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Abstract: Deep convolutional neural networks (CNNs) have been widely used in various medical 

imaging tasks. However, due to the intrinsic locality of convolution operation, CNNs generally can-

not model long-range dependencies well, which are important for accurately identifying or map-

ping corresponding breast lesion features computed from unregistered multiple mammograms. 

This motivates us to leverage the architecture of Multi-view Vision Transformers to capture long-

range relationships of multiple mammograms from the same patient in one examination. For this 

purpose, we employ local Transformer blocks to separately learn patch relationships within four 

mammograms acquired from two-view (CC/MLO) of two-side (right/left) breasts. The outputs from 

different views and sides are concatenated and fed into global Transformer blocks, to jointly learn 

patch relationships between four images representing two different views of the left and right 

breasts. To evaluate the proposed model, we retrospectively assembled a dataset involving 949 sets 

of mammograms, which include 470 malignant cases and 479 normal or benign cases. We trained 

and evaluated the model using a five-fold cross-validation method. Without any arduous prepro-

cessing steps (e.g., optimal window cropping, chest wall or pectoral muscle removal, two-view im-

age registration, etc.), our four-image (two-view-two-side) Transformer-based model achieves case 

classification performance with an area under ROC curve (AUC = 0.818±0.039), which significantly 

outperforms AUC = 0.784±0.016 achieved by the state-of-the-art multi-view CNNs (p = 0.009). It also 

outperforms two one-view-two-side models that achieve AUC of 0.724±0.013 (CC view) and 

0.769±0.036 (MLO view), respectively. The study demonstrates the potential of using Transformers 

to develop high-performing computer-aided diagnosis schemes that combine four mammograms.  

Keywords: Transformer; mammogram; multi-view; self-attention; computer-aided diagnosis; 

breast cancer; classification; deep learning 

 

1. Introduction 

Breast cancer is one of the most common cancers diagnosed in women [1]. Mammog-

raphy is recommended as the standard imaging tool to perform population-based breast 

cancer screening. Although early detection using screening mammography can help re-

duce breast cancer mortality, mammogram interpretation is a difficult task for radiolo-

gists, as reflected by the low diagnostic yield (e.g., detecting 3.6 cancers are per 1000 

(0.36%) mammography screenings) [2] and the relatively high false positive recall rates 

(around 10%) [3]. To help radiologists detect and diagnose breast cancer more accurately 

and reduce large inter-reader variability, computer-aided detection/diagnosis (CAD) 

schemes have been developed aiming to provide radiologists “a second opinion” [4-6].  

With the help of machine learning technologies, different types of CAD schemes of 

mammography have been developed over the last two decades [7-9]. Since 2015, deep 

learning (DL) has become the mainstream technology in developing mammographic CAD 

schemes due to its state-of-the-art performance in the laboratory studies [10-12]. DL-based 
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approaches have the advantage of processing a whole image to learn useful feature rep-

resentations, without the need of manually extracting features. However, most of existing 

mammographic CAD schemes are single view image-based schemes, while in a typical 

mammography screening, each patient has four mammograms acquired from two views 

namely, craniocaudal (CC) and mediolateral oblique (MLO) view of the left (L) and right 

(R) breasts. Radiologists read these 4 images simultaneously. Thus, researchers have well 

recognized that developing multi-view or multi-image-based CAD schemes had signifi-

cant advantages over single image-based CAD schemes [13, 14]. Recently, applying deep 

learning models to develop multi-view CAD schemes of mammograms has also attracted 

research interest. For example, Carneiro and colleagues performed multi-view mammo-

gram analysis by finetuning ImageNet-pretrained convolutional neural networks (CNNs) 

to classify between malignant and benign microcalcification cluster and soft tissue mass 

like lesions [15, 16]. Although mammograms of the CC and MLO view were not regis-

tered, their multi-view models outperformed single-view models (based on CC or MLO) 

by a large margin. In another study, Wu and colleagues further explored how to combine 

the features from different views and breast sides more effectively [17]. They proposed a 

“view-wise” feature merging approach that employed two ResNet-22 models. One ResNet-

22 takes two CC images as input and concatenates the LCC and RCC feature representa-

tions for malignancy prediction, while the other model is used to process LMLO and 

RMLO images. The proposed approach made separate predictions for CC and MLO view 

images, and the predictions were averaged during inference.            

The methods introduced above are based on CNNs. In the most recent literature, 

Vision Transformers [18] are quickly emerging as a strong alternative to CNNs-based ar-

chitectures in a variety of medical imaging tasks, such as image classification [19, 20] and 

segmentation [21, 22]. One core concept of Transformers is the so-called self-attention 

mechanism [23]. It can help models to adaptively learn “what” and “where” to attend to, 

so that a subset of pertinent image regions or features will be used to facilitate performing 

the target task [24]. Enabled by the self-attention mechanism, Vision Transformers have 

shown advantages at capturing long-range dependencies of the input sequence.  

For multi-view mammograms, two types of dependencies are important: within-

mammogram dependency and inter-mammogram dependency. The within-mammogram 

dependency refers to pixel/patch relationships in a mammogram. For example, an image 

patch that contains a suspicious mass is more likely to receive more attention than other 

patches, due to differences in mammographic density, shape, texture, etc. Meanwhile, this 

patch may be more closely related to its surrounding patches than the image patches at a 

far distance. These different kinds of patch relationships within a mammogram can be 

learned by Transformers to identify suspicious patches and predict likelihood of the case 

being malignant more accurately. As for the inter-mammogram dependency, it focuses on the 

pixel/patch relationships between mammograms of different sides or views. Accordingly, 

inter-mammogram dependencies can be further divided into two categories. On the one 

hand, bilateral feature difference between the left and right mammograms (e.g., LCC vs. 

RCC) of the same view can be learned, which is important because in clinical practice, it 

is common to see that either one breast shows malignancy, or both breasts are benign/neg-

ative, whereas the situation that both the left and right breasts are malignant rarely occurs. 

Especially for a malignant case, the left and right mammograms tend to exhibit different 

characteristics in terms of mammographic density, mass presence, etc. Such bilateral fea-

ture difference has been shown useful in delivering more accurate results for near-term 

breast cancer risk prediction [25-27] and malignancy identification [28]. On the other hand, 

Transformers can highlight the correspondence between the ipsilateral mammogram 

patches (e.g., LCC and LMLO) coming from the same breast. For instance, if a suspicious 

mass is present in LCC image, it should also be seen in LMLO image, and vice versa. 

Despite Transformers’ great potential in modeling long-range dependencies, their 

applications in multi-view mammogram analysis remain largely unexplored. At the time 

of writing, only one study so far has partially leveraged Transformers for this purpose 

[29]. The authors applied and tested a hybrid model (Transformer and CNNs) by using 
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one of two global cross-view Transformer blocks to fuse intermediate feature maps pro-

duced by CC and MLO views, so that feature representations from one view can be trans-

ferred to the other. In comparison, our study has two unique characteristics. First, our 

model is basically a pure Transformer instead of a hybrid Transformer and CNN model. 

This provides us the convenience to easily and efficiently employ pretrained Transformers 

with as few architectural modifications as possible. Second, we exploit both local and 

global transformer blocks within one Transformer model to learn within-mammogram 

dependencies and inter-mammogram-dependencies, respectively. Thus, to the best of our 

knowledge, this is the first CAD study in which a whole Transformer with both local and 

global blocks is integrated for multi-view mammogram analysis, through implicitly learn-

ing different mammographic dependencies.   

 

2. Materials and Methods 

2.1 Materials 

From an existing de-identified retrospective full-field digital mammography (FFDM) 

image database pre-assembled in our medical imaging research laboratory, we assembled 

a dataset that contains 3,796 mammograms acquired from 949 patients for this study. Spe-

cifically, each patient has four mammograms acquired from CC and MLO view of the left 

and right breasts, which are named as LCC, RCC, LMLO, and RMLO view images, re-

spectively. All mammograms were acquired using Hologic Selenia digital mammography 

machines (Hologic Inc, Bedford, Massachusetts, USA), which have a fixed pixel size of 

70μm. Depending on breast sizes, the acquired mammograms have two sizes of either 

2558×3327 or 3327×4091 pixels.  

Among all the patients, 349 were diagnosed as screening negative or benign (BIRAD 

1 or 2) by radiologists, and the rest were recalled and recommended to do biopsy due to 

the detection of suspicious soft-tissue masses. Based on the histopathological reports of 

tissue biopsy, 130 and 470 cases were confirmed to be benign and malignant, respectively. 

To perform binary classification using Transformers, we grouped all screening negative 

cases and benign lesion cases in one class of benign (or cancer-free), while the cases con-

firmed having malignant lesions are grouped into another class of cancer or malignant 

cases. Since in this study, we only focused on predicting the likelihood of the mammo-

graphic case being malignant, the original FFDM images were subsampled using a pixel 

averaging method using a kernel size of 5×5 pixels. As a result, the sizes of two types of 

original FFDM images are reduced to 512×666 and 666×819 pixels, respectively, with the 

pixel size of 0.35mm. More detailed information of our FFDM image database have been 

reported in our previous studies (i.e., [30]). 

 

2.2 Methods 

Figure 1 shows the proposed pipeline of using Vision Transformers for breast cancer 

detection from the unregistered four multi-view mammograms. Most similar to our work 

is the Multi-view Vision Transformer (MVT) [31] for 3D objects recognition in natural im-

ages . In this study, we adopt a similar design as MVT to detect breast cancer depicting on 

mammograms. MVT has two major parts namely, the local Transformer blocks and global 

Transformer blocks. The local Transformer blocks process information from each view 

image (e.g., LCC, RCC, LMLO, RMLO) individually. In comparison, the global Trans-

former blocks process information from the four view mammograms jointly. The local 

and global Transformer blocks share the same design, and their key components include 

self-attention, multi-head attention and multi-layer perceptron. We will first introduce 

these components in the following subsections. After that, we will describe our model’s 

inputs (i.e., patch and position embeddings) and provide more details about local and 

Transformer blocks. 
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Figure 1. Overview of using Transformers for multi-view mammogram analysis. For a patient, each 

of LCC, RCC, LMLO, and RMLO mammogram is split into image patches and mapped to embed-

ding vectors in the latent space. Then, positional embeddings are added to patch embeddings. The 

sequence of embedding vectors is sent into local Transformer blocks to learn within-mammogram 

dependencies. Weights of local Transformer blocks are shared among the four mammograms. The 

four outputs are concatenated into one sequence and fed into global Transformer blocks to learn 

inter-mammogram dependencies. The class token of the last global Transformer block is sent into 

an MLP head to classify the case as benign/malignant.  

 

2.2.1 Transformers background 

Self-attention (SA) 

When processing a patch at a certain position, the SA mechanism simultaneously 

determines how much focus to place on patches at other positions. For each image patch 

embedding 𝑧 of dimension 𝑑𝑒𝑚𝑏𝑒𝑑 , the inputs of an SA module are three vectors, namely 

query and key of dimension 𝑑𝑘, and value of dimension 𝑑𝑣. They can be obtained by mul-

tiplying the patch embedding by their respective weight matrices 𝑊𝑞 , 𝑊𝑘, 𝑊𝑣 , all of which 

are trainable parameters as computed using Equation (1). 

 

𝑞 = 𝑧𝑊𝑞 , 𝑘 = 𝑧𝑊𝑘, 𝑣 = 𝑧𝑊𝑣 (1) 

 

To speed up the computation for a sequence of image patch embeddings 𝒛, the que-

ries, keys, and values vectors are packed into the Query (𝑄), Key (𝐾), and Value (𝑉) ma-

trices. In Vision Transformers, SA can be computed using Equation (2) and is often imple-

mented in the form of "Scaled Dot-Product Attention" [23], as shown in Figure 2(b). 
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SA (𝑄, 𝐾, 𝑉) =  Softmax (𝑄𝐾𝑇 √𝑑𝑘⁄ )𝑉 (2) 

 

 
          (a)                              (b)                                      (c) 

 
Figure 2. (a) The Transformer block consists of an MSA, an MLP, skip connections, and layer nor-

malizations. (b) Self-attention (Scaled Dot-Product Attention). Matmul: multiplication of two matri-

ces. (c) Multi-head attention consists of multiple parallel self-attention heads. Concat: concatenation 

of feature representations. h: the number of self-attention heads.    

  

Given a query (one row of 𝑄), the dot products of this query and all keys (𝐾𝑇) are 

computed, resulting in a score vector that measures the similarities between that query 

and different keys. Scaling the similarity scores by a factor √𝑑𝑘  helps to stabilize the 

training process. Then a softmax layer normalizes these similarity scores into positive 

weights that range from 0 to 1. The weights control the amount of attention that different 

values should receive. Finally, multiplication of the weight vector and 𝑉 produces an out-

put for the query.        

 

Multi-head self-attention (MSA) 

At the core of Transformers is the MSA mechanism [18, 23]. Unlike SA that executes 

attention operations once, MSA adopts multiple SA layers (also known as heads) to per-

form h self-attention operations in parallel. As shown in Figure 2(c), the input queries, 

keys, and values are first linearly projected into different subspaces for h times. Then, the 

projections of 𝑄, 𝐾, and 𝑉 are sent into their corresponding SA head. Finally, the outputs 

from all heads are concatenated and projected again, yielding an output for the input que-

ries. The formulas to compute heads and MSA can be expressed as Equations (3) and (4). 
 

ℎ𝑒𝑎𝑑𝑖 =  SA (𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) (3) 

MSA (𝑄, 𝐾, 𝑉) =  Concat(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂  (4) 

 

where 𝑊𝑖
𝑄, 𝑊𝑖

𝐾 , 𝑊𝑖
𝑉, 𝑊𝑂 are trainable parameter matrices used for linear projections. In 

practice, each head has 𝑑𝑘 = 𝑑𝑣 = 𝑑𝑒𝑚𝑏𝑒𝑑 ℎ⁄ . MSA is beneficial to Transformers design 

because it drives the model to jointly learn and ensemble information from different rep-

resentation subspaces. This is somewhat reminiscent of using large amounts of stacked 

kernels in CNNs to capture as many useful features as possible.  
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Multi-layer perceptron (MLP) 

In each Transformer block (Figure 2(a)), following MSA is an MLP module that con-

sists of two fully-connected layers with a GELU non-linearity [32]. The first layer of MLP 

transforms its input to a higher-dimensional space, while the second layer restores the 

dimension back to be same as the input. Besides, both the MSA and MLP modules have a 

residual connection [33], followed by layer normalization [34]. 

 

2.2.2 Transformers for malignancy identification from multi-view mammograms 

Patch and position embedding 

Patch embedding [18] aims at mapping raw image patches to a new representation 

space, in which it is easier for models to process information. Given a 2D mammogram 

image 𝑥 ∈ 𝑅𝐻×𝑊×𝐶 , it is divided into smaller image patches of resolution (𝑃, 𝑃) and then 

flattened, resulting in a sequence of image patches 𝑥𝑃 ∈ 𝑅𝑁×(𝑃×𝑃×𝐶), where 𝑁 =  𝐻𝑊 𝑃2⁄  

is the number of image patches, (𝐻, 𝑊) and 𝐶 denote the image resolution and number 

of channels. This sequence is then mapped to a latent space of dimension 𝑑𝑒𝑚𝑏𝑒𝑑 . The 

mapping is normally implemented as a trainable linear projection or convolutions, de-

noted by 𝑬. In this study, 𝑬 is a convolutional layer with kernel size equal to patch size, 

while the original MVT model employs a fully-connected layer. The mapping’s outputs 

are referred to as patch embeddings. Meanwhile, a classification token 𝑥𝑐𝑙𝑎𝑠𝑠, which is an extra 

learnable vector, is prepended to the sequence of patch embeddings. Therefore, the se-

quence has (𝑁 + 1) elements, and each element is a 𝑑𝑒𝑚𝑏𝑒𝑑-dimensional vector. 

Since patch embeddings do not carry much absolute or relative position information 

that may be important for models to achieve satisfactory performance, positional embed-

dings are performed to preserve such spatial information. Learnable 1D position embed-

dings (𝑬𝑝𝑜𝑠) are implemented and added to patch embeddings of the input sequence. 

Thus, the input sequence embeddings of LCC, RCC, LMLO, RMLO mammogram can be 

expressed using Equation (5) as below.  

 

𝒛𝐿𝐶𝐶 = [𝑥𝑐𝑙𝑎𝑠𝑠;  𝑥𝑃_𝐿𝐶𝐶
1 𝑬; 𝑥𝑃_𝐿𝐶𝐶

2 𝑬; … ; 𝑥𝑃_𝐿𝐶𝐶
𝑁 𝑬] + 𝑬𝑝𝑜𝑠 

(5) 

𝒛𝑅𝐶𝐶 = [𝑥𝑐𝑙𝑎𝑠𝑠;  𝑥𝑃_𝑅𝐶𝐶
1 𝑬; 𝑥𝑃_𝑅𝐶𝐶

2 𝑬; … ; 𝑥𝑃_𝑅𝐶𝐶
𝑁 𝑬] + 𝑬𝑝𝑜𝑠 

𝒛𝐿𝑀𝐿𝑂 = [𝑥𝑐𝑙𝑎𝑠𝑠;  𝑥𝑃_𝐿𝑀𝐿𝑂
1 𝑬; 𝑥𝑃_𝐿𝑀𝐿𝑂

2 𝑬; … ; 𝑥𝑃_𝐿𝑀𝐿𝑂
𝑁 𝑬] + 𝑬𝑝𝑜𝑠 

𝒛𝑅𝑀𝐿𝑂 = [𝑥𝑐𝑙𝑎𝑠𝑠;  𝑥𝑃_𝑅𝑀𝐿𝑂
1 𝑬; 𝑥𝑃_𝑅𝑀𝐿𝑂

2 𝑬; … ; 𝑥𝑃_𝑅𝑀𝐿𝑂
𝑁 𝑬] + 𝑬𝑝𝑜𝑠 

 

It should be noted that the class token 𝑥𝑐𝑙𝑎𝑠𝑠, patch mapping 𝑬, and positional em-

beddings 𝑬𝑝𝑜𝑠 are shared for different mammogram views. This differs from the original 

MVT that separately devises a class token for each view. 

 

 

 

 

Local Transformer blocks 

By denoting the total number of local Transformer blocks as 𝐿𝑙𝑜𝑐𝑎𝑙 , the sequence em-

beddings from each view image goes through the local Transformer blocks sequentially 

as presented in Equation (6).  

 

𝒛0 = {𝒛𝐿𝐶𝐶
0 , 𝒛𝑅𝐶𝐶

0 , 𝒛𝐿𝑀𝐿𝑂
0 , 𝒛𝑅𝑀𝐿𝑂

0 } =  {𝒛𝐿𝐶𝐶 , 𝒛𝑅𝐶𝐶 , 𝒛𝐿𝑀𝐿𝑂 , 𝒛𝑅𝑀𝐿𝑂}, (6) 
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𝒛~
𝑙 = MSA (LN(𝒛𝑙−1)) + 𝒛𝑙−1,                                𝑙 = 1 … 𝐿𝑙𝑜𝑐𝑎𝑙  

𝒛𝑙 = MLP (LN(𝒛~
𝑙 )) + 𝒛~

𝑙 ,                                      𝑙 = 1 … 𝐿𝑙𝑜𝑐𝑎𝑙  

 

where LN represents layer normalization. Note that we use "{𝒛𝐿𝐶𝐶 , 𝒛𝑅𝐶𝐶 , 𝒛𝐿𝑀𝐿𝑂 , 𝒛𝑅𝑀𝐿𝑂}" to 

denote sequential operation. In other words, the respective sequence embeddings of four 

mammograms from the same patient are processed by local Transformer blocks sequen-

tially. As shown in Figure 2(a), the first local Transformer block takes a sequence 𝑧0 of 

dimension (1, 𝑁 + 1, 𝑑𝑒𝑚𝑏𝑒𝑑) as input. For the first block (𝑙 = 1), the embedded sequence 

goes through layer normalization and MSA (output 𝒛~
1 ), another layer normalization and 

MLP (output 𝒛1). The output of the former Transformer block (𝑙 − 1) is continuously used 

as the input of the next block (𝑙) until 𝑙 = 𝐿𝑙𝑜𝑐𝑎𝑙 . As a result, through this block-by-block 

sequential operation, the final block outputs a sequence of the same dimension as shown 

in Equation (7). 
 

𝒛𝐿𝑙𝑜𝑐𝑎𝑙 = {𝒛𝐿𝐶𝐶
𝐿𝑙𝑜𝑐𝑎𝑙 , 𝒛𝑅𝐶𝐶

𝐿𝑙𝑜𝑐𝑎𝑙 , 𝒛𝐿𝑀𝐿𝑂
𝐿𝑙𝑜𝑐𝑎𝑙 , 𝒛𝑅𝑀𝐿𝑂

𝐿𝑙𝑜𝑐𝑎𝑙} (7) 

 

Global Transformer blocks 

Then, by defining total number of global Transformer blocks as 𝐿𝑔𝑙𝑜𝑏𝑎𝑙 , our model 

concatenates the last local block’s outputs for the four mammograms (𝒛𝐿𝑙𝑜𝑐𝑎𝑙) and auto-

matically sends them into the global Transformer blocks. The concatenated sequence 𝒈0 

is of dimension (1, 4𝑁 + 4, 𝑑𝑒𝑚𝑏𝑒𝑑). In this way, the global Transformer blocks can 

jointly attend to the four mammograms from the same patient. Due to Transformers’ ad-

vantage in modeling long-range dependencies, we expect that the bilateral feature differ-

ence as well as ipsilateral mammogram correspondence can be effectively captured and 

leveraged toward improving the classification results. The computation sequence is ex-

pressed by Equation (8). 
  

𝒈0 = concat(𝒛𝐿𝐶𝐶
𝐿𝑙𝑜𝑐𝑎𝑙 , 𝒛𝑅𝐶𝐶

𝐿𝑙𝑜𝑐𝑎𝑙 , 𝒛𝐿𝑀𝐿𝑂
𝐿𝑙𝑜𝑐𝑎𝑙 , 𝒛𝑅𝑀𝐿𝑂

𝐿𝑙𝑜𝑐𝑎𝑙) 

(8) 𝒈~
𝑙 = MSA (LN(𝒈𝑙−1)) + 𝒈𝑙−1,                                𝑙 = 1 … 𝐿𝑔𝑙𝑜𝑏𝑎𝑙  

𝒈𝑙 = MLP (LN(𝒈~
𝑙 )) + 𝒈~

𝑙 ,                                      𝑙 = 1 … 𝐿𝑔𝑙𝑜𝑏𝑎𝑙  

 

where 𝒈~
𝑙  and 𝒈𝑙 represent outputs of 1) layer normalization plus MSA processing and 

2) layer normalization plus MLP processing in the sequence of global Transformer blocks 

(𝑙 = 1 … 𝐿𝑔𝑙𝑜𝑏𝑎𝑙), respectively. 

Last, the model used in this study is based on the DeiT architecture [35] that has 12 

Transformers blocks stacked together. We vary the number of local and global Trans-

former blocks while keeping the total number the same (i.e., 𝐿𝑙𝑜𝑐𝑎𝑙 +  𝐿𝑔𝑙𝑜𝑏𝑎𝑙 = 12). Class 

token of the last global block is passed into a one-layer MLP (head) to perform mammo-

gram classification. Our model follows the original DeiT design without introducing any 

new components, so that the pretrained weights of DeiT can readily be used to finetune 

the local, global blocks, and the MLP head. 

 

2.2.3 Experiments  

Implementation details 
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The original mammograms are 12-bit images with 4096 grayscale levels. To use the 

pretrained Transformer for finetuning, we duplicated and stacked the mammograms 

across the RGB channels and normalized the pixel values to be within [0, 255]. Meanwhile, 

all the mammograms were resized to be 224×224 pixels, and image patches are of size 

16×16 pixels.  

We implemented the model in PyTorch. The pretrained tiny (5.5 M parameters) and 

small (21.7 M parameters) DeiTs without distillation [35] were finetuned on our mammo-

gram dataset. The original MLP head for classification was modified to have 2 outputs 

(malignant/benign). We kept all the default settings (e.g., learning rate, optimizer, etc.) for 

finetuning, except setting batch size as 8 and disabling the augmentations like MixUp. For 

five-fold cross-validation, we trained the model for 500 epochs, and most models were 

able to converge within 200 epochs. 

All the experiments were performed using a single NVIDIA GeForce RTX 2080 Ti 

GPU with 11GB VRAM. Five-fold cross-validation was used to train and evaluate models. 

For the Transformers based on tiny DeiT, training a single-view-two-side (2-image), two-

view-two-side (4-image) model took 10.1 and 19.5 hours, respectively. For the two-view-

two-side (4-image) model based on small DeiT, the training time was 22.4 hours.    

 

Performance evaluation 

In summary, the new model is applied to process four view mammograms of one 

study case together and generate one prediction score that represents the probability or 

likelihood of the case depicting malignant lesion. The model-generated prediction scores 

are compared with biopsy-confirmed ground-truth to determine model detection and 

classification accuracy. In this study, we take two steps of data analysis methods to eval-

uate and compare model performance. First, we perform a standard receiver operating 

characteristic (ROC) type data analysis using a maximum likelihood-based ROC curve 

fitting program (ROCKIT, http://metz-roc.uchicago.edu/MetzROC/software) to generate ROC 

curves. The corresponding AUC value along with the standard deviation (STD) is com-

puted as an index to evaluate model performance to classify between malignant and be-

nign cases. The significant differences (p-values) between AUC values are also computed 

for comparing classification performance (AUC values) of different models. Second, since 

model has two outcome nodes representing two classes of case being malignant or benign, 

a testing case is signed to malignant class if the probability score of malignancy is greater 

than the probability score of benign or vice versa. After case assignment, we build a con-

fusion matrix to record true-positive (TM), false-positive (FP), true-negative (TN) and 

false-negative (FN) of classification results. Then, for each model, we compute and report 

the average of validation accuracies from five folds and their standard deviations using 

Equations (9) and (10). 

 

𝐴𝐶𝐶̅̅ ̅̅ ̅̅ =
1

𝑛
∑

𝑇𝑀𝑖 + 𝑇𝑁𝑖

𝐴𝑙𝑙 𝐶𝑎𝑠𝑒𝑠𝑖

𝑛

𝑖=1

                                                             (9) 

 

𝑆𝑇𝐷 = √
∑ (𝐴𝐶𝐶𝑖 − 𝐴𝐶𝐶̅̅ ̅̅ ̅̅ )2𝑛

𝑖=1

𝑛
                                                    (10) 

 

where 𝑛 = 5 in five-fold cross-validation.  

In addition, from the confusion matrix, we also compute and compare several differ-

ent evaluation indices of model performance, including precision, recall, specificity, F1 

score. We compare our two-view Transformer to two other state-of-the-art CNN-based 

multi-view models as published in the literature [16, 17]. We let these two CNN models 

adopt the same ResNets-18 architecture [33]. The first CNN (named as “CNN feature con-

catenation”) concatenates the feature representations obtained from four ResNets and 

sends them into a fully-connected layer to perform classification. The second CNN em-

ploys two ResNets for different views, and thus we name this model as “View-wise 
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CNN”. More details of this model can be found in the previous introduction section. Last, 

we also compare the two-view Transformer with two single-view Transformers.  

 

3. Results 

Table 1 shows and compares the trend of lesion patch detection and final case classi-

fication accuracy of the new MVT model when using different numbers of local blocks 

and global blocks. The model is applied to process unregistered four view mammograms 

and tested using a five-fold cross-validation method. The result demonstrates that by us-

ing a combination involving 2 local Transformer blocks and 10 global Transformer blocks, 

the new MVT model yields the highest case-based malignancy classification accuracy 

(77.0%) as well as the relatively higher reproducibility or robustness indicated by the 

smaller standard deviation (STD = ±1.2) than those yielded by most of other block combi-

nation options as shown in Table 1. The comparison results also show that using more 

global blocks to capture more details of feature relationship between four bilateral and 

ipsilateral mammograms plays a more important role than local blocks to detect and ex-

tract image features in one case of four images, in order to achieve higher lesion detection 

or classification accuracy. The comparison results show that the best-performing MVT 

model employs 2 local and 10 global Transformer blocks to detect breast cancer using four 

mammograms. 

Table 1. Summary of model-generated case classification accuracy (ACC) along with the standard 

deviation (STD) in five-fold cross-validation on the unregistered, four-view mammogram dataset 

(LCC, RCC, LMLO, RMLO), with different numbers of local and global Transformer blocks (using 

a small DeiT model).   

Local blocks 0 2 4 8 12 

Global blocks 12 10 8 4 0 

Fold 1 79.5 78.9 78.9 73.7 73.2 

Fold 2 74.7 77.4 77.4 73.7 74.7 

Fold 3 74.7 76.3 76.3 72.6 68.4 

Fold 4 74.7 75.8 75.3 74.2 71.1 

Fold 5 73.5 76.7 73.5 73.2 74.6 

Mean ACC (%) ± STD 75.4 ± 2.3 77.0 ± 1.2 76.3 ± 2.0 73.5 ± 0.6 72.4 ± 2.7 

Figure 3 demonstrates six ROC curves representing six different classification mod-

els using four Transformer-based models including two bilateral single-view (CC or 

MLO) two-side mammograms using tiny DeiT architecture and two multi-view (two-

view-two-side) mammograms using either the tiny DeiT or small DeiT architecture, re-

spectively, as well as two CNN-based multi-view image models. Comparison of these 

ROC curves shows that using CC view images alone to finetune Transformers (tiny DeiT 

architecture) yields the lowest mammographic case classification performance (AUC = 

0.724±0.013). However, once CC and MLO images are used together for finetuning, the 

classification performance is substantially improved with AUC = 0.814±0.026. Addition-

ally, using our Transformer-based models that combine 4 images together also delivers 

the significantly higher classification performance (i.e., AUCs) than using two conven-

tional CNN-based models (p < 0.05).  
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Figure 3. Illustration of 6 ROC curves of single-view Transformers, multi-view Transformers, and 

CNNs. 

Figure 4 shows a confusion matrix generated by classification results of four image 

Transformer based model using small DeiT architecture. Table 2 summarizes 5 classifica-

tion performance indices (accuracy, prevision, recall, specificity and F-1 score) computed 

from confusion matrix and AUC value computed from ROC curve. The table also com-

pares classification performance of four models including two state-of-the-art models de-

veloped and published by other two groups of researchers using our image dataset and 

the same five-fold cross-validation method. The comparison results demonstrate several 

interesting results or observations.  

First, the model (Single-view DeiT-tiny) has the smallest number of parameters that 

need to be finetuned using mammograms. As a result, it can not only improve model 

training or finetuning efficiency, but also help increase model robustness by reducing the 

risk of overfitting using relatively small medical image datasets.  

Second, comparing with the use of only either CC or MLO view images, fusion of 

four mammograms of both CC and MLO view as input simultaneously to finetune the 

model yields significantly higher malignancy classification accuracy and/or AUC value (p 

< 0.05) with smaller standard deviations, which indicates that fusion of useful features 

computed from 4 images can help reduce image feature noise and irrelevance to the ma-

lignancy prediction task.  

Third, the two-view models using tiny DeiT and small DeiT exhibit very close classi-

fication performance. This suggests that finetuning large-sized Transformers does not 

necessarily contributes to significant performance boost than finetuning small-sized 

Transformers on small medical image datasets. Fourth, the performance of two-view 

Transformer-based models surpasses the two existing CNN-based models reported in 

previous studies [16, 17], when measured by a variety of performance evaluation indices. 

This is because Transformers can more effectively identify and fuse useful information 

from 4 images.  

    

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 June 2022                   doi:10.20944/preprints202206.0315.v1

https://doi.org/10.20944/preprints202206.0315.v1


 

 

Figure 4. Confusion matrix of the two-view tiny DeiT’s classification results. 

 
Table 2. Result comparisons of the proposed model and other models. Params means the number 

of parameters. To compute p-values for different two-view models, the model proposed in paper 

[16] is used as the reference base.  

Model Params CC MLO 
Accuracy 

(%) 
Precision Recall Specificity F-1 score AUC p-value 

Single-view  

DeiT-tiny 
5.5 M ✓  69.6±1.4 0.708±0.035 0.662±0.040 0.728±0.058 0.683±0.013 0.724±0.013 <0.001 

Single-view  

DeiT-tiny 
5.5 M  ✓ 72.5±2.8 0.728±0.037 0.713±0.027 0.737±0.045 0.720±0.028 0.769±0.036 0.376 

Two-view DeiT-

tiny (proposed) 
5.5 M ✓ ✓ 77.0±1.2 0.797±0.039 0.726±0.063 0.814±0.057 0.757±0.022 0.814±0.026 0.031 

Two-view DeiT-

small (proposed) 
21.7 M ✓ ✓ 76.3±2.8 0.799±0.071 0.706±0.033 0.818±0.081 0.747±0.018 0.818±0.039 0.009 

CNN feature  

concatenation [16]   
44.7 M ✓ ✓ 73.9±2.4 0.761±0.05 0.696±0.041 0.781±0.071 0.725±0.019 0.784±0.016 - 

View-wise  

CNN [17] 
22.4 M ✓ ✓ 71.7±2.1 0.735±0.04 0.677±0.051 0.756±0.069 0.702±0.021 0.759±0.023 N/A 

 

4. Discussion 

 

Since mammograms are 2D projection images and breast tissue and lesions are quite 

heterogeneous in different bilateral and ipsilateral imaging views (CC and MLO view of 

two breasts), features extracted and computed from different view images are often quite 

different and may contain complementary lesion detection or classification information. 

However, developing multi-view image-based CAD schemes have not been successful to 

date due to many remaining technical challenges including difficulty of reliable image 

registration. In this paper, we present a novel study to develop multi-view image CAD 

scheme directly applying to un-registered four mammograms. The study has several 

unique characteristics and generates several new observations.  

First, we recognize that within-mammogram dependencies and inter-mammogram 

dependencies are important for accurately predicting the likelihood of the mammo-

graphic case depicting malignant lesions. We also recognize that unlike human eyes that 

can easily identify and register lesions depicting on ipsilateral (CC and MLO) views and 

bilateral tissue asymmetry between left and right breast images, applying CAD schemes 
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to register mammograms or lesions is very difficult due to the lack of reliable fiducials in 

mammograms. Thus, one of the significant advantages of this study is that we develop 

and test a new CAD scheme that does not require image registration. Four mammograms 

are fed into the MVT model “as is” directly. Due to the intrinsic capability in modeling 

long-range relationships of the input sequence, we exploit Transformers to capture differ-

ent kinds of mammogram dependencies and/or associated features extracted from differ-

ent images. We use local Transformer blocks to model patch relationships within each of 

the LCC, RCC, LMLO, RMLO mammograms individually and global Transformer blocks 

to capture patch relationships among these four mammograms jointly. Skipping tradi-

tional image registration step does not only increase efficiency of developing multi-view 

image-based CAD schemes, but also enhance robustness of CAD schemes due to avoid 

the impact of image registration errors.  

Second, to verify the effectiveness of our proposed new method (Table 2), we com-

pare our new two-view-two-side four-image based DeiT-tiny Transformer with two bilat-

eral single-view models (either CC or MLO view). When using one bilateral sing-view 

mammograms of left and right breasts as input of the model, we observe that although 

both CC and MLO view mammograms contain useful discriminatory information for ma-

lignancy identification, bilateral MLO-view mammograms in our dataset seem to contain 

more valuable information, so that the model trained using MLO view images performs 

better than the model trained using CC view images (i.e., 0.769±0.036 vs. 0.724±0.013 in 

AUC values or 72.5±2.8% vs. 69.3±1.3% in accuracy as shown in Table 2), which is con-

sistent with previous studies (i.e., [28]). However, when using four images of two-view-

two-side (both CC and MLO views of two breasts) as input, the new two-view-two-side 

four image Transformer-based model can fuse the information extracted from four images 

and capture more meaningful features from one view that may be missed by the other to 

further improve case classification performance. Compared with two single-view models 

using either two bilateral CC or MLO view images, the two-view-two-side four-image 

Transformer-based model yields statistically higher classification accuracy with higher 

AUC (0.814±0.026) and accuracy (77.0 ± 1.2%). This aligns well with one of our early ex-

pectations or study hypothesis that the global Transformer blocks can effectively capture 

the correspondence of the image features extracted and computed from four different-

view mammograms. Like the behavior of radiologists in reading mammograms by con-

sidering information extracted from four images together, optimal fusion of images from 

four mammograms also enables to help the new CAD model achieve higher performance 

or accuracy in classification between malignant and benign lesions or cases. Thus, this 

study provides new scientific data or evidence to further support the significance of de-

veloping multi-view image-based CAD schemes in the future.  

Third, the state-of-the-art performance of CNNs for multi-view mammogram analy-

sis has been strongly reliant on several key factors, such as cropping off background areas 

and using high-resolution images (e.g., 2677×1942 pixels) [17], obtaining breast mass or 

microcalcification masks [15, 16], etc. However, it is not that easy to satisfy these require-

ments and maintain scientific rigor or robustness of such CNN-based CAD schemes in 

practice. On the contrast, our new two-view Transformer-based model does not rely on 

any of these requirements. It does not need any image preprocessing steps such as optimal 

window cropping, chest wall or pectoral muscle removal in MLO view images. It works 

well on low-resolution images, with much smaller number of model parameters of (i.e., 

5.5M in the Transformer model using DeiT-tiny architecture versus 44.7M in ResNets-18 

feature concatenation). This is a significant advantage of applying our new model in the 

future clinical applications. We also recognize that performance of deep learning model-

based CAD schemes reported in the literature vary significantly depending on the use of 

different image datasets and/or testing or cross-validation methods [36]. In order to 

demonstrate that this new CAD model can achieve higher or very comparable lesion de-

tection and classification performance as current state-of-the-art CAD schemes, we com-

pare performance of several models using the same image datasets and cross-validation 

method. As shown in Table 2, our new model yields the highest lesion classification 
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accuracy. Thus, it is natural to speculate that if one or more of the complicated steps is 

performed, the two-view Transformer will have a performance boost. Especially, if breast 

mass annotations for the mammograms are incorporated into Transformer training, the 

single-view and two-view models should be able to learn important patch relationships 

more quickly, thus improving the malignancy classification performance.  

Fourth, our multi-image Transformer-based model is basically a pure Transformer 

model, except that one convolutional layer is used for image patch embedding, and it also 

uses and combines multi-layer local and global Transformer blocks. Thus, our new model 

is very different from a recently reported study [29] that only replaced the global pooling 

methods used in CNN model by either a global image token-based or image pixel-based 

cross-view Transformer and reported the highest classification performance of AUC = 

0.803±0.007 using token-based cross-view Transformer applying to an old digitized 

screen-film mammogram dataset (DDSM). Although due to the use of different image 

datasets, the classification performance of our new model (AUC = 0.818±0.039) is not di-

rectly comparable to the previous study [29], we believe that experiment data analysis 

results of this new study is promising to demonstrate the feasibility and advantages of 

using a new model that combines both local and global block Transformers to optimally 

or effectively extract, match and fuse clinically relevant image features from four mam-

mograms to develop CAD schemes of multi-view mammograms. Despite the promising 

results, we also recognize that this is the first preliminary study using this pure Trans-

former model with both local and global block Transformers, more comprehensive studies 

are needed. In the future, it is also worthy exploring a hybrid architecture of CNNs and 

Transformers, since the feature maps produced by intermediate CNN layers may also 

carry some low-level details that may provide complementary information or features to 

help further improve lesion detection and/or malignancy classification.     

  

5. Conclusions 

 

Vision Transformers are quickly emerging as powerful architectures for learning 

long-range dependencies in the last two years. However, their potential in the field of 

multi-view mammogram analysis remains largely unleashed to date. In this study, we 

propose using local and global Transformer blocks to model within-mammogram and in-

ter-mammogram dependencies, respectively. The model is successfully applied to process 

four view mammograms simultaneously. By comparing with other state-of-the-art multi-

view image-based CAD schemes, our new model yields higher lesion classification per-

formance with small variance (or standard deviation). Therefore, the promising results 

demonstrate that Multi-view Vision Transformers (MVTs) are a strong or better alterna-

tive to CNNs toward building high-performing and robust multi-view image-based CAD 

schemes of FFDM images. The reported study results should be further validated using 

new large and diverse image datasets in the future studies.     
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