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Abstract: The thermocontextual interpretation (TCI) defines the physical state with respect to a sys-

tem’s actual surroundings at a positive ambient temperature. The TCI provides a clear distinction 

between the Second Law of thermodynamics and MaxEnt. The Second Law dictates irreversible 

dissipation of free energy to ambient heat, and it establishes the thermodynamic arrow of time. 

MaxEnt describes reversible changes in statistical mechanical entropy in response to changes in the 

system’s boundary constraints. We introduce new TCI postulates that establish the equality of ther-

mal and statistical entropies and MaxEnt as a fundamental physical principle. We then apply 

MaxEnt to the double-slit experiment. Impacts of multiple particles symmetrically passing through 

parallel slits record a wave interference pattern over time. However, a which-slit detector eliminates 

wave interference. Richard Feynman called the double slit experiment the only mystery, at the heart 

of quantum mechanics. The TCI and MaxEnt offer a simple explanation. The which-slit detector 

breaks the system’s symmetry, and MaxEnt selects the higher-entropy asymmetrical state, enabling 

particles to pass through one slit or the other without wave interference.  

Keywords: entropy; physical foundations; MaxEnt; thermocontextuality; quantum mechanics; ther-

modynamics; complex system 

 

1. Introduction 

The MaxEnt principle states that a system maximizes its statistical entropy, consistent 

with its physical constraints. MaxEnt and Bayesian logic enable extrapolation of limited 

information to create an unbiased statistical model of a system. Recent applications in-

clude problems in astrophysics [1], rapid medical diagnostics [2,3], thermodynamic com-

puting [4,5], artificial intelligence and machine learning [6,7], ecological modeling [8], 

macroeconomics [9], imaging theory and applications [10-12], network analysis [13-15], 

and plasma science [16].  

The theoretical foundation for applying MaxEnt and Bayesian logic to inverse prob-

lems is substantially based on the pioneering work of E. T. Jaynes. Jaynes [17] showed that 

if a system adopts the maximum statistical entropy consistent with its environmental con-

straints, then applying Bayesian logic produces an unbiased best-fit model based on avail-

able information. As a trivial limiting example, if there is zero information on a property’s 

value over some range, then assigning equal probabilities over that range maximizes the 

statistical entropy, and this is the best-fit statistical model consistent with the available 

(null) information. Bayesian Logic and MaxEnt provide unbiased best-fit models, and 

they provide a powerful statistical tool to model complex systems. 

The success of MaxEnt models in modeling physical systems empirically attests to 

the MaxEnt principle of maximizing entropy. MaxEnt is not, however, simply an alterna-

tive expression of the Second Law of thermodynamics, as is commonly thought. The Sec-

ond Law and MaxEnt both assert that a system maximizes its entropy, but they differ in 

their meanings and in their definitions of entropy.  

The original meaning of the Second Law was about the irreversible production of 

entropy. Thermodynamic entropy measures the irreversible dissipation of a system’s free 

energy to ambient heat. MaxEnt, in contrast, is about how a system responds to changing 

environmental constraints to achieve and maintain its most probable statistical state. 

MaxEnt is reversible; if changes in the environmental constraints are reversed, changes in 
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the statistical entropy are likewise reversed. Whereas the Second Law is about maximiz-

ing dissipation and minimizing free energy, MaxEnt is about statistics and maintaining a 

system’s most probable state.  

Prevailing interpretations of physics do not recognize entropy as a fundamental 

property of state. They interpret statistical entropy as a subjective measure of incomplete 

information on a system’s actual state [17]. They likewise interpret the thermodynamic 

state and thermodynamic entropy as an incomplete description of a system’s actual me-

chanical microstate. Prevailing interpretations do not recognize MaxEnt or the Second 

Law as fundamental principles. MaxEnt and the Second Law of thermodynamics are, 

however, firmly founded on the Thermocontextual Interpretation (TCI) of physical states.  

The TCI generalizes thermodynamic and statistical mechanical entropies as thermo-

contextual entropies, and free energy as exergy, all defined with respect to the system’s 

ambient surroundings [18]. It establishes thermocontextual properties as physical proper-

ties of state and the Second Law of thermodynamics as a fundamental principle. It pro-

vides an explanation for one of quantum mechanics’ most perplexing phenomena, the 

superluminal correlation of measurements in EPR-type experiments, without untestable 

metaphysical implications such as superdeterminism, hidden variables, or “spooky ac-

tion” [18].  

This article extends that work and formalizes MaxEnt as a fundamental principle, 

distinct from the Second Law. MaxEnt asserts that a system reversibly maintains a state 

of maximum statistical entropy and maximum probability with respect to changes in the 

system’s surroundings.  

The article then applies MaxEnt to explain the behavior of quantum particles in the 

double slit experiment. If a stream of quantum particles passes through a pair of parallel 

slits, the particles record a distinct wave-interference pattern on a detector, suggesting 

that each particle passes through both slits. Inserting a “which-slit” detector to observe 

which slit particles pass reveals that each particle randomly passes through one slit or the 

other, never both, and the particles no longer produce a wave interference pattern. Rich-

ard Feynman referred to the double slit experiment as expressing the mystery at the heart 

of quantum mechanics [19]. The TCI and MaxEnt provide a simple explanation for the 

double slit experiment and its delayed-choice variations.  

2. The Three Entropies 

Prevailing interpretations of physics reveal three distinct concepts of entropy. Clas-

sical thermodynamics originally defined entropy change for a thermally equilibrated sys-

tem at temperature T by  

ΔSTD=Δq/T,                                   (1) 

where Δq is the system’s heat relative to a reference state at the system’s fixed tempera-

ture. Isothermal expansion of a thermally equilibrated gas, for example, extracts heat from 

its ambient surroundings, and therefore, from equation (1), the expanded gas has a higher 

entropy relative to its initial reference state. Equation (1) is limited, however, to systems 

that maintain thermal equilibrium at a fixed temperature. 

Physics extended thermodynamic entropy in the early twentieth century by defining 

the 3rd Law entropy with respect to a reference at absolute zero. The Third Law entropy is 

defined by:  

����� = �
�����

�

�

�

.                                                                    (2) 

Integration can be done in parts for a non-isothermal system, but the Third Law entropy 

still assumes thermal equilibrium, at least locally, and reversible quasistatic transfers of 

heat, qrev at the system’s changing local temperature. The Third Law entropy is strictly 

based on an equilibrium process of change. 

Equation (1) defines the classical thermodynamic entropy with respect to a reference 

state at the thermally equilibrated system’s temperature. Equation (2) defines the 3rd Law 
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entropy with respect to a reference state at absolute zero. In either case, the thermody-

namic entropy is defined with respect to a temperature that does not explicitly reference 

the system’s actual surroundings. Thermodynamic entropy is therefore defined inde-

pendent of the ambient temperature of a system’s surroundings, and it is an objective 

property of the thermodynamic state (Figure 1-A).  

 

Figure 1. Three Interpretations of Entropy. (A) The classical thermodynamic and 3rd Law entropies 

are defined as an objective property of the thermodynamic state. (B) Statistical mechanics considers 

the thermodynamic state to be incomplete, and it defines entropy statistically in terms of the sys-

tem’s actual mechanical microstate. The Frequentist interpretation (B1) assumes statistical probabil-

ities are an objective property of state; the Bayesian interpretation (B2) defines probabilities based 

on an observer’s knowledge. 

Mechanics provides a fundamentally different definition of entropy from thermody-

namics (equations 1 and 2). Statistical mechanics regards the thermodynamic state as an 

incomplete description of a system’s actual mechanical microstate. A microstate is defined 

by everything that is possibly knowable about a system’s state, and it is generally consid-

ered to be the complete description of the system’s underlying physical state. Classical 

mechanics defines the classical mechanical microstate by perfect precision of position and 

momentum coordinates, in the absence of thermal noise. Quantum mechanics defines the 

microstate by the quantum wavefunction, which expresses everything knowable about a 

quantum system. 

Whereas thermodynamics defines thermal equilibrium by a uniform and steady tem-

perature, without addressing a system’s mechanical microstates, statistical mechanics 

asks: What is the statistical distribution of possible microstates for a system at thermal 

equilibrium? Classical statistical mechanics frames this question by its statistical definition 

of Gibbs entropy:  

������ = −�� � ��

�

ln(��).                                                                 (3) 

kB is Boltzmann’s constant and the Pi’s are the probabilities that a thermally equilibrated 

system exists in the mechanical microstate ‘i’ at any given instant. The Boltzmann parti-

tion function, which describes the equilibrium distribution of energy levels, is based on 

the equal a priori probabilities hypothesis, which states that all possible microstates have 

equal probabilities. The a priori probabilities hypothesis is equivalent to the maximum en-

tropy hypothesis, which states that an isolated system is stable when it reaches its maxi-

mum possible entropy.  

The statistical mechanical entropy actually comprises two distinct interpretations: 

the frequentist interpretation and the Bayesian interpretation [17]. The frequentist inter-

pretation of entropy (Figure 1(B1)) assumes that a system at thermal equilibrium has an 

objective probability distribution of available microstates, independent of observation or 

observers. An objective entropy implies that either fluctuations among the system’s mi-

crostates are objectively random, or they are determined but objectively unknowable due 

to “hidden variables.” The Bayesianism interpretation (Figure 1(B2)), in contrast, makes 

no assumption about an underlying physical state. MaxEnt and Bayesian logic provide 

unbiased and objective statistical expectation values based solely on known information 

[17].  
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Physics is unified in its interpretation of thermodynamics as an incomplete descrip-

tion of mechanical state. It recognizes entropy as a statistical measure of a system’s possi-

ble microstates, but it is split on whether probabilities are objective or subjective. Even if 

we accept that probabilities and entropy are objective, it is intrinsically unknowable 

whether objectivity reflects objectively random fluctuations or the objective unknowabil-

ity of hidden variables. It is a simply a matter of assumption and accepting the conse-

quences. The consequences of rejecting fundamental randomness, however, include split-

ting universes, superdeterminism, and “spooky action” at a distance [18]. 

Jaynes rejected objective randomness of fluctuations because he considered it to be 

incompatible with mechanics [17]. He concluded that physical entropy is informational 

and a measure of incomplete information on a system’s details. This is physics’ prevail-

ing interpretation of entropy. However, this interpretation simply shifts the question 

from the meaning of statistical entropy to the meaning of information. Is information a 

property of an observer’s knowledge? Is it a property of a system’s physical state? Is 

information always knowable? These questions underlie fundamentally different inter-

pretations of the physical state. Quantum Bayesianism describes the physical state by an 

observer’s actual knowledge, without directly addressing the nature of physical state it-

self [20]. Wheeler’s famous statement “It from bit” expresses the idea that information is 

objective and that it completely defines the physical state [21]. 

3. Thermocontextual States and Transitions 

The thermocontextual interpretation (TCI) defines a system’s state by what can, in 

principle, be measured from the system’s physical surroundings. Whereas thermody-

namics defines entropy with respect either to the system temperature or to absolute zero, 

the TCI defines entropy with respect to an ambient reference state in equilibrium the 

system’s actual surroundings at a positive ambient temperature. The TCI is based on 

postulates and definitions given in [18] and listed in Appendix A, with the addition of 

two new postulates introduced in section 4. 

3.1. Thermocontextual Properties of State 

The TCI contrasts with prevailing interpretations of physics by recognizing thermo-

contextual components of energy and entropy as physical properties of state. The TCI 

partitions a system’s total energy into thermocontextual components, given by:  

� = ���� + ��� = � + � + ���.                                                (4) 

The total energy, E, is resolved into system energy, Esys, and ambient-state energy, Eas. 

Ambient-state energy is the absolute energy of the ambient reference state, and Esys is the 

system’s energy relative to the ambient reference state. The TCI further partitions system 

energy into exergy, X, and ambient energy, Q. Exergy is the system’s potential work ca-

pacity on the ambient surroundings. Ambient energy is defined by Q=Esys−X. It has zero 

potential for work.  

A system’s exergy is then partitioned into the sum of mechanical exergy and thermal 

exergy. Mechanical exergy is the sum of kinetic energy and non-thermal potential energy 

of the system’s particles. A particle’s potential energy includes both non-thermal internal 

exergy (e.g., a compressed spring or chemical free energy) and potential energy due to 

external fields such as gravity. Thermal exergy is the work potential of the system’s par-

ticles’ internal thermal energy, q. Thermal exergy is the measurable work potential of heat, 

given by: 

��� = �
� − ��

�
� ��,                                                                     (5) 

where dq is an increment of heat at temperature T and Ta is the ambient temperature. 

Ambient energy is related to heat at temperature T by: 

 d� = �
��

�
� ��.                                                                         (6) 
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Ambient energy is the equivalent heat at the ambient temperature, and we will often refer 

to it as ambient heat. 

The TCI finally defines thermal entropy by: 

�� ≡
�

��

= �
��

��

��

��

= �
��(�)

�

�

��

,                                                                   (7) 

where the first integration is from the ambient reference state (AS) at the ambient tem-

perature Ta to the system state (SS) at temperature T. The ambient reference state defines 

the zero values for system energy, ambient energy, and entropy. The last term of (7) fol-

lows from (6) for systems in which heat is expressed as a function of temperature only.  

TCI’s thermal entropy is thermocontextually defined with respect an ambient refer-

ence state in equilibrium at the positive temperature of the system’s actual surroundings. 

It is a generalization of both the classical thermodynamic entropy, which is defined with 

respect to an equilibrium reference at the system temperature (equation 1), and the 3rd 

Law entropy, which is defined with respect to absolute zero, (equation 2). 

3.2. Irreversible Transitions 

The Second Law of thermodynamics describes irreversible transitions by the produc-

tion of thermodynamic entropy. Physics regards the Second Law of thermodynamics as a 

thoroughly validated empirical principle, but not as a fundamental physical law. It re-

gards the thermodynamic state as an incomplete description of a system’s state, and it 

regards entropy as a measure of an observer’s uncertainty of the system’s actual micros-

tate.  

The TCI contrasts with physics by recognizing irreversible change as fundamental. 

Postulate Four (Appendix A) describes irreversible change by the dissipation of exergy to 

ambient heat and the production of thermal entropy (7). Like thermodynamic entropy, 

thermal entropy of an isolated system can never decline. The reversibility of physics rep-

resents an idealized special case in the limit of zero entropy production.  

The TCI also contrasts with classical thermodynamics by describing irreversible 

change by an operator. During an irreversible transition, the system cannot be reversibly 

measured; it has no well-defined exergy, and it does not exist as a state. The transition 

operator takes a system from a well-defined state of higher exergy to a well-defined state 

of lower exergy. An irreversible transition can approach a continuous quasistatic function, 

in which equilibrium and reversibility between the system and its slowly changing sur-

roundings are continuously maintained, but it can never reach reversibility. An irreversi-

ble process is always resolvable into discontinuous states and dissipative transitions. 

3.3. Statistical Entropy and Transition Probabilities 

Section 3.1 defined thermal entropy as a thermocontextual generalization of thermo-

dynamic entropy. This section presents a thermocontextual generalization of the statistical 

entropy of classical and quantum mechanics. The TCI expresses statistical entropy, Sp in 

terms of probabilities, exactly like the Gibbs entropy of classical statistical mechanics (3):   

�� = −�� � ��

�

ln(��) ,                                                                (8) 

but it interprets the probabilities very differently. The Gibbs entropy, and its extension to 

statistical quantum states, the von Neumann entropy, interpret the Pi’s as a measure of 

incomplete information. Incomplete information is typically regarded as a subjective 

property of an observer’s ignorance of a system’s precise state, and it decreases whenever 

a new measurement result is observed. The TCI, in contrast, unambiguously defines the 

Pi’s objectively. Equation (8) is summed over potential pathways that a positive-entropy 

system can take when it transitions to an equilibrium zero-exergy and zero-entropy am-

bient state (Figure 2) or to an intermediate metastable state. The TCI describes the 
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probabilities in (8) as reflecting the objective randomness of which path the system takes 

as it transitions to a lower-entropy state.  

 

Figure 2. Multiple Pathway Potentialities. Each path represents a potential pathway for transition 

from an initial positive-entropy state to a zero-exergy zero-entropy ambient state. The transition 

involves reversible transfers of exergy, ambient heat, and entropy to the surroundings, and it gen-

erally also includes irreversible production of entropy within the surroundings. The initial system’s 

statistical entropy (8), prior to interaction with the surroundings and transition, is summed over the 

potential pathways’ probabilities. 

The differences among the frequentist, Bayesian, and TCI interpretations of statistical 

entropy are succinctly highlighted by their respective interpretations of entropy and en-

tropy changes for a coin flip (Table 1).  

Table 1. The Frequentist, Bayesian, and TCI interpretations of Entropy and Information. 

 Frequentist Bayesian TCI 
Initial entropy 

of coin 
Zero Zero Positive 

Entropy of 

coin post flip 
Zero Positive Zero 

Interpretation  

of  

Probabilities 

Objective uncer-

tainty of a hy-

pothesis’s truth  

Subjective uncertainty 

of a system’s actual 

definite microstate 

Objective randomness of instan-

tiating one of a system’s multi-

ple pathway potentialities. 
Interpretation 

of  

Entropy 

Objective ran-

domness of  

fluctuations 

Subjective property of 

observer’s knowledge 

of state. 

Thermocontextual property of 

state with respect to an ambient 

reference state. 
Interpretation 

of Information 
Objective: what 

is measurable. 
Subjective: what an ob-

server knows 
Objective: what is measurable 

from the surroundings. 

 

The Frequentist and Bayesian interpretations both assert that prior to the coin flip, 

the coin has a definite and known zero-entropy state. After the coin is flipped but before 

the result is revealed, the frequentist interpretation asserts that the coin again has a defi-

nite and knowable, but unknown, zero-entropy state. Probabilities only refer to hypothe-

ses about the coin’s unknown state. The Bayesian interpretation, in contrast, asserts that 

the coin has a positive entropy, based on an observer’s incomplete knowledge of the coin’s 

actual state.  

Like the frequentist interpretation, the TCI describes the flipped coin with a definite 

but unknown zero-entropy state. In contrast to both the Bayesian and frequentist inter-

pretations, however, the TCI describes the coin prior to the coin flip as having a positive 

entropy and exergy. It describes the system prior to the coin flip as comprising the coin 

and its cocked coin-flipper. Its positive entropy (Table 1) reflects the objective randomness 

of the coin’s transition potentialities.  

Table 1 also shows the contrasting interpretations of information. The Bayesian in-

terpretation defines information subjectively by an observer’s actual knowledge. Bayesian 
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information is updated as measurements and observations are conducted. Both the fre-

quentist interpretation and the TCI, in contrast, objectively define information by what 

can in principle be measured within their respective frameworks. They define information 

as an objective property of a system, independent of an observer’s knowledge.  

4. MaxEnt 

Section 3 described irreversible transitions and changes in thermocontextual proper-

ties with respect a fixed ambient reference. In this section, we describe reversible changes 

in a system’s thermocontextual properties in response to changes in the ambient sur-

roundings.  

4.1. Measurement, Instantiation, and Actualization 

A perfectly stable state is in equilibrium with its ambient surroundings, and it has 

zero exergy and zero entropy with respect to its ambient reference state. If the system has 

positive exergy with respect to its surroundings, the system has a potential transition to 

its equilibrium state. Kinetics and statistics may delay that transition, however. Prior to 

transitioning, the system exists as a metastable state with positive exergy and generally 

positive entropy.  

The TCI defines perfect measurement of a metastable state as a reversible and ther-

modynamically closed transition of the system to its new ambient reference state (defini-

tion 8 in Appendix A). Thermodynamic closure means that the system can exchange en-

ergy with the surroundings, but not mass. Reversibility means that the transition occurs 

in the idealized limit of a quasistatic process.  

Figure 3(a) illustrates a reversible and continuous measurement. Figure 3(a) could 

describe the reversible measurement of a hot gas as it quasi-statically cools to its ambient 

state in equilibrium with its surroundings. The hot gas’s thermal exergy is measured by 

the work recorded by a reversible heat engine, and Q is the measure of heat reversibly 

discharged at the ambient temperature. Thermal entropy is the ratio of ambient heat to 

ambient temperature (equation 7). Reversing the quasistatic measurement process using 

a reversible heat pump restores the ambient gas to its original exergy and thermal entropy.  

 

Figure 3. Perfect Measurement for continuous and statistical transitions. (a) Quasistatic measure-

ment involves continuous and reversible transfers of exergy and thermal entropy to the surround-

ings. (b) An individual statistical measurement involves random instantiation and actualization. 

Transfer of entropy to the surroundings randomly instantiates a transition pathway, which then 

actualizes a measurement result. Reversal of a quasistatic measurement, whether continuous (a) or 

statistical (b), fully restores the system’s initial exergy and entropy. 

The TCI resolves statistical measurement into two distinct stages, instantiation and 

actualization (Figure 3(b)). Instantiation (Definition 8.1 in Appendix A) is initiated by in-

teraction with the surroundings and transfer of statistical entropy from the system’s initial 

state. This derandomizes state A and reduces its entropy to zero. From (8), this randomly 

instantiates a single zero-entropy potentiality and its transition pathway.  
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Actualization (Definition 8.2 in Appendix A) transfers the instantiated system’s ex-

ergy and does work on the surroundings. Measurement is the work of actualizing a meas-

urement result. If each pathway transition actualizes a distinct measurement result, then 

measurements are intrinsically and objectively statistical. The statistical entropy is given 

by equation (8), summed over the transition pathways, with Pi equal to the probability of 

instantiating pathway ‘i.’ Reversal of an individual perfect statistical measurement re-

stores the system’s initial exergy and entropy. 

The continuous quasistatic measurement of thermal entropy (Figure 3(a)) records the 

ambient heat and thermal entropy transferred to the ambient surroundings. Multiple sta-

tistical measurements (Figure 3(b)) record the probability distribution of pathway poten-

tialities and the statistical entropy by (8). The statistical entropy and thermal entropy have 

very different empirical definitions, and there is no a priori basis for their equivalence. 

The perfect measurement of exergy, whether continuous or discontinuous, records 

exergy by the reversible work done on the surroundings. Reversibility can be approached, 

but real measurements and processes generally are not reversible. Exergy might be dissi-

pated by irreversibly pushing ambient heat to the surroundings during instantiation, and 

it might be dissipated in the surroundings by irreversible actualization and work of meas-

urement. 

4.2. Minimization of Dissipation 

A transition can approach quasistatic reversibility, but real transitions dissipate ex-

ergy. As a system approaches a zero-exergy and zero-entropy state of equilibrium with 

its ambient surroundings, total energy is conserved. If we measure what happens to the 

system’s exergy, we find that it does work on the surroundings or on our measurement 

device. Increasingly sensitive measurements recover more and more of the system’s initial 

exergy. Extrapolation of this observation to zero dissipation underlies the Hamiltonian 

conceptual framework (HCF), which views nature as fundamentally reversible, and 

which provides the foundation for the prevailing interpretations of physics [18]. Reversi-

bility follows from the HCF’s definition of perfect measurement at absolute zero, in the 

absence of thermal noise, ambient energy, and dissipation. The TCI recognizes the HCF 

as an idealization, but it also recognizes nature’s tendency to approach reversibility as 

closely as possible. The TCI expresses this empirically validated tendency as Postulate 

Five, introduced here:  

Postulate Five (MinDis): During transition of a component from an initial state to a 

more stable state of lower exergy, a system minimizes the relative dissipation of its 

energy. 

We define relative dissipation of a system’s energy by:  

� ≡
∫ �

��
��

�
�

�
��

(�(0) − �(1))
.                                                                       (9) 

Zeta (ζ) is a reaction progress variable. It ranges from zero for the initial state to one for 

the final state. It indexes the measurable changes in state properties and the dissipation of 

exergy to ambient heat within the system and its surroundings. Relative dissipation, D, 

describes the fraction of the system’s initial energy that is dissipated. Relative dissipative 

ranges from zero for a reversible transition to one for a purely dissipative transition of an 

initially zero-entropy state. MinDis does not address the rate of dissipation or entropy 

production. Dissipation rates are based on phenomenological rate laws, but MinDis is de-

fined strictly in terms of state properties. 

MinDis provides a counterbalance to the Second Law. Whereas the Second Law 

states that dissipation of exergy is irreversible, MinDis states that a system minimizes rel-

ative dissipation to the extent possible. Whereas the Second Law describes the selection 

and relative stability of states based on minimum exergy, MinDis describes the selection 
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and relative stability of dissipative processes, based on minimum relative dissipation of 

exergy.  

4.3. Refinement and MaxEnt 

The irreversible dissipation of exergy to ambient heat is one path toward higher en-

tropy. The other path is refinement of a metastable system [18]. If a system’s ambient tem-

perature declines, then its ambient-state energy declines and, from (4) and the conserva-

tion of energy, its system energy increases. Any associated increase in exergy can then be 

dissipated. Postulate 5 minimizes the potential dissipation by minimizing the increase in 

exergy following refinement. From (4) and (7), this maximizes the increase in thermal en-

tropy in response to a changing environment. We express this as Corollary 5-1:  

Corollary 5-1—The Maximum Thermal Entropy Principle: Thermal refinement maxim-

izes a metastable system’s thermal entropy with respect to its new ambient surround-

ings.  

To quantify the increase in entropy from refinement, we consider a system in state A 

and an ambient reference state B. From (6) and (7):  

���(�) ≡
1

���

� ��
�

�

= �
��

�

�

�

− �
��

�

�

�

.                                          (10) 

SqB(A) is the thermal entropy of state A with respect to reference state B, in equilibrium 

with the system’s ambient surroundings at ambient temperature TaB. If the ambient sur-

roundings changes from state B to state C, then the thermal entropy of A changes to: 

���(�) = �
��

�

�

�

− �
��

�

�

�

= �
��

�

�

�

− ��
��

�

�

�

− �
��

�

�

�

� = ���(�) + ���(�).         (11) 

Equation (11) shows the linearity of thermal refinement: the entropy of A with respect to 

C equals the entropy of A with respect to B plus the entropy of B with respect to C.  

TCI’s statistical entropy also depends contextually on the ambient surroundings, and 

it likewise increases with statistical refinement. We would like to show that statistical re-

finement is also linear, and that the statistical entropy is also maximized by refinement. 

To do this, we first need to express an analogue for conservation of energy that applies to 

statistical entropy. We express this by Postulate Six: 

Postulate Six: Transition probabilities are independent of the ambient reference state.  

We illustrate Postulate Six by Figure 4. Figure 4(a) shows the transition probabilities Pi for 

transition from state A to state B. Statistical refinement resolves the system’s initial refer-

ence state, B, initially with zero entropy, into a positive-entropy state with distinct transi-

tions potentialities Pj to the new ambient reference state C (Figure 4(b)). From Postulate 

Six, increasing the resolution of state B has no effect on the transition probabilities Pi. The 

increased resolution and entropy of reference state B is directly conveyed into increased 

resolution and entropy of the system’s state A, as expressed by the transition probabilities 

Pi×Pj from A to the new reference state C (Figure 4(b)). 
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Figure 4. Statistical Refinement. The statistical entropies of states A and B are shown with respect 

to ambient reference states B and C. (a) The statistical entropy of A with respect to ambient state B. 

State B defines the zero-entropy ambient surroundings. (b) Statistical refinement of A. Refinement 

leads to the resolution of multiple pathways from state B to a new ambient reference state C, and to 

a positive entropy for state B. 

We can now show the linearity of statistical refinement. From Figure 4 and using ΣiPi 

=ΣjPj =1, the statistical entropy difference between states A and B, given ambient reference 

state C, is given by: 

���(�) − ���(�) = −∑�∑�P�P����P�P�� + ∑�P����P��                                            

= −∑�P�∑�P����P��−∑�P�∑�P���(P�) + ∑�P����P��                

= −∑�P����P��−∑�P���(P�) + ∑�P����P��                                

���(�) − ���(�) = −∑�P���(P�) = ���(�).                                                   (12) 

Equation (12) is the statistical analogue of (11) for thermal entropy. It shows that, like 

thermal refinement, statistical refinement is linear: the entropy of A with respect to C 

equals the entropy of A with respect to B plus the entropy of B with respect to C. Refine-

ment linearly increases both statistical entropy and thermal entropy, either by increasing 

the system’s resolution (Figure 4 and equation 12) or by lowering the ambient temperature 

(equation 7).  

Postulate Six not only establishes the linearity of statistical refinement, but it also 

establishes the equality of thermal and statistical entropies. Thermal and statistical entro-

pies are both defined to be zero for a system in equilibrium with its ambient reference 

state. The linearity of thermal and statistical refinement means that given an appropriate 

scaling factor and common reference, the two remain equal. For statistical entropy as ex-

pressed in (8), the appropriate scaling factor is the Boltzmann constant. The statistical en-

tropy given by (8) is equal to the thermal entropy given by (7).  

Postulate Five establishes the minimization of thermal entropy, and Postulate Six 

establishes the equality of statistical and thermal entropies. Together, they establish that 

both thermal and statistical entropies are maximized following refinement. We express 

this as the MaxEnt Principle:  

MaxEnt Principle: Following refinement, a metastable system’s entropy is the maxi-

mum value compatible with its new ambient surroundings.  

The TCI recognizes MaxEnt and Postulate Four (irreversible dissipation) as two dis-

tinct processes by which an isolated system can increase its entropy. Postulate Four de-

scribes the irreversible increase in entropy due to dissipation with respect to fixed ambient 

surroundings. MaxEnt, in contrast, describes the increase in entropy of a metastable sys-

tem due to refinement, in the absence of dissipation or interaction with the surroundings. 

Unlike dissipation, MaxEnt is reversible; if the surroundings reverts to its previous state, 

the entropy likewise reverts. 

To illustrate the fundamental physical significance of MaxEnt, we apply it to the dou-

ble-slit experiment and gain a deeper understanding of the particle-wave duality of quan-

tum mechanics. 
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5. Double Slit Experiment 

5.1. The Particle-Wave Duality 

The double slit experiment clearly demonstrates the particle-wave duality of quan-

tum mechanics. A particle is created and emitted from a source, and it is detected as a 

particle by its point-like impact on a detector screen (Figure 5). If a partition with double 

slits is placed between the source and detector screen, the accumulated impacts display 

an interference pattern, characteristic of waves, even when particles are transmitted one 

at a time. The interference pattern indicates that individual particles in some sense pass 

through both slits. The particle-wave duality is further indicated by placing a detector 

behind one or both slits. Measurements then indicate which slit the particles pass through, 

and the wave interference pattern disappears. Richard Feynman famously described the 

double-slit experiment as the “only mystery,” “which has in it the heart of quantum 

mechanics.” [19].   

To remain neutral on the nature of the emitted “particle,” we simply refer to it as a 

“system” in transition between its source-state and its ambient state after detection. The 

system’s state is thermocontextually defined by perfect measurement at the detector plate, 

with a finite resolution of measurement set by the ambient surroundings. The thermocon-

textual entropy for the particle between its source and prior to instantiation is given by 

equation (8), summed over the system’s transition pathways, each terminating at a resolv-

able detection point. While there is no irreversibility or interaction with the fixed sur-

roundings, the system exists as in isolated metastable quantum state. Prior to measure-

ment, the system has fixed positive exergy and entropy, and its time-dependent wave-

function at A and A’ (Figure 5) represent two points on a thermodynamically reversible 

trajectory, defined over continuous and symmetrical time.  

 

Figure 5. Double slit experiment. Between points A and A,’ the system is metastable, meaning no 

dissipation or interaction with its surroundings. It therefore has fixed exergy and entropy, and its 

time-dependent state is thermodynamically reversible. The shaded pattern at A’ represents the sta-

tistics of potential measurements. Interaction with the surroundings initiates a process of random 

instantiation of transition potentialities. Actualization of the instantiated transition records the point 

of impact on the detector screen. . 

Figure 6 shows the probability profiles for detecting a particle on the detector plate. 

Curves show probability profiles for wave interference from double slits and for wave 

diffraction through single slits. Calculations are based on intensity profile calculations for 

light [22], using parameters shown in Table 2, and assuming that probabilities of photon 

detection are proportional to calculated intensities. Probabilities for the double-slit curves 

in Figure 6 are normalized to one, and they are normalized to 0.5 for the single-slit curves.  
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Table 2. Double slit interference and diffraction parameters 

Detector 

width 

Slit 

width 

Slit  

positions 

Slit-detector 

separation 

Detector  

Resolution 

200 λ 7 λ ±15 λ 300 λ 0.5 λ 
All measurements are given in units of wavelengths (λ) 

 

Figure 6. Probability amplitudes for photon detection from double-slits, with and without wave 

interference. 

The probability profiles describe the actualized measurement results for multiple 

transitions. When both slits are open, multiple measurements show the statistical distri-

bution of high and low intensities illustrated by the red line in Figure 5, characteristic of 

the wave interference pattern from double slits.  

The probability amplitude profile for wave interference (red profile) and equation (8) 

define the entropy for the system with both slits open. The detector screen is 200 units 

long, and the detection resolution is 0.5 units, so probability amplitude is compiled from 

400 bins. The dimensionless entropy (setting Boltzmann’s constant to unity), based on the 

parameters in Table 2, is 4.69. This is the entropy for the metastable system as it existed 

with respect to its environment, prior to instantiation and the actualization of measure-

ment results. 

5.2. MaxEnt and Which-Slit 

We now consider the case when we place a “which-slit” detector behind the slits. 

This represents a change in the system’s environmental surroundings. If the system sym-

metrically passes through both slits and creates an interference pattern, the system’s en-

tropy, prior to instantiation, would be the same 4.69 as before. However, if the system 

randomly passed through one slit or the other, then, with the ability to determine through 

which slit it passed, there are now 800 information bins—400 bins for registering a particle 

from the left slit and 400 bins for registering a particle from the right slit. The probability 

amplitudes from each slit are shown by the green and blue curves in Figure 6, where each 

curve is normalized to a 50% total probability. Applying equation 8 and summing over 

the 800 probability bins yields a dimensionless entropy of 5.71 for the system as it existed 

prior to instantiation. This is higher than the entropy for the double-slit interference result. 

MaxEnt therefore selects the higher-entropy state, and the particle randomly passes asym-

metrically through one slit or the other. Measurements of multiple transitions reveal that 

statistical impacts record the expected noninterference pattern. 

The above discussion raises an interesting question. What would happen if we placed 

a which-slit detector behind the slits, but we somehow isolated it from measurement? 

There would be no way to know which slit, and there would only be the original 400 

information bins. If the system passed through one slit or the other anyway, the predicted 

probability profile would be the normalized sum of the left and right probability profiles, 

given by the purple curve in Figure 6. It is spread over the same number of bins as the 

interference pattern, but it is smoother, so we would expect its entropy to be higher. From 

equation 8, in fact, its entropy is 5.28—not as high as when we could determine which slit, 

but still higher than the interference pattern. MaxEnt would still select the asymmetrical 

state with higher entropy, displaying the purple noninterference profile in Figure 6. A 
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non-interference pattern, even if the which-slit detector was not observable, would sup-

port the idea that MaxEnt drives the selection of non-interference over interference, rather 

than the determination or the ability to determine which-slit information, as convention-

ally believed [9,23]. 

The TCI attributes the switch between double-slit interference and single-slit nonin-

terference to breaking the system’s symmetry. The which-slit detector provides the system 

an opportunity, not previously available, to select between symmetrical double-slit or the 

asymmetric single-slit profiles. Given this opportunity, MaxEnt selects the higher-entropy 

state and its single-slit noninterference profile. Without the which-slit detector, the sys-

tem’s symmetry and its wavefunction do not allow the higher-entropy state and asym-

metric transition, and the symmetrical wave interference pattern is observed. 

5.3. System Time and Delayed Choices 

Effects have causes, and John Wheeler formulated a series of “delayed-choice” 

thought experiments to address the questions: What causes an electron to exhibit wave-

like versus particle-like behavior? How and when does an electron switch between parti-

cle-like or wave-like behavior?  

In a delayed choice double slit experiment, the experimental setup is changed while 

the system is in midflight [23]. For example, one of the slits could be covered or uncovered, 

or a which-slit detector could be inserted or removed between particle emission and de-

tection. Other variations involve observation of entangled “idler” photons after the origi-

nal “signal” photon has already interacted with a detector [24]. Results of delayed-choice 

experiments seem to show that the recorded result is not definite until the actual observa-

tion event. John Wheeler concluded that "no phenomenon is a phenomenon until it is an 

observed phenomenon," and that the Universe does not "exist, out there independent of 

all acts of observation" [23]. Other proposed explanations include retrocausality, in which 

observation changes the system’s state prior to observation, and determinism caused by 

unobservable hidden variables [23]. 

Without going into details of the experiments and their experimental realizations, we 

will instead simply argue that the questions motivating delayed-choice experiments and 

the conclusions drawn are based on false premises.  

Causality is premised on effects following causes, and this implies an asymmetry of 

time. As discussed in [18], there are two very different asymmetrical times. The familiar 

arrow of time is related to the irreversible production of entropy, which the TCI defines 

as thermodynamic time. Irreversible advances in thermodynamic time are simply 

measures of irreversible entropy production. The TCI recognizes thermodynamic time as 

the real component of complex system time. The imaginary component of complex system 

time is mechanical time, which can be expressed by an imaginary coordinate “it” in quan-

tum mechanics and in relativity [18]. System time is a complex property of a time-depend-

ent state, describing both reversible and irreversible change. 

If a system has no dissipative forces, then there is no production of entropy. The TCI 

fully describes a reversible system as a superposed positive entropy wavefunction over 

imaginary mechanical time, within a single instant of real thermodynamic time. Like the 

changes in a mechanical microstate, changes in the mechanical time coordinate are re-

versible and deterministic. This is the special case assumed by the Hamiltonian Concep-

tual Framework (HCF) [18]. 

The second asymmetrical time is reference time. The TCI defines reference time by 

the irreversible advance of an external clock [25]. This is the time of relativity and relativ-

istic causality. It is the time by which we measure velocities of objects or light, and it is the 

time by which an external observer distinguishes past from future and cause from effect. 

The irreversible advance of reference time provides the scale against which we observe 

and track a system’s changes, whether those changes are reversible or irreversible over 

system time. 
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Observers of the double slit experiment experience the irreversible passage of refer-

ence time between particle emission and detection, but the system itself is metastable and 

remains thermodynamically reversible while effectively isolated from external measure-

ment or observation. A reversible system cannot distinguish between past and future, and 

it has no cause or effect. It just is, completely described by a time-dependent superposed 

wavefunction defined over reversible and deterministic mechanical time. Questions of 

causality for a thermodynamically reversible system are based on a false distinction be-

tween cause and effect. There is no fundamental distinction between cause and effect over 

imaginary time-symmetrical mechanical time [18]. “Cause follows effect” and “arrow of 

causality” are thermocontextually defined only over irreversible reference time. Ques-

tions or conclusions about cause and effect within a thermodynamically reversible system, 

as it exists unobserved, are based on a false premise. 

6. Summary and Conclusions 

The Thermocontextual Interpretation (TCI) provides a conceptual framework for de-

fining physical states, time, and changes in state with respect to a system’s actual sur-

roundings. It is firmly based on well-established empirical observations, and its implica-

tions are reasonable and intuitive [18]. The TCI recognizes thermal entropy and exergy as 

objective properties of physical states, and as thermocontextual generalizations of ther-

modynamic entropy and free energy.  

The TCI recognizes two distinct paths for changes in exergy and thermal entropy. 

TCI’s Postulate Four (Appendix A) expresses the Second Law of thermodynamics’ origi-

nal meaning, in terms of the irreversible dissipation of exergy to ambient heat. The second 

path of change in entropy and exergy is through changes in the ambient surroundings. 

When the ambient surroundings change, the ambient reference state and the state’s ther-

mocontextual properties change in response.  

Among the multiple dissipative possibilities that are often available to a far-from-

equilibrium system, Postulate Five (MinDis), introduced here, states that the process hav-

ing the minimum relative dissipation is the most stable and most probable. Relative dis-

sipation is the dimensionless fraction of initial energy that is dissipated during a transi-

tion. MinDis is not the minimum entropy production principle, which addresses the rate 

of entropy production and dissipation.  

Minimizing a transition’s relative dissipation can recursively lead to organized net-

works of transition-nodes. A transition can reduce its relative dissipation by deferring 

dissipation and doing work on other transition-nodes. Postulate Five guides the selection 

of dissipative processes, leading to the origin and evolution of dissipative structures [26]. 

The application of Postulate Five to dissipative systems is the subject of a separate article 

currently in preparation. The application of a related postulate to the evolution of dissi-

pative systems is discussed in [27] (pp 18-24). 

Postulate Six introduces a statistical analogue of the conservation of energy. Postulate 

Six and Postulate Five, together, establish MaxEnt as a fundamental principle. MaxEnt 

asserts that a metastable system maintains a maximum-entropy configuration. If a sys-

tem’s environmental constraints change, MaxEnt selects the state of maximum entropy 

from among the possibilities that are consistent with the system’s new environmental con-

straints. The Second Law, in contrast, addresses entropy changes due to the irreversible 

production of entropy with respect to fixed surroundings. MaxEnt and the Second Law 

are two distinct paths for maximizing entropy and two distinct laws of physics.  

MaxEnt sheds light on one of the oldest questions at the heart of quantum mechanics: 

When is a particle a particle and when is it a wave? MaxEnt provides a physical explana-

tion for when and why particles in the double slit experiment record a wave interference 

pattern and when they do not.  

We can define a quantum particle as a wavefunction with a definite zero-entropy 

position or momentum eigenfunction. In the double-slit experiment, the photon exists as 

a particle only at its source, when it has a definite momentum, and at detection, when it 
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has a definite position. At all points between, it is a superposed wavefunction and it ex-

hibits wave-like dispersion, with or without wave interference. 

Wave interference is recorded when a particle’s wavefunction passes through the 

double slit symmetrically. Placing a which-slit detector at the slits breaks that symmetry. 

This allows MaxEnt to select a higher-entropy asymmetrical quantum state, allowing par-

ticles to randomly pass through one slit or the other without wave interference. The exist-

ence of multiple state potentialities and the freedom to choose from among them does 

indeed express the heart of quantum mechanics, and it distinguishes quantum mechanics 

from the fundamental determinism of classical mechanics. 

MaxEnt and Bayesian logic have proven to be powerful tools for modeling complex 

systems. A quantum system adjusts to changes in its physical constraints to maintain 

MaxEnt. Recognizing MaxEnt as a fundamental quantum principle provides a new per-

spective on quantum behavior, and this could potentially inspire new approaches for solv-

ing complex problems. 
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Appendix A. Thermocontextual Interpretation’s Postulates and Definition 

Postulate One: The Zeroth Law of Thermodynamics establishes that the temperature of a 

thermally equilibrated system is a measurable property.  

Postulate Two: The Third Law of thermodynamics establishes that absolute zero temper-

ature can be approached but never be attained.  

Postulate Three: There are no unobservable “hidden” variables. Physical properties of 

state are measurable, and perfect measurement completely describes a system’s physical 

state.  

Definition 1: A system’s ambient temperature, Ta, equals the positive temperature of the 

system’s actual surroundings, with which it interacts or potentially interacts.  

Definition 2:  A system’s total energy, E, equals the system’s potential work, as meas-

ured on the surroundings in the limit of absolute zero.  

Definition 3: A system’s exergy, X, is defined by its potential work as measured at the 

ambient surroundings.  

Definition 4: A system is in its ambient state when its temperature equals the ambient 

temperature, and its exergy equals zero. The system’s ambient state is uniquely defined 

by equilibrium with its ambient surroundings. 

Definition 5: A system’s ambient-state energy Qas is the ambient ground state’s potential 

work capacity, as measured at the limit of absolute zero. 

Definition 6: System energy is defined by Esys = E−Qas. 

Definition 7: A system’s ambient heat is defined by Q = Esys−X. 

Definition 8: Perfect measurement of state involves a deterministic thermodynamically 

closed process of transition from a system’s initial state to its zero-exergy and zero-en-

tropy ambient reference state. Perfect measurement is the reversible measurement of the 

exergy and entropy changes in state and the equilibrium measurement of the ambient 

reference state.  

Definition 8.1: Instantiation is the reversible transition of an indefinite positive-entropy 

microstate to a definite zero-entropy microstate. Instantiation transfers the system’s am-

bient heat and entropy to the surroundings, while preserving its mass and exergy. 

Definition 8.2: Actualization involves the reversible transition of an instantiated zero-en-

tropy microstate. Actualization is the work on an external system during the transfer of 

exergy from the system to the surroundings.  

Definition 9: A system’s entropy is defined by S=Q/Ta. 

Postulate Four (Second Law of Thermodynamics): An irreversible process dissipates ex-

ergy to ambient heat. For irreversible change within an isolated system at constant Ta, 

ΔX<0.  

Definition 10: Physically separated particles are entangled if they have properties linked 

by a deterministic and thermodynamically reversible connection. 

Postulate Five (MinDis)(New to TCI): During transition of a component from an initial 

state to a more stable state of lower exergy, a system minimizes the relative dissipation of 

its energy. 

Postulate Six: (New to TCI): The transition probabilities are independent of the ambient 

reference state. 
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