3z

2 )
2z2((2z2+1) cosh( z

2 )−2z sinh( z
2 )−cosh( 3z

2 ))

d0 = d1 = − z3 cosh( z
2 )+sinh( z

2 )(3z2+3z sinh(z)−16 cosh(z)+16)
z3((2z2+1) cosh( z

2 )−2z sinh( z
2 )−cosh( 3z

2 ))

e0 = −e1 =
sinh( z

2 )(−2z3−21z+12 sinh(z))+6z2 cosh( z
2 )−z sinh( 3z

2 )
2z4((2z2+1) cosh( z

2 )−2z sinh( z
2 )−cosh( 3z

2 ))


(20)

S5 :: (K,P) = (0,3)

a0 = 1

b0 = b1 = − 2(4z3−6(2z2+1) sinh(z)+2(z2+3)z cosh(z)−6z+3 sinh(2z))
z((z2+3)z2−2(z2+3)z sinh(z)+6z2 cosh(z)−3 sinh2(z))

c0 = −c1 = − 2(z4−3z2(4 cosh(z)+3)+9 sinh2(z)+12z sinh(z))
z2((z2+3)z2−2(z2+3)z sinh(z)+6z2 cosh(z)−3 sinh2(z))

d0 = d1 =
2(2z3(cosh(z)+2)+6 sinh(z)−3 sinh(2z)−6z(cosh(z)−1))
z3((z2+3)z2−2(z2+3)z sinh(z)+6z2 cosh(z)−3 sinh2(z))

e0 = −e1 = z4+2z3 sinh(z)+z2(3−6 cosh(z))−3 sinh2(z)+6z sinh(z)
z4((z2+3)z2−2(z2+3)z sinh(z)+6z2 cosh(z)−3 sinh2(z))


(21)

As expected, the exponentially fitted variants reduce to the classical method as z → 0. 63
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3. Error Analysis :: Local Truncation Error (lte) 64

The leading term of the local truncation error (lte) for exponentially–fitted method 65

with respect to the basis functions 66{
1, x, · · · , xK, exp (±ωx), x exp (±ωx), · · · , xP exp (±ωx)

}
(22)

is of the form 67

lteEF(t) = (−1)P+1hM L∗
K+1(a(Z))

(K + 1)!ZP+1 DK+1(D2 − ω2)P+1y(x) (23)

with K, P and M satisfying the condition K + 2P = M − 3, [3]. 68

For the five methods constructed in this work, the leading terms of the local truncation 69

error are obtained as follows: 70

• S1 :: (K, P) = (8,−1) 71

lteEF(t) =
h9y(9)(x)
25401600

(24)

• S2 :: (K, P) = (6, 0) 72

lteEF(t) = −h9
(
20z

(
z2 + 42

)
cosh

( z
2
)
−

(
z4 + 180z2 + 1680

)
sinh

( z
2
))

100800z4
(
(z2 + 12) sinh

( z
2
)
− 6z cosh

( z
2
))

×
(

u(9)(t)− ω2u(7)(t)
)

(25)

• S3 :: (K, P) = (4, 1) 73

lteEF(t) =
h9

720z8(z2 + z sinh(z)− 4 cosh(z) + 4)

×
(

2880 − 240z2 + 24z4 + z6−

24
(

z4 + 50z2 + 120
)

cosh(z) +

z
(

z4 + 240z2 + 2880
)

sinh(z)
)

×
(

y(9)(x)− 2ω2y(7)(x) + ω4y(5)(x)
)

(26)

• S4 :: (K, P) = (2, 2) 74

lteEF(t) = − h9

12z9
(
(2z2 + 1) cosh

( z
2
)
− 2z sinh

( z
2
)
− cosh

( 3z
2
))

×
(
−z3

(
2z2 + 85

)
cosh

( z
2

)
+ z3 cosh

(
3z
2

)
+

2 sinh
( z

2

)(
192 + 99z2 + 7z4 − 192 cosh(z)+

108z sinh(z))− 18z2 sinh
(

3z
2

))
×
(

y(9)(x)− 3ω2y(7)(x) + 3ω4y(5)(x)− ω6y(3)(x)
)

(27)
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• S5 :: (K, P) = (0, 3) 75

lteEF(t) =

h9
(

4(4z3−6(2z2+1) sinh(z)+2(z2+3)z cosh(z)−6z+3 sinh(2z))
z((z2+3)z2−2(z2+3)z sinh(z)+6z2 cosh(z)−3 sinh2(z))

+ 1
)

z8

×
(

y(9)(x)− 4ω2y(7)(x) + 6ω4y(5)(x)− 4ω6y(3)(x) + ω8y′(x)
)

(28)

4. Convergence and Stability Analysis 76

Theorem 1 (Dahlquist Theorem). The necessary and sufficient conditions for a linear multistep 77

method to be convergent are that it be consistent and zero-stable [4]. 78

Dahlquist theorem (1) holds also true for exponetially–fitted–based algorithms but, 79

the concepts of consistency and stability have to be adapted since their coefficients are no 80

longer constants. 81

Definition 1. An exponentially–fitted method associated with the fitting space (22) is said to be 82

of exponential order q, relative to the frequency ω if q is the maximum value of M such that the 83

algebraic system {L∗
m(a) = 0|m = 0, · · · , M − 1} is compatible [3]. 84

Definition 2. A linear multistep method is said to be consistent if it has order P ≥ 1 [1,4]. 85

Since the order of the constructed method, M = 9 ≥ 1 for all the constructed schemes, 86

the consistency requirement is satisfied. Hence, the constructed schemes are all consistent. 87

Definition 3. The method Equ. (2) is zero stable if no root of the first characteristic polynomial has 88

modulus greater than one and if every root with modulus one is simple. [1,2] 89

In order to establish the stability of (2), we apply Equ. (2) to the test problems y′ = λy 90

and obtain the stability function R(q), of the class of methods as 91

yn+1

yn
= R(q) =

1 + b0q + c0q2 + d0q3 + e0q4

1 − b1q − c1q2 − d1q3 − e1q4 , with q = λh. (29)

Definition 4. A region of absolute stability is a region in the complex plane, throughout which 92

|R(q)| < 1. Any closed curve defined by |R(q)| = 1 is an absolute stability boundary. Also, any 93

interval (α, β) of the real line is said to be the interval of absolute stability if the method is stable for 94

all q ∈ (α, β) [1,4]. 95

The absolute stability regions for all the methods constructed in this work are the same 96

and given in Figure (1). 97
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Out[ ]= -

-

 1+b0 q+c0 q2+d0 q3+e0 q4
1-b1 q-c1 q2-d1 q3-e1 q4

 < 1

Figure 1. Region of absolute stability for the constructed methods
From Figure (1), it can be seen that stability region of the methods contains the entire 98

left half plane, hence they are all A-stable and have their absolute stability interval as 99

(−∞, 0]. 100

5. Numerical Results 101

In this section, we considered two test problems. The constructed methods are imple- 102

mented on these test problems and the obtained results were compared with those of the 103

classical eighth–order Runge–Kutta (RK-8) method. 104

5.1. Problem 1 105

The first test problem considered in this work is the initial value problem given as

y′′ − y = 0.001 cos x, y(0) = 1, y′ = 0

with exact solution
y(x) = cos x + 0.0005x sin x

This problem was studied in [24,25]. Using different stepsizes, we implement the con- 106

structed methods on this problem and present the maximum absolute errors in Table 1. 107

Table 1. Maximum absolute error for constructed methods on Problem 5.1 with step-size h =

2−iπ, i = 0, 1, 2, 3

i RK-8 (K, P) = (8,−1) (K, P) = (6, 0) (K, P) = (4, 2) (K, P) = (2, 1) (K, P) = (0, 3)

0 8.256847×10−1 1.701678×10−5 0.000000 0.000000 0.000000 2.220446×10−16

1 5.921881×10−3 1.485065×10−5 1.516774×10−8 1.160079×10−13 4.170189×10−14 9.992007×10−16

2 9.221257×10−5 6.125912×10−8 6.400131×10−11 1.488434×10−11 6.878617×10−12 7.895672×10−13

3 1.154806×10−6 2.425554×10−10 3.548604×10−11 1.3173×10−9 3.317455×10−10 7.396323×10−11

For this problem, the exponentially fitted methods gave better results compared with 108

their classical counterpart and the Runge–Kutta method as seen from Table (1). 109

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 June 2022                   doi:10.20944/preprints202206.0387.v1

https://doi.org/10.20944/preprints202206.0387.v1


Version June 26, 2022 submitted to Mathematics 8 of 9

5.2. Problem 2 110

The inhomogeneous equation

y′′ + 100y = 99 sin x, y(0) = 1, y′ = 11.

with exact solution
y(x) = sin(x) + sin(10x) + cos(10x)

is considered as the second test case. This problem has also been studied by [24,26]. The 111

constructed methods were implemented on it with different stepsizes and the results ob- 112

tained were also compared with those of the Runge–Kutta method. The table of maximum 113

absolute errors is given in Table 2. 114

Table 2. Maximum absolute error for constructed methods on Problem 5.2 with step-size h =

2−iπ, i = 0, 1, 2, 3, 4, 5

i RK-8 (K, P) = (8,−1) (K, P) = (6, 0) (K, P) = (4, 2) (K, P) = (2, 1) (K, P) = (0, 3)

0 2.385689×1027 2.385402 6.994405×10−15 5.77316×10−15 1.210143×10−14 3.719247×10−14

1 2.779917×1037 2.410011 1.507892×10−7 1.467305×10−4 4.454081×10−3 7.805366
2 1.036922×1039 2.413778 2.714209×10−7 4.764676×10−5 6.398771×10−3 1.120104
3 1.466513×1012 2.377447×10−1 4.035951×10−10 4.450952×10−8 4.873151×10−6 5.310473×10−4

4 4.728532×10−1 1.336235×10−3 1.392109×10−12 1.123486×10−10 1.137188×10−8 1.153992×10−6

5 5.249947×10−3 5.711746×10−6 1.162043×10−11 6.347695×10−11 3.808664×10−11 4.012365×10−9

Again, the exponentially fitted methods gave better results compared with their 115

classical counterpart and the Runge–Kutta method as seen from Table (2) 116

6. Conclusion 117

Exponentially-fitted one-step fourth-derivative Obrechkoff method for oscillatory 118

problems was constructed. The new methods are self–starting and of algebraic order eight. 119

The stability and convergence properties of the constructed method were analysed and 120

we showed that the new methods are A–stable. The results obtained from the numerical 121

examples show that the new methods are suitable for solving periodic/oscillatory problems. 122

Author Contributions: Conceptualization, Wusu A. and Olabanjo O.; methodology, Wusu A. and 123

Olabanjo O.; software, Wusu A. and Olabanjo O.; validation, Wusu A. and Olabanjo O.; formal 124

analysis, Wusu A. and Olabanjo O.; investigation, Wusu A. and Olabanjo O.; resources, Wusu A. and 125

Olabanjo O.; data curation, Wusu A. and Olabanjo O.; writing—original draft preparation, Wusu A. 126

and Olabanjo O.; writing—review and editing, Wusu A. and Olabanjo O.; visualization, Wusu A. 127

and Olabanjo O.; supervision, Wusu A. and Olabanjo O.. All authors have read and agreed to the 128

published version of the manuscript. 129

Funding: This research received no external funding. 130

Conflicts of Interest: The authors declare no conflict of interest. 131

References 132

1. Lambert, J.D. Computational Methods in ODEs; Wiley, New York, 1973. 133

2. Lambert, J. Numerical methods for ordinary differential systems; Wiley, New York, 1991. 134

3. Ixaru, L.; Vanden Berghe, G. Exponential Fitting: Mathematics and Its Applications; Kluwer Academic Publishers, 2004. 135

4. Butcher, J. Numerical Methods for Ordinary Differential Equations; Wiley, 2008. 136

5. Akanbi, M.A. On 3–stage Geometric Explicit Runge–Kutta Method for Singular Autonomous Initial Value Problems in Ordinary 137

Differential Equations. Computing 2011, 92, 243––263. 138

6. Wusu, A.S.; Okunuga, S.A.; Sofoluwe, A.B. A Third-Order Harmonic Explicit Runge-Kutta Method for Autonomous Initial Value 139

Problems. Global Journal of Pure and Applied Mathematics 2012, 8, 441–451. 140

7. Wusu, A.S.; Akanbi, M.A. A Three-Stage Multiderivative Explicit Runge-Kutta Method. American Journal of Computational 141

Mathematics 2013, 3, 121–126. 142

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 June 2022                   doi:10.20944/preprints202206.0387.v1

https://doi.org/10.20944/preprints202206.0387.v1


Version June 26, 2022 submitted to Mathematics 9 of 9

8. Wusu, A.S.; Akanbi, M.A.; Fatimah, B.O. On the Derivation and Implementation of a Four Stage Harmonic Explicit Runge-Kutta 143

Method. Applied Mathematics 2015, 6, 694–699. 144

9. Abolarin, O.E.; Adeyefa, E.; Kuboye, J.O.; Ogunware, B.G. A Novel Multiderivative Hybrid Method for the Numerical Treatment 145

of Higher Order Ordinary Differential Equations. Al Dar Research Journal for Sustainability 2020, 4, 43–56. 146

10. Simos, T.E. An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or 147

oscillating solutions. Comput. Phys. Commun. Vol. 1998, 115, 1–8. 148

11. Vanden Berghe, G.; Daele, M. Exponentially-fitted Stomer/Verlet methods. Journal of Numerical Analysis: Industrial and Applied 149

Mathematics 2006, 1, 241–255. 150

12. Wu, X.; Wang, B.; Mei, L. Oscillation-preserving algorithms for efficiently solving highly oscillatory second-order ODEs. Numerical 151

Algorithms 2021, 86, 693–727. https://doi.org/10.1007/s11075-020-00908-7. 152

13. Iserles, A. On The Numerical Analysis Of Rapid Oscillation. CRM Proceedings and Lecture Notes 2004, pp. 1–15. 153

14. Liniger, W.S.; Willoughby, R.A. Efficient Integration methods for Stiff System of ODEs. SIAM J. Numerical Anal. 1970, 7, 47–65. 154

15. Jackson, L.W.; Kenue, S.K. A Fourth Order Exponentially Fitted Method. SIAM J. Numer. Anal. 1974, 11, 965–978. 155

16. On exponentially fitting of composite multiderivative Linear Methods. SIAM J. Numerical Anal. 1981, 18, 808–821. 156

17. Coleman, J.P.; Duxbury, S.C. Mixed collocation methods for y′′ = f (x; y). J. Comput. Appl. Math. 2000, 126, 47–75. 157

18. Avdelas, G.; Simos, T.E.; Vigo-Aguiar, J. An embedded exponentially-fitted Runge-Kutta method for the numerical solution of the 158

Schrodinger equation and related periodic initial-value problems. Comput. Phys. Commun. 2000, 131, 52––67. 159

19. Franco, J.M. An embedded pair of exponentially fitted explicit Runge-Kutta methods. J. Comput. Appl. Math. 2002, 149, 407–414. 160

20. Bettis, D.G. Runge-Kutta algorithms for oscillatory problems. J. Appl. Math. Phys. (ZAMP) 1979, 30, 699–704. 161

21. Vanden Berghe, G.; Meyer, H.D.; Daele, M.V.; Hecke, T.V. Exponentially-fitted explicit Runge-Kutta methods. Comput. Phys. 162

Commun. Vol. 1999, 123, 7–15. 163

22. Vanden Berghe, G.; Meyer, H.D.; Daele, M.; Hecke, T. Exponentially fitted Runge-Kutta methods. J. Comput. Appl. Math. 2000, 164

125, 107–115. 165

23. Ngwane, F.F.; Jator, S.N. Trigonometrically–fitted second derivative method for oscillatory problems. Springer Plus 2014, 3. 166

24. Zhai, W.; Chen, B. Exponentially Fitted RKNd Methods for Solving Oscillatory ODEs. Advances in Mathematics 2013, 42, 393–404. 167

25. Franco, J. Exponentially fitted explicit Runge-Kutta-Nystrom methods. J. Comput. Appl. Math. 2004, 167, 1–19. 168

26. Van de Vyver, H. A Runge-Kutta-Nystrom pair for the numerical integration of perturbed oscillators. Comput. Phys. Commun 169

2005, 167, 129–142. 170

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 June 2022                   doi:10.20944/preprints202206.0387.v1

https://doi.org/10.1007/s11075-020-00908-7
https://doi.org/10.20944/preprints202206.0387.v1

