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Abstract: For the symmetrical mixture model and mixture test area, the lattice point set is used 
to partition, and then the corresponding test statistics can be constructed. In this paper, we first 
proposes the partition methods under the lattice point sets and obtains several sub-simplexes without 
common interior points. Furthermore, we present the method for constructing a uniform design on 
the simplex using the center points of these sub-simplexes. The designs satisfy the uniformity of 
maximum distance deviation and provide good results for the mean square error deviation. Finally, 
the uniformity test on the mixture region is considered and illustrated by examples.
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1. Introduction 10

For production and scientific experiments, it constantly needed to improve the quality 11

of products and develop new products. However, it is a challenge to arrange the exper- 12

iments effectively and analyse scientifically the results. Experimental designs provide 13

various practical methods for solving these challenges, closely related to production and 14

scientific research, enriching and developing theoretically and methodologically. Mixture 15

experimental design is an essential part of experimental design and is widely used in many 16

fields. 17

From Scheffé (1958) first introduced the notion and theory of mixture experimental 18

designs, it has developed substantially and accomplished numerous theoretical results for 19

this field with the development of the experimental design theory. However, there are two 20

main designs in this direction. The first is the optimal design for the mixture experiments 21

based on various optimality criteria. The second is uniform designs for mixture experiments 22

concerning uniformity and robustness. The optimal design for mixture experiments is to 23

study the optimization problems on irregular mixture experimental regions based on the 24

optimal design theory. 25

The theory of optimal design aims to present a criterion for statistically evaluating the 26

quality of designs and constructing optimal designs by these criteria. Kiefer (1974, 1975) 27

organized the previous results and extended the concept of discrete experimental designs 28

to continuous designs. Furthermore, Kiefer (1974, 1975) presented various optimal design 29

criteria (e.g., D−optimal, A−optimal, and Iλ−optimal) and also proved the optimal design 30

equivalence theorem that is the foundation for establishing and developing optimal design 31

theory. Moreover, many statisticians have proposed different optimal design criteria based 32

on the factual background. 33

However, as Fang and Wang (1994) pointed out, the optimal design has drawbacks of 34

lack of robustness and many points distributed at the boundary. To improve the design, 35

Fang and Wang (1994) constructed a uniform design by using the number-theoretic methods. 36

Further, Wang and Fang (1996) presented uniform designs for mixture experiments by 37

extending the idea of uniform design to mixture experiments. That designs consider evenly 38
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distributed n experimental points on the mixture domain and do not allow replication. 39

There are two commonly used methods for obtaining uniformly distributed design points 40

on the mixture region, which are the inverse permutation method Wang and Fang (1990) 41

and the numerical optimization method. Moreover, numerous pieces of literature have 42

extended these methods, see Tian and Fang (1999) and Borkowski and Piepel (2009). Li 43

and Zhang (2017) proposed a pseudo component transform design based on the Scheffé 44

type design, which combines optimality and uniformity, and discussed the uniformity of 45

the lattice point sets. Kim and Kim (2020) proved that the conjecture proposed by Li and 46

Zhang (2017) on a property of the proposed component transform is not true in the general 47

case, and further refined the conjecture and gave a proof of the result. 48

Lattice design is an essential method for mixture experimental design, which mainly 49

considers arranging experiments on two classes of lattice point sets of the simplex region, 50

i.e., central lattice point sets and q-component m-order lattice point sets. The goal of the 51

simplex lattice design is to reasonably assign the weights of each component to distribute 52

each weight of the mixture components evenly in the design space and then test each 53

weight separately based on its distribution to find the best formula for production. It has 54

been widely used in agriculture, biology, medicine, engineering, etc., see Cornell (2002), 55

Mandlik et al. (2012), Singh and Saini (2016), Aleisa and Heijungs (2020), Aumklad et 56

al. (2022) and among other related literatures. Moreover, it is also mentioned in Li et 57

al. (2021) that lattice point sets can be used for non-parametric modeling and uniformity 58

testing. However, when the test domain is an irregular convex polyhedron, the simplex 59

lattice point design based on Scheffé (1958) is not feasible, and it is, therefore, a challenge to 60

efficiently arrange the experimental points on the region. We now propose to partition the 61

irregular convex polyhedra to obtain the experimental points inside the convex polyhedra 62

by applying the theory of lattice point design for mixture experiments. However, how to 63

effectively partition the test region and how to ensure that the number of experimental 64

points is as small as possible and the amount of information obtained from the experiment 65

is maximized. For this purpose, we consider the problem of uniformity test of experimental 66

points in the symmetric experimental region, make the experimental points distributed as 67

uniformly as possible in the experimental region, and construct the uniformity test on the 68

symmetric experimental region with the following three advantages: (1) The uniformity 69

test statistic of the test point distribution on a simple shaped experimental region can be 70

constructed. (2) The resulting test statistic can be used to measure the degree of uniformity 71

of a design. (3) Under this method, a uniform partitioning of a symmetric experimental 72

domain can be obtained. 73

Li et al. (2020) proposed a graph checking method is proposed to verify the optimality 74

of symmetrical design of mixture. The effectiveness of this method can be showed by 75

case analysis. Lattice point sets are essential tools for mixture experiments, which provide 76

an optimal design for a given model, uniformly distribute on the simplex region, and 77

have good space-filling properties, see He (2017, 2019). Therefore, in this paper, we first 78

consider the method of partitioning for the symmetrical mixture region to obtain several 79

sub-simplexes without common interior points and construct a uniform design for the 80

mixture experiments under this partitioning method. Further, the uniformity of the design 81

points on the mixture experimental region is tested, the method’s effectiveness is verified 82

with examples, and further research questions are suggested. 83

The rest of the paper is organized as follows. Elementary concepts of mixture experi- 84

ment and uniform design, notation and definitions are given in Section 2. In Section 3, the 85

method of the partitioning of mixture experimental regions is given. Section 4 provides a 86

method and steps for constructing a uniform design using a lattice point partition design. 87

The uniformity test statistic on the mixture experimental region is constructed, and the 88

steps for the detailed test are given in Section 5. In Section 6, two examples show that the 89

lattice point partitioning method is feasible and valid for uniformity testing of the design 90

point distribution using the uniformity test statistic. 91
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2. Preliminaries 92

Mixture experiments (see Cornell (2002)) are experiments in which two or more
components are blended in the same or different proportions, and their response of interest
is recorded for each blend. For the q components mixture system, the response is a function
of each component x1, x2, · · · , xq. The mixture region determined by the proportion of each
component can be expressed as

X =

{(
x1, x2, · · · , xq

)T :
q

∑
i=1

xi = 1, xi ≥ 0, i = 1, 2, · · · , q, C′s

}
,

where the C′s is an additional constraints condition. In addition, denotes X as Sq−1 if the 93

component without any constraints. 94

However, there are additional constraints on the mixture components besides the 95

primary constraints for many practical situations. The additional constraint C′s commonly 96

exists in mixture experiments as follows. 97

1. Single Component Constraints(SCCs)

C′s : 0 ≤ aj ≤ xj ≤ bj ≤ 1, j = 1, 2, · · · , q.

2. Multiple Component Constraints (MCCs)

C′s : 0 ≤ aj ≤
q

∑
i=1

cjixi ≤ bj, j = 1, 2, · · · , m.

3. Nonlinear Component Constraints(NCCs)

C′s : aj ≤ φj
(
x1, x2, · · · , xq

)
≤ bj, j = 1, 2, · · · , l,

where aj, bj and cji are known constants, φj
(
x1, x2, · · · , xq

)
are nonlinear function for each 98

component. 99

Let a = (a1, a2, · · · , aq)T, b = (b1, b2, · · · , bq)T, for convenience, we denote 100

Sq−1
[a,b] =

{
x =

(
x1, · · · , xq

)
: x ∈ Sq−1, 0 ≤ ai ≤ xi ≤ bi ≤ 1, i = 1, · · · , q

}
(1)

be the mixture experimental regions with upper and lower bound constraints. Then

Sq−1 = Sq−1
[0,1], (2)

where 0 and 1 are vectors of 0’s and 1’s, respectively. 101

Definition 1. Let m ≤ q is a positive integer, if there exists α1, α2, · · · , αq ∈ Z+, such that 102

α1 + α2 + · · ·+ αq = m. Then the q components m-order lattice point sets can be defined as 103

L{q, m} =
{
(

α1

m
,

α2

m
, · · · ,

αq

m
)T :

q

∑
i=1

αi = m, αj ∈ Z+, j = 1, 2, · · · , q

}
. (3)

From the Definition 1, we obtain that the lattice point sets L{q, m} contains (q+m−1
m ) 104

points which uniformly distribute on the mixture region Sq−1. To present the construction 105

method for uniform designs under the lattice point sets, we firstly provide three common 106

criteria for measuring the uniformity distribution of design points. 107

Suppose Pn = {x1, x2, · · · , xn} ⊂ X ⊆ Sq−1 is a set. Then, the distance between a
point x and the point set Pn can be defined as

d2(x,Pn) = min
1≤i≤n

{
d2(x, xi)

}
, (4)
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where d2(x, xi) = ‖x− xi‖2. 108

Therefore, there three deviation criteria are commonly used to measure the uniformity 109

of the point set Pn which can be given as follows. 110

1. Mean Square Error Deviation(MSED)

MSED(Pn) = E
(

d2(x,Pn)
)
=

1
Vol(X )

∫
X

min
1≤j≤n

{
d2(x, xj)

}
dx,

where Vol(X ) is the volume of X . 111

2. Root Mean Square Error Deviation(RMSD)

RMSD(Pn) =
√

E(d2(x,Pn)).

3. Maximum Distance Deviation(MD)

MD(Pn) = max
x∈X

{
d2(x,Pn)

}
.

However, the calculation of the above three deviations is complicated when there are 112

more components in the mixture experiments, and an approximation is used instead in 113

practice. Let 114

msed(Pn) =
1
N ∑

tk∈L
d2(tk,Pn),

rmsd(Pn) =
√

1
N ∑

tk∈L
d2(tk,Pn),

md(Pn) = max
tk∈L

{
d2(tk,Pn)

}
,

(5)

where L = {t1, t2, · · · , tN} is a NT-net in X which compose of the set of random mixture 115

points obeying a uniform distribution. 116

3. Partition methods for the mixture region 117

Now, to construct a uniform design for mixture experiments, we first need to partition 118

for the mixture region X . Since the NCCs mixture region is not a convex polyhedron, there 119

may be no extreme vertices existed on the boundary. The MCCs and SCCs mixture region 120

X ⊂ Sq−1 both are convex polyhedrons interior of the Sq−1. Here we only discuss the 121

partition of MCCs and SCCs mixture region and first briefly describe the two partitioning 122

methods presented by Li et al. (2020) and the method of lattice point sets partition for the 123

SCCs mixture region also be presented. 124

First, we give the following notations that sk
i is the ith k−dimensional cell of a convex 125

polyhedron. Then, 126

(1) s0
i represents the ith vertex of a convex polyhedron. 127

(2) s1
j represents the jth edge of a convex polyhedron. 128

(3) s2
k represents the kth surface of a convex polyhedron. 129

(4) sq−2
l represents the lth q− 2 dimensional boundary of convex polyhedron. 130

(5) sq−1
1 = X represents a convex polyhedra of the mixture region. 131

Based on the above notations, there are two main partition methods of mixture region 132

be presented by Li et al. (2020). 133

3.1. Vertex partitioning method 134

Step 1. Let N points s0
1, s0

2, · · · , s0
N on the X = sq−1

1 , the convex polyhedron sq−1
1 =

{s0
1, s0

2, · · · , s0
N}.

Step 2. Starting from the first vertex s0
1, then obtaining all the q− 2-dimension cells do not
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contain the vertex s0
1. That is sq−2

i =
{

s0
i1

, s0
i2

, · · · , s0
ik

}
, i = 1, 2, · · · , l, and i1 < i2 < · · · < ik,

the k may be unequal for different i.
Step 3. From each of the sq−2

i , find each of the q− 3 dimensional cell cavities that do not
contain s0

i1
, and work out the branching step by step until the low dimension cell cavities.

Step 4. Suppose that there are g cells sequences are satisfying the above steps. Then

s0
i ⊂ s1

i ⊂ · · · ⊂ sq−2
i ⊂ sq−1

1 , i = 1, 2, · · · , g. (6)

Take the first vertex of each of the q cells from (6), and these q vertices compose a q-1 135

dimensional sub-simplex. Such g sub-simplexes have no common interior points with each 136

other and which is a partition for the given mixture convex polyhedron. 137

3.2. Central partition method 138

Step 1. Let s0
0 be the center of the mixture convex polyhedron.

Step 2. Obtaining several q− 1 dimensional simplexes without common interior points
which compose of s0

0 and all vertices of each q− 2 dimensional edge.
Step 3. Suppose sq−2

i has ni vertexes that are connected by a one-dimensional edge of
ni, then find the vertices on both ends of each one-dimensional edge. Renumbering the
vertices of ni, such that s1

i1
= {s0

i1
, s0

i2
}, s1

i2
= {s0

i2
, s0

i3
}, · · · , s1

ni
= {s0

ni
, s0

i1
}, and obtain the

ni one-dimensional edge of sq−2
i .

Step 4. Divide sq−2
i into ni − q + 2 sub-simplex without common interior point

{s0
i1 , s0

i2 , · · · , s0
iq−1
}, {s0

i1 , s0
i3 , · · · , s0

iq}, · · · , {s0
i1 , s0

ni−q−2, · · · , s0
ni
}. (7)

The combination of s0
0 and each of (7) constitutes ni − q + 2 sub-simplexes with (q− 1)- 139

dimensions. It is noted that these ∑l
i=1 (ni − q + 2) sub-simplexes have no common interior 140

points with each other and is a partition of the given a convex polyhedron. 141

3.3. Partition method of lattice point sets for the simplex Sq−1
142

Now, we will provide a partition method by using the lattice point sets L{q, m}. 143

Algorithm 1. (Partition for simplex Sq−1) 144

Step 1. Let Sq−1
[a,b] = {x = (x1, x2, · · · , xq)T : 0 ≤ ai ≤ xi ≤ bi ≤ 1, i = 1, 2, · · · , q, x ∈ 145

Sq−1} be a mixture region with upper constrains bT = (b1, b2, · · · , bq) and lower con- 146

strains aT = (a1, a2, · · · , aq). 147

Step 2. Suppose 0, 1
m , · · · , m−1

m are the m levels of the q-factor and let lm = (0, 1
m , · · · , m−1

m )T.
Construct two fully factorial design matrices with q-factor m levels

L̄ =
(
lm ⊗ 1mq−1 , 1m ⊗ lm ⊗ 1mq−2 , 1m2 ⊗ lm ⊗ 1mq−3 , · · · , 1mq−1 ⊗ lm

)
,

Ū = 1
m JN0×q + L̄, where N0 = mq, 1m is a m-dimensional vector with all elements of 1, 148

JN0×q is a N0 × q matrix with all elements of 1. 149

Step 3. Let L̄1q =
(
l̄1, l̄2, · · · , l̄N0

)T, Ū1q =
(
ū1, ū2, · · · , ūN0

)T, where l̄i is the ith element in 150

L̄1q, ūj is the jth element in Ū1q, i, j = 1, 2, · · · , N0. If I(l̄ij < 1)I(ūij > 1) = 1, j = 1, 2, · · · , r 151

and let Er =
(
eN0(i1), eN0(i2), · · · , eN0(ir)

)T. Then the upper and lower bound matrices 152

within the simplex are L = ErL̄ = (a1, a2, · · · , ar)
T and U = ErŪ = (b1, b2, · · · , br)

T
153

respectively. 154

Step 4. Obtaining a partition for the simplex Sq−1. That is

Sq−1 =
r
∪

j=1
Sq−1
[aj ,bj ]

, (8)
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where a =
(
aj1, aj2, · · · , ajq

)
and b =

(
bj1, bj2, · · · , bjq

)
are the elements of the j row of 155

the matrix L and U, respectively. 156

For example, using the above method, the simplex S3−1 can be partitioned into 4 157

sub-simplexes under the L{3, 2} and partitioned into 9 sub-simplexes under the L{3, 3}. 158

Especially, the simplex S3−1 be partitioned into m2 sub-simplexes under the L{q, m}, and 159

these sub-simplexes are congruence. Furthermore, for q = 4, the case of partitioning more 160

complex, but S4−1 also can be partitioned into 8 sub-simplexes under the L{4, 2} and we 161

can find that the subregion S4−1
[0,0.5] contains 4 sub-simplexes and 6 extreme vertexes as shown 162

in Figure 1. In additional, for q = 5, S5−1 also can be partitioned into 16 sub-simplexes 163

under the L{5, 2} and the subregion S5−1
[0,0.5] contains 11 sub-simplexes, but we find that the 164

volume of these 11 sub-simplexes and other 5 sub-simplexes are not congruence. It is will 165

more complex when the order of lattice point set more higher. 166

Figure 1. The sub-simplex under the partition of L{4, 2}.

Moreover, if the Sq−1
[aj ,bj ]

, j = 1, 2, · · · , r is a mixture simplex, then it can be further 167

partitioned using the method above. 168

Theorem 2. Suppose x1, x2, · · · , xq ∈ Sq−1 are q linearly independent design points, Vq = 169

V{x1, x2, · · · , xq} ⊂ Sq−1 is a q− 1 dimensional sub-simplex composed of these q design points 170

and X =
[
x1, x2, · · · , xq

]T is a matrix consisting of these vertices arranged in rows. Let 171

H =



(q− 1)h1 0 0 · · · 0 0 hq
−h1 (q− 2)h2 0 · · · 0 0 hq
−h1 −h2 (q− 3)h3 · · · 0 0 hq
−h1 −h2 −h3 · · · 0 0 hq

...
...

...
. . .

...
...

...
−h1 −h2 −h3 · · · 2hq−2 0 hq
−h1 −h2 −h3 · · · −hq−2 hq−1 hq
−h1 −h2 −h3 · · · −hq−2 −hq−1 hq


, (9)

where hi = 1/
√
(q− i)(q− i + 1), i = 1, 2, · · · , q− 1, hq = 1/

√
q. Denote W = XH

[
Iq−1, 0

]T
=

{ωij}
q, q−1
i, j=1 and W̄ = {ωij −ω1j}

q, q−1
i=2, j=1. Then, the volume of the sub-simplex V is

Vol(Vq) =
1

(q− 1)!
det(W̄).
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Proof of Theorem 2. Let

W
′
= (q− 1)(qX− Jq)H

(
Iq−1

0

)
= {w′ij}

q,q−1
i,j=1 ,

we first map the simplex V to Iq−1 by using the independent transformation method of
simplex vertices. Denote ω

′
i = (ω

′
i1, ω

′
i2, · · · , ω

′
i2)

T, i = 1, 2, · · · , q are q points in Iq−1.
For any two points xi, xj ∈ Sq−1, there exist two image points ωi, ωj ∈ Iq−1 corresponding
to xi and xj, respectively. Then

dS = d(xi, xj) =
1

q(q− 1)
d(ωi, ωj) = dw.

Let λ = ds
dw

= q
q−1 , we have

W = λW
′
= q(q− 1)W

′
= {ωij}

q, q−1
i, j=1 .

Further, we obtain that the convex polyhedron W compose of these points ωi =
(ωi1, ωi2, · · · , ωi2)

T, i = 1, 2, · · · , q in Iq−1 and the sub-simplex V ∈ Sq−1 are congruence.
Then

Vol(V) = Vol(W) =
1

(q− 1)!
|det

(
[0, Iq−1]W− 1q−1(eT

1 W)
)
| = 1

(q− 1)!
det(W̄).

172

We note that each sub-simplex in the partitioned simplex is composed of q adjacent
lattice points, and if x ∈ L{q, m} ⊂ Sq−1, then the lattice points that are adjacent to x can
be defined as

x′ = x +
1
m

eq(i)−
1
m

eq(j), i, j = 1, 2, · · · , q,

where eq(i) is a q-dimensional column vector with the ith element being 1 and all other 173

elements 0, and i 6= j, x′ ∈ L{q, m}. 174

Therefore, it is find that in the simplex Sq−1, the matrix V1 consisting of the vertices of
the sub-simplex V1 with (1, 0, 0, · · · , 0) vertices arranged in rows is

V1 =
[
x1

1, x1
2, · · · , x1

q

]T
=


1 0 · · · 0

m−1
m

1
m · · · 0

...
...

. . .
...

m−1
m 0 · · · 1

m

.

We call a sub-simplex of the form consisting of vertices connected to adjacent lattice
points of a simplex a vertex sub-simplex. The following calculation can obtain the volume
of the vertex sub-simplex V1. Firstly, we have

W1 = V1H
(

Iq−1
0

)
=



(q− 1)h1 0 0 · · · 0 0
mq−q−m

m h1
(q−2)h2

m 0 · · · 0 0
mq−q−m

m h1 − h2
m

(q−3)h3
m · · · 0 0

...
...

...
. . .

...
...

mq−q−m
m h1 − h2

m − h3
m · · · − hq−2

m
hq−1

m
mq−q−m

m h1 − h2
m − h3

m · · · − hq−2
m − hq−1

m


.

Then, subtracting the elements of the first from the second row to the q− 1th row of 175

the matrix V1, respectively, and followed by the primary transformation of the matrix, we 176

have 177
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W̄1 =
1
m

diag
{

qh1, (q− 1)h2, (q− 2)h3, · · · , 3hq−2, 2hq−1
}

.

Then

Vol(V1) =
1

(q− 1)!
det(W̄1) =

√
q

mq−1(q− 1)!
,

and Vol(Sq−1)
Vol(V1)

= mq−1. 178

From the above discussion, we find a multiplier relation between the total volume and 179

the volume of the restricted region of a single sub-simplex. The following theorem provides 180

an exact result of the relation between Sq−1 and the sub-simplex under the L{q, m}. 181

Theorem 3. Under the lattice point sets L{q, m}, the simplex Sq−1 can be partitioned into mq−1
182

sub-simplexes without common interior points. 183

Proof of Theorem 3. Let

Tq−1 =

{
t = (x1, x2, · · · , xq−1)

T :
q−1

∑
i=1

xi ≤ 1, t ∈ [0, 1]q−1

}
.

We note that the point in Tq−1 can be viewed as the projection of the point in Sq−1
184

onto the q− 1 dimensional plane O− x1x2 · · · xq−1 and it provide a one-to-one mapping 185

between the points in Tq−1 and Sq−1. 186

Now, taking the points 0, 1
m , 2

m , · · · , 1 for each dimension in [0, 1]q−1. Then the [0, 1]q−1

can be partitioned mq−1 lattices as given by{
t = (x1, x2, · · · , xq−1)

T : ‖t− τ‖ ≤ 1
2m

}
,

where ‖t− τ‖=
√
(t− τ)T(t− τ), τ=

(
i1

2m , i2
2m , · · · ,

iq−1
2m

)T
and ik ∈ {1, 2, · · · , 2m− 1}, k = 187

1, 2, · · · , q− 1. 188

Furthermore, by intersecting the partitioned Tq−1 with the plane
q−1
∑

i=1
xi =

1
m , 2

m , · · · , 1, 189

there will be mq−1 sub-simplexes in total. 190

4. Construction of uniform designs under the lattice point sets 191

From the result in (5), the following theorem will show that the deviation of MSED 192

and MD will converge to 0 if the lattice point is set with a sufficiently large order. 193

Theorem 4. Let L{q, m} is a lattice point sets with order m in the simplex Sq−1, then

lim
m→∞

MSED(L{q, m}) = lim
m→∞

MD(L{q, m}) = 0.

Proof of Theorem 4. From the result in Theorem 3, the simplex Sq−1 can be partitioned
into n sub-simplexes without common interior points, that is

Sq−1 = V1 + V2 + · · ·+ Vn.

For any point x ∈ X , it must exist a simplex Vi = Vi
{

xi1, xi2, · · · , xiq
}

such that x ∈ Vi, 194

and we have d2(x,LX ) = d2(x, Vi) . 195

Since V1, V2, · · · , Vn are approximately congruent and it also congruent to the smallest 196

sub-simplex partitioned by the set of lattice points with the same order on Sq−1. Let 197

V0 = V0
{

x01, x02, · · · , x0q
}

be a simplex constructed by the vertex of Sq−1 and q− 1 adjacent 198
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lattice points, where x01 = (1, 0, · · · , 0)T, x02 = (1 − 1/m, 1/m, · · · , 0)T, · · · , x0q = 199

(1− 1/m, 0, · · · , 1/m)T, and Vi
∼= V0, i = 1, 2, · · · , n. 200

Then, 201

max
x∈X

d2(x,LX ) = max
x∈Vi

d2(x, Vi) = max
x∈V0

d2(x, V0)

= max
x∈V0

{
min

1≤j≤q
d2(x, x0j)

}
= d2(x0, x0j) =

q− 1
qm2 ,

where x0 = 1
q

q
∑

j=1
x0j is the centroid of V0. 202

Next, from the result of Li and Zhang (2017), we can obtain the point set of the pseudo

component transformation corresponding to the reference point x0 =
(

1
q , 1

q , · · · , 1
q

)T
.

Then

Z(Lm, x0, λ) =

{
z : z =

x0 + λx
1 + λ

, x ∈ Lm, λ ≥ 0
}

.

Suppose Lm = {x1, x2, · · · , xNm}, Lm+1 =
{

t1, t2, · · · , tNm+1

}
, where Nm = (q+m−1

m ), 203

Nm+1 = (q+m
m+1). Let x0 =

(
1
q , 1

q , · · · , 1
q

)
be a reference point. 204

Since 205

zi = Z(xi, x0, m) =
x0 + mxi

1 + m

=
1

1 + m

((
1
q

,
1
q

, · · · ,
1
q

)T
+ m

(
αi1
m

,
αi2
m

, · · · ,
αiq

m

)T
)

=
1

q(1 + m)

(
qαi1 + 1, qαi2 + 1, · · · , qαiq + 1

)T,

where αi1, αi2, · · · , αiq ∈ Z+,
q
∑

j=1
αij = m. 206

We note that the point zi is the centroid point of sub-simplex Vi in Lm+1, and here

Vi = Vi
{

ti1, ti2, · · · , tiq
}

, i = 1, 2, · · · , Nm,

where tij =
1

1+m

[(
αi1, αi2, · · · , αiq

)T
+ eT

q (j)
]
, j = 1, 2, · · · , q. 207

Let z1, z2, · · · , zNm are the centroid point of V1, V2, · · · , VNm respectively. If XZ =
Z(Sq−1, x0, m), it can be partitioned into Km = mq−1 smallest sub-simplexes without
common interior point by Z(Sq−1, x0, m). That is

XZ = S1 + S2 + · · ·+ SKm .

And we find that S1, S2, · · · , SKm are congruent. Now, for any one point x ∈ Sq−1, we 208

have the results as follows. 209

(1) If x ∈ Si = Si
{

xi1, xi2, · · · , xiq
}

, i = 1, 2, · · · , Nm, then

max
x∈Si

min
1≤j≤q

d2(x, xij) =
q− 1

q(m + 1)2 .

(2)If x ∈ Vi, i = 1, 2, · · · , Nm, then

Vi ∩ Z(Lm, x0, m) = xi,
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and
max
x∈Vi

d2(x, xi) =
q− 1

q(m + 1)2 ,

where xi is the centroid point of Vi. 210

(3)If x ∈ V′j , j = Nm + 1, · · · , Km+1, then

V′j ∩ Z(Lm, x0, m) = φ,

and for q ≤ 4, we have

min
1≤i≤Nm

d2(x, xi) <
q− 1

q(m + 1)2 .

From the above discussion, we have the following results for q = 3, that is

arg min
λ∈[0,∞)

MD(Z(Lm, x0, λ)) = m,

and
MD(Z(Lm, x0, m)) = MD(L{q, m + 1}) = q− 1

q(m + 1)2 . (10)

Example 5. Now we illustrate the results of the above discussion by taking the pseudo 211

component transformations of the 3-component second-order lattice point set. As shown in 212

Figure 2, equation (10) holds wherever the test point falls into the region. 213

Figure 2. The sub-simplex under the partition of L{3, 3}.

We note that it is more complicated in the case of a sub-simplex partitioned by a lattice 214

point set for q > 4. However, by calculation, we find that the uniformity of the point set 215

is best for the lattice point set is transformed by the pseudo component with the center 216

point as the reference and when the transformation parameters are equal to the order of the 217

lattice points. 218

Suppose the mixture region Sq−1 is partitioned by L{q, m} into n sub-simplexes
Sq−1 = V1 + V2 + · · ·+ Vn with no common interior point. For any point x ∈ X , there
must exist a sub-simplex Vi = Vi

{
xi1, xi2, · · · , xiq

}
, such that x ∈ Vi. Further, for a single

point design P = {x}, where x ∈ Vi. Then, the uniform design satisfying the MD-uniform
criterion on the simplex region can be constructed by the lattice partition design when

arg
x∈Vi

md(P) = arg
x∈Vi

max
tk∈Vi

{
d2(tk,Pn)

}
= xi0 =

1
q

q

∑
j=1

xij.
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Therefore, the design obtained from partitioning a simplex using a lattice point set 219

should satisfy the MD-uniform criterion if the centroid of each sub-simplexes is taken as 220

the design point. 221

5. Uniform test on the mixture region 222

As mentioned above, the lattice point set is used to partition the simplex Sq−1. We note 223

that some sub-regions are composed of multiple sub-simplexes, while other sub-domains 224

are only sub-simplex. In large sample surveys, it is necessary to check whether the samples 225

are evenly distributed on the simplex. In this section, we mainly provide the uniform test 226

method on the mixture region. 227

Suppose X is a mixture region, Vi, i = 1, 2, · · · , k is an arbitrary partition of X . 228

From the result in Section 3, X =
k
∑

i=1
Vi and there is no common interior point between two 229

simplexes Vi and Vj, where Vi = Vi{xi1, xi2, · · · , xiq}, i = 1, 2, · · · , k, i 6= j. 230

Now, for the point set PN = {x1, x2, · · · , xN} ⊂ X ⊆ Sq−1, let

NVi = card{PN ∩Vi}, i = 1, 2, · · · , k

is the number of points in Vi contains PN . Denotes 231

AD(PN) =
1
k

k

∑
i=1

(
NVi

N
− Vol(Vi)

Vol(X )

)2

. (11)

Note that AD(PN) is a function of
NVi
N and it can be used to measure the uniformity 232

of PN on the mixture region X . If PN distribute uniformly in the experimental region X 233

which means AD(PN) will be as small as possible. 234

Denotes pi =
Vol(Vi)
Vol(X )

is the volume ratio of sub-simplex Vi to mixture region X , let

p̂i =
NVi

k
∑

i=1
NVi

is the proportion of number of points in Vi. 235

If the points are distributed uniformly in mixture region X , then the
NVi
N will be the 236

unbiased estimation of Vol(Vi)
Vol(X )

. 237

In order to test whether PN distributed uniformly on mixture region, the null Hypoth- 238

esis "H0 : PN distributed uniformly in the region X " can be considered. Then, the test 239

statistic is 240

χ2 = N
k

∑
i=1

( p̂i − pi)
2

pi(1− pi)
. (12)

Now, if the null Hypothesis H0 is hold, then χ2 ∼ χ2(k). When the significant value 241

p∗ = P(χ2 > χ2(k)) < 0.05 (or 0.01) to reject the null hypothesis H0. 242

In particular, if the volumes of sub-simplex Vi, i = 1, 2, · · · , k obtained by the partition
of the lattice point sets are approximately equal, that is Vol(Vi)

Vol(X )
≈ p, i = 1, 2, · · · , k, we have

χ2 =
N

p(1− p)

k

∑
i=1

( p̂i − p)2.
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Therefore, if the null hypothesis H0 is hold, we have

χ2 =
NkAD(PN)

p(1− p)
∼̇χ2(k).

Furthermore, the 0.95 two side confidence intervals of AD(PN) can be given by 243[
p(1− p)

Nk
χ2

0.025(k) ,
p(1− p)

Nk
χ2

0.975(k)
]

. (13)

Next, we will partition the simplex by lattice point set and provide the steps of the 244

uniformity test as follows. 245

Step 1. From the result in Section 3, obtaining r subregions Sq−1
[aj ,bj ]

without common 246

interior point by using m order lattice point set to partition the simplex Sq−1, as shown in 247

(8). 248

Step 2. Since the number of extreme vertices for the subregion Sq−1
[aj ,bj ]

is greater than q. 249

Then, it can be partitioned into k(k ≥ r) sub-simplexes V1, V2, · · · , Vk. 250

Step 3. SupposePN = {x1, x2, · · · , xN} ⊂ Sq−1 are tested samples, PN = [x1, x2, · · · , xN ] ={
xji
}q,N

i,j=1 is a matrix array as row by the N points. Let V−1
i PN =

[
αi

1, αi
2, · · · , αi

N
]
={

αi
uv
}q,N

u,v=1, we have

NVi = card{PN ∩Vi} =
N

∑
v=1

[
q

∏
u=1

I(0 < αi
uv < 1)

]
, i = 1, 2, · · · , k.

Step 4. Calculate the value of test statistic result and the confident interval by using 251

(11). 252

We note that the partitioning of a simplex Sq−1 by the lattice point set method not only 253

provides a uniformity test but also constructs a pseudo component transformation in the 254

sub-simplex. Moreover, it obtains a design that is uniformly distributed in the simplex. 255

For example, let x0
i be the centroid point in the sub-simplex Vi and take x0

i as the 256

reference point. Using the pseudo component transformation method to convert the vertices 257

of Vi will enable each sub-simplex to contain q interior points and the design to contain 258

qmq−1 experimental points. However, the design constructed by this method will face the 259

problem of "dimensional disaster" when q is larger. To reduce the number of experiments, 260

we consider taking the center of the sub-simplex of each partition. Then, the design will 261

only contain mq−1 experimental points in total. Moreover, if the experiments are arranged 262

with a set of higher-order lattice points, when q > 4, m > 4, the number of sub-simplex 263

is larger than the number of a lattice point set. Further, since the convex polyhedron can 264

be partitioned into several disjoint subregions, as shown in (8), then the centroid of each 265

subregion will be evenly distributed on the experimental region. 266

In order to compare the results of uniform test, we provide four different methods 267

to generate random points in simplex. We first generate a random matrix Y =
{

yij
}N, q

i, j=1, 268

where yij ∼ U(0, 1), i = 1, 2, · · · , N, j = 1, 2, · · · , q, and each yij are independent. Sup- 269

pose N � n, then the matrix T =
{

xij
}N, q

i, j=1 can be obtained by an inverse transformation 270

of the matrix Y. 271

(1) Exponential transformation method 272

The exponential transformation method proposed by Fang and Wang (1994), where
the each element of T can be calculated by

xij =
log
(
1− yij

)
q
∑

j=1
log
(
1− yij

) , i = 1, 2, · · · , N, j = 1, 2, · · · , q. (14)
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(2) Inverse transformation method 273

Another alternative is the inverse transform method introduced by Wang and Fang
(1996), where the elements of T can be calculated by

xij =
(

1− y1/(q−j)
ij

) j−1
∏
l=1

y1/(q−l)
il , j = 1, 2, · · · , q− 1,

xiq =
q−1
∏
l=1

y1/(q−l)
il , i = 1, 2, · · · , N.

(15)

Let xi = (xi1, xi2, · · · , xiq) be the i-th row in matrix T, which is inversely transformed
by (14) or (15). Then, each row element of T satisfies

xi ∼ U
(

Sq−1
)

,
q

∑
j=1

xij = 1, i = 1, 2, · · · , N

and x1, x2, · · · , xN are independent for each others. Therefore, the elements x1, x2, · · · , xN 274

of T can be used as a randomly generated experiment point on the simplex Sq−1. Next, we 275

provide the other two method as follows. 276

(3) Method I 277

Suppose Xi, i = 1, 2, · · · , q is a independent and identically distributed nonnegative 278

random variables and Xi
i.i.d∼ FX(x). Let 279

Yi =
Xi

q
∑

i=1
Xi

, i = 1, 2, · · · , q, (16)

then each of Y = (Y1, Y2, · · · , Yq)Tis a random mixture point on the q − 1-dimensional 280

simplex and note that the distribution of Y = (Y1, Y2, · · · , Yq)T is determined by each of 281

random variable Xi, i = 1, 2, · · · , q. 282

(4) Method II 283

Suppose the random variable X1 ∼ U(0, 1), let

X2 ∼ U(0, 1− X1), · · · , Xq−1 ∼ U(0, 1−
q−2

∑
j=1

Xj), Xq = 1−
q−1

∑
j=1

Xj.

Then Z = (X1, X2, · · · , Xq)T is also random mixture point on the q− 1-dimensional the 284

simplex. 285

6. Illustrative examples 286

In this section, we will provide two examples to illustrate that the method proposed 287

in Section 3 for constructing uniform design is feasible and the random mixture points are 288

effective for uniform tests on the simplex as proposed in Section 5. 289

Example 6. Suppose that the 20 design points in L{4, 3} as follows.

x1 = (1, 0, 0, 0), x2 =
(

2
3 , 1

3 , 0, 0
)

, x3 =
(

1
3 , 2

3 , 0, 0
)

, x4 = (0, 1, 0, 0),

x5 =
(

2
3 , 0, 1

3 , 0
)

, x6 =
(

1
3 , 1

3 , 1
3 , 0

)
, x7 =

(
0, 2

3 , 1
3 , 0

)
, x8 =

(
1
3 , 0, 2

3 , 0
)

,

x9 =
(

0, 1
3 , 2

3 , 0
)

, x10 = (0, 0, 1, 0), x11 =
(

2
3 , 0, 0, 1

3

)
, x12 =

(
1
3 , 1

3 , 0, 1
3

)
,

x13 =
(

0, 2
3 , 0, 1

3

)
, x14 =

(
1
3 , 0, 1

3 , 1
3

)
, x15 =

(
0, 1

3 , 1
3 , 1

3

)
, x16 =

(
0, 0, 2

3 , 1
3

)
,

x17 =
(

1
3 , 0, 0, 2

3

)
, x18 =

(
0, 1

3 , 0, 2
3

)
, x19 =

(
0, 0, 1

3 , 2
3

)
, x20 = (0, 0, 0, 1).
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Then, from the result in (8), the Sq−1 can be partitioned into 15 subregions S4−1
[aj ,bj ]

under 290

L{4, 3} and Sq−1 = S4−1
[aj ,bj ]

, j = 1, 2, · · · , 15. The vector of lower constrains(VLC) and the 291

vector of upper constrains(VUC) are column 2 and column 3 in Table 1, respectively. In 292

these subregions, there exist some region can not be further partitioned, shown in Table 1, 293

row 1, 6, 11, 12, 17, 18, 19, 25, 26, 27. Moreover, there also exist some subregions compose of 294

four sub-simplexes, shown in Table 1, row 2− 5, 7− 10, 13− 16 and 20− 23. Next, we can 295

obtain the sub-simplex for these subregions by further partitioning. 296

Therefore, the simplex S4−1 be partitioned into 27 sub-simplexes without common 297

interior points under the 20 design points of L{4, 3}. The order number of four vertexes 298

for each sub-simplex corresponds to the design point of L{4, 3}. Such as, the four vertexes 299

x6, x12, x14, x15 of sub-simplex is composed of the vector of lower constrains a1 = (0, 0, 0, 0) 300

and the vector of upper constrains b1 = ( 1
3 , 1

3 , 1
3 , 1

3 ). By calculation, we find that there 301

exists differences among the volumes of these sub-simplexes, but the error is less than 10−4. 302

Moreover, the distribution of the centroid for these sub-simplexes as shown in Figure 3, the 303

values of these centroid and each sub-simplexes as shown in Table 1. 304

305

Figure 3. The distribution of the centroid points under the partition of S4−1.

Example 7. Now, we use the inverse transformation method and the exponential inverse 306

transformation method, method I and method II to generate N = 50 and N = 100 random 307

mixing points, respectively. 308

Take Xi
i.i.d.∼ U(0, 1), i = 1, 2, · · · , q in (16). The distribution of random points in various 309

cases as shown in Figure 4. 310

Note that the (A1), (A2), (A3), and (A4) is the distribution of 50 random mixture points 311

generated by inverse and exponential inverse transformation methods, Method I and 312

Method II, respectively. (B1), (B2), (B3) and (B4) are the distributions of 100 random mixing 313

points produced by four methods respectively. Next, we will compare the uniformity 314

distribution of random mixture points generated by these four methods and test it. As 315

result in Example 6, using the lattice point set L{4, 3}, the simplex S4−1 can be partitioned 316

into 27 sub-simplexes. The volumes and centroid of each sub-simplexes as shown in Table 317

1. Then the values of the uniformity test for the four methods with N = 50 and N = 100 as 318

shown in the following Table 2. From the result of the uniformity test, we find that both 319

the significant value p∗ < 0.01 for Method I and Method II. Therefore, it needs to reject 320

the null Hypothesis H0, and the random mixture points generated by exponential inverse 321

transformation and inverse transformation method are uniform distribution on the S4−1. 322
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Table 1. Partition of S4−1 under the L{4, 3}

NO. VLC VUC Vertex sets Volume×102 Centroid
1 (0, 0, 0, 0) ( 1

3 , 1
3 , 1

3 , 1
3 ) 6 12 14 15 1.230868 (0.2498, 0.2498, 0.2498, 0.2498)

2 2 6 12 14 1.233640 (0.4165, 0.2498, 0.1665, 0.1665)

3 2 5 11 14 1.233640 (0.5835, 0.0833, 0.1665, 0.1665)

4 ( 1
3 , 0, 0, 0) ( 2

3 , 1
3 , 1

3 , 1
3 ) 2 5 6 14 1.233640 (0.5000, 0.1665, 0.2498, 0.0833)

5 2 11 12 14 1.233640 (0.5000, 0.1665, 0.0833, 0.2498)

6 ( 2
3 , 0, 0, 0) (1, 1

3 , 1
3 , 1

3 ) 1 2 5 11 1.230868 (0.7503, 0.0833, 0.0833, 0.0833)

7 3 7 13 15 1.233640 (0.0833, 0.5835, 0.1665, 0.1665)

8 (0, 1
3 , 0, 0) ( 1

3 , 2
3 , 1

3 , 1
3 ) 3 6 12 15 1.233640 (0.2498, 0.4165, 0.1665, 0.1665)

9 3 6 7 15 1.233640 (0.1665, 0.5000, 0.2498, 0.0833)

10 3 12 13 15 1.233640 (0.1665, 0.5000, 0.0833, 0.2498)

11 ( 1
3 , 1

3 , 0, 0) ( 2
3 , 2

3 , 1
3 , 1

3 ) 2 3 6 12 1.236418 (0.4165, 0.4165, 0.0833, 0.0833)

12 (0, 2
3 , 0, 0) ( 1

3 , 1, 1
3 , 1

3 ) 3 4 7 13 1.230868 (0.0833, 0.7503, 0.0833, 0.0833)

13 8 9 15 16 1.233640 (0.0833, 0.1665, 0.5835, 0.1665)

14 (0, 0, 1
3 , 0) ( 1

3 , 1
3 , 2

3 , 1
3 ) 6 8 14 15 1.233640 (0.2498, 0.1665, 0.4165, 0.1665)

15 6 8 9 15 1.233640 (0.1665, 0.2498, 0.5000, 0.0833)

16 8 14 15 16 1.233640 (0.1665, 0.0833, 0.5000, 0.2498)

17 ( 1
3 , 0, 1

3 , 0) ( 2
3 , 1

3 , 2
3 , 1

3 ) 5 6 8 14 1.236418 (0.4165, 0.0833, 0.4165, 0.0833)

18 (0, 1
3 , 1

3 , 0) ( 1
3 , 2

3 , 2
3 , 1

3 ) 6 7 9 15 1.236418 (0.0833, 0.4165, 0.4165, 0.0833)

19 (0, 0, 2
3 , 0) ( 1

3 , 1
3 , 1, 1

3 ) 8 9 10 16 1.230868 (0.0833, 0.0833, 0.7503, 0.0833)

20 15 17 18 19 1.233640 (0.0833, 0.1665, 0.1665, 0.5835)

21 (0, 0, 0, 1
3 ) ( 1

3 , 1
3 , 1

3 , 2
3 ) 12 14 15 17 1.233640 (0.2498, 0.1665, 0.1665, 0.4165)

22 12 15 17 18 1.233640 (0.1665, 0.2498, 0.0833, 0.5000)

23 14 15 17 19 1.233640 (0.1665, 0.0833, 0.2498, 0.5000)

24 ( 1
3 , 0, 0, 1

3 ) ( 2
3 , 1

3 , 1
3 , 2

3 ) 11 12 14 17 1.236418 (0.4165, 0.0833, 0.0833, 0.4165)

25 (0, 1
3 , 0, 1

3 ) ( 1
3 , 2

3 , 1
3 , 2

3 ) 12 13 15 18 1.236418 (0.0833, 0.4165, 0.0833, 0.4165)

26 (0, 0, 1
3 , 1

3 ) ( 1
3 , 1

3 , 2
3 , 2

3 ) 14 15 16 19 1.236418 (0.0833, 0.0833, 0.4165, 0.4165)

27 (0, 0, 0, 2
3 ) ( 1

3 , 1
3 , 1

3 , 1) 17 18 19 20 1.230868 (0.0833, 0.0833, 0.0833, 0.7503)

Table 2. The uniformity test of random mixture point set generated by four methods

Number of sample Method AD(PN) χ2 p∗

Exponential inverse transformation 0.000733 27.73904 0.424521
N = 50 Inverse transformation method 0.000584 22.1094 0.731798

Method I 0.004882 185.0917 < 0.01
Method II 0.002213 83.80955 < 0.01
Exponential inverse transformation 0.000488 36.95872 0.095841

N = 100 Inverse transformation method 0.000377 28.51026 0.385039
Method I 0.003288 249.2317 < 0.01
Method II 0.000850 64.38735 < 0.01
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Figure 4. The distribution of random points in S4−1.

7. Conclusions 323

Lattice point sets are a critical tool for constructing uniform designs for experiments 324

with mixtures. Using a lattice point set to partition the irregular mixture regions, the sum 325

of the volume for each partitioned sub-simplex is approximately equal to the volume of 326

the mixture region. In addition, if there is a mixture experimental region with upper and 327

lower bound constraints, then the sum of the volumes of the sub-simplex, obtained by 328

using the lattice point set to partitioning, is precisely equal to the volume of the constrained 329

experimental region. 330

In this paper, we propose the method of partition for mixture region, obtaining 331

several sub-simplexes without common interior points which are important for constructing 332

uniform designs. Furthermore, under the partition of the lattice point set, we construct the 333

statistical uniform test on the simplex by using the ratio of volume between the sub-simplex 334

and mixture region. We find that the random mixture points generated by the exponential 335

inverse transformation and inverse transformation method are distributed uniformly in 336

the mixture region. 337

Currently, there exist relevant results on the division of lattice point sets for low- 338

dimensional mixture simplex without additional constraints. However, the algorithms for 339

the approximate partitioning of high-dimensional and mixture experimental regions with 340

additional constraints have not been improved. Moreover, there are two primary aspects 341

of further studies: on the one hand, developing a complete theoretical systematic for the 342

partitioning of lattice point sets in high-dimensional experimental regions with upper and 343

lower bound constraints, linear constraints, and additional non-linear constraints. On the 344

other hand, it is necessary to algorithmically implement irregular region dissection, where 345

the partition is unique when the number of components and the order of lattice points are 346

determined. 347
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