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Abstract: Natural convection is intensively explored, especially in a valley-shaped trapezoidal en-

closure, because of its broad presence in both technical settings and nature. This study deals with a 

trapezoidal cavity, which is initially filled with linearly stratified air. Though the side walls remain 

adiabatic, the bottom wall is heated, and the top wall is cooled. For the stratified fluid (air), the 

temperature of the fluid adjacent to the top and the bottom walls is the same as that of the walls. 

Natural convection in the trapezoidal cavity is simulated in two dimensions using numerical simu-

lations, by varying Rayleigh numbers (Ra) from 100 to 108 with constant Prandtl number, Pr = 0.71, 

and aspect ratio, A = 0.5. According to numerical results, the development of transient flow within 

the enclosure owing to the predefined conditions for boundary may be categorized into three dis-

tinct stages: early, transitional, and steady or unsteady. The flow characteristics at each of the three 

phases and the impact of the Rayleigh number on the flow’s growth are stated in this study. In 

addition, heat transfer through the bottom and the top surfaces is described in this study. 
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1. Introduction 

In an enclosure, natural convection has gained a lot of interest among academics since 

it can be found in a variety of applications and has a big impact on thermal characteristics. 

Natural convection has been studied inside various shapes of enclosures with numerous 

boundary conditions to investigate thermal behavior as well as fluid flow, as natural con-

vection is used in an array of technical applications, ranging from geophysics, geothermal 

reservoirs, building insulation to industrial separation processes and so forth. Unsteady 

natural convection in a differentially heated cavity has attracted a lot of attention in the 

scientific literature. Many researchers [1-6] provided comprehensive investigations for 

regular enclosures (e.g. rectangular, square and triangular) using various numerical mod-

els, indicating that multiple investigations have been made to gain a fundamental under-

standing of unsteady natural convection flows and heat transfer characteristics in an en-

closure. 

Due to the importance of attics for occupant thermal comfort in buildings, and the 

resulting energy costs for heating and air conditioning, increased research activities have 

been carried out on subjects related to heat transfer in attics over the last forty years. Saha 

et al. [7,8] has examined heat transport through attics under periodic thermal forcing and 

cooling inclined walls. Natural convection flows within V-shaped triangle enclosures with 

opposite boundary conditions appeared to be well-studied due to their natural presence. 

Transitions from symmetric steady to asymmetric unsteady flow were studied by 

Bhowmick et al. [9,10] in a V-shaped triangular enclosure heated from below and cooled 

from the top for both air and water. Different flow mechanisms have found for the 
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different fluids. Wang et al. [11] has experimented with natural convection in a V-shaped 

enclosure with the same boundary conditions of [10]. 

Any triangular, square, or rectangular cavity is inadequate for numerous engineering 

systems as well as geophysical circumstances where the enclosure geometry varies or con-

tains extra tending walls. Natural convection in a trapezoidal enclosure is far more diffi-

cult to examine than in any regular enclosures because of the sloped walls. This compli-

cated geometry needs a precise and large effect in mesh creation and code development. 

However, there were a number of studies on natural convection that focused on trapezoi-

dal enclosures. Iyican et al. [12,13] has considered trapezoidal cavity with boundary con-

ditions of heated base wall and parallel cylindrical cooled top wall to investigate natural 

convection of the cavity, using experimental and computational methods. Lee [14] has 

reported a theoretical and experimental investigation of the non-rectangular enclosure, in 

which two 45° inclined sides of a trapezoidal cross-section were chosen, with different 

heating conditions. Lam et al. [15] has found analogous findings for a trapezoidal enclo-

sure with cooled inclined top wall, heated bottom wall, and insulated vertical sidewalls. 

Lee [16] has numerically examined the fluid flow and the heat transfer which were 

passed through a cold chamber of a trapezoidal enclosure, where heated fluid was sup-

posed to flow into one end of the chamber from a depth below the surface and was re-

moved from the other end at a different depth. Lee [17] and Peri [18] have showed numer-

ical findings in the case of laminar natural convection within a trapezoidal cavity with 

inclined sidewalls kept at varying constant temperatures, and adiabatic top and base walls 

for the Ra ≤ 106. Sadat and Salagnac [19] have used a finite element based on the control-

volume approach to compute the similar geometry for Rayleigh numbers from 103 to 2 × 

105. Kuyper and Hoogendoorn [20] have examined laminar natural convection flow 

within a trapezoidal cavity in order to see the effect of the flow by the inclination angle, 

and the relationship between the Ra and the average Nu. Moukalled and Darwish [21] 

have looked at how heat transfer was affected by installing baffles upon the top inclined 

walls inside trapezoidal cavities. Boussaid et al. [22] has examined thermal heat transfer 

inside a trapezoidal chamber in which the base wall was heated and the tending upper 

half was cooled. The influence of natural convection flow within a trapezoidal cavity was 

examined by Natarajan et al. [23] under the conditions of a heated base wall as well as 

linearly heated and cooled vertical walls, but with no insulation on the top wall. Ham-

mami et al. [24] has investigated the fixed heat and mass transport processes within a 

trapezoidal enclosure using a binary air-water vapor mixture. Later, Natarajan et al. [25] 

has explored natural convection flow inside a trapezoidal cavity in which, on the one 

hand, the base wall was, both consistently and inconsistently, warmed and the upward 

walls were, through a steady temperature shower, kept cool, and then again, the upper 

wall remains insulated. Basak et al. [26] has examined natural convection energy fluxes in 

trapezoidal enclosures in which the top walls were insulated, whereas the bottom walls 

were heated, and sidewalls were cooled. 

For three vertex angles in trapezoidal isosceles, the advancement of natural convec-

tion oscillatory flow patterns was examined by Noah and Daniel [27]. Mustafa and Ghani 

[28] have explored a natural convection flow inside a trapezoidal cavity with partially 

heated bottom wall and cooled vertical walls through a constant temperature bath, and a 

well-insulated top wall. By means of the ‘Element based Finite Volume Method’, Silva et 

al. [29] has studied natural convection inside trapezoidal enclosures. Gholizadeh et al. [30] 

has explored the natural convection inside a trapezoidal enclosure where the right in-

clined wall was partially heated, by means of the finite difference method. In a porous 

trapezoidal enclosure saturated through a power-law non-Newtonian fluid, Yazdani et al. 

[31] has considered natural convection as well as entropy production. To better compre-

hend the effect of heating length on the active bottom wall, Gowda et al. [32] has observed 

natural convection within the cavity of a trapezoid under the condition that the base wall 

was partly heated, upper wall was adiabatic and the inclined wall remains at a fixed 

cooled temperature.  
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Various boundary conditions were used in the trapezoidal cavity by various re-

searchers, according to the above literature studies. However, an initially stratified air-

filled trapezoidal enclosure, is still ambiguous, which encourages the conducting of this 

research. It has direct application to environmental fluid dynamics which deals with the 

heat transfer and airflow process in the thermal stratification environment. This using 

two-dimensional numerical simulations for Ra = 100 to 108, Pr = 0.71, and A = 0.5, the tran-

sitional flow in the trapezoidal cavity is considered in this article. The influence of Ra on 

fluid flow and heat transfer is thoroughly examined. 

Nomenclature 

A aspect ratio ΔT temperature difference, (Th ˗ Tc) 

g gravitational force (m/s2) k thermal conductivity (W/(m·K)) 

L, H 
half-length and height of the 

enclosure (m) 
u, v 

dimensional velocity components 

(m/s) 

ln 
dimensionless length of the 

horizontal wall 
U, V 

dimensionless velocity 

components 

n 
dimensionless coordinate normal to 

the horizontal wall 
x, y 

dimensional horizontal and 

vertical coordinates 

t time (s) 
X, Y 

dimensionless horizontal and 

vertical coordinates Nu Nusselt number 

P Pressure (N/m2) 
β 

thermal expansion coefficient 

(1/K) Pr Prandtl number 

Ra Rayleigh number, gβ(Th-Tc)H3/νκ κ thermal diffusivity (m2/s) 

T dimensional temperature (K) ν kinematic viscosity (m2/s) 

T∞ dimensional ambient temperature (K) ρ density (kg/m3) 

Th 
dimensional temperature of the 

heated bottom wall (K) 

τ dimensionless time 

Δτ dimensionless time step 

Tc 
dimensional temperature of the 

cooled top wall (K) 

θ dimensionless temperature 

  

 

2. Problem formulations 

This study considers a trapezoidal enclosure of height H, as well as the horizontal 

length of the top, 2L, where L = 2H; i.e., A = H/L = 0.5. Fig. 1 illustrates a non-dimensional 

physical model with boundary conditions. A tiny percentage (= 4% of L) of each top corner 

is sliced to dispense with the singularity around the position between inclination and up-

per walls, and cutting walls are subject to an adiabatic thermal state. The fluid in the cavity 

with Pr = 0.71 is considered, which is, in the beginning, linearly stratified as having the 

highest T = Th temperature at the bottom and the lowest T = Tc temperature at the top. The 

boundaries are non-slip. 
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Figure 1. Schematic of physical domain with non-diensional boundary conditions with the 

monitoring points P1 (0, 0.133), P2 (0, 0.4), P3 (0, 0.8), P4 (0.4, 0.51) and P5 (-0.4, 0.51), which are utilized 

in the resulting figures. 

In a trapezoidal enclosure, natural convection of stratified air is assumed. The subse-

quent set of governing equations with the Boussinesq approximation regulate the pro-

gress of natural convection flows in the enclosure: 
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The three governing parameters, which are aspect ratio (A), Pr and Ra [33], influence 

the natural convective flows in the enclosure that can be expressed as follows:  

�� =
��(�� − ��)�

�

�κ
, �� =

�

κ
, � =

�

L
. (6) 

After adding the aforementioned dimensionless variables equations (1) to (4) be-
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3. Time step and grid dependent tests 

In this study, ANSYS FLUENT 17.0, a finite-volume-based fluid simulation software, 

is used to enable the high Rayleigh number flows (Armfield and Street [34-36]). In order 

to find solutions to the governing Equations (7-10), and other conditions, the SIMPLE 

scheme is used. Using the QUICK scheme (see Leonard and Mokhtari [37]), we discretized 

the advection term. We have also used central differencing along with second-order accu-

racy to discretize the diffusion terms. Moreover, a second-order implicit time-marching 

scheme is employed for the unsteady term. 

Table 1. Temperature at P2 (0, 0.4) employing various grids and time steps. 

Grids and time steps 
Average value of the 

temperature 

Percentage of the 

variance 

225×75 and Δτ = 0.01 0.306495 1.42% 

300×100 and Δτ = 0.01 0.310895 - 

300×100 and Δτ = 0.005 0.313003 0.68% 

375×125 and Δτ = 0.01 0.309845 0.34% 

 

We have also performed the grid and time step dependency test for the greatest Ray-

leigh number, Ra = 108 used in this study. We have created three symmetrical meshes of 

225×75, 300×100 and 375×125, which are non-uniform using the application ANSYS ICEM, 

by way of coarser grids in the interior area as well as finer grids around the edges. From 

a width of at least 0.002 adjacent to the wall to the width of 0.02 in the interior, the mesh 

of 300×100 has been increased at a rate of 3%. At position P2 (0, 0.4), employing various 

grids together with time steps, the temperature time series is computed for Ra = 108 as 

depicted in Fig.2. The results evidently show that temperatures predicted with various 

meshes and time steps are constant in the initial phases, but somewhat deviate in the fully 

matured stage. Table 1 shows the temperature averaged at the fully-developed phase once 

more.  

The differences in the results produced using different meshes and time steps can be 

shown to be less than 2%, which is satisfactory. Considering the computational cost, a 

mesh of 300×100 and a time step of 0.01 were used in numerical simulation. 

 

Figure 2. Temperature time series at P2 (0, 0.4) for Ra = 108 with distinct grids as well as time steps. 
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4. Results and discussions 

For Ra = 100 to 108, Pr = 0.71 and A = 0.5, we have explained the transient evolution of 

the flow in an initially stratified air-filled trapezoidal cavity in response to consistent heat-

ing through the base and similar cooling via the top surfaces using computational fluid 

dynamics approach.  

4.1. Development of the transient flow 

For Ra = 100 to 102, we have found that there is no ascending or descending plume in 

the flow development, i.e., the flow is always steady under a conduction dominance for 

those Rayleigh numbers. For the sake of brevity, results are not presented here for Ra = 

100 to 102. So that, for Ra = 103 to 108, the general characteristics of flow development in a 

trapezoidal enclosure are presented (see Figs. 3-5) here. The development of the flow for 

these Rayleigh numbers, according to the numerical simulations, may be divided into the 

following: early-stage, transitional stage, and steady or unsteady stage.  

4.1.1. Flow at the early stage  

In the trapezoidal enclosure, the air is at first stratified, as indicated in the preceding 

sections. At the beginning of the numerical studies, the instant conditions for isotherms 

are created across the surfaces that first cool the cavity via the upper surface and then 

make it warm through the bottom. Thermal boundary layer forms along all internal sur-

faces as a result. The cooling thermal boundary layer is near the top wall, whereas the 

heating thermal boundary layer is alongside the bottom surface. The lower section pro-

duces the heating thermal boundary layer, while the top section of the upper layer pro-

duces the cooling thermal boundary layer. The progress of the thermal boundary layers 

through time is depicted in Fig. 3, exhibiting isotherms and streamlines (Fig. 3a-3e) at τ = 

6 after start-up. 

  

 

  

  

Figure 3. Streamlines and isotherms at the early stage for the different Rayleigh numbers at τ = 6. 

At the early stage, the core’s fluid stays isothermal, as shown in Fig. 3, in spite of the 

expansion of the thermal boundary layer, at the initial temperature. Because the bottom 

part of the enclosure is heated and the top section is cooled, the heated fluid from the 

bottom travels via the boundary layer towards the upper parts. On the contrary, the 

boundary layer transports cooled air to the bottom from the top. Both warm and cold 

fluids meet in the middle of the top wall and release into the core. There remains another 

heated boundary layer near the bottom section that begins to expand, as the thermal forc-

ing begins. At this moment, the isothermal difference reveals the thicknesses of the ther-

mal layer barrier to the center growing with time. The streamlines show that Ra = 103 to 

105 has two weak revolving cells, and, Ra = 106 to 108 has four weak rotating cells. The 
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isotherms and streamlines for different Ra remain symmetric with regard to the cavity’s 

y-axis line at this stage. 

4.1.2. Transitional stage 

The formation of convective instabilities marks the flow in the form of ascending and 

descending plumes at the transitional phase. Through the warming of the bottom portion, 

the horizontal thermal boundary layer, which has warmed air under colder air, is unstable 

to ‘Rayleigh-Bénard instabilities’, is formed. When the critical conditions are fulfilled, the 

hot thermal boundary layer becomes unsteady.  

  

 

  

  

Figure 4. Streamlines and isotherms at the initial transitional stage for the different Rayleigh num-

bers at τ = 20. 

In this regime, Fig. 4 and Fig. 5 display the streamlines and isotherms at various pe-

riods. It has previously been noted that when air of two different temperatures passes 

through the boundary layer around the midpoint of inclined surfaces, it invariably travels 

downwards. Subsequently, the heated air plume then moves to the cavity’s core, while 

the cooled air plume goes to the lower portion from the upper layer. Fig. 4(a-b) shows that 

the flow becomes symmetric and steady at τ = 20 for Ra = 103 to 104. The flow grows 

stronger and finally asymmetric as time passes due to pitchfork bifurcation. The figures 

demonstrate the asymmetric isotherms and streamlines for the higher Rayleigh numbers. 

It is without a doubt significant that with the greater Rayleigh number, the flow oscillates 

for quite a long period. The bifurcation continues to rehash left and close to the symmetric 

focal line while oscillating. Fig. 5(c-d) depicts that the flow becomes symmetric and steady 

at τ = 100 for Ra = 105 to 106. Because of the presence of convective instabilities, the rotating 

cells that are at the beginning of the growth of the flow are fragmented into several cells, 

which is demonstrated in Fig. 4 and Fig. 5 by the outlines of the isotherms and streamlines. 
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Figure 5. Streamlines and isotherms at the developed transitional stage for the different Rayleigh 

numbers at τ = 100. 

 

Figure 6. Pitchfork bifurcation in the Ra-u plane where u is the x-velocity at the point, P3 (0, 0.8). 

A pitchfork bifurcation starts to happen due to the results of Rayleigh-Bénard insta-

bility. The x-velocity at point P3 (0, 0.8) in the Ra-u plane is provided in Fig. 6 to explain 

such a Pitchfork bifurcation from symmetric to asymmetric state at the completely devel-

oped stage (τ = 1000). Because the flow is symmetric around the y-axis and point P3 is on 

the y-axis, the x-velocity for Ra ˂ 105 is close to zero. When the Rayleigh number surpasses 

or equivalents to 105, the cell inclines to the right side with the increment of the x-velocity, 

as set apart by the square line however to the left side with the reduction of the x-velocity, 

as set apart by the circle line in Fig. 6.  

4.1.3. Flow at the steady or unsteady stage 

In the late transitional phase, a pitchfork bifurcation occurs, resulting in the for-

mation of an asymmetric flow structure. The pitchfork bifurcation occurs early in the nu-

merical simulation, as previously mentioned.  
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Figure 7. Streamlines and isotherms at the fully developed stage for the different Rayleigh numbers 

at τ = 2000. 

The convective instabilities alternate on either side of the cavity, and the upward-

moving heated air plumes on the base side appear in the middle at different times, which 

is a fascinating event as shown in the numerical simulation. During the transitional stage, 

the flow, on the other hand, has multiple undershoots and overshoots prior to becoming 

completely stable. Thermal travels from the boundary layer on either side of the portion 

discharge fluid to the cavity’s centre over time. At the fully developed phase, the fluid 

inside the enclosure reaches a steady-state for Ra = 103 to 106 (see Fig. 7a-7d). If Ra ≤ 106 

Fig. 7(a-d) reveal that the flow becomes stable under various initial conditions. Further-

more, for Ra ≥ 107, Fig. 7(e-f) depicts isotherms and streamlines. Fig. 7(e) represents a few 

tiny cells forming on the top right and left sides of the larger cell. However, when looking 

at the numerical data, it can be seen that the two tiny cells alternately emerge, indicating 

that the flow arrives unsteady state at a fully advanced stage for Ra = 107. With the increase 

of Ra, however, both the cells develop in the center of the two biggest cells, as seen in Fig. 

7(f). In Fig. 7(f), for Ra = 108, the biggest cell in the center also travels between right and 

left. As a result, the unsteady flow gets more complicated. 

To comprehend the unstable flow for greater Rayleigh numbers, the series of tem-

perature-time is presented in Fig. 8. It is apparent that, at the completely advanced stage, 

the flow is stable as shown in Fig. 8(a), and that the flow pattern in Fig. 8(b) concurs with 

the finding of a Hopf bifurcation from a steady state to periodic condition.  With the in-

crease of Ra, the periodic flow fluctuates, as well as the unstable flow turns chaotic for Ra 

= 108. This is illustrated in Fig. 8(c). 
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Figure 8. At the fully developed stage, temperature time series at point P3 (0, 0.8) for (a) Ra = 106, (b) 

Ra = 107 and (c) Ra = 108. 

To comprehend the Hopf bifurcation, which occurs at the transition from steady to 

periodic phase, the attractors (τ = 300 to 2000) for Ra = 106 and (τ = 1000 to 2000) for Ra = 

107 at the point P4 (0.4, 0.51), are depicted in Fig. 9. In Fig. 9(a), the curve in the u-θ plane 

is clearly nearing a certain value with the passage of time for Ra = 106. In contrast, Fig. 9(b) 

shows a limit cycle for Ra = 107 (dense curve). Consequently, a Hopf bifurcation occurs at 

Ra = 107 (referred to [38] for a full description of Hopf bifurcation).  

At point P3 (0, 0.8) for Ra = 107 and 108, the directions of phase-space of the u-θ plane 

are depicted in Fig. 10 with a view to demonstrating the transformation to chaotic from 

the periodic condition in greater detail. In Fig. 10(a), the limit cycle can be seen, indicating 

that the unsteady flow is periodic for Ra = 107, which is compatible with Fig. 8. In Fig. 

10(b), the trajectory turns out to be chaotic for Ra = 108, indicating that the periodic flow 

transforms into chaotic which happens within Ra = 107 and 108. This has been referred to 

[39] for a full description of the phase-space trajectories. 
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Figure 9. Limit point and limit cycle in the u-θ plane at the point P4 (0.4, 0.51) respectively for (a) Ra 

= 106 and (b) Ra = 107. 

  

Figure 10. Phase-space trajectories in the u-θ plane at the point P5 (-0.4, 0.51) for (a) Ra = 107 and (b) 

Ra = 108. 

4.2. Impact of Rayleigh numbers on the progress of the flow 

An array of Rayleigh numbers, ranging from Ra = 103 to 108, has been used in the 

simulations. An observation has been made in the different transient flow characteristics 

throughout an array of Rayleigh numbers. For A = 0.5, the isotherms and accompanying 

streamlines are depicted in Figs. 3-6 for different Rayleigh numbers. The numerical find-

ings for the various Rayleigh numbers, as shown in Fig. 11, reveal some differences. To 

begin with, convective flow instabilities can be noticed at the lowermost Rayleigh number. 

However, with a higher Rayleigh number, the unsteadiness becomes more pronounced, 

as well as the corresponding wave number rises. For Ra = 103 to 104, the flow is weaker 

and symmetric behavior is visible, which is expected; i.e., the flow is symmetric and con-

stant. The flow becomes asymmetric for Ra = 105 and 106 in the transitional stage and be-

comes steady at the fully developed stage. Finally, for Ra = 107 and Ra = 108, the flow 

becomes periodic and chaotic, respectively. 
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Figure 11. Series of temperature and time at point P1 (0, 0.133) for various Rayleigh numbers. 

5. Heat transfer 

The time series of averaged Nusselt number (Nu) of the lower and upper surfaces 

are calculated and demonstrated in Fig. 12 in order to measure heat transfer through the 

cavity’s wall. At this study, the Nusselt number is defined as (Bhowmick et.al. [40] and 

Cui et.al. [41]). 

�� =
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��
��

��

. 

  

(11) 

The temperature in the internal cavity changes at various periods in the early stages 

because the fluid in the cavity is initially stratified. As the upper and lower walls are 

cooled and heated at the same time, but due to the initially stratified fluid no significant 

distinction in temperature between the fluid observed and the wall might lead to tiny heat 

transfer and, as a result, a small Nu value is predicted initially. The stratification breaks 

down with time, and the temperature differential in the interior cavity approaches zero. 

When the fluid’s stratification becomes weaker, then the waviness of Nu is increased with 

increased of Ra. In the transitional period for larger Ra, the Nu is oscillatory. At the com-

pletely developed stage, the Nusselt number is fixed for Ra ≤ 106 and oscillatory for Ra ≥ 

107. These findings are compatible with those in Fig. 11. 
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Figure 12. Time series of the Nusselt number for the various Ra on (a) hot bottom wall and (b) cold 

top wall. 

6. Conclusion  

This study is concerned with the transient thermal convection in a trapezoidal cavity 

that is stuffed with linearly stratified air. Though the inclined walls remain adiabatic, the 

base wall is warmed, and the top wall is cooled with a specified aspect ratio A = 0.5 

throughout varieties of Ra (100 to 108). The finite volume-based FLUENT software has 

been used to conduct the numerical simulation. The key findings of this study may be 

described in the following terms:  

 According to numerical simulation, the development of transient flow within the en-

closure owing to the predefined boundary conditions may be categorized into three 

separate stages: early, transitional, and steady or unsteady, all of which have been 

shown in Figs. 3–6. 

 The flow at the beginning phase is portrayed through the arrangement of thermal 

boundary layers close towards every internal surface and the commencement of pri-

mary circulations. In the energy conditions, whenever the terms of convection and 

conduction are adjusted, the flow gets into the transitional state. In the transitional 

level, the flow is depicted via the base of convective dangers through ascending and 

descending thermal plumes, as well as the creation of the cellular flow formations. 

Furthermore, symmetric flows regarding the geometrically symmetric plane for 

smaller Ra, as well as for relatively higher Ra are characterized by pitchfork bifurca-

tion which represents the flow from symmetry to asymmetry. With respect to the 

variance in Ra, the time scale for the flow development is likewise computed. For the 

pitchfork bifurcation, the difference in the behaviour of symmetric flow to asymmet-

ric has additionally been examined. 

 For the stratified air, the temperatures of the fluid adjacent to the top and base walls 

are same as the temperature of the walls. Heat transmission has been studied through 

the enclosure, as well as the base and top walls, and it has been discovered that, ini-

tially, the Nu is small for the stratified air, but after stratification breakup, Nu grad-

ually increases in the transitional stage, and is fixed for Ra ≤ 106 and oscillatory for 

Ra ≥ 107 at the completely developed stage.  
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