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Abstract: The theory of one-photon ionization and two-photon above-threshold ionization is 1

formulated for applications to heavy atoms in attosecond science using the Dirac-Fock formalism. 2

A direct comparison of the Wigner-Smith-Eisenbud delays for photoionization is made with delays 3

from the Reconstruction of Attosecond Beating By Interference of Two-photon Transitions (RABBIT) 4

method. Photoionization by an attosecond pulse train, consisting of monochromatic fields in the 5

extreme ultraviolet range, is computed with many-body effects at the level of the Relativistic Random 6

Phase Approximation (RRPA). Subsequent absorption and emission processes of infrared laser 7

photons in RABBIT are evaluated using static ionic potentials as well as asymptotic properties of 8

relativistic Coulomb functions. As expected, light elements, such as Argon, show negligible relativistic 9

effects, while heavier elements, such a Krypton and Xenon, exhibit delays that depend on the fine- 10

structure of the ionic target. The relativistic effects are notable close to ionization thresholds and 11

Cooper minima with differences in fine-structure delays predicted to be as large as tens of attoseconds. 12

The separability of relativistic RABBIT delays into a Wigner-Smith-Eisenbud delay and a universal 13

continuum–continuum delay is studied with reasonable separability found for photoelectrons emitted 14

along the laser polarization axis in agreement with prior non-relativistic results. 15

16Keywords: attoscience; attophysics; photoionization; above-threshold ionization; Wigner-
Smith-Eisenbud delay; Dirac-Fock, RRPA; RABBIT; Krypton; Xenon 17

1. Introduction 18

The study of attosecond photoionization dynamics has been made possible by coher- 19

ent light sources in the extreme ultraviolet (XUV) regime based on high-order harmonic 20

generation (HHG) [1]. Experimental techniques that were originally used for pulse charac- 21

terization, such as the Reconstruction of Attosecond Beating By Interference of Two-photon 22

Transitions (RABBIT) [2] and the attosecond streak-camera [3], have proved useful to 23

gain novel insights into the time it takes for electrons to escape the binding potentials of 24

atoms [4–16], molecules [17–21] and solid state targets [22–24]. The main observables are 25

delay-dependent modulations in the photoelectron spectra that arise due a phase-locked 26

laser probe field in the infrared (IR) regime [25–30]. For “weak” fields these modulations 27

can be understood from perturbation theory, where absorption of one XUV photon (Ω) 28

is followed by exchange of one IR photon (±ω). It is a rather technical task to evaluate 29

laser-driven continuum–continuum transitions numerically in the presence of the long- 30

range Coulombic potential: k′ → k [26,31,32]. Thus, analytical continuum–continuum 31

phase shifts: ϕcc(k, k′), have been derived, using the Wentzel-Kramers-Brillouin (WKB) 32

approximation, in order to interpret the RABBIT delays at sufficiently high kinetic energy 33

of the photoelectrons [33]. Asymptotic theories based on the Eikonal Volkov Approxima- 34

tion (EVA) have also been developed [34]. The main result of these asymptotic theories 35

is that delays observed in RABBIT experiments can be separated into two terms: (i) a 36

finite-difference approximation to the Wigner-Smith-Eisenbud delay of the photoelectron 37

after absorption of one XUV photon: τW [35–37], and (ii) a universal continuum-continuum 38
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delay: τcc(k; ω), with an analytical expression that only depends on the final momentum 39

of the photoelectron and the frequency of the IR field. In the case of a single angular mo- 40

mentum channel: λ = ℓi + 1 with ℓi being the initial angular momentum, this separation 41

has been successfully implemented to measure the Wigner-like delay of the 2s-orbital in 42

neon atoms [12]. In the more general case, where multiple intermediate angular momenta 43

are populated: λ = ℓi ± 1, the probe process becomes more complicated and care must be 44

taken to account for the weight of all intermediate transitions, which leads to an “effective” 45

Wigner delay [33]. As an example, the RABBIT delay measured close to the 3p-Cooper 46

minimum in Argon [38] is much reduced in magnitude when photoelectrons are detected 47

over all emission angles, rather than along the polarization axis of the fields [7]. Nonethe- 48

less, the asymptotic theory has been extended to interpret delays from molecules, where 49

contributions of multiple partial waves in the initial orbital and the orientation of the 50

target relative to the laser polarization, adds more complexity to the process [21,39]. While 51

it has been shown that the separability of delays remains valid at high kinetic energies, 52

using full two-photon matrix elements from time-independent R-matrix theory [40], the 53

target-specific delay in molecules: τPI, can not be interpreted as a Wigner-like delay, due 54

to interference effects of multiple partial waves in the two-photon transitions [39] and 55

various channel coupling effects [21,40]. The use of full two-photon R-matrix theory [40] 56

is undoubtedly an important milestone in field of photoionization delays from molecules, 57

which has allowed for quantitative analysis of many recent experiments [18–21]. 58

In the case of atoms, full two-photon matrix elements have been used for a decade to 59

compute delays in photoionization at various levels of Many-Body Perturbation Theory 60

(MBPT) [41–44]. While the importance of the Random-Phase Approximation with Exchange 61

(RPAE) for attosecond science was first realized by Kheifets [45,46], numerical simulations 62

of the one-photon ionization process, developed by Amusia [47], are inherently insufficient 63

to interpret RABBIT delays. Thus, a two-photon approach was developed, where the many- 64

body response of XUV absorption was computed at the level of RPAE, while the IR exchange 65

in the continuum was computed numerically using an effective one-body ionic potential 66

[41,42]. This two-photon matrix approach has shown good agreement with a range of 67

RABBIT experiments [7,8,12,13,48]. Noble gas atoms consist of multiple valence states, 68

which implies experimentally unresolved ionic states with magnetic quantum numbers: 69

|m| ≤ ℓi. However, any problem with incoherent final channels can easily be avoided by 70

detecting photoelectrons along the polarization axis: ẑ, where only m = 0 contributes. In 71

this configuration, it has been shown that a numerically obtained continuum–continuum 72

delay: τMBPT
cc , can be accurately separated from the one-photon Wigner delay: τMBPT

W , 73

computed for photoelectrons along the polarization axis with the unique ionic state: m = 0 74

[41,43]. In this way a precise separation of delays has been demonstrated down to 5 eV, 75

which is much lower than the high-energy regime predicted by the original asymptotic 76

theory [33]. The two-photon matrix elements have also been used to study effects beyond 77

the asymptotic approximation. Firstly, a strong angle-dependence of RABBIT delays from 78

the isotropic Helium atom was evidenced in experiments by Heuser et al. [48]. Secondly, the 79

role of universal asymmetries between absorption and emission processes in the continuum 80

was identified by Busto et al. [49]. Finally, a weak angular-momentum dependence of 81

continuum–continuum phases where measured by Fuchs et al. in Helium atoms [50]. The 82

latter discovery was in good agreement with theoretical predictions based on exact two- 83

photon matrix elements for Hydrogen, provided by Taïeb [33], as well as full two-photon 84

matrix elements based on MBPT [13]. Thus, several effects that depend on the exact form of 85

continuum states have been identified using RABBIT delay measurements in recent years 86

[51]. 87

Due to the energy spacing between the odd harmonics from HHG: ∆Ω = 2ω, the 88

temporal resolution in traditional RABBIT experiments is limited to probe processes that are 89

much shorter than: 2π/∆Ω = Tω/2 ≈ 1.3 fs (assuming an IR laser system with h̄ω = 1.55 90

eV). At a first glance, this seems to preclude any studies of autoionizing dynamics in 91

atoms or molecules, which typically unfold on a time scale of a few femtoseconds, or 92
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more [29,52]. However, the subject of combined time–frequency non-linear metrology 93

is quite subtle and it has been found that a high-energy resolution of photoelectrons in 94

RABBIT sidebands can be used to reconstruct autoionizing processes in time [11]. In this 95

case of resonant excitation, via bound Rydberg states or autoionizating states, it is useful 96

to consider the RABBIT scheme as a combination of one “structured” (resonant) path 97

and another “unstructured” (reference) path [10,11,13,16,53,54]. In this case, the phase 98

variation of the resonant path is typically much stronger than any continuum–continuum 99

(or other non-resonant) phase shift, and the phenomena can be understood by expanding 100

Fano’s model for autoionization to laser-assisted photoionization, within the strong-field 101

approximation [55], or using approximate two-photon two-color matrix elements [56,57]. 102

In the latter works, it was shown that finite pulses, in the time domain, can lead to non- 103

periodic structures in RABBIT experiments due to autoionizing states. The two-photon 104

Fano model has proven essential to disentangle dynamics from multiple autoionizing states 105

measured by the RABBIT technique [14]. While we find that the theory development for 106

autoionization in RABBIT is another milestone in the field, we will not consider this class of 107

processes in the following work. Rather, we will focus of correlation effects in unstructured 108

continuum, where MBPT is an numerically efficient route to describe correlation effects 109

and RABBIT data can be safely assumed to be periodic. 110

Despite these many successes, there remained disagreement between experimental and 111

theoretical results for the relative RABBIT delay between the 3p and 3s orbitals in Argon, 112

first measured by Klünder et al. in 2011 [5], which was mostly ascribed to the low signal 113

close to the correlated minimum in the 3s-partial photoionization cross section [6,41,42,58– 114

60]. The fact that this exceptionally deep minimum from 3s arises due to correlation 115

effects, was first showed by Amusia in 1972 by applying the RPAE method to describe 116

photoionization from inner atomic orbitals [61]. Using two-photon matrix elements, it has 117

now been shown that the position, height and sign of the associated RABBIT delay from 3s 118

is similarly sensitive to correlation effects [41,42], which largely stems from the sensitivity 119

of the one-photon Wigner delay peak from the correlated minimum in the photoionization 120

cross section [62]. In order to solve this long-standing problem, a full two-photon two-color 121

RPAE (2P2C-RPAE) method was developed for RABBIT delays [44]. This new method 122

allowed for detailed examination of correlated IR exchange processes. It was found that, 123

apart from a rather minor discrepancy at the correlated 3s-minimum in Argon, the universal 124

separability of the MBPT continuum–continuum delay and Wigner delay was achieved. 125

However, this discrepancy was still not enough to reach agreement with the experimental 126

results [5,6]! It was not until the Argon experiment was repeated, with higher photon 127

energies by Alexandridi et al. in 2021 [15], that excellent agreement with 2P2C-RPAE results 128

was found in a broad energy range above the 3s-minimum in Argon. It was also concluded 129

that the long-standing 3p-3s problem was caused by an “accidental” harmonic satellite, 130

namely the 3s23p4(1D)4p(2P) shake-up process, predicted by Wijesundera and Kelly in 131

1989 using MBPT [63], which overlapped with the 3s-RABBIT sidebands. Prior to that the 132

importance of “two-electron-two-hole” excitations in Argon had been found by Amusia 133

and Kheifets by considering effects beyond RPAE in 1981 [64]. 134

The 2P2C-RPAE method also opened up for gauge invariance tests of the RABBIT 135

theory [44]. It was concluded that the so-called length-gauge formulation of light-matter 136

interaction was much favoured, which is in line with the gauge theory of Kobe [65,66]. 137

In the velocity-gauge formulation of RABBIT, it was found that the interaction with the 138

second photon required a more detailed many-body treatment, beyond the one-body ionic 139

potential, with important contributions from both time-orders of the fields: XUV+IR and 140

IR+XUV. While, it was shown that only the complete 2P2C-RPAE theory leads to gauge- 141

invariant results, the approximate one-body treatment of the IR-exchange was shown to be 142

an excellent approximation in length gauge. For this reason, we will use the length gauge, 143

with an effective ionic potential to describe IR exchange processes, in our current work, 144

which aims to quantitatively account for relativistic effects in RABBIT experiments. 145
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The study of relativistic effects is quite a recent development in attosecond physics. In 146

our view, Saha et al. have pioneered this field with calculations of relativistic one-photon 147

Wigner delays [62,67,68], based on the Relativistic Random Phase Approximation (RRPA). 148

While RRPA theory was originally developed in the late seventies by Johnson and Cheng 149

to describe one-photon ionization cross sections in heavy elements [69,70], the interest 150

in such phenomena is revived by recent RABBIT experiments that have targeted heavy 151

elements. Firstly, Jordan et al. [71] and Jain et al. [72] have compared photoelectrons from 152

the fine-structure split valance orbitals: 4pj and 5pj with j = 1/2 and 3/2 of Krypton 153

and Xenon atoms, respectively, and secondly, Jain et al [73] and Zhong et al. [74], have 154

compared photoelectrons from inner orbitals in Xenon, down to the 4d orbital. The 4d 155

orbital is of special interest since it is known to posses a giant collective resonance in the 156

photoionization cross section, as evidenced by MBPT in the early seventies by Amusia and 157

Wendin [75,76]. Thus, it is now possible to study the role of sizable relativistic effects, such 158

as the spin-orbit effect in Xenon, in the time domain with RABBIT. This opens a call for 159

time-dependent methods to solve the Dirac equation for heavy many-electron atoms, as an 160

example we mention the recently developed Relativistic Time-Dependent Configuration- 161

Interaction Singles (RTDCIS) method [77], but also to extend the computation of two- 162

color two-photon matrix elements to the relativistic domain. Concerning the lack of such 163

relativistic theories, we mention that in Refs. [71,73] the experiments were accompanied by 164

photoionization delay calculations with one-photon matrix elements at the level of RRPA 165

for XUV absorption, while various asymptotic formulas from non-relativistic theory were 166

used to account for IR exchange effects. Our goal here is to treat the whole process within 167

a relativistic framework and below we discuss the different points where the relativistic 168

treatment differs from that of the non-relativistic one with an effective ionic potential 169

for IR exchange [41–43]. We also mention that the method presented here has already 170

been utilized in various projects, such as [49,74], without any detailed description of the 171

theoretical formulation. A full development of the Two-Photon Two-Color Relativistic 172

Random Phase Approximation (2P2C-RRPA) is beyond the scope of the present work, 173

but we expect that it would not lead to any major modification of the results presented 174

here, because we base all our theory in the length gauge formulation of the light–matter 175

interaction, where the one-body ionic potential description of IR exchange processes is a 176

good approximation [44]. 177

In Sec. 2 below some basic concepts are introduced and the relativistic scattering 178

phases, as well as the asymptotic form of the continuum solutions, are discussed in detail. 179

Sec. 3 discusses photoionization delay in a relativistic framework and in Sec. 4 the many- 180

body implementation is outlined, and the technique to calculate the needed two-photon 181

matrix elements is explained. Some results are finally shown in Sec. 5. 182

2. Theory 183

2.1. The Dirac equation 184

The starting point for calculations in a relativistic framework is the Dirac equation. 185

We aim here for calculations on many-electron systems and as a first approximation we let 186

the electron-electron interaction be approximated by an average potential: the relativistic 187

version of the Hartee-Fock (HF) potential, usually called the Dirac-Fock (DF) potential. 188

Each electron is then governed by the one-particle Hamiltonian: 189

hDF = cα · p +

(
uDF −

e2

4πε0

Z
r

)
14 + mc2β,

(1)

with eigenvalues labeled by E, and where α is expressed in Pauli matrices and β has the
corresponding form:

α =

(
0 σ
σ 0

)
, β =

(
12 0
0 −12

)
. (2)
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For closed shell atoms, as the rare gases treated here, the Dirac-Fock potential is spherically
symmetric, and the two-component radial part of the wave function can be separated out
and determined by the radial Hamiltonian (

hDF
κ (r)− mc2

)( fκ(r)
gκ(r)

)
= uDF(r)− e2

4πε0
Z
r −ch̄

(
d
dr −

κ
r

)
ch̄
(

d
dr +

κ
r

)
uDF(r)− e2

4πε0
Z
r − 2mc2

( fκ(r)
gκ(r)

)
, (3)

where fκ is the upper, typically larger, component, and gκ the lower, typically smaller,
component. The eigenvalues of Eq. (3) are ϵ = E − mc2. The four-component eigenfunction
to the one-particle Hamiltonian in Eq. (1) can now be written as [78]

ψnℓjm(r, θ, ϕ) =

( fnℓj(r)
r χκm(θ, ϕ)

ignℓj(r)
r χ−κm(θ, ϕ)

)

=

 fnjℓ(r)
r ∑ν,µ⟨ℓµsν | jm⟩ξνYℓ,µ(θ, ϕ)

ignjℓ(r)
r ∑ν,µ⟨(2j − ℓ)µsν | jm⟩ξνY(2j−ℓ),µ(θ, ϕ)

, (4)

where χκm(θ, ϕ) is a vector coupled function of a spherical harmonic and a spin function ξν. 190

The relativistic quantum number κ is defined by the eigenvalue equation (σ · ℓ+ 1)χκm = 191

−κχκm and takes the value κ = ℓ(ℓ+ 1)− j(j + 1)− 1/4. When κ is negative (j = ℓ+ 1/2) 192

the spherical harmonic associated with the small component will be one unit of orbital 193

angular momenta larger than that for the large component, and vice verse for positive κ 194

(j = ℓ− 1/2). 195

The RRPA method, which is also known as the linear response within the Time- 196

Dependent Dirac-Fock (TDDF) formalism, will be used to describe the atomic response to 197

electromagnetic radiation. It accounts for the interaction with the electromagnetic field in 198

lowest order, including also corrections to the static Dirac-Fock potential by field-perturbed 199

orbitals [47,79]. The method is discussed further in Sec. 4. In the next section we will discuss 200

expressions for the radial continuum wave functions at large, but not infinite distances 201

from the ion. 202

2.2. The scattering phase of the photoelectron 203

While the total photoionization cross section is determined by the amplitude of the 204

outgoing electron wave packet, its phase is crucial for its angular dependence as well as its 205

delayed appearance in the continuum. In the following we discuss the difference of the 206

scattering phase in a relativistic formulation compared to the non-relativistic one. 207

We consider first an N-electron atom that absorbs a photon and subsequently ejects
a photoelectron from orbital b. The radial photoelectron wave function will in the non-
relativistic case be described by an outgoing phase-shifted Coulomb wave that asymptoti-
cally has the form:

u(1)
q,Ω,b(r) ≈ −πM(1)

nrel(q, Ω, b)

√
2m

πkh̄2 ei
(

kr+ Z
ka0

ln2kr−ℓ π
2 −σZ,k,ℓ+δk,ℓ

)
. (5)

Here energy normalization is assumed, and M(1)
nrel is the non-relativistic electric dipole

transition matrix element to the final continuum state q with momenta k, ℓ, and m. Although
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M(1)
nrel can be chosen to be real in a one-electron context it will be complex when correlation

effects are considered. The Coulomb phase is:

σZ,k,ℓ = arg
[

Γ
(
ℓ+ 1 +

iZ
ka0

)]
, (6)

for a photoelectron in the field from a point charge of Ze. Note that in Eqs. (5-6) we use the
negative Coulomb phase convention, rather than the equivalent positive sign convention
that is more commonly used: c.f. Eqs. (1-2) in Ref. [44], in order to easily relate the phase
expressions to existing relativistic theory in the literature [80]. The additional phase shift
δk,ℓ comes from the short range many-body potential of the final state. The Bohr radius is
here denoted with a0. In the relativistic case the asymptotic radial wave function will have
an upper and a lower component, cf. Eq. (4), which will have the form [80]:

u( f ,1)
q,Ω,b(r) ≈ −πM(1)(q, Ω, b)

√
2m

πkh̄2

(
1 +

ε

2mc2

)
× ei(kr+ηln2kr−γ π

2 −σ̃Z,k,γ+ν+δ̃Z,k,γ),

u(g,1)
q,Ω,b(r) ≈ −iζπM(1)(q, Ω, b)

√
2m

πkh̄2

(
1 +

ε

2mc2

)
× ei(kr+ηln2kr−γ π

2 −σ̃Z,k,γ+ν+δ̃Z,k,γ). (7)

where the superscripts f and g indicate the large (upper) and small (lower) components
respectively and

ζ =

√
E − mc2

E + mc2 =
kh̄

2mc
1(

1 + ε
2mc2

) (8)

is the relation between the large and small component at infinity. This asymptotic relation
is given directly by Eq. (3), with ϵ = E − mc2 being the kinetic energy at infinity. The
form of the components in Eq. (7) is indeed the same as in the non-relativistic case, but the
parameters have slightly changed definition: M(1) is now the relativistic matrix element,
and k is calculated from the relativistic kinetic energy as:

k =

√
E2 − m2c4

h̄c
=

√
2εm
h̄

√
1 +

ε

2mc2 . (9)

The first factor on the right-hand side of Eq. (9) is identical to the non-relativistic expression
for k, which is thus only slightly adjusted as long as the kinetic energy of the released
electron is modest: ε ≪ mc2. The constant η is given by:

η = ZαE
√

1
E2 − m2c4 =

Z
a0k

( ε

mc2 + 1
)

(10)

where α is the fine structure constant, α = h̄/(a0mc). In the non-relativistic limit η will thus
tend to Z/(a0k) as expected by comparison with Eq. 5. The relativistic Coulomb phase is:

σ̃Z,k,γ = arg[Γ(γ + iη)] (11)

with

γ =
√

κ2 − α2Z2 (12)
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and

ν =
1
2

arg

[
−κ + iZ

ka0

γ + iη

]
. (13)

The phase induced by the short-range part of the many-body potential for the final state is 208

denoted with δ̃Z,k,κ . 209

2.3. Phase shifted relativistic Coulomb functions at large distances 210

Calculations on many-body systems have to be done numerically. While the wave 211

function for the escaping photoelectron will differ from the analytically known Coulombic 212

ones at short distances, it will approach a combination of a phase shifted known regular and 213

irregular Coulomb function outside the core of the remaining ion. Since transition matrix 214

elements between continuum states do not converge on a finite grid it is convenient to have 215

access to continuum solutions, with a possible phase shift δ, that can be used to continue 216

the integration to infinity. We are here interested to find expressions for the relativistic case, 217

but it is illustrative to compare with the more studied non-relativistic formulation. 218

The solutions to the hydrogen-like Schrödinger equation with positive energy is given
by the Coulomb functions, see e.g.[81]. The regular Coulomb function is in particular:

Fℓ(ηnrel, kr) =
1
2

e
π
2 ηnrel

|Γ(ℓ+ 1 + iηnrel)|
(2ℓ+ 1)!

e−ikr(2kr)ℓ+1M(ℓ+ 1 + iηnrel, 2ℓ+ 2, 2ikr) (14)

where M is the confluent hypergeometric function, σ is defined in Eq. (6) and ηnrel =
Z/(a0k). For non-relativistic Coulomb functions expressions, valid for large kr, are pro-
vided in Ref. [82]:

Fℓ = ḡ cos ∆nrel + f̄ sin ∆nrel (15)

Gℓ = f̄ cos ∆nrel − ḡ sin ∆nrel, (16)

for the regular, Fℓ, and irregular, Gℓ, Coulomb functions respectively, where

∆nrel ≡ kr +
Z

ka0
ln 2kr − π

2
ℓ− σZ,k,ℓ + δ. (17)

and f̄ and ḡ, which depend on Z, r, k , and ℓ, can be obtained through simple recursive
formulas given in Ref. [82]. When r → ∞, ḡ → 0 and f̄ → 1 and thus the regular function
approaches a sin-function, and the irregular a cos-function, both with amplitude one. The
combination

Fℓ(ηnrel, kr)− iGℓ(ηnrel, kr) (18)

will thus asymptotically approach an outgoing wave, with modulus square equal to unity. 219

Energy normalized continuum functions are obtained by multiplications with
√

2m/πkh̄2. 220

It is interesting to note that Eqs. (15-16) imply that the irregular (regular) function
can readily be obtained when the regular (irregular) one is at hand. In the former case the
irregular solution is found as

Gℓ =

(
dFℓ
dr − Fℓ

ḡ2+ f̄ 2

(
dḡ
dr ḡ + d f̄

dr f̄
))

k + η/r + 1
ḡ2+ f̄ 2

(
dḡ
dr f̄ − d f̄

dr ḡ
) . (19)

Turning to the relativistic Coulomb problem we set out to find the relativistic counter-
parts to Eqs.(15 - 16), which to the best of our knowledge, are not available in the literature.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 June 2022                   doi:10.20944/preprints202206.0304.v1

https://doi.org/10.20944/preprints202206.0304.v1


8 of 25

The exact two-component relativistic regular, F̃γ, and irregular, G̃γ, solutions are given in a
pioneering article by Johnson and Cheng [80]. In particular the regular solution is:

F̃γ(η, kr) =

√
E + mc2

2E
1
2

e
π
2 η |Γ(γ + iη)|

Γ(2γ + 1)
(−2ikr)γeikr (

−κ + iZ
ka0

)
Mγ + (γ − iη)Mγ+1

−iζ
((

−κ + iZ
ka0

)
Mγ − (γ − iη)Mγ+1

)  (20)

with ζ, γ, η and k given in Eqs. (8 - 10,12), and the short-hand notation

Mγ = M(γ − iη, 2γ + 1,−2iz)
Mγ+1 = M(γ + 1 − iη, 2γ + 1,−2iz) (21)

has been used for the confluent hypergeometric functions. 221

An asymptotic expansion of the confluent hypergeometric function, M, can be found
in Ref. [83], which indeed can be used to obtain asymptotic expansions for F̃γ and G̃γ on
forms similar to Eqs.(15 - 16):

F̃γ =

√
E + mc2

2E

(
f̄large cos ∆ − ḡlarge sin ∆

−ζ
(

ḡsmall cos ∆ + f̄small sin ∆
) ) (22)

and

G̃γ =

√
E + mc2

2E

(
−
(

ḡlarge cos ∆ + f̄large sin ∆
)

−ζ
(

f̄small cos ∆ − ḡsmall sin ∆
) ) (23)

with

∆ = kr + η ln 2kr − πγ/2 − σ̃Z,k,γ + ν + δ̃ (24)

with σ̃ and ν given in Eqs (11,13). The possible extra phase shift is denoted by δ̃. In the
non-relativistic limit ∆ → ∆nrel ± π/2, for κ > 0 and κ < 0 respectively, and thus the
sin / cos - functions in Eqs. (15-16) are replaced with ∓ cos / ± sin in the upper components
of Eq. (22-23). The relativistic f̄ , ḡ functions are obtained as

f̄large/small = Re(ℵ±) (25)

ḡlarge/small = Im(ℵ±) (26)

from

ℵ± = ∑
n=0

(γ − iη)n(−γ − iη)n
n!

(2ikr)−n±

∑
n=0

(γ + 1 + iη)n(−γ + 1 + iη)n
n!

(−2ikr)−n (27)

where (a)n = a(a + 1)(a + 2) . . . (a + n − 1), (a)0 = 1. Similarly to the non-relativistic case
ḡlarge/small → 0 and f̄large/small → 1 when r → ∞. Thus the upper regular, and the lower
irregular, approach cos ∆, while the lower regular and the upper irregular tend to sin ∆.
The asymptotic expressions are thus:

F̃γ(η, kr) →
√

E + mc2

2E

(
cos ∆

−ζ sin ∆

)
, (28)
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G̃γ(η, kr) →
√

E + mc2

2E

(
− sin ∆
−ζ cos ∆

)
(29)

when kr → ∞, and the combination

F̃γ(η, kr)− iG̃γ(η, kr) →
√

E + mc2

2E

(
1
iζ

)
ei∆ (30)

will, in close analogy with the non-relativistic expression in Eq. (18), asymptotically ap- 222

proach an outgoing wave, with modulus square unity. The energy normalized functions 223

are again obtained by multiplication with
√

2m/πkh̄2. We note finally that Eq. (19) holds 224

also in a relativistic framework. It provides the irregular solution, G̃γ from F̃γ, if f̄ and ḡ are 225

just replaced with f̄large and ḡlarge or f̄small and ḡsmall for the upper and lower components 226

respectively. 227

3. Delay in photoionization 228

We will here briefly discuss the calculation of delays in laser-assisted photoionization, 229

emphasizing the differences compared to the non-relativistic description. A detailed 230

account of the latter can be found in Refs. [42,44]. 231

3.1. The Wigner delay 232

The concept of delay was introduced by Wigner [35], Smith [36] and Eisenbud [37]
as the derivative of the scattering phase with respect to energy. With a finite difference
approximation of the derivative: ∆ω = 2ω, the Wigner contribution to the atomic delay
measured in a RABITT experiemnt is:

τW =
ϕ> − ϕ<

2ω
, (31)

where ϕ>/< refer to the phases acquired in the XUV absorption step in the two paths where
either the higher, or the lower harmonic is absorbed. Non-relativistically, and for detection
of the photoelectron in the ẑ direction, these phases are:

ϕnrel
> = arg

(
∑
ℓ

Mnrel
> (ℓ)ei(−ℓ π

2 −σZ,k> ,ℓ+δk> ,ℓ)Yℓ,0(ẑ)

)

ϕnrel
< = arg

(
∑
ℓ

Mnrel
< (ℓ)ei(−ℓ π

2 −σZ,k< ,ℓ+δk< ,ℓ)Yℓ,0(ẑ)

)
, (32)

where the short-hand notation for the one-photon matrix elements, M>/<(ℓ) ≡ M(1)(q>/<, Ω>/<, b),
with final photoelectron wave number k>/< and angular momentum ℓ, after absorption
of a photon with angular frequency Ω>/<, is used. Relativistically the corresponding
amplitudes have two components and it is more appropriate to define the Wigner delay as:

τW =
1

2ω
arg

[
∑

m=± 1
2(

∑
κ

M<

(
χκm(ẑ)

iζχ−κm(ẑ)

)
ei(−γ π

2 −σ̃Z,k,γ+ν+δ̃Z,k,γ)

)†

(
∑
κ′

M>

(
χκ′m(ẑ)

iζχ−κ′cm(ẑ)

)
ei
(
−γ′ π

2 −σ̃Z,k,γ′+ν′+δ̃Z,k,γ′
))]

, (33)
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where the calculation of the delay of electrons emitted along the z-axis requires an incoherent 233

sum over m = ±1/2. The two incoherent contributions to the Wigner delay are due to 234

unresolved photoelectron spin in the final state. 235

3.2. The atomic delay 236

We now consider measurements that employ the RABBIT technique [2], where an
XUV comb of odd-order harmonics of a fundamental laser field with angular frequency
ω, is combined with a synchronized, weak laser field with the same angular frequency.
In RABBIT, the one-photon ionization process is assisted by an IR photon that is either
absorbed or emitted. The same final state is reached when both an XUV harmonic with
energy h̄Ω< = (2n − 1)h̄ω and an IR photon is absorbed, as when the next XUV harmonic,
h̄Ω> = (2n + 1)h̄ω, is absorbed while an IR photon is emitted. This gives rise to modulated
sidebands in the photoelectron spectrum at energies corresponding to the absorption of an
even number of IR photons. Schematically the intensity of such a sideband can be written
as [25]

S =| Aa + Ae |2=| Aa |2 + | Ae |2 +A∗
e Aa + Ae A∗

a

| Aa |2 + | Ae |2 +2 | Ae || Aa | cos[arg(Ae)− arg(Aa)] (34)

where Aa/e are the complex quantum amplitudes for the two-photon processes involving
absorption (a) or emission (e) of an IR photon, and leading to the same final energy. The
modulation arises from the last term in Eq. (34) and can be shown to be governed by the
delay between the IR and XUV pulses, τ, the group delay of the attosecond pulses in the
train, τXUV , and by a contribution from the atomic system which is due the phase difference
between the emission and the absorption paths in the atom:

cos[arg(Ae)− arg(Aa)] = cos[2ω(τ − τXUV) + ϕe − ϕa]. (35)

The atomic contribution can be interpreted as an atomic delay: τA = (ϕe − ϕa)/2ω. Since 237

the delay between the two light fields is controlled in the experiments and the pulse train 238

group delay can be canceled through relative measurements, the atomic contribution can 239

be extracted. A recent review of the experimental method can be found in [84]. In the 240

following we discuss the determination of ϕa and ϕe. 241

The outgoing radial wave function for the large component, after interaction with two
photons, will, in accordance with the one-photon situation in Eq. 7, have the asymptotic
form:

u( f ,2)
q,ω,Ω,b(r) ≈ −πM(2)(q, ω, Ω, b)

√
2m

πkh̄2

(
1 +

ε

2mc2

)
ei(kr+ηln2kr−γ π

2 −σ̃Z,k,γ+ν+δ̃Z,k,γ), (36)

where the important difference compared to the one-photon case lies in the presence of the
two-photon transition element M(2), which connects the initial state b to the continuum
state q through all dipole-allowed intermediate states. The small component follows as
in Eq. 7. The phases acquired in the absorption and emission paths, cf. Eq. (35), are given
by the corresponding two-photon matrix element and the phase of the photoelectron.
In the non-relativistic case, and for photoelectrons with momentum along the common
polarization axis of the fields, ẑ, they are given as

ϕnrel
a = arg

(
∑
ℓ

Ma,nrel(ℓ)e
i(−ℓ π

2 −σZ,k,ℓ+δk,ℓ)Yℓ,0(ẑ)

)

ϕnrel
e = arg

(
∑
ℓ

Me,nrel(ℓ)e
i(−ℓ π

2 −σZ,k,ℓ+δk,ℓ)Yℓ,0(ẑ)

)
(37)
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where the short-hand notation,

Ma,nrel(ℓ) = M(2)
nrel(q, ω, Ω<, b),

Me,nrel(ℓ) = M(2)
nrel(q,−ω, Ω>, b)

(38)

has been used and the subscripts a and e stand for IR absorption and emission, respectively.
For photoelectron emission along the ẑ-direction, i.e. θ = 0, the spherical harmonic is
non-zero only for azimutal quantum number mℓ = 0. The atomic delay, defined as the
phase difference divided by 2ω, can subsequently be calculated as

τA =
ϕe − ϕa

2ω
. (39)

In the Dirac case there are two distinct differences. First a sum over m = ±1/2
is required, since both spin-directions contribute to the emission along the ẑ-direction.
Second, due to the multi-component wave function the Dirac case the expression gets more
involved:

τA =
1

2ω
arg

[
∑

m=± 1
2(

∑
κ

Ma

(
χκm(ẑ)

iζχ−κm(ẑ)

)
ei(−γ π

2 −σ̃Z,k,γ+ν+δ̃Z,k,γ)

)†

×
(

∑
κ′

Me

(
χκ′m(ẑ)

iζχ−κ′m(ẑ)

)
ei
(
−γ′ π

2 −σ̃Z,k,γ′+ν+δ̃Z,k,γ′
))]

, (40)

where the sum over m = ±1/2 is done incoherently (see e.g. the discussion in Ref. [85]) , 242

while the sum over κ is done coherently. The two incoherent contributions to the atomic 243

delay are due to unresolved photoelectron spin in the final state. The expression for the 244

Wigner and atomic delay for electrons detected along a arbitrary direction have been 245

discussed in Ref. [86] 246

4. Method 247

In the following we label the full four-component perturbed wave function, associated 248

with absorption of one photon with angular frequency Ω and a hole in orbital b, by
∣∣ρΩ,b

〉
, 249

including both radial and spin-angular parts implicitly. As in [41–43] we use here the 250

RPAE-approximation for the many-body response to the absorption of an XUV-photon, 251

albeit within a relativistic framework. 252

4.1. The form of the light–matter interaction 253

The standard expression for light–matter interaction:

hI = ecα · A(r, t) (41)

comes from applying minimal coupling: p → p + eA to the Dirac Hamilonian in Eq. (1).
Within the dipole approximation, the vector potential is assumed to be space-independent:
A(r, t) → A(t). This is often referred to as the “velocity gauge” expression for light–matter
interaction:

hvelocity
I = ecα · A(t). (42)
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A unitary transformation can be made to recast the interaction in the alternative “length
gauge” form:

hlength
I = er · E, (43)

for details see e.g. Ref. [87]. Since our interest here is low energy photoelectrons we will be
stick to the dipole approximation. It is well known that the two gauge forms give identical
results when evaluated by an exact wave function, but also for approximations that employ
a local potential to describe electron-electron interaction. The non-local exchange potential
in the Hartree-Fock approximation can lead to different results in the two gauges when
static orbitals are assumed [65,66]. As was shown in the seventies the gauge invariance for
one-photon processes is restored by the RPAE class of many-body effects [88]. Recently this
was discussed in connection with the calculation of two-photon processes, as needed for
the calculation of atomic delays [44], and it was shown that gauge invariance required a
full two-photon RPAE treatment. Since Ref. [44] also showed that the length gauge results
are completely dominated by the time-order where the XUV photon is absorbed first and
much less sensitive to final state interactions (after absorption of two photons) than velocity
gauge, only the length form will be used here.
With linearly polarized light we may now write the lowest order approximation of the
transition matrix elements from Eq. (7) as

M(1)(q, Ω, b) = ⟨q | ez | b⟩EΩ, (44)

and similarly the two-photon matrix element in Eq. (36) as

M(2)(q, ω, Ω, b) = lim
ξ→0+

∑
p

∫ ⟨q | ez | p⟩⟨p | ez | b⟩
ϵb + h̄Ω − ϵp + iξ

EωEΩ, (45)

where intermediate states, p, are to be summed and integrated over for the bound and 254

continuum part of the spectrum respectively. An important difference compared to the 255

one-photon matrix element is that the two-photon matrix element is intrinsically complex 256

for above threshold ionization, i.e. when h̄Ω exceeds the binding energy, even if correlation 257

effects are neglected. 258

4.2. Diagrammatic perturbation theory 259

The approximation is illustrated by the diagrams in Fig. 1, and a detailed derivation
can be found in Ref. [44]. The solution of the RPAE equations is done iteratively as indicated
in Fig. 1 and includes the linear response to the interaction with the XUV photon:

(
ϵb ± h̄Ω − hDF

κ

)
| ρ±Ω,b⟩ =

exc

∑
p
| p⟩⟨p |

(
dΩj + δu±

Ω

)
| b⟩, (46)

where δu±
Ω is the (linearized) corrections to the Dirac-Fock potential induced by the elec-

tromagnetic field, cf. Fig. 1(c-f,i-l). The Dirac-Fock potential, cf Eq. (3), is defined from its
matrix element between orbitals m, n (occupied or unoccupied):

⟨m | uDF | n⟩ =
core

∑
c
⟨{mc} | V12 | {nc}⟩, (47)

where curly brackets denote anti-symmetrization. V12 denotes here the Coulomb interaction. 260

It is also possible to define a Hartree-Fock type potential for the Breit-interaction [89, 261

90], but this aspect of the electron-electron interaction is neglected here. In addition 262

to the Dirac-Fock potential we usually add a so-called projected potential, uproj, to the 263

Hamiltonian in Eq. (3). Aiming for a final state with a hole in one of the originally occupied 264

orbitals, the projected potential cancels the removed electron’s monopole interaction with 265
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all unoccupied orbitals, without affecting the interaction between the electrons in the 266

ground state. More details can be found in [44]. Through this extra potential some of the 267

contributions from Fig. 1 (c), precisely those which ensure that the photoelectron feels the 268

correct long-range potential, are accounted for already in lowest order. When converged, 269

the iterative procedure gives the same results if the projected potential is used or not, but 270

the convergence is often much improved in the latter case, especially close to ionization 271

thresholds. 272

The calculations are performed with a basis set obtained through diagonalization 273

of the radial one-particle Dirac-Fock Hamiltonians in a primitive basis of B-splines [91], 274

defined on a knot sequence in a spherical box. B-splines are piecewise polynomials of a 275

given order k. The radial components f , and g, of the relativistic wave function, cf. Eq. (4), 276

are expanded in B-splines of different orders: typically k = 7 and k = 8 respectively. It 277

has been shown by Froese Fischer and Zatsarinny [92] that the use of different B-spline 278

orders is a way to get rid of the so-called spurious states, which are known to appear in 279

the numerical spectrum after discretization of the Dirac Hamiltonian. Details of the use of 280

B-splines to solve the Dirac equation can be found in Ref. [93]. 281

We use further exterior complex scaling (ECS)

r →
{

r, 0 < r < RC
RC + (r − RC)eiφ, r > RC,

(48)

and thus the eigenenergies of the virtual orbitals are complex in general. As a consequence 282

the energy integration path avoids the pole in Eq. (45) and thus the sum and integration 283

over unoccupied states p can be represented by a finite sum [41,42]. 284

With converged RPAE results the two-photon matrix elements in Eq. 36 can be calcu-
lated for the absorption as well as the emission path to sideband n:

M(2)
a/e = ⟨q | ez | ρ+

(2n∓1)ω,b⟩, where ϵq = ϵb + 2nω. (49)

where length gauge has been assumed. The integration in Eq. (49) involves two continuum 285

functions and will not converge on any finite interval. The integrand is therefore divided 286

into two parts: An inner region 0 ≤ r < R < RC, where the perturbed wave function 287

and final state can be determined numerically on the B-spline basis; and an outer region 288

R ≤ r < ∞ where the functions can be assumed to be solutions to the pure Coulomb 289

problem, albeit with a possible phase shift. By using different breakpoints R, we can 290

check that the result is independent on where the change from numerical to the analytical 291

integration is done. This procedure was described in Ref. [42], but has to be slightly changed 292

for the relativistic case, as will be discussed in the next subsection. 293

4.3. The continuum-continuum transition 294

To evaluate Eq. (49) we need the final continuum state, q, for a photoelectron of energy
ϵq, obtained in a relativistic framework and with the phase shift it gets from the many-body
environment. A good approximation is found as the solution of

hψq = ϵqψq (50)

where h = hDF
κ + uproj. By expanding the radial functions f and g, cf. Eq.(4), in B-splines,

fq(r) = ∑ ciBi(r), and vice versa for g, we can reformulate Eq.( 50) to a system of linear
equations for the coefficients ci. Exclusion of the first B-spline yields a regular solution, that
is zero at the origin. This determines ψq up to a normalization constant. After normalization,
which will be discussed below, ψq is used for the first part of the integration in Eq. (49), i.e.
from zero to R. We note in passing that in practice it is enough to obtain the large component
of the relativistic wave function for a specific energy, since in the region dominated by the
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Coulomb potential, the Dirac equation gives the small component directly from the large
one:

ug(r) =
ch̄
(

d
dr +

κ
r

)
u f (r)

ϵ + 2mc2 + e2Z
4πε0

1
r

. (51)

For the second part of the integration, from R to infinity, we need to extract information 295

from the numerical representations of q and ρ to perform the rest of the integral in Eq. (49) 296

analytically as was described in Ref. [42]. The final state q, is a phase shifted regular 297

solution to the Coulomb problem, which should be correctly normalized, and the perturbed 298

wave function ρ, is a phase shifted outgoing solution with an amplitude determined by the 299

photoionization process. 300

The outgoing solution ρ well outside the ionic core can easily be compared with the 301

pure Coulomb solutions, Eq. (22- 23), combined as in Eq. (30), to determine the phase shift, 302

δ̃ in Eq. (24). It can easily be checked that the obtained phase shift is independent of r, and 303

then Eq. (22- 23) can be used again to construct the solution at any large r. 304

The final state phase shifted regular solution from Eq. (50) can be complimented by 305

its irregular counterpart through Eq. (19), evaluated with the relativistic forms of f̄ , and 306

ḡ, and then again the phase shift can be determined from comparision with Eq. (22- 23), 307

combined as in Eq. (30), and finally Eq. (22) can be used to construct the final state at any r. 308

An additional advantage with the possibility to compliment a regular solutions with
its corresponding irregular solution, and be able to construct the outgoing function, is that
it easy to normalize. The probability flux through the surface of a sphere of radius R is

J (R) = ic
(

u f (r)∗ug(r)− ug(r)∗u f (r)
)

r=R
(52)

and is constant for any large value of R, far outside the core. Since the asymptotic expres- 309

sions for the large and small components are simple oscillating waves and their relation is 310

ζ, cf. Eq. (7), the rate should be 2cζ|A|2 and from that we can determine the amplitude A. 311

From the expression for ζ in Eq.(8) we note the close resemblance with the non-relativistic 312

rate h̄k|A|2/m, just slightly adjusted for relativistic effects. 313

The last part of the integral, from R to r → ∞, in Eq. (49) can now be calculated as was 314

described in Ref. [42], but now with continuum solutions obtained from Eqs. (22-23). 315

5. Results 316

The two-photon matrix elements for the absorption, Ma, and emission, Me, paths are 317

calculated as indicated in Eq. (49) and then the atomic delay for electrons emitted in the 318

direction of the laser field polarization is obtained from Eq. (40). The Wigner delays are 319

calculated as in Eq. (33). 320

5.1. A light element: Argon 321

Results for ionization of Argon atoms to the outermost p doublet: 3p−1
1/2 and 3p−1

3/2, are 322

shown in Fig. 2. The two curves for the atomic delays are, more or less, indistinguishable. 323

The negative atomic delay peak at 50 eV is due to the 3p-Cooper minimum in the cross 324

section of Argon. A slight shift of the negative atomic delays peaks of a few meV is 325

observed. The similarity of the two fine-structure split channels is expected for such a light 326

system with ∆E
Ar:3pj
FS = 0.18 meV. The Wigner delays from the two fine-structure channels 327

are also mostly indistinguishable. Just below the threshold for release from the 3s-orbital, 328

∼ 30 eV, there are narrow resonances that are not fully resolved in the present calculation. 329

5.2. Heavy elements: Krypton and Xenon 330

Atomic and Wigner delays for ionization to the outermost p-doublet in krypton and 331

xenon are shown in Figs. 3 and 4, respectively. Here the delay differences between the 332
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electrons ionized to the 4p−1
1/2 and 4p−1

3/2 (5p−1
1/2 and 5p−1

3/2) in Krypton (Xenon) show that 333

relativistic effects are important. Differences between the delays are clearly visible on 334

the order of a few eV at the Cooper minima. Such shifts can be expected since the fine- 335

structure shifts are ∆E
4pj
FS = 0.67 eV for Krypton (∆E

5pj
FS = 1.3 eV for Xenon). Furthermore, 336

a difference between the doublet channels is observed at low energies, where Xenon shows 337

the largest delay difference that exceeds 10 as. 338

5.3. Study of continuum–continuum delay 339

The difference between the atomic and the Wigner delay is plotted for Argon, Krypton, 340

Xenon, and Radon in Fig. 5. For all the elements, and all fine-structure components, the 341

results are very similar. This is in accordance with earlier findings, using non-relativistic 342

calculations [41,42,44], and the corresponding numerical continuum–continuum delay: 343

τMBPT
cc , is shown as a dotted line in Fig. 5 for comparison with the relativistic results. Thus, 344

the contribution from the second photon depends on the kinetic energy and the long-range 345

potential, but only weakly, or not at all, on the structure of the remaining ion, or its angular 346

momentum, for photoelectrons emitted along the polarization axis. 347

Only in the vicinity of Cooper minima, or close to resonances, is there are a deviation 348

from this general trend. We stress that non-relativistic deviations, of a few attoseconds, have 349

also been found for Ar3p at the Cooper minimum using the effective one-body potential 350

for the final state [44]. In that case, however, the complete 2P2C-RPAE method was used 351

to show that these deviations could be reduced, as shown Fig. 9 (b) of Ref. [44]. Thus, we 352

may speculate that the present relativistic deviations at the Ar3pj Cooper minima could 353

be reduced by turning to 2P2C-RRRA theory. On the other hand, the correlation-induced 354

3s-minimum was shown to be non-separable using the 2P2C-RPAE method, as shown in 355

Fig. 9 (a) of [44]. Obviously, fast photoelectrons are also well described by the analytical 356

cc-delay in Ref. [33], but, more importantly, Fig. 5 demonstrates that a universal behaviour 357

extends to much lower energies than expected from the asymptotic theory (> 20 eV) [33], 358

in good agreement with non-relativistic 2P2C-RPAE matrix elements [44]. 359

5.4. Comparison with experiments 360

The delay difference between photoelectrons originating from the outermost p3/2 361

and p1/2 orbitals in Krypton and Xenon have been studied in Ref. [71,72], using the 362

interferometric RABBITT technique. In Fig. 6 this difference, as calculated here, is shown 363

for Xenon. The experiment from Ref. [71] includes one data point at 18.6 eV and one 364

at 24.8 eV which are in qualitative agreement both with the calculation presented here, 365

and with accompanying calculations in Ref. [71], based on the Wigner delay from RRPA 366

augmented with the the cc-delay from Ref. [33]. Three other data points differ on the other 367

hand markedly from both theoretical results. Especially striking are the large measured 368

delays for higher energies (around 30 as at 30 eV), where the calculated result is very small. 369

This might be due to resonances, not fully accounted for in the calculations, as discussed in 370

Ref. [71]. 371

Also a higher energy region has been explored. Ref. [72] measured the the delay 372

difference for the xenon 5p fine-structure components for the sideband at 90 eV (with 373

IR photon energies of 1.55 eV) to τA(5p3/2) − τA(5p1/2) = 14.5 ± 9.3as. Also here the 374

calculated delay is much smaller, around 2 as (not shown in the figures). We note that the 375

cross section to produce photoelectrons in the 5ℓj channels at around 90 eV photon energy 376

is comparable to those for 4d and shake-up satellites [94]. Since shake-up channels can 377

have significantly larger delays [12] this region might need a more careful investigation of 378

all competing channels. 379

Fig. 7 shows finally the atomic and Wigner delay for photoelectrons released from 380

the xenon 4d orbitals. The result agrees within error bars with the measurement, from 381

threshold up to ∼ 100 eV, in Ref. [74]. It is interesting to note the large difference between 382

the two channels, defined by the two fine-structure components, in the region just above 383

the 4d thresholds at 67.5 and 69.5 eV, and the rapid variation of the delay with photon 384
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Figure 1. Goldstone diagrams illustrating RPAE for the many-body screening of the photon inter-
action. (a) and (g) are forward and backward propagation, respectively, where the sphere indicates
the correlated interaction to infinite order. The wavy line indicates the photon interaction and the
dashed line the Coulomb interaction. Down going lines (labelled with a, b) stand for holes created
when electrons are removed from initially occupied orbitals, and up going lines (labelled with o, p)
for initially unoccupied orbitals.

energy. The experiments in Refs. [95,96] have shown that also the cross-section branching 385

ratio (for leaving the ion with 4d−1
3/2 or 4d−1

5/2) shows a rapid variation in this region. In both 386

cases this behaviour can be traced back to the presence of two resonances close to threshold. 387

They are of 3D and 3P character and cannot be populated by one-photon absorption in a 388

non-relativistic description. The spin-orbit induced singlet-triplet mixing opens however 389

the route to ionization through these resonances and thus for a population transfer from 390

one final channel to the other. This has been further discussed in Ref. [74,97]. We note that 391

while the resonances in argon, mentioned above, are just unresolved in the calculation, 392

the reason that these xenon resonances are not seen directly is not a question of resolution. 393

The cross section in this region is completely dominated by the, so-called, giant resonance 394

of 1P character and the spin-orbit induced resonances can simply not be seen against this 395

background. Still their mark in the more sensitive observables, such as atomic delays and 396

branching ratios, is clearly seen. 397

Also for xenon 4d Ref. [72] gives a value at 90 eV: τA(4d5/2)− τA(4d3/2) = −4.0 ± 398

4.1 as, which agrees with our value of −1.2 as. 399

6. Conclusion 400

We have shown how two-photon above-threshold ionization can be treated in a 401

relativistic framework from first principles. Correlation is included in the photoionization 402

process at the level of the Relativistic Random Phase Approximation. As in the non- 403

relativistic case the calculation of the subsequent continuum-continuum transition relies 404

on knowledge of the form of the intermediate wave packet when it is well outside the 405

atomic core. For this purpose we present a convenient recursive formula for both the large 406

and small component of the regular and irregular solution to the relativistic Coulomb 407

problem. The procedure have been applied to a few heavy elements and it is shown that 408

the separation of the atomic delay into a Wigner-Smith-Eisenbud delay and a universal 409

continuum–continuum works reasonably well also for these systems. 410

We have further demonstrated qualitative agreement with existing experimental 411

photoionization-delay data for ionization from the 4d-orbitals in xenon, and with lower 412

energy results from the outermost orbitals in xenon and krypton. For higher photon 413

energies experiments report considerably larger delay differences between the fine-structure 414

split channels than supported by the calculations. This might be connected to resonances 415

or interfering shake-up channels, which can hopefully be resolved in the future. 416
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Figure 2. The atomic and Wigner delay calculated in length gauge for ionization from Ar 3pj, for
electrons emitted along the polarization axis. The figure shows the region in the vicinity of the
Cooper minimum. The thick dashed blue line shows the atomic delay for electrons ionized from
3p3/2. It is hardly distinguishable from the dashed-dotted red line that shows the atomic delay for
electrons ionized from 3p1/2. The thin dashed green and solid grey lines show the Wigner delay for
electrons ionized from 3p1/2 and 3p3/2 respectively. Dirac-Fock orbital energies have been replaced
with experimental ionization energies: For 3p3/2 the binding energy is 15.76 eV, and for 3p1/2 it is
15.94 eV.
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Figure 3. The atomic and Wigner delay calculated in length gauge for ionization from Kr 4pj,
for electrons emitted along the polarization axis. The thick dashed blue line shows the atomic
delay for electrons ionized from 4p3/2, and the dotted-dashed red line shows the atomic delay for
electrons ionized from 4p1/2. The thin dashed green and solid grey lines show the Wigner delay for
electrons ionized from 4p1/2 and 4p3/2 respectively. Dirac-Fock orbital energies have been replaced
with experimental ionization energies: For 4p3/2 the binding energy is 14.00 eV, and for 4p1/2 it is
14.67 eV [98]. Dirac-Fock orbital energies are used for the deeper lying orbitals.
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Figure 4. The atomic delay calculated in length gauge for ionization from Xe 5pj, for electrons emitted
along the polarization axis. The thick dashed blue line shows the atomic delay for electrons ionized
from 5p3/2, and the dotted-dashed red line shows the atomic delay for electrons ionized from 5p1/2.
The thin dashed green and solid grey lines show the Wigner delay for electrons ionized from 5p1/2

and 5p3/2 respectively. Dirac-Fock orbital energies have been replaced with experimental ionization
energies: For 5p3/2 the binding energy is 12.13 eV, and for 5p1/2 it is 13.44 eV [98]. Dirac-Fock orbital
energies are used for the deeper lying orbitals.
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Figure 5. The difference between the atomic delay and the Wigner delay for the two outermost
orbitals in Ar, Kr, Xe and Rn calculated in length gauge and for for electrons emitted along the
polarization axis. The red dotted line shows the non-relativistic result calculated for Ne 2p, i.e. the
numerically obtained continuum–continuum delay discussed in the introduction.
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Figure 6. The delay difference between photoelectrons originating from the 5p3/2 and 5p1/2 orbitals
in xenon. The dashed blue line shows the atomic delay, and the solid red the Wigner delay.
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Figure 7. The thick dashed blue line shows the atomic delay for electrons ionized from 4d3/2,
and the dotted-dashed red line shows the atomic delay for electrons ionized from 4d5/2. The thin
dashed green and solid grey lines show the Wigner delay for electrons ionized from 4d3/2 and 4d5/2

respectively. Dirac-Fock orbital energies have been replaced with experimental ionization energies:
For 4d5/2 the binding energy is 67.5 eV, and for 4d3/2 it is 69.5 eV [99]
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