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Abstract: The thermocontextual interpretation (TCI) establishes a system’s exergy, entropic energy,
and thermal entropy as thermocontextual properties of state, defined with respect to its positive
temperature surroundings. This work extends previous applications of the TCI to irreversible and
statistical transitions. The TCI defines statistical entropy as a transactional process of derandomiza-
tion and transition to a negative-entropy state. Statistical measurements of a confined quantum par-
ticle’s position are detailed in terms of reversible processes of instantiation and actualization. The
TCI then formalizes the MaxEnt as a fundamental physical principle. We apply MaxEnt and statis-
tical entropy measurements to the double-slit experiment. Particles passing through parallel slits
record a wave interference pattern, but a “which-slit” detector eliminates wave interference. Richard
Feynman called the double-slit experiment the only mystery, at the heart of quantum mechanics.
The TCI offers a simple explanation. The which-slit detector breaks the system’s symmetry, enabling
particles to pass through one slit or the other, and MaxEnt selects the asymmetrical transition, which
has no wave interference and a higher statistical entropy.
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1. Introduction

Entropy is intimately connected to the Second Law of thermodynamics and the di-
rection of time. The Second Law states that for any isolated system, entropy never de-
creases. The Second Law is widely recognized as a thoroughly validated and universal
law. Einstein said of thermodynamics: “It is the only physical theory of universal content
which I am convinced will never be overthrown, within the framework of applicability of
its basic concepts” [1]. Einstein clearly expressed his belief that the Second Law is univer-
sal, but at the same time, his qualification acknowledged a deep conflict. Thermodynam-
ics, in fact, is fundamentally incompatible with the conceptual framework that underlies
the prevailing interpretations of physics [2].

Physics is interpreted in terms of mechanics—classical, quantum, and relativistic—
and mechanics does not distinguish between past and future. Mechanics seeks to define
the world in terms of precisely defined microstates, as they exist, objective and independ-
ent of any particular reference frame. Mechanics accommodates both Maxwell’s Demon,
who can reverse the flow of time, and Laplace’s Demon, for whom the past and the future
are equally present.

Thermodynamics, in contrast, describes the world as it appears, in terms of
macrostates observable from the perspective of thermal equilibrium. From this perspec-
tive, we see the irreversible production of entropy as heat flows from hot to cold and as
free energy is dissipated to heat. Thermodynamics is all about irreversible change and the
flow of time toward higher entropy.

Starting with Boltzmann in the Nineteenth Century, physics sought to unite the me-
chanical and thermodynamic frameworks into a single statistical mechanical framework.
Statistical mechanics describes heat statistically as dispersed motions at atomic scales. It
describes entropy as a measure of uncertainty and a measure of a macrostate’s missing
information on a system’s physical microstate. Statistical mechanics simply shifts irrevers-
ibility from a property of physical change to a property of an observer’s knowledge or
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perception. It leaves intact the fundamental reversibility and determinism of a mechanical
system, as it exists isolated and unperturbed.

Prevailing interpretations of physics cannot recognize entropy as a fundamental
property of state. They interpret entropy as a subjective measure of incomplete infor-
mation on a system’s actual state [3]. They likewise do not recognize the Second Law as a
fundamental principle. The Second Law and arrow of time are regarded as “emergent,”
which essentially just sweeps them aside to a separate reality unconnected to the funda-
mental principles of mechanics. Entropy and the Second Law of thermodynamics are,
however, firmly founded within the thermocontextual interpretation (TCI) of physics [2].

The TCI defines the thermocontextual state with respect to a system’s actual sur-
roundings, which is always at a positive ambient temperature. The TCI generalizes free
energy and thermodynamic entropy to exergy and thermal entropy. Exergy and thermal
entropy are objective thermocontextual properties of state, independent of observation or
measurement. It recognizes the Second Law of thermodynamics and the irreversible dis-
sipation of exergy as a fundamental principle.

Wikipedia lists over a dozen “influential” quantum interpretations [4], but not one
of them defines physical reality with respect to surroundings at a positive ambient tem-
perature. This is key to defining entropy and irreversible change as fundamental physical
properties, and it distinguishes the TCI from the other prevailing interpretations of phys-
ics.

The TCI previously focused on time and causality [2]. It provided an explanation for
one of quantum mechanics” most perplexing phenomena, the superluminal correlation of
measurements in EPR-type experiments, without invoking untestable metaphysical im-
plications such as superdeterminism, hidden variables, or “spooky action.”

This article expands application of the TCI to statistical and irreversible processes. A
statistical process is defined by statistical measurement results. The TCI defines probabil-
ities and statistical entropy by a reversible process of derandomization and transition to a
measured state of negative entropy. The TCI defines an irreversible process by the dissi-
pation of exergy and production of thermal entropy. The TCI formalizes MaxEnt [3, 5] as
a fundamental principle of an isolated transition. It states that an isolated transition in-
creases the system’s entropy to the maximum extent possible.

The article applies the MaxEnt and statistical entropy to explain the behavior of quan-
tum particles in the double slit experiment. If a stream of quantum particles passes
through double slits, the particles record a distinct wave-interference pattern, suggesting
that each particle passes through both slits. Inserting a “which-slit” detector to observe
which slit particles pass reveals that each particle randomly passes through one slit or the
other, never both, and the particles no longer produce a wave interference pattern. Rich-
ard Feynman referred to the double slit experiment as expressing the mystery at the heart
of quantum mechanics [6]. The TCI provides a simple explanation for the switch between
wave-like and particle-like behaviors, and it provides a clear description of statistical
measurement and wavefunction collapse in terms of elementary reversible transitions.

This article applies the TCI to simple well-known and well documented physical ob-
servations. The observations discussed in this article are thoroughly established, but the
TCI provides a new perspective and insights. Establishing the TCI for simple, even trivial,
observations is a necessary first step before applying it to tackle more complex observa-
tions. The examples are simple, but the TCI’s perspective on them is a break from conven-
tion.

2. The Three Entropies

Prevailing interpretations of physics reveal at least three distinct concepts of classical
entropy. Classical thermodynamics originally defined entropy change for a thermally
equilibrated system at temperature T by
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where Aq is the system’s heat relative to a reference state at the system’s fixed tempera-
ture. Isothermal expansion of a thermally equilibrated gas, for example, extracts heat from
its ambient surroundings, and therefore, from equation (1), the expanded gas has a higher
entropy. Equation (1) is limited, however, to systems that maintain thermal equilibrium
with a fixed-temperature reservoir.

Physics extended thermodynamic entropy by defining the 3 Law entropy with re-
spect to a reference at absolute zero. The Third Law entropy is defined by:

T dqrev
Syra, fo ey, @
Integration can be done in parts for a non-isothermal system, but the Third Law entropy
still assumes thermal equilibrium, at least locally, and reversible transfers of heat, qrev, at
the system’s changing local temperature. The Third Law entropy is strictly based on an
equilibrium process of interaction with a reversibly changing reference state.

Equation (1) defines the classical thermodynamic entropy with respect to a reference
state at the system’s equilibrated temperature. Equation (2) defines the 34 Law entropy
with respect to a reference state at absolute zero. In either case, the thermodynamic en-
tropy is defined with respect to a temperature that does not explicitly reference the sys-
tem’s actual surroundings. Thermodynamic entropy is defined independent of the ambi-
ent temperature of a system’s surroundings, and it is an objective property of the thermo-
dynamic state (Figure 1-A).

A. Thermodynamic B. Statistical Mechanic Entropy
Entropy. Statistically based on the mechanical
Objective Property of microstate and:
thermodynamic state B1. Objective B2. Informational
(Frequentist) (Bayesian)
Probabilities Probabilities

Figure 1. Three Interpretations of Entropy. (A) The classical thermodynamic and 3¢ Law entropies
are defined as an objective property of the thermodynamic state. (B) Statistical mechanics considers
the thermodynamic state to be incomplete, and it defines entropy statistically in terms of the sys-
tem’s actual mechanical microstate. The Frequentist interpretation (B1) assumes statistical probabil-
ities are an objective property of state; the Bayesian interpretation (B2) defines probabilities subjec-
tively based on an observer’s incomplete knowledge.

Mechanics provides a fundamentally different definition of entropy from thermody-
namics (equations 1 and 2). Mechanics regards the thermodynamic state as an incomplete
description of a system’s actual mechanical microstate. A microstate is defined by every-
thing that is possibly knowable about a system’s state, and it is generally considered to be
the complete description of the system’s underlying physical state. Classical mechanics
defines the classical mechanical microstate by perfect precision of position and momen-
tum coordinates, in the absence of thermal noise. Quantum mechanics defines the micros-
tate by the quantum wavefunction, which expresses everything measurable and knowa-
ble about a quantum system.

Whereas thermodynamics does not address a system’s mechanical microstates, sta-
tistical mechanics explicitly addresses the statistical distribution of a system’s microstates.
Classical statistical mechanics defines the Gibbs entropy by:

Sawms = —ks ) PrIn(P,). 3
i

The summation is over accessible energy levels. ks is Boltzmann’s constant, and P is the
probability that, at any given instant, the system’s energy is between Ei and Ei+dE. For the
special case of a thermally equilibrated system at temperature T, the system’s accessible
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microstates define a canonical ensemble, and the Gibbs entropy is equal to the Third Law
entropy.

Gibbs’ statistical mechanical entropy actually comprises two distinct interpretations:
the frequentist interpretation and the Bayesian interpretation. Physics is unified in its in-
terpretation of thermodynamics as an incomplete description of mechanical state, but it is
split on the interpretation of entropy. The frequentist interpretation of entropy (Figure 1-
B1) assumes that a system at thermal equilibrium has an objective probability distribution
of available microstates, independent of observation or observers. The Bayesianism inter-
pretation (Figure 1-B2) makes no assumption about a system’s underlying physical mi-
crostate(s). Bayesian logic and MaxEnt only address unbiased expectation values, based
solely on known information [3]. Physics recognizes entropy as a statistical measure of a
system’s possible microstates, but it is not settled on whether probabilities are objective
or subjective.

Jaynes considered objective randomness to be incompatible with mechanics, and he
rejected entropy as a measure of physical randomness [3]. He concluded that entropy is
informational and a measure of incomplete information on a system’s state. Random
wavefunction collapse and classical chaos mean descriptions become increasingly incom-
plete, but this is simply an artifact of an observer’s incomplete knowledge of an initial
state.

Physics’ prevailing interpretation of entropy follows Jaynes and regards probabilities
as a measure of an observer’s incomplete knowledge. However, this does not necessarily
mean that probabilities are subjective. Pilot wave interpretations, for example, seek to
maintain the determinism of physics, including wavefunction collapse, by asserting the
existence of objectively unknowable hidden variables. Quantum Bayesianism does not
deny objective physical states, but it simply describes a system by an observer’s subjective
knowledge [7].

The next section reviews the Thermocontextual Interpretation, which establishes a
conceptual framework for defining thermal and statistical entropies as objective proper-
ties of state or change.

3. Thermocontextual States and Transitions

The thermocontextual interpretation (TCI) offers a fundamentally different concep-
tual framework for interpreting empirical observations compared to prevailing interpre-
tations of physics [2]. The TCI empirically defines states by perfect measurement from a
system’s actual surroundings, which are always at a positive ambient temperature. Em-
pirically defined states, by their definition, are distinguishable, and it follows that degen-
erate states do not exist.

The TCI's definition of physical states contrasts with quantum mechanics and statis-
tical mechanics, both of which simultaneously define a system with respect to multiple
reference states. Quantum tomography defines the quantum state with respect to all pos-
sible measurement frameworks [8], and statistical mechanics defines a system’s macros-
tate and microstates with respect to different references. Statistical mechanics defines a
system’s microstates in the absence of thermal noise, with respect to a reference state at
absolute zero, and it defines its macrostate with respect to a reference state thermally
equilibrated with the macrostate. It defines a nonequilibrium macrostate by partitioning
it into separate thermally equilibrated parts, each locally equilibrated with a different am-
bient reference state. The TCI, in contrast, defines a system with respect to a single refer-
ence state defined by equilibrium with the system’s actual surroundings.

The TCl is based on postulates and definitions given in [2] and listed in Appendix A.
The following subsections present a summary and review of the TCI, on which the rest of
this article is based, with a focus on statistical and irreversible transitions and their meas-
urements.
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3.1. Thermocontextual Properties of State

As in mechanics, a system’s absolute energy is defined with respect to a hypothetical
zero-energy reference state at absolute zero. The TCI partitions absolute energy, Eabs, into
thermocontextual components, given by:

Epps =E+E;s =X+ Q + Eg. 4)

Absolute energy is resolved into system energy, E, and ambient-state energy, Eas. Ambi-
ent-state energy is the energy of the ambient reference state with respect to the hypothet-
ical zero-energy absolute-zero reference state.

The system energy is defined relative to the ambient-state energy. It is resolved into
exergy and entropic energy. Exergy is the system’s potential work capacity on the ambient
surroundings in the limit of reversibility. Exergy also defines the system’s potential to
transition to a lower-exergy state of higher stability (TCI’s revised postulate four, Appen-
dix A). The highest stability state is the equilibrium ambient state, with zero exergy.

Entropic energy is defined by Q=E-X. Entropic energy was previously called ambient
heat in [2], but it is renamed as entropic energy to distinguish it from the ambient energy
of the surroundings. The system’s entropic energy and ambient heat of the surroundings
both have zero exergy, and they are freely exchangeable. Exergy, entropic energy, and
entropy are all thermocontextual properties of state, and they define a system’s energy
state. The ambient energy state defines the zero values for a system’s exergy, entropic
energy, and entropy.

The TCI further partitions a system’s exergy into the sum of mechanical exergy and
thermal exergy. Mechanical exergy is the sum of kinetic energy and non-thermal potential
energy of the system'’s particles. Thermal exergy is the work potential of the system’s ther-
mal energy, q. Thermal exergy is empirically given by:

ax, = (~%) da, ©)

where dq is an increment of heat at temperature T and Ta is the ambient temperature.
Entropic energy is related to thermal energy at temperature T by:

do = (T“) d 6
Q=\7)da (6)
The TCI finally defines thermal entropy by:
sd Td T
552=f _Q=fqu()’ (7
T, as Ta T, T

where the first integration is from the ambient reference state (as) at the ambient temper-
ature Ta to the system state (ss) at temperature T. The last term follows from (6) for systems
in which heat is a function of temperature only.

Thermal entropy is a generalization of both the classical thermodynamic entropy,
which is defined with respect to an equilibrium reference at the system temperature
(equation 1), and the 3 Law entropy, which is defined with respect to a reference state at
absolute zero, (equation 2). Like other thermocontextual properties of state, thermal en-
tropy is defined with respect to an ambient reference state in equilibrium with the sys-
tem’s actual surroundings at the positive temperature.

Thermocontextual properties of state are empirically defined by perfect measure-
ment (Figure 2). Perfect Measurement involves a reversible and thermodynamically
closed transition from an initial state (A) to the ambient reference state (B), which defines
zero values for energy, exergy, and entropic energy. Thermodynamic closure means that
the system can exchange energy and work with the surroundings, but not mass compo-
nents. Reversibility means that heat is reversibly exchanged at the ambient temperature
of the surroundings.
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Figure 2. Perfect Measurement involves a reversible closed-system transition from an initial State A
to ambient State B. The system’s initial exergy (Xa), entropic energy (Qa), and entropy (Sa=Qa/Ta)
are defined by reversible transfers of ambient heat qa and utility v (sum of work plus exergy). A hot
fixed-volume gas can be reversibly measured by utilizing a perfect heat engine to extract exergy and
reversibly discharge utility and ambient heat as the gas reversibly cools to its ambient temperature.
Perfect measurement yields Xa=fdv and Qa=fdqa., with integration over the temperature change. Per-
fect measurement of a compressed ideal gas as it reversibly and isothermally expands to its ambient
pressure yields Xa=PdV and Qa=[dqga. To maintain constant temperature, the gas’s PV work on the
surroundings is balanced by input of ambient heat from the surroundings as entropic energy. The
initial compressed gas therefore has positive exergy but negative entropic energy, and its energy is
unchanged and equal to zero.

Energy can be transferred to the surroundings as ambient heat qa at the ambient tem-
perature, and as utility v, which we define as the summed transfers of work and thermal
exergy. For an open system, utility can include exergy of exported components. For per-
fect reversible measurement, exergy is output to the surroundings as utility, without loss
from dissipation, and entropic energy is output as ambient heat (Figure 2). A system’s
exergy, entropy, and entropic energy are empirically defined by measurements of the util-
ity and ambient heat reversibly transferred to the surroundings. A system’s exergy is al-
ways non-negative, but as described in the Figure 2 caption, a system’s entropic energy
and entropy can be negative.

The ambient reference’s energy state is uniquely and objectively defined by equilib-
rium with the system’s ambient surroundings at a positive ambient temperature. An am-
bient reference additionally specifies a reference point and orientation in space and a ref-
erence clock to mark the passage of reference time [2, 9]. Reference states differing in their
spatial and temporal properties but sharing the same energy state are related by a Galilean
or Lorentz transformation, within their identical limits of spatial resolution. This means
that all ambient reference states are reversibly equivalent, and thermocontextual state
properties are objectively defined.

A system’s energy state is uniquely defined by its exergy and thermal entropy (or
entropic energy). Table 1 describes four classifications of energy states based on different
thermocontextual constraints.

Table 1. Energy State Classifications.

Energy State Classification Thermocontextual Constraint

Thermal equilibrium at system temperature >T. ~ S>0; dS/dt=0
Thermal equilibrium at ambient temperature T. S =0
Metastable state X>0; dX/dt=0
Ambient reference state X=5=0
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3.2. Statistical Entropy

Figure 2 described reversible and deterministic measurements with respect to a sys-
tem’s ambient reference state. A system is not always measured with respect to its ambient
reference state, however, and not all measurements are deterministic. Measurements of a
quantum particle’s position in a confined box, for example, are objectively random.

The TCI defines statistical entropy, o, in terms of a probability distribution of meas-
urable microstates by:

= - z P;In(P,). 3

Pi is probability of measurable microstate i, and N is the number of measurable mi-
crostates. Given a positive temperature of measurement, the number of resolvable and
measurable microstates is always finite.

Statistical entropy is mathematically equivalent to the Gibbs entropy (3) and its ex-
tension to statistical quantum states, the von Neumann entropy. The TCI, however, inter-
prets the probabilities very differently. Classical and quantum mechanics both interpret
probabilities as a measure of incomplete information due to imperfect measurement or
wavefunction collapse. Incomplete information is typically regarded as a subjective prop-
erty of an observer’s incomplete knowledge of a system’s precise mechanical microstate.
The TCI, in contrast, describes the probabilities in (8) as reflecting the empirical random-
ness of actual measurements. Multiple measurements can yield a statistical distribution
of measured results, and this defines a positive statistical entropy for the state as it existed
prior to measurement.

The differences between the TCI's interpretation of statistical entropy and conven-
tional Bayesian or frequentist interpretations are succinctly highlighted in Table 2 for a
coin flip. The Frequentist and Bayesian interpretations both assert that prior to the coin
flip, the coin has a definite and known zero-entropy state. After the coin is flipped but
before the result is revealed, the frequentist interpretation asserts that the coin again has
a definite and knowable, but unknown, zero-entropy state. Probabilities only refer to hy-
potheses about the coin’s unknown state. The Bayesian interpretation, in contrast, asserts
that the coin has a positive entropy, based on an observer’s incomplete knowledge of the
coin’s actual state.

Table 2. The Frequentist, Bayesian, and TCI interpretations of Statistical Entropy.

Frequentist Bayesian TCI
Initial entropy | Zero Zero In(2)>0
of coin
Entropy of Zero In(2)>0 Zero
coin post flip
Interpretation | Objective uncer- Subjective uncer- Random instantiation (selec-
of tainty of a hypoth- | tainty of a system’s tion) of one of a system’s mul-
Probabilities esis’s truth actual definite tiple measurable potentialities.

microstate

Interpretation | Objective random- | Subjective property of | Transactional property of sys-
of Statistical ness of observer’s incomplete | tem’s transition to a measura-
Entropy fluctuations knowledge of state. ble reference state.

Like the frequentist interpretation, the TCI describes the flipped coin with a definite
but unknown zero-entropy state. In contrast to both the Bayesian and frequentist inter-
pretations, however, the TCI assigns a positive entropy to the coin’s initial state, even if
the coin’s orientation is known. It describes the system prior to the coin flip as comprising
the coin and its cocked coin-flipper. Its statistical entropy is a transactional property, re-
flecting the objective randomness of the coin’s measurable potentialities. Entropy is a
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transactional property that depends on a transition’s initial state and its measurable mi-
crostate potentialities.

Whereas thermal entropy is a thermocontextual property of state defined with re-
spect to its ambient reference state, statistical entropy is a transactional property of a sta-
tistical measurement with respect to an arbitrary measurement reference. We can never-
theless relate statistical entropy (8) and changes in thermal entropy (7) by assuming the
empirical conservation of statistical entropy for perfect reversible measurements. This
means that for perfect statistical measurements of state A from state B, of state B from state
C, and of state A from state C, the following relationship holds:

Oac = Oy T Opc. €)

If states A and B are thermally equilibrated states at positive temperatures, and we
take state C as an ambient reference state at absolute zero, then states A and B define
canonical ensembles of microstate potentialities, defined at absolute zero as mechanical
microstates, and we have:

04 = Oac — OBc (10a)
koap = Sgibps(A) — Sgipps (B) (10b)
= Sgrd; (A) — Sgra, (B) (10¢)

kgo,g = AS. (10d)

Equation (10b) follows from equation (10a) and definitions (3) and (8) for canonical en-
sembles A and B. Equation (10c) follows from the equality of Gibbs entropy and the Third
Law entropy. And equation (10d) follows from the definitions of Third Law entropy (2)
and thermal entropy (7). Equation (10d) relates the statistical entropy of state A, defined
by statistical measurements with respect to reference state B, to the difference in thermal
entropy of states A and B. Equation (10d) is valid for any ambient reference state. A perfect
statistical measurement is illustrated and described in the next section.

3.3. Irreversible and Statistical Transitions

Perfect measurement involves a reversible and deterministic transition between an
initial state and a reference state. Real transitions, however, generally are not reversible
and deterministic. The TCI models an irreversible transition as an isolated process, illus-
trated in Figure 3. An irreversible transition dissipates some or all of a system’s initial
exergy to entropic energy. The total energy of an isolated system is conserved, and the
loss of exergy by dissipation equals the increase in the system’s entropic energy.

>

b3

Declining Exergy

>
®

Es=Xg+Qgs; AE=0
\§

Figure 3. Isolated Transition. An isolated transition dissipates exergy to entropic energy, with
AQ=-AX and AE=0.

Energy, exergy, and entropic energy are state properties, and the energy relation-
ships in Figure 3 are valid for any ambient reference state. If state A’s exergy is only par-
tially dissipated and the system reaches thermal equilibrium, state B’s exergy is positive,
and it is metastable.
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If we are interested in state B as a definite zero-entropy state, then its equilibrium
temperature defines the ambient temperature (Table 1). It follows that the entropic energy
and entropy of the pre-transition state A are negative (c.f. isothermal expansion described
in Figure 2). State B has a higher entropy than the sub-ambient (negative-entropy) state A,
and from equation (10d), state B has a positive statistical entropy.

Figure 4 expands on these ideas to illustrate the statistical transition and reversible
measurement of a quantum particle in a one-dimensional box. The overall process in Fig-
ure 4 takes the precursor state A to measured state D. States A and D are both defined by
a minimum-energy quantum particle of mass m confined to a one-dimensional box of
length L/N. They therefore have the same energy state, but they generally differ in their
position coordinate. The exergy of state A, Xa, is given by the energy equation for a quan-
tum particle in a box [10] minus the ambient-state energy.

A. Precursor State L/N

- - —
S A N N Y S I I
Xa= :n:'uj,\rﬂ ~Ex
Qa=-TaksOwo
0. State Preparation a
Isolated and non- Ea= XatQas X
Ous=0

statistical transition to
a zero-entropy state| AQ = T;ksOuo > O (Dissipation)

AX=-AQ

"ﬂ.E = 0 (Isolated transition)

B. State to be measured

Qs=0atTa=Ts
Oso = -2 pin(p)
1. Instantiation Xs= Es= Xa — TaksOzo
Derandomization ke

by elimination of

entropic energy
AQ = -T,keOuo < O (Statistical instantiation)

axX=0

AE=AQ<0
Qc=Qa=-T:ksOso

<

C. Instantiated State \

=

Xe=Xe<Xa
2. Actualization Ec = Ec- TzkeOso
Deterministic
actualizationofa | AQ=0 3AQ=0
measurement result | AX = Xeq = ToksOso 34X=0
AE = AX SAE=0

D. Measured State Y

A I I N I B

L -

Figure 4. Measurement of statistical entropy. Step zero illustrates the preparation of the zero-en-
tropy state B. Steps one and two illustrate the statistical measurement of state B with respect to a
sub-ambient measurement reference state D of negative entropy. Statistical measurement involves
two steps: derandomization and instantiation of a microstate potentiality (step one), followed by
actualization of the instantiated microstate’s measurement result (step two).

Expansion of the particle’s confining box from state A to state B leads to dispersion
and partial dissipation of the particle’s exergy to entropic energy. Thermal entropy in-
creases, but the transition from state A to state B is deterministic, so the transactional sta-
tistical entropy, Oas, is therefore zero. This is in apparent violation of equation (10d), but
equation (10d) does not apply since the transition from A to B is irreversible.

We are interested in determining the complete state of B, as it exists prior to meas-
urement. By completeness we mean a definite state without objective indefiniteness of
entropic energy. This sets the ambient temperature to Ts and its entropy to zero. It follows
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that the entropic energy of state A, prior to its irreversible transition to the zero-entropy
state B, was negative. State D likewise has negative entropy.

The reversible transition from state B to state D defines the statistical measurement
of the zero-entropy state B with respect to the sub-ambient reference state D. Statistical
measurement involves two steps. The first step is instantiation (step one, Figure 4). Instan-
tiation involves reversible elimination of the entropic energy produced by dissipation in
step zero. This derandomizes the system and instantiates a measurable microstate poten-
tiality. The measurable microstate potentialities for state B prior to instantiation are rep-
resented by the horizontal bars in state C. The thick horizontal bar in state C designates
the randomly instantiated microstate after step one. The statistical entropy, Osp, is defined
by equation (8) and the potentialities” measurement probabilities. The probabilities are
determined by discretizing the continuous particle-in-a-box probability profile and are
indicated by the bars’ vertical positions in state C.

The second step of statistical measurement is reversible actualization (step two, Fig-
ure 4). Actualization deterministically records a measurement result (state D) of the ran-
domly instantiated measurable microstate. State D’s energy state (energy, exergy, and en-
tropy) is equal to state A’s energy state, but state D’s position within in the overall box of
length L is random.

Actualization in step two requires the addition of external exergy, Xex, to make up
for the dissipation of exergy in step zero. However, this is an artifact of measuring state B
to the same resolution as the definition of its precursor state A. If measurement in the last
step is to a lower resolution such that its final exergy is equal to or lower than state C, then
reversible actualization would require no external exergy.

As illustrated in Figures 4(B-D), statistical measurements are described by a reversi-
ble transition to a sub-ambient reference state of measurement. If a measured system is
thermally equilibrated with its ambient surroundings, its entropy and entropic energy are
zero. If the system then reversibly transitions to a negative-entropy measurement state,
the loss of entropic energy derandomizes the system, and this randomly instantiates a
measurable microstate. An individual transition is reversible and random, but the statis-
tical distribution of measurable states and its statistical entropy reversibly and determin-
istically specify the system’s pre-measurement state.

3.4. MaxEnt

During an isolated transition, a system is unobservable, and it is not definable as a
thermocontextual state. It is an irreversible and discontinuous transition from an initial
state of higher exergy to a more stable state of lower exergy. There is no exchange of heat
or work with the surroundings, and the system’s energy is therefore fixed. The quality of
the system’s energy, however, is not fixed. Heat spontaneously flows from hotter regions
to cooler regions, mass flows from higher pressure to lower pressure, and unstable parti-
cles and particle configurations decay —all of these processes irreversibly dissipate exergy
and produce entropic energy.

Postulate four (Appendix A) states that the most stable state is the state of minimum
exergy. Postulate four is applicable to isolated, closed, or open transitions. It is a general-
ization of the Second Law of thermodynamics, which applies only to isolated systems
(which might comprise a system and its surroundings). For an isolated system, the in-
crease in entropy is simply a measure of the decline in exergy and increase in stability of
the overall isolated system. It follows that for an isolated system, the most stable transition
is one that produces the most thermal entropy and entropic energy. We state this as a
corollary to Postulate four:

Corollary 4-1—Maximum Entropic Energy Principle (MaxEnt): An isolated transition
produces the maximum entropic energy possible.

MaxEnt specifically applies only to isolated transitions. An isolated transition will
dissipate a system’s exergy to entropic energy as completely as possible.
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In the next section, we apply TCI’s statistical transition model and MaxEnt to the
double-slit experiment, and we illustrate MaxEnt’s role in the selection of quantum tran-
sition possibilities.

4. MaxEnt and the Double Slit Experiment
4.1 The Particle-Wave Duality

The double slit experiment demonstrates the particle-wave duality of quantum me-
chanics. A particle is created and emitted from a source with a well-defined state, and it
is detected as a particle by its point-like impact on a detector screen (Figure 5). If a partition
with double slits is placed between the source and detector screen, the accumulated im-
pacts display an interference pattern, characteristic of waves, even when particles are
transmitted one at a time. The interference pattern indicates that individual particles in
some sense simultaneously pass through both slits. The particle-wave duality is further
indicated by inserting a “which-slit detector” (WSD) behind the slits. With the which-slit
detector activated, it can record which slit the particles pass through, and the wave inter-
ference pattern disappears. Richard Feynman famously described the double-slit
experiment as the “only mystery,” “which has in it the heart of quantum mechanics.” [6].
To remain neutral on the nature of the emitted “particle,” we simply refer to it as a “sys-
tem” in isolated transition between its source-state A and its pre-measurement state B.

A\ﬂ Particle source

Isolated Transition

Instantiated
state C

Detector screen
(Measured state D)

Figure 5. Double slit experiment. If the which-switch detector (WSD) is inactive, a particle transi-
tions in isolation from its source in State A to its pre-measurement state B. The shaded pattern rep-
resents the wave-like probability distribution of state B’s measurable microstate potentialities with
the which-slit detector switched off. With the WSD activated, and the probability distribution of
measurable microstate potentialities changes. Measurement randomly instantiates a microstate po-
tentiality to a definite particle-like microstate on the detector screen.

The particle in Figure 5’s state A is the precursor state, corresponding to state A in
Figure 4. Figure 5’s state B is the state that we want to measure. The pre-instantiation state
B and instantiated state C in Figure 5 correspond with Figure 4’s states B and C. The de-
tector screen in Figure 5 is partitioned into multiple measurable bins. The measured state
D in Figure 5 corresponds to the measured state D in Figure 4.

The transition from state A to state B corresponds to step zero of Figure 4, in which
the state of interest (state B) is prepared. Preparation in the double slit experiment involves
the particle’s isolated interaction with the double slit with or without a which-slit detector.
If the WSD is present and measurable by an external observer, the partitioned region is
split into two separate isolated transitions.
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Figure 6 shows the probability profiles for detecting a particle on the detector plate
for different configurations of the isolated transition. Curves show probability profiles for
wave interference for double slits with no WSD (red profile), for wave diffraction through
single slits (green and blue profiles), and for double slits but with no interference (purple
profile) as a normalized sum of the single slit profiles. Calculations are based on intensity
profile calculations for light [11], using parameters shown in Table 3, and assuming that
probabilities of photon detection are proportional to calculated intensities. All probability
profiles span N=400 measurable microstate transitions, based on the detector screen width
and resolution (Table 3). The probability profiles are all normalized to one.

Table 3. Double slit interference and diffraction parameters

Detector Slit Slit Slit-detector Detector
width width | positions separation Resolution
200 A 7A #15A 300 A 05A

All measurements are given in units of wavelengths (A)

0.8 —2-Slit Interference
= Left Slit Diffraction
= 0.02 , N )
k= ——— Right Slit Diffraction
o S
S 001 2-slit No Inteference
o

1] £ —
-100 -80 -60 -40 -20 0 20 40 60 80 100

Measured Position of Impact (wave lengths)

Figure 6. Probability distribution profiles for photon detection from double slits, with and without
wave interference and from single slits.

The red curve shows the interference pattern based on multiple measurements of
photon impacts in the absence of a WSD, after they pass through the double slits. The
statistical entropy and relative dissipation for the transition to state B are 0=4.69 and
AQ/En=4.9% (Table 4, Row 1). These results are based on the red probability distribution
profile and details provided in the Table 4 footer.

Table 4. Entropy and Entropic Energy Transitions in Double Slit Experiment.

o | AQ/Enw® | Transition (normalized probability distribution)

4.69 4.89% | No WSD —source to detector (red curve)

0.69 0.72% | WSD on--source to double slit screen (50% - 50%)

5.02 5.24% | WSD on—instantiated slit to detector (green or blue)

5.71 5.96% | WSD on—source to detector (equals sum of rows 2 & 3)
4.69 4.89% | Entangled WSD —symmetrical wave interference (red)

6| 528 5.51% | Entangled WSD —asymmetrical®, no interference (purple)

(1) Statistical entropy from equation (8). (2) Relative dissipation: AQ from equations (7) and (10d)
with Ta=300K, and Env is the absolute energy for a photon of visible (green) light. (3) Transitions
are individually asymmetrical but statistically symmetrical.

Gk~

4.2. MaxEnt: Particle or Wave?

We now consider the case when we place a which-slit detector behind the slits. Ex-
ternal measurement at the double slits breaks the overall transition into two separate iso-
lated transitions: a transition from the source to the double slit and WSD, and a separate
isolated transition to the detector plate. The first transition is to one of two equally prob-
able measurable states through one slit or the other. The statistical entropy and relative
dissipation are 0=In(2)=0.69 and AQ/Emn=0.72% (Table 4 row 2).
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The second transition is from the instantiated slit to the detector screen. Its probabil-
ity distribution is shown in Figure 6 by either the green profile or the blue profile. Multiple
particles add up to the overall distribution pattern of the purple curve, but the WSD al-
lows tracing each trajectory from one slit or the other to its corresponding the blue or the
green profile. The statistical entropy and relative dissipation from each instantiated slit to
its corresponding green or blue profile are o=5.02 and 5.24% (Table 4 row 3). The overall
transition with the WSD is equal to the sum of results in rows 2 and 3: 0=5.71 and 5.96%
(row 4). The entropy and entropic energy for the overall transition are higher when the
system passes through one slit or the other (row 4), compared to simultaneous and sym-
metrical passage through both slits (row 1).

Numerous results of double slit experiments with and without the WSD show that,
given the opportunity of being measured, the transition spontaneously breaks the sym-
metry of simultaneously passing through both slits and a particle passes through one or
the other. This increases the overall transition’s dissipation of exergy to entropic energy,
in compliance with MaxEnt.

This raises an interesting question: What would happen if the which-slit detector is
isolated from the surroundings? There would be no way to measure which slit the system
passed through. If the system symmetrically passed through both slits, there would be
wave interference (red profile), as before, and the transition results would be the same as
if there were no WSD (rows 5 and 1). If, on the other hand, the system passed through one
slit or the other, the predicted probability profile would be the normalized sum of the left
and right probability profiles, given by the purple curve in Figure 6. This is the same pro-
file as the combined green and blue profiles in row 4, but because there is no measurement
of which slit, the entropy production is different. The purple probability distribution has
a statistical entropy of 5.28 and a relative dissipation of 5.51% (row 6) —not as high as the
red profile for when we could determine which slit (row 4) —but still higher than the sym-
metrical interference pattern (row 5).

The TCI attributes the switch between double-slit interference and single-slit nonin-
terference to the opportunity to break the system’s symmetry and increase the system’s
entropic energy. If the WSD is connected to the environment, interaction with the WSD
allows instantiation of the system as a particle and measurement of which slit it passes
through. This is empirically well validated by experiments, and as discussed above, it in-
creases the dissipation of exergy to entropic energy. If, however, the WSD is an entangled
part of the isolated system, there is no possibility of measuring or knowing which slit the
system passes through. The WSD's presence could nevertheless still allow transfer of en-
tropic energy from the double slits to the entangled WSD as part of the isolated transition.
This would allow symmetry breaking and instantiation of the system as a particle to pass
through one slit or the other, with an increase in entropic energy. MaxEnt would select
the higher-entropy non-interference pattern over the symmetrical interference pattern,
even if the which-slit detection results were unobservable.

The author is not aware of this experiment having been conducted. A non-interfer-
ence pattern, even if the which-slit detector was an entangled part of the isolated system,
would support the idea that MaxEnt drives the selection of non-interference over interfer-
ence, rather than hidden variables or the ability of an observer to determine which-slit
information, as conventionally believed [12, 13]. Given an opportunity, MaxEnt predicts
that an isolated transition will break its symmetry and increase its entropic entropy, even
if there is no opportunity for which-slit measurement or for the system to interact with its
surroundings during the isolated transition.

5. Summary and Conclusions

The thermocontextual interpretation (TCI) provides a conceptual framework for de-
fining physical states and irreversible change [2]. It defines a system’s physical state as it
exists with respect to its actual surroundings at a positive ambient temperature, Ta. It de-
fines exergy X as generalization of free energy, thermal entropy S as a generalization of
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thermodynamic entropy, and entropic energy by Q=T.S. The TCI defines statistical en-
tropy as a transactional property of statistical transition to a negative-entropy state of
measurement.

The TCI defines changes of state in terms of both reversible and isolated irreversible
changes. Reversible change is an idealized transition in which there is no dissipation or
production of entropic energy. A reversible transition exchanges exergy, entropic energy,
and components with the surroundings. An isolated transition, in contrast, has no ex-
changes, it is not measurable, and it therefore does not exist as a state. The system is in
irreversible transition, during which its exergy is dissipated to entropic energy and its
entropy increases to the maximum possible extent. The maximization of entropy is for-
malized as the MaxEnt Principle, a corollary of postulate four applied to isolated systems.

The TCI and MaxEnt provide a physical explanation for when and why statistical
measurements of particles in the double slit experiment record a wave interference pattern
and when they do not. Between its definite measurable states at its source and point of
detection, a particle irreversibly transitions in isolation, dissipating exergy and increasing
its entropic energy. Prior to its random measurements at the detector screen, the particle
has a positive statistical entropy, as defined by the statistics of its measurement results
and equation (8).

Statistical measurements record a wave interference pattern when particles” wave-
functions pass through the double slits symmetrically. With a which-slit detector in place,
the statistical distribution of measurements instead records a pattern of wave dispersion
from one slit or the other, without wave interference. The which-slit detector breaks the
transition’s symmetry, and MaxEnt selects the asymmetrical transition the with non-in-
terference probability distribution and higher statistical entropy. The existence of multiple
transition paths and the freedom to choose from among them it distinguishes the TCI from
the fundamental determinism of prevailing interpretations of mechanics, and this does
indeed express the heart of quantum mechanics.

TCI's model of statistical measurements also provides a simple explanation of quan-
tum wavefunction collapse. Figure 4 illustrated its application to statistical measurements
of a particle in a box, and it is applicable to statistical measurements generally. The TCI
resolves statistical measurements into elementary reversible steps of instantiation and ac-
tualization. Instantiation is a consequence of the reversible elimination of entropic energy,
which derandomizes the system and instantiates a measurable microstate potentiality.
Actualization is the reversible and deterministic transition to a measured microstate.

The original article on the TCI focused on the nature of time and causality and pro-
vided an explanation of EPR type experiments without superdeterminism, hidden varia-
bles, or spooky action [2]. This article focused on irreversible and statistical transitions. It
formalized MaxEnt as a fundamental principle for selecting the isolated transition of
greatest entropy production, and it recognized the intrinsic randomness of reversible tran-
sitions to a negative-entropy reference state. MaxEnt and reversible derandomization pro-
vide new tools for exploring irreversible and statistical quantum processes.

As a final comment, we note that we have focused on isolated transitions, which are
driven by the irreversible dissipation of exergy and production of entropy. TCI’s postulate
four, which asserts that states of lower exergy are more stable than states of higher exergy,
also applies to open systems. Postulate four can propel an open positive-exergy system to
lower-exergy and higher-stability states by becoming a source of power to its surround-
ings. Exergy sources are ubiquitous across the cosmos, and they are essential prerequisites
for creating and sustaining networks of dissipative structures [14].
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Appendix A. Thermocontextual Interpretation’s Postulates and Definitions
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Postulate One: The Zeroth Law of Thermodynamics establishes that the temperature of a
thermally equilibrated system is a measurable property.

Postulate Two: The Third Law of thermodynamics establishes that absolute zero temper-
ature can be approached but never be attained.

Postulate Three: There are no unobservable “hidden” variables. Physical properties of
state are measurable, and perfect measurement completely describes a system’s physical
state.

Definition 1: A system’s ambient temperature, Ta, equals the positive temperature of the
system’s actual surroundings, with which it interacts or potentially interacts.

Definition 2: A system’s absolute energy, Eabs, equals the system’s potential work, as
measured on the surroundings in the limit of absolute zero.

Definition 3: A system’s exergy, X, is defined by its potential work as measured at the
ambient surroundings.

Definition 4: A system is in its ambient state when its exergy and entropic energy equal
zero.

Definition 5: A system’s ambient-state energy Eas is the ambient reference state’s potential
work capacity, as measured at the limit of absolute zero.

Definition 6: System energy is defined by E = Eabs—Eas.
Definition 7: A system’s entropic energy is defined by Q = E-X.

Definition 8: Perfect measurement of state involves a reversible thermodynamically
closed process of transition from a system’s initial state to its ambient reference state. Per-
fect measurement reversibly records the outputs of exergy and entropic energy to the am-
bient surroundings.

Definition 8.1: Instantiation is the selection of a measurable microstate potentiality as a
consequence of derandomizing a system by reversibly eliminating entropic energy.

Definition 8.2: Actualization is the reversible and deterministic transition of an instanti-
ated microstate potentiality to a measured state.

Definition 9: A system’s entropy is defined by 5=Q/Tu.

Postulate Four (revised) (Generalized Second Law of Thermodynamics): A state of
higher exergy has a potential to transition to a state lower exergy, either by irreversible
dissipation or by exporting exergy or work to the surroundings.

Definition 10: Physically separated particles are entangled if they have properties linked
by a deterministic and thermodynamically reversible connection.

References

1.  Albert Einstein, Autobiographical Notes, Open Court Publishing Co ,U.S. (1999), ISBN 10: 0812691792 ISBN 13: 9780812691795

2. Crecraft, H. Time and Causality: A Thermocontextual Perspective. Entropy 2021, 23, 1705. https://doi.org/10.3390/e23121705

3. Jaynes, E.T. (1957) Information Theory and Statistical Mechanics. The Physical Review, 106, 620-630.
https://doi.org/10.1103/PhysRev.106.620

4.  Interpretations of quantum mechanics. Available onlline https://en.wikipedia.org/wiki/Interpretations_of_quantum_mechanics
(accessed 20 November 2022)

5. Dias, T.CM.; Diniz, M.A,, Pereira, C.A.d.B.; Polpo, A. Overview of the 37th MaxEnt. Entropy 2018, 20, 694.
https://doi.org/10.3390/e20090694

6. Feynman, R, Leighton, R., and Sands, M. The Feynman Lectures on Physics Vol. I: Mainly Mechanics, Radiation, and Heat,
Millennium Edition Chapter 37 (Quantum Behavior). California Institute of Technology, (2013), https://www .feynmanlec-
tures.caltech.edu/I_37.html

7.  Caves, C.M,; Fuchs, C.A; Schack, R. Quantum Probabilities as Bayesian Probabilities. Phys. Rev. A 2002, 65, 022305.

8.  D’Ariano, G.M.; Paris, G.A.; Sacchi, M.F.; Quantum Tomography arXiv 2008, arXiv:quant-ph/0302028v1


https://doi.org/10.20944/preprints202206.0353.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 November 2022 d0i:10.20944/preprints202206.0353.v2

9. Lucia, U, Grisolia, G. Time & clocks: A thermodynamic approach. Results Phys. 2020, 16, 102977,
https://doi.org/10.1016/j.rinp.2020.102977.

10. Particle in a box. Available online: https://en.wikipedia.org/wiki/Particle_in_a_box (accessed 20 November 2022)

11.  University Physics III - Optics and Modern Physics (OpenStax) Chapter 3: Interference. Available Online: https://phys.libre-
texts.org/Bookshelves/University_Physics/Book%3A_University_Physics_(OpenStax)/University_Physics_III_-_Op-
tics_and_Modern_Physics_(OpenStax)/03%3A_Interference (Accessed 4 June, 2022)

12.  Wheeler's delayed-choice experiment. Available online: https://en.wikipedia.org/wiki/Wheeler%27s_delayed-choice_experi-
ment (accessed 1 April 2022)

13. Delayed-choice quantum eraser. Available online: https://en.wikipedia.org/wiki/Delayed-choice_quantum_eraser (accessed 1
April 2022)

14. Nicolis, G.; Prigogine, I. Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctua-
tions; Wiley: New York, NY, USA, 1977; p. 512.


https://doi.org/10.20944/preprints202206.0353.v2

