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Abstract. One of matrix equalities composed of multiple products of matrices and their generalized in-
verses is given by A1B

−
1 A2B

−
2 · · ·AkB

−
k Ak+1 = A where A1, B1, A2, B2, . . ., Ak, Bk, Ak+1, and A are

given matrices of appropriate sizes, and B−
1 , B−

2 , · · · , B−
k are generalized inverses of matrices. The cases for

k = 1, 2 and their special forms were properly approached in the theory of generalized inverses of matrices.
In this note, the author presents an algebraic procedure to derive explicit necessary and sufficient conditions
for the equality with k = 3 to always hold using certain rank equalities for the block matrices construct-
ed by the given matrices, and then mention a key step of extending the previous work to a general situation.
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1 Introduction

Throughout this note, let Cm×n denote the collections of all m×n matrices with complex numbers;
A∗ denote the conjugate transpose; and r(A) denote the rank of A; Im denote the identity matrix
of order m, [A, B] denote a columnwise partitioned matrix consisting of two submatrices A and
B. The Moore–Penrose generalized inverse of A ∈ Cm×n, denoted by A†, is the unique matrix
X ∈ Cn×m that satisfies the four Penrose equations

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA, (1)

see [10]. Starting with Penrose himself, a matrix X is called a {i, . . . , j}-generalized inverse of A,
denoted by A(i,...,j), if it satisfies the ith,. . . , jth equations in (1). The collection of all {i, . . . , j}-
generalized inverses of A is denoted by {A(i,...,j)}. There are all 15 types of {i, . . . , j}-generalized
inverses of A by definition, but matrix X is called an inner inverse of A if it satisfies AXA = A,
and is denoted by A(1) = A−.

In this note, the author considers the following general matrix equality

A1B
−
1 A2B

−
2 · · ·AkB

−
k Ak+1 = A, (2)

where A1, B1, A2, B2, . . ., Ak, Bk, Ak+1, and A are given matrices of appropriate sizes. Apparently,
(2) includes many equalities composed of multiple products of matrices and their generalized
inverses as its special cases. It should be pointed out that an equality as such does not necessarily
hold for different choices of the given matrices. So that we are first interested in establishing
necessary and sufficient conditions for the equality to hold for some B−1 , B−2 , . . ., B−k or always
hold for all B−1 , B−2 , . . ., B−k . Recall that generalized inverses of a matrix are not necessarily
unique (cf. Lemma 1 below). This fact means that the matrix equality in (2) is in fact certain
nonlinear matrix equation involving multiple unknown matrices (cf. [5,6]). Thus it is a challenging
task to solve the general matrix equation in (2) due to the noncommutativity of matrix algebra
and singularity of the given matrices.

Some concrete situations of (2) were considered in the literature. The author states them with
the situation of (2) for k = 1:

A1B
−
1 A2 = A. (3)

This equality is in fact a linear matrix equation involving the two unknown matrices in B−1 by
Lemma 1 below. So that it is easy to derive necessary and sufficient conditions for the equality to
hold and to always hold, respectively; see, e.g., [4, 9, 11,12] and reference therein.

The situation of (2) for k = 2 is given by

A1B
−
1 A2B

−
2 A3 = A, (4)
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where A1 ∈ Cm1×m2 , B1 ∈ Cm3×m2 , A2 ∈ Cm3×m4 , B2 ∈ Cm5×m4 , A3 ∈ Cm5×m6 , and A ∈
Cm1×m6 . This equality is in fact a nonlinear matrix equation involving four the unknown matrices
in B−1 and B−2 by Lemma 1 below. Jiang and Tian [7,14] recently considered (4), and established
a group of necessary and sufficient conditions for the equality to hold for all B−1 and B−2 using
the matrix rank methodology and presented lots of applications of this equality in the theory of
generalized inverses.

The situation of (2) for k = 3 is given by

A1B
−
1 A2B

−
2 A3B

−
3 A4 = A, (5)

where A1 ∈ Cm1×m2 , B1 ∈ Cm3×m2 , A2 ∈ Cm3×m4 , B2 ∈ Cm5×m4 , A3 ∈ Cm5×m6 , B3 ∈ Cm7×m6 ,
A4 ∈ Cm7×m8 , and A ∈ Cm1×m8 . This equality is a nonlinear matrix equation involving the six
unknown matrices in B−1 , B−2 , and B−3 by Lemma 1 below.

The purpose of this note is to derive a group of necessary and sufficient conditions for (5) to
hold for all B−1 , B−2 , and B−3 through the use of rank equalities for the block matrices constructed
by the given matrices, and then to mention a key step for deriving conditions under which (2)
always holds.

2 Some preliminaries

In this section, the author presents a series of well-known or established results and facts concerning
generalized inverses and ranks of matrices, which we shall use to deal with matrix equality problems
described above.

Lemma 1 ( [10]). Let A ∈ Cm×n. Then, the general expression of A− of A can be written as

A− = A† + FAU + V EA, (6)

where EA = Im −AA† and FA = In −A†A, and U, V ∈ Cn×m are arbitrary.

Lemma 2 ( [9]). Let A ∈ Cm×n, B ∈ Cm×k, and C ∈ Cl×n. Then

r[A, B] ≥ r(A), (7)

r

[
A B
C 0

]
≥ r(B) + r(C). (8)

Lemma 3 ( [11,13]). Let A ∈ Cm×n, B ∈ Cm×k, C ∈ Cl×n, and D ∈ Cl×k be given. Then,

max
A−∈{A−}

r(D − CA−B) = min

{
r[C, D], r

[
B
D

]
, r

[
A B
C D

]
− r(A)

}
. (9)

Therefore,

CA−B = D holds for all A− ⇔ [C, D] = 0 or

[
B
D

]
= 0 or r

[
A B
C D

]
= r(A). (10)

Lemma 4 ([7]). Let A, A1, B1, A2, B2, and A3 be as given in (4). Then, following three statements
are equivalent:

(a) The equality A1B
−
1 A2B

−
2 A3 = A holds for all B−1 and B−2 .

(b) The product A1B
−
1 A2B

−
2 A3 is invariant with respect to the choice of B−1 and B−2 , and A =

A1B
†
1A2B

†
2A3.

(c) Any one of the following six conditions holds

(i) A = 0 and A1 = 0.

(ii) A = 0 and A2 = 0.

(iii) A = 0 and A3 = 0.
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(iv) A = 0 and r

[
0 A1

A2 B1

]
= r(B1).

(v) A = 0 and r

[
0 A2

A3 B2

]
= r(B2).

(vi) r

−A 0 A1

0 A2 B1

A3 B2 0

 = r

[
A2 B1

B2 0

]
= r(B1) + r(B2).

3 Main results

Theorem 1. Let A1, B1, A2, B2, A3, B3, A4, and A be as given in (5). Then, the following three
statements are equivalent:

(a) The equality A1B
−
1 A2B

−
2 A3B

−
3 A4 = A holds for all B−1 , B−2 , and B−3 .

(b) The product A1B
−
1 A2B

−
2 A3B

−
3 A4 is invariant with respect to the choice of B−1 and B−2 , and

B−3 , and A1B
†
1A2B

†
2A3B

†
3A4 = A.

(c) Any one of the following ten conditions holds

(i) A = 0 and A1 = 0.

(ii) A = 0 and A2 = 0.

(iii) A = 0 and A3 = 0.

(iv) A = 0 and A4 = 0.

(v) A = 0 and r

[
0 A1

A2 B1

]
= r(B1).

(vi) A = 0 and r

[
0 A2

A3 B2

]
= r(B2).

(vii) A = 0 and r

[
0 A3

A4 B3

]
= r(B3).

(viii) A = 0 and r

 0 0 A1

0 A2 B1

A3 B2 0

 = r

[
A2 B1

B2 0

]
= r(B1) + r(B2).

(ix) A = 0 and r

 0 0 A2

0 A3 B2

A4 B3 0

 = r

[
A3 B2

B3 0

]
= r(B2) + r(B3).

(x) r


A 0 0 A1

0 0 A2 B1

0 A3 B2 0
A4 B3 0 0

 = r

 0 A2 B1

A3 B2 0
B3 0 0

 = r(B1) + r(B2) + r(B3).

Proof. The equivalence of (a) and (b) follows from the definition of the Moore–Penrose inverse of
a matrix and its uniqueness.

Replacing A3 with A3B
−
4 A5 in Lemma 4(c), we first see that the product A1B

−
1 A2B

−
2 A3B

−
3 A4

is invariant with respect to the choice of B−1 and B−2 if and only if any one of the following six
conditions holds

(i) A = 0 and A1 = 0.

(ii) A = 0 and A2 = 0.

(iii) A = 0 and A3B
−
3 A4 = 0.

(iv) A = 0 and r

[
0 A1

A2 B1

]
= r(B1).
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(v) A = 0 and r

[
0 A2

A3B
−
3 A4 B2

]
= r(B2).

(vi) r

 −A 0 A1

0 A2 B1

A3B
−
3 A4 B2 0

 = r

[
A2 B1

B2 0

]
= r(B1) + r(B2).

Further by (10), the equality A3B
−
3 A4 = 0 in (iii) of the above six equalities holds for all B−3 if

and only if

A3 = 0 or A4 = 0 or r

[
0 A3

A4 B3

]
= r(B3). (11)

By (9),

max
B−

3

r

[
0 A2

A3B
−
3 A4 B2

]
= max

B−
3

r

([
0 A2

0 B2

]
+

[
0
A3

]
B−3 [A4, 0]

)

= min

r

[
0 A2

A3 B2

]
, r

 0 A2

0 B2

A4 0

 , r

 0 0 A2

0 A3 B2

A4 −B3 0

− r(B3)


= min

r

[
0 A2

A3 B2

]
, r

[
A2

B2

]
+ r(A4), r

 0 0 A2

0 A3 B2

A4 B3 0

− r(B3)

 .

So that the rank equality r

[
0 A2

A3B
−
3 A4 B2

]
= r(B2) in (v) of the above six equalities holds for all

B−3 if and only if

r

[
0 A2

A3 B2

]
= r(B2) or r

[
A2

B2

]
+ r(A4) = r(B2) or r

 0 0 A2

0 A3 B2

A4 B3 0

 = r(B2) + r(B3), (12)

where the second rank equality means A4 = 0 by noting that r

[
A2

B2

]
≥ r(B2). By (9),

max
B−

3

r

 −A 0 A1

0 A2 B1

A3B
−
3 A4 B2 0

 = max
B−

3

r

−A 0 A1

0 A2 B1

0 B2 0

+

 0
0
A3

B−3 [A4, 0, 0]



= min

r

−A 0 0 A1

0 0 A2 B1

0 A3 B2 0

 , r


−A 0 A1

0 A2 B1

0 B2 0
A4 0 0

 , r


−A 0 0 A1

0 0 A2 B1

0 A3 B2 0
A4 −B3 0 0

− r(B3)


= min

r

A 0 0 A1

0 0 A2 B1

0 A3 B2 0

 , r


A 0 A1

0 A2 B1

0 B2 0
A4 0 0

 , r


A 0 0 A1

0 0 A2 B1

0 A3 B2 0
A4 B3 0 0

− r(B3)

 .

So that the rank equality in (vi) of the above six equalities holds for all B−3 if and only if

r

A 0 0 A1

0 0 A2 B1

0 A3 B2 0

 = r(B1) + r(B2) or r


A 0 A1

0 A2 B1

0 B2 0
A4 0 0

 = r(B1) + r(B2) (13)

or

r


A 0 0 A1

0 0 A2 B1

0 A3 B2 0
A4 B3 0 0

 = r(B1) + r(B2) + r(B3). (14)
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Note from (7) and (8) that

r

A 0 0 A1

0 0 A2 B1

0 A3 B2 0

 ≥ r(A) + r

[
0 A2 B1

A3 B2 0

]
≥ r

[
A2 B1

B2 0

]
≥ r(B1) + r(B2),

r


A 0 A1

0 A2 B1

0 B2 0
A4 0 0

 ≥ r

A 0 A1

0 A2 B1

0 B2 0

 ≥ r(A) + r

[
A2 B1

B2 0

]
≥ r(B1) + r(B2),

r


A 0 A1

0 A2 B1

0 B2 0
A4 0 0

 ≥ r

 0 A2 B1

0 B2 0
A4 0 0

 = r(A4) + r

[
A2 B1

B2 0

]
≥ r(B1) + r(B2).

Hence, the first equality in (13) is equivalent to

A = 0 and r

 0 0 A1

0 A2 B1

A3 B2 0

 = r(B1) + r(B2); (15)

the second equality in (13) implies

A = 0 and A4 = 0. (16)

Combining the conditions in (i), (ii) and (iv) of the proof with (11)–(16) leads to the ten statements
in (c).

Below, the author presents some direct consequences of the above theorem for different choices
of A1, B1, A2, B2, A3, B3,, A4, and A in (5).

Corollary 1. Let A1, B1, A2, B2, A3, B3, and A4 be as given in (5). Then, the following three
statements are equivalent:

(a) The equality A1B
−
1 A2B

−
2 A3B

−
3 A4 = 0 holds for all B−1 , B−2 , and B−3 .

(b) The product A1B
−
1 A2B

−
2 A3B

−
3 A4 is invariant with respect to the choice of B−1 and B−2 , and

B−3 , and A1B
†
1A2B

†
2A3B

†
3A4 = 0.

(c) Any one of the following ten conditions holds

(i) A1 = 0.

(ii) A2 = 0.

(iii) A3 = 0.

(iv) A4 = 0.

(v) r

[
0 A1

A2 B1

]
= r(B1).

(vi) r

[
0 A2

A3 B2

]
= r(B2).

(vii) r

[
0 A3

A4 B3

]
= r(B3).

(viii) r

 0 0 A1

0 A2 B1

A3 B2 0

 = r

[
A2 B1

B2 0

]
= r(B1) + r(B2).

(ix) r

 0 0 A2

0 A3 B2

A4 B3 0

 = r

[
A3 B2

B3 0

]
= r(B2) + r(B3).
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(x) r


0 0 0 A1

0 0 A2 B1

0 A3 B2 0
A4 B3 0 0

 = r

 0 A2 B1

A3 B2 0
B3 0 0

 = r(B1) + r(B2) + r(B3).

Corollary 2. Let B1 ∈ Cm2×m1 , B2 ∈ Cm3×m2 , B3 ∈ Cm4×m3 , and A ∈ Cm2×m4 . Then, the
following three statements are equivalent:

(a) The equality B−1 B−2 B−3 = A holds for all B−1 , B−2 , and B−3 .

(b) The product B−1 B−2 B−3 is invariant with respect to the choice of B−1 and B−2 , and B−3 , and
B−1 B−2 B−3 = A.

(c) r


A 0 0 Im1

0 0 Im2
B1

0 Im3
B2 0

Im4 B3 0 0

 = r(B1) + r(B2) + r(B3).

Corollary 3. Let A1, B1, A2, B2, A3, B3, and A4 be as given in (5), and A ∈ Cm8×m1 . Then,
the following three statements are equivalent:

(a) {A1B
−
1 A2B

−
2 A3B

−
3 A4} ⊆ {A−}, namely, AA1B

−
1 A2B

−
2 A3B

−
3 A4A = A holds for all B−1 ,

B−2 , and B−3 .

(b) A = 0 or r


A 0 0 AA1

0 0 A2 B1

0 A3 B2 0
A4A B3 0 0

 = r(B1) + r(B2) + r(B3).

(c) A = 0 or r

 0 A2 B1

A3 B2 0
B3 0 −A4AA1

 = r(B1) + r(B2) + r(B3)− r(A).

4 Conclusions

Constructions and characterizations of equalities composed of matrices and their generalized in-
verses are basic and classic topics in the current theory of generalized inverses, which include a
diversity of issues for discrimination and consideration. As one of such kind of problems, the au-
thor proposed a family of equalities for products of matrices and their generalized inverses, and
presented various necessary and sufficient conditions for a concrete matrix equality to hold through
the skillful use of various equalities and inequalities for ranks of matrices.

As consequences and applications of the preceding results, the author would like to mention
some further topics regarding the characterization of matrix equalities as follows:

(I) Corollary 3 can be used to derive necessary and sufficient conditions for some concrete
reverse order laws to hold for generalized inverses of multiple matrix products, such as,

{C−B−A−} ⊆ {(ABC)−}, {(CD)−C(BC)−B(AB)−} ⊆ {(ABCD)−},

{(CDE)−CD(BCD)−BC(ABC)−} ⊆ {(ABCDE)−},

etc.
(II) Lemma 4 and Theorem 1 suggest a proper rule of deriving necessary and sufficient conditions

for (4) and (5) to hold by certain rank equalities for block matrices composed by the given matrices.
In view of this fact, it is easy to figure out that such a block matrix associated with (2) is given by

A1 0 · · · 0 (−1)k+1A
B1 A2 · · · 0 0
...

. . .
. . .

...
...

0 0
. . . Ak 0

0 0 · · · Bk Ak+1

 ,
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while necessary and sufficient conditions for (2) to hold can be represented by certain rank equalities
composed of the block matrix and its submatrices.

Moreover, the author believes that more profound and remarkable findings about the matrix
equalities for matrices and their generalized inverses can further be constructed with some effort,
and they will inform as many readers as possible to familiar with some novel and important issues
associated with matrix equalities and to use them to dissect various complex problems in matrix
analysis and applications.
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