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Abstract: The quest for accurate and more efficient methods for solving periodic/oscillatory problems
is gaining more attention in recent time. This paper presents the construction and implementation
of a family of exponentially—fitted Obrechkoff methods using a six—step flowchart discussed in the
literature. A single-step Obrechkoff method involving terms up to the fourth derivatives was used
as the base method. We also present the stability and convergence properties of the constructed
family of methods. Two numerical examples were use to illustrate the performance of the constructed
methods.
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1. Introduction

Ordinary Differential Equations (ODEs) that exhibit pronounced oscillatory or periodic
behaviour in their solutions are often encountered in fields like chemistry, engineering,
electronic, mechanics and astrophysics [1-3]. Many of the classical methods for solving
prominent classes of problems in ODE have been developed using only monomials as
basis [1,4-8]. In [9], the authors used a hybrid method to examine the direct solution
of higher order (second, third and fourth order) initial value problem (IVP) of ordinary
differential equations. However, in practice, many classical methods usually perform
poorly when applied to problems with pronounced periodic or oscillatory behaviour in
their solution [3,10,11]. This is due to the fact that for better accuracy to be achieved, a very
small step size would be required with corresponding decrease in performance, especially
in terms of efficiency [1]. One way to overcome this barrier is to adapt classical methods for
such problems. The adaptation which is called “exponential/trigonometric fitting” involves
the replacement of some of the highest order monomials of the basis by exponentials or
trigonometric [3,11]. Detailed analysis of the oscillation—preserving behaviour of some
existing RKN-type methods were analysed from the point of view of geometric integration
in [12]. Authors in [13] presented surveys on recent advances in the allied challenges of
discretizing highly oscillatory ordinary differential equations and computing numerical
quadrature of highly oscillatory integrals. They also, attempted to sketch the mathematical
foundations of a general approach to these issues [13]. A pioneer work in the use of
exponentially—fitted formulae for differential equations was due to [14]. The authors in
[14] constructed integration formulae which contains free parameters - chosen so that
a given function exp(q) where g is real, satisfies the integration formulae exactly. The
proposed methods in [14] was on a 1-step formulae, however, in [15], A-stable fourth order
exponentially—fitted formulae based on a linear 2-step formula were derived. Using the
concept proposed in [15], the author in [16] proposed a Multiderivative Linear Multistep
Method (MLMM) with k=1 in the second derivative formulae. Many authors have proposed
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specially adapted Runge—Kutta (RK) algorithms to solve this class of problems [17-20]. In
this direction, exponentially—fitted RK (EFRK) methods which integrate exactly first-order
systems whose solutions can be expressed as linear combinations of functions of the form
{exp(At), exp(—At)} or {cos(wt), sin(wt) } were introduced in [21,22]. The construction of
an implicit trigonometrically—fitted single-step method having second derivative using
trigonometric basis function was proposed in [23].

In this work, we used the six-step flowchart described in [3] to construct a class of
exponentially—fitted single—step fourth—derivative Obrechkoff methods suitable for solving

v = f(xy), x€lx,X], y(x) = vo. (1)

2. Construction of Method

A classical fourth-derivative single-step Obrechkoff method for solving the first order
initial value problem (1) can generally be written as

Yir1 = aoy; —|—h(b1fj+1 + bof]) +h2 (le]‘l_;,_1 —{—C()f]./>+

@)
W (duffir +doff’) + it (enffly +eof)")

where ag, by, b1, cg, c1,do, d1, 9 and eq are coefficients to be determined.

Here, we present the construction of the exponentially—fitted variants of (2) using the
six—step flowchart described in [3]. Following the six—step flowchart, the corresponding
linear difference operator L[h, a] is obtained as

Lk, aly(x) = y(x +h) —agy(x) — h(bry' (x + ) + boy' (x)) —
1 (ery” (x +h) + coy” (%)) —
13 (day" (x + ) + doy”" (x)) -
I (ery™ (x + h) + eoy" (x))

®)

where a := (ag, by, by, co, ¢1,do, d1, €0, €1)-
Step II of the procedure requires that we get the maximum value of M such that the
algebraic system

{Li(a) = h™™L[h,alx™|4—g = Olm = 0,1,2,-- M — 1}

can be solved. The above results in

Ly(a) = 1—ap=0 4)
Li(a) = —bp—b1+1=0 5)
L3(a) = —2b1—2c0—2c1+1=0 (6)
Li(a) = —3by—6c; —6dy—6d+1=0 @)
Li(a) = —4by —12c; —24d; — 24y — 24e; +1 =0 )
L:(a) —5b; —20c1 — 60d; —120e; +1 =10 C)
Li(a) = —6by —30c; —120d; —360e; +1 =0 (10)
Li(a) —7by — 42¢1 — 210d; — 840¢; +1 =0 (11)
Lg(a) —8by — 56c1 — 336d; —1680e; +1 =0 (12)

and the algebraic system is compatible when M = 9. Also, the solution only results in the
coefficients of the associated classical method to be adapted.
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To exponentially fit the associated classical method, we proceed to step III of the six—
step flowchart and obtain expressions for G*(Z,a) and G~ (Z, a) which are respectively

defined as
Gt(Za) = %(Eg(z,a)—i—Ea‘(—z,a)) (13)
G (za) = 5 (Ei(za)-E5(~2a)) (14)

where Ej (£z,a) = eT“¥L[h,ale*“~ and Z = z%. The expressions for G™(Z,a) and G~ (Z, a)
are respectively obtained as

Gt(z,a) = —ag+ sinh(\/Z) (—blﬁ— d1Z3/2) n
cosh(x/z) (—clz —eZ%*+ 1) — ¢oZ — egZ> (15)
G (Z,a) = cosh(ﬁ) (=by —d1Z) — by +

sinh(ﬁ)( AVZ — e 732 + \%)doz (16)

where w, the frequency of oscillation is real or imaginary, z = wh = wy,. (For the trigono-
metric case, i.e, w is imaginary, we choose z = wh = iuh, ie 22 =— yzhz Z.)
To implement step IV, consider the reference set of M functions:

{1,x,~ . ,xK,exp (fwx), xexp (fwx), - - - xP exp (iwx)}

with K + 2P = M — 3. Since for our method M = 9, we have five possibilities, which we
shall respectively refer to as S1, S2, S3, S4 and S5:

e S1:. K =8,P = —1, the classical case with the set

1,x, xz, x3, x4, x5, x6, x7, %8

e S2: K=6,P =0, the mixed case with the set

1,x, 2%, %%, 2%, x°, x%, exp(+wx)

. S3: K =4, P = 1, the mixed case with the set

1,x,x2, %3, x4, exp(twx), x exp(Lwx)

e S4: K =2,P =2, the mixed case with the set

2

1,x,x%, exp(Fwx), x exp(+wx), x? exp(£wx)

e S5: K =0,P = 3, the mixed case with the set
1, exp(dwx), x exp(£wx), x? exp(+wx), x> exp(+wx)

In order to get the corresponding coefficients of the method associated with each case, we
implement step V of the algorithm by solving the algebraic system

Li=0, 0<k<K, GP*Za)=0 0<p<P

and the coefficients of the methods associated with each case are respectively obtained as
follows:


https://doi.org/10.20944/preprints202206.0387.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 June 2022 d0i:10.20944/preprints202206.0387.v1

40f9
S1: (K,P) =(8,-1)
apg = 1
bo=b =1
Chp = —C = 238 (17)
doy=dy = &
ep = —e1 = ﬁ
Equ. (17) gives the coefficients of the classical method associated with Equ. (2).
S2: (K,P) = (6,0)
apg — 1
bo=b =1
. _ (z*—120) sinh(3)—5z(z%—12) cosh(3)
“="a= 1022 ((z2+12) sinh () —6zcosh(3 ) ) (18)
do = di — (247602 7720) sinh(§)+3 602c0sh(§)
0="= 12022 ((z2+12) sinh(3 ) —6z cosh(3))
_ _ z(z +60) cosh( ) 12(2 +10) smh(%)
== 12022 ((z2+12) sinh( % ) —6z cosh(3))
S3: (K,P)=(4,1)
=1
b =bh=1
. _ z*—1222+(2%—36)z sinh(2) +96 cosh(z) —96
f="0a-= 12z2(z2+z sinh(z) —4 cosh(z)+4) (19)
do = di — —4(22+6)+(22+24) cosh(z)—9zsinh(z)
0=“1= 622 (z2+z sinh(z) —4 cosh(z)+4)
N N z4+1222—(22+48)zsinh(z)+12(22+4)cosh(z)—48
€=-6a=~- 12z%(z2+z sinh(z) —4 cosh(z)+4)
S4: (K,P) =(2,2)
ap = 1
bo=by =1}
_ _ sinh(3)(22°+21z+24sinh(z) ) —182? cosh( § ) —3zsinh( ¥ )
o= —C = 272 (2z2+1)cosh( ) ZZsmh( )7cosh(%)) (20)
do = dr — 23 cosh( +smh( )(32 +3zsinh(z)— 16cosh(z)+16)
0=M1=" 23((22241) cosh(§ ) —2zsinh(3 ) —cosh( %))
P P sinh(%) (722372lz+12 sinh(z))+6z2 cosh(%)fz sinh( 372)
0= —€1 =

2z4((2224+1) cosh (3 ) —2zsinh(§ ) —cosh( %))

S5:: (K,P) =(0,3)

ap = 1
b — by — 2(42%—6(22+1) sinh(z)+2(2*+3)z cosh(z) —6z+3 sinh(2z) )

o= == z((22+43)z2—2(22+3)z sinh(z)+622 cosh(z) —3 sinh*(z) )

. . 2(247322(4 cosh(z)+3)+9sinh?(z)+12z sinh(z))

€="a= _zz((zer?:)zzfz(ZZJrB')zsinh(z)Jréz2 cosh(z)73sinh2(z)) (21)
do = dv — 2(223(cosh(z)+2)+6sinh(z)—3sinh(Zz)—6z(cosh(z)—1))

0="= 23((22+3)22~2(z2+3)z sinh(z) +622 cosh(z) -3 sinhz(z))
e = —pr — 74223 sinh(2) +22(3—6 cosh(z)) —3 sinh? (z) +-62 sinh(z)

0= "= 24((zz+3)zz—2(zz+3)zsinh(z)+622 cosh(z)—SSinhz(z))

As expected, the exponentially fitted variants reduce to the classical method as z — 0.
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3. Error Analysis :: Local Truncation Error (Ite)

The leading term of the local truncation error (Ite) for exponentially—fitted method
with respect to the basis functions

{1, x,- -, x5, exp (+wx), xexp (+wx), -, xF exp (j:cux)} (22)
is of the form

Ly 4
lteEP(t) _ (_1)P+1hM(KK—:11()a!(ZP)+)1 K+1(D2 - wZ)PJrly(x) (23)

with K, P and M satisfying the condition K +2P = M — 3, [3].
For the five methods constructed in this work, the leading terms of the local truncation
error are obtained as follows:

e S1:(K,P)=(8-1)

1oy(9)
ltepr(t) = % (24)

e S2:(K,P)=(6,0)

o (202 (22 + 42) cosh(3) — (z* + 1802 + 1680) sinh3))
100800z ((z2 4 12) sinh(3) — 6z cosh(3))

X (u(g)(t) - wzum(t)) (25)

lteEp(t) = —h

e S3:(K,P)=(41)
K
720z8(z% + zsinh(z) — 4 cosh(z) + 4)
x (2880 — 24022 4 242* + 20~

Itegr(t)

24 (z4 45022 + 120) cosh(z) +
z (z4 +2402% + 2880) sinh(z))
< (v () — 2027 (x) + whyO) () (26)
e S4:(KP)=(22)

h9
" 1229((222 + 1) cosh(3) — 2zsinh(3) — cosh (%))

X (—23 (222 + 85) cosh(%) + 23 cosh(Bzz) +

2sinh(§) (192 +992% + 724 — 192 cosh(z) +

Itepr(t)

108z sinh(z)) — 1822 sinh (327‘> )

5 (y(g)(x) — 302y (x) + 30ty ® (x) — wby® (x)) (27)
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e S5:(K,P)=1(0,3)

I 4(42%—6(22+1) sinh(z)+2(z%*+3)z cosh(z) —6z+3 sinh (2z) ) 1
z((22+3)z2—2(22+3)z sinh(z)+622 cosh(z) —3 sinh*(z) ) t

lfeEp(i') = 8

X (y(9>(x) — 40y (x) + 6wy (x) — 40Oy (x) + wgy’(x)) (28)

4. Convergence and Stability Analysis

Theorem 1 (Dahlquist Theorem). The necessary and sufficient conditions for a linear multistep
method to be convergent are that it be consistent and zero-stable [4].

Dahlquist theorem (1) holds also true for exponetially—fitted—based algorithms but,
the concepts of consistency and stability have to be adapted since their coefficients are no
longer constants.

Definition 1. An exponentially—fitted method associated with the fitting space (22) is said to be
of exponential order q, relative to the frequency w if q is the maximum value of M such that the
algebraic system {L;,(a) = 0|m =0,--- , M — 1} is compatible [3].

Definition 2. A linear multistep method is said to be consistent if it has order P > 1 [1,4].

Since the order of the constructed method, M = 9 > 1 for all the constructed schemes,
the consistency requirement is satisfied. Hence, the constructed schemes are all consistent.

Definition 3. The method Equ. (2) is zero stable if no root of the first characteristic polynomial has
modulus greater than one and if every root with modulus one is simple. [1,2]

In order to establish the stability of (2), we apply Equ. (2) to the test problems y' = Ay
and obtain the stability function R(g), of the class of methods as

Yn+1 R( )_ 1+b0q+coq2+doq3+eoq4

Yn C1—big—aq? —dig® —eigt’

with g = Ah. (29)

Definition 4. A region of absolute stability is a region in the complex plane, throughout which
|R(q)| < 1. Any closed curve defined by |R(q)| = 1 is an absolute stability boundary. Also, any
interval («, B) of the real line is said to be the interval of absolute stability if the method is stable for
all g € (a,B) [1,4].

The absolute stability regions for all the methods constructed in this work are the same
and given in Figure (1).
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Figure 1. Region of absolute stability for the constructed methods
From Figure (1), it can be seen that stability region of the methods contains the entire

left half plane, hence they are all A-stable and have their absolute stability interval as
(=00, 0].
5. Numerical Results

In this section, we considered two test problems. The constructed methods are imple-
mented on these test problems and the obtained results were compared with those of the
classical eighth-order Runge-Kutta (RK-8) method.

5.1. Problem 1

The first test problem considered in this work is the initial value problem given as
y' —y=0001cosx, y(0)=1, 3y =0

with exact solution
y(x) = cos x + 0.0005x sin x

This problem was studied in [24,25]. Using different stepsizes, we implement the con-

structed methods on this problem and present the maximum absolute errors in Table 1.

Table 1. Maximum absolute error for constructed methods on Problem 5.1 with step-size h =
27in, i=0,1,2,3

[

RK-8 (K,P)=(8,-1) (K,P)=(60) (KP)=(42) (KP)=(21) (KP)=(0,3)

8.256847x10°1  1.701678x10° 0.000000 0.000000 0.000000 2.220446x 10716
59218811073  1.485065%x107°  1.516774x1078  1.160079x10~13 4.170189x10~# 9.992007x 1016
9.221257%x107°  6.125912x10~8  6.400131x10~11  1.488434x10~ 1 6.878617x107 12  7.895672x10~13
1.154806x10~¢  2.425554x 10710  3.548604x 1011 1.3173x10~? 3.317455%x10710  7.396323x 10~ 11

W N = O

For this problem, the exponentially fitted methods gave better results compared with
their classical counterpart and the Runge-Kutta method as seen from Table (1).
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5.2. Problem 2

The inhomogeneous equation
¥’ +100y = 9sinx, y(0) =1, y =11

with exact solution
y(x) = sin(x) + sin(10x) 4 cos(10x)

is considered as the second test case. This problem has also been studied by [24,26]. The
constructed methods were implemented on it with different stepsizes and the results ob-
tained were also compared with those of the Runge-Kutta method. The table of maximum
absolute errors is given in Table 2.

Table 2. Maximum absolute error for constructed methods on Problem 5.2 with step-size h =
27, i=0,1,2,3,4,5

o

RK-8 (K,P)=(8,-1) (KP)=(60) (KP)=(42) (KP)=(21) (KP)=(03)

2.385689x 1027 2.385402 6.994405x10~ 1 5.77316x10715  1.210143x107 14  3.719247x 1014
2.779917 x 1037 2.410011 1.507892x10~7  1.467305x10~%  4.454081x10~3 7.805366
1.036922 x 10%° 2.413778 2.714209%x10~7  4.764676x107°  6.398771x1073 1.120104
1.466513x1012  2.377447x10~!  4.035951x10710  4.450952x10~%  4.873151x10~°®  5.310473x10~*
4.728532x10~1  1.336235x1073  1.392109x10712  1.123486x10710 1.137188x10~8  1.153992x10~°
5.249947x1073  5711746x107°% 1.162043x10~ 11  6.347695x10"11  3.808664x10~ 11  4.012365x10~?

Ok WN — O

Again, the exponentially fitted methods gave better results compared with their
classical counterpart and the Runge-Kutta method as seen from Table (2)

6. Conclusion

Exponentially-fitted one-step fourth-derivative Obrechkoff method for oscillatory
problems was constructed. The new methods are self-starting and of algebraic order eight.
The stability and convergence properties of the constructed method were analysed and
we showed that the new methods are A—stable. The results obtained from the numerical
examples show that the new methods are suitable for solving periodic/oscillatory problems.
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