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Abstract: The interaction between oceanographic, meteorological, and hydrological factors can re-

sult in an extreme flooding scenario in the low-lying coastal area, called compound flooding (CF) 

events. For instance, rainfall and storm surge (or high river discharge) can be driven by the same 

meteorological, tropical or extra-tropical cyclones, resulting in a CF phenomenon. The trivariate 

distributional framework can significantly explain compound events' statistical behaviour reducing 

the associated high-impact flood risk. Resolving heterogenous dependency of the multidimensional 

CF events by incorporating traditional 3-D symmetric or fully nested Archimedean copula is quite 

complex. The main challenge is to preserve all lower-level dependencies. An approach based on 

decomposing the full multivariate density into simple local building blocks via conditional inde-

pendence called vine or pair-copulas is a much more comprehensive way of approximating the tri-

variate flood dependence structure. In this study, a parametric vine copula of a drawable (D-vine) 

structure is introduced in the trivariate modelling of flooding events with 46 years of observations 

of the west Coast of Canada. This trivariate framework searches dependency by combining the joint 

impact of annual maximum 24-hr rainfall and the highest storm surge and river discharge observed 

within the time ±1 day of the highest rainfall event. The D-vine structures are constructed in three 

alternative ways by permutation of the conditioning variables. The most appropriate D-vine struc-

ture is selected using the fitness test statistics and estimating trivariate joint and conditional joint 

return periods. The investigation confirms that the D-vine copula can effectively define the com-

pound phenomenon's dependency. The failure probability (FP) method is also adopted in assessing 

the trivariate hydrologic risk. It is observed that hydrologic events defined in the trivariate case 

produce higher FP than in the bivariate (or univariate) case. It is also concluded that hydrologic risk 

increases (i) with an increase in the service design life of the hydraulic facilities and (ii) with a de-

crease in return periods. 

Keywords: compound flooding event; vine copula; trivariate joint analysis; joint return period; con-

ditional return period; hydrologic risk 

 

1. Introduction 

Estuaries and coastal lands are commonly considered flood-prone areas where 

coastal and inland flooding events can affect people and create material damage. Low-

lying coastal area flooding can be defined by multiple flood driving mechanisms, such as 

oceanographic (storm surge or storm tide), meteorological (rainfall as a proxy of the direct 

surface runoff, also called pluvial flooding) and hydrological (river discharge or fluvial 

flooding), which may be naturally intercorrelated. These extreme or non-extreme events 

can occur either successively or in close succession, called compound flooding (CF) 

events, resulting in severe consequence (Seneviratne et al., 2012, Zscheischler et al., 2018, 

Paprotny et al., 2018). For instance, common meteorological forcing mechanisms, tropical 

or extra-tropical cyclones (or low atmospheric pressure systems), drive the storm surge 

and rainfall (which might result in high river discharge), resulting in CF events. Several 

compound extreme phenomena have been recorded in the last decade worldwide, such 
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as Hurricane Igor in Canada, 2010 (Pirani and Najafi 2020), Hurricane Florence in the 

United States (U.S.), 2018 (Elliott 2018), Hurricane Harvey in the U.S,, 2017 (Emanuel 

2017), Cyclone Nargis in Myanmar, 2008 (Fritz et al., 2009), Hurricane Katrina in the U.S., 

2005 (Jonkman et al., 2009) etc.  

Rapid urban sprawl and climate change phenomena might further exaggerate the 

severity or risk level of such extreme events in many coastal regions worldwide (Milley et 

al., 2002; Wilby et al., 2008; Suriya and Mudgal, 2012). Climate change contributes to the 

sea-level rise (SLR), which further increases the risk of coastal flooding (or coastal inun-

dation) (Almeida and Mostafavi, 2016). Rising sea levels will cause changes in the magni-

tude and frequency of coastal flooding due to the combined effects of high spring tides, 

storm surges, extreme precipitations, surface waves and increased river discharge. Resio 

and Westerink (2008) pointed out that storm surges can be the primary driver responsible 

for coastal flooding. According to long-term data on natural disasters, only storms cause 

even more losses worldwide than floods, which account for about 40% of all loss-related 

natural catastrophes since 1980 (Munich Re, 2020). On the other side, when storm surge 

mix with other hydro-meteorological events such as fluvial (high river discharge) or plu-

vial (rainfall) flooding, they may result in an extreme coastal flooding event (Zhang et al., 

2013; Bilskie and Hagen, 2018). The potential impact through compounding the joint oc-

currence of different drivers of flooding are examined, for instance, rainfall and storm 

tides (Lian et al., 2013; Zheng et al., 2013),  storm surge and sea-level rise (SLR) (Olbert 

et al., 2017),  high river discharge and coastal water level (WL) (Wahl et al., 2015; Mof-

takhari et al., 2017; Ghanbari et al., 2021),  heavy precipitation or rainfall, surge and 

waves (Bilskie and Hagen, 2018), and rainfall and storm surge (Wu et al., 2018).  

Despite improved flood protection and advancements in flood forecasting and warn-

ing, the coastal regions are still highly threatened by severe flooding. The validity of uni-

variate probability analyses and associated return periods would be questionable in the 

hydrologic risk analysis of CF events. In reality, a compound event is a multidimensional 

phenomenon where the likelihood of the joint occurrence of multiple extreme (or non-

extreme) events will be higher than expected, considering each random vector inde-

pendently. The existing statistical approaches in the risk assessment practices usually ac-

count for the number of extreme joint episodes between the proxy variables of different 

flood hazard types using the multivariate statistical frameworks. Different extreme mod-

els are proposed from the previous studies, such as Coles et al. (1999) (chi 𝜒 and chi-bar 

�̅�), Coles (2001) (component-wise block maxima, point process, and threshold excess 

model), Boldi and Davison (2007) (semiparametric model based on the mixture of Di-

richlet distributions), Cooley et al., (2010) (pairwise beta distribution) and references 

therein. Capturing the mutual dependence structure among the multiple hydrologic char-

acteristics under the classical statistical approach like Pearson's correlation coefficient ('ρ') 

or Kendall's tau coefficient ('τ'), would be ineffective in characterizing co-movement 

tendencies of extreme vectors (Poulin et al. 2007).  

In the past decades, different traditional bivariate and trivariate parametric probabil-

ity distributions have been introduced to model extreme hydrologic events (Singh and 

Singh 1991; Yue 2001; Yue and Rasmussen 2002; Nadarajah and Shiau 2005 and references 

therein). These parametric distributions often exhibit several statistical constraints and 

limitations during joint dependence measures (Nelsen 2006). Recently, the copula func-

tion has been recognized as a highly flexible multivariate tool and widely accepted in 

modelling extreme hydrologic events (De Michele and Salvadori, 2003; Salvadori and De 

Michele, 2004; Zhang and Singh, 2006; Karmakar and Simonovic, 2009; Latif and Firuza, 

2021 and reference therein). The copula function can accommodate a broader range of 

dependency (both linear and nonlinear) measuring capabilities and allow the modelling 

of univariate marginal distribution behaviour and their joint dependence structure sepa-

rately (Nelsen 2006). Recently, the copula function gained more attention in modelling 

compound extremes (Lian et al., 2013; Wahl et al., 2015; Moftakhari et al., 2017; Bevacqua 

et al., 2017; Paprotny et al., 2018; Xu et al., 2019 and references therein). Most of the copulas 

approaches are limited to the bivariate joint case. Thus, 2-D parametric family copulas are 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 June 2022                   doi:10.20944/preprints202206.0259.v1

https://doi.org/10.20944/preprints202206.0259.v1


 

 

frequently used in the joint dependency modelling of several flood driving factors like, 

for example, storm surge (or storm tide) and rainfall, or storm surge (or storm tide) and 

river discharge. The CF events can exhibit complex mutual concurrency between the in-

teracting variables. They can be characterized more comprehensively by simultaneously 

including the multiple factors (storm surges, rainfall, river discharge) instead of visualiz-

ing the pairwise joint dependence structures. A trivariate (or higher dimensional) joint 

distribution framework is rarely used in hydrologic risk assessments associated with the 

CF events. Only limited literature reports the use of different 3-D copula frameworks in 

the trivariate joint modelling of flood, drought or rainfall characteristics, such as Serinaldi 

and Grimaldi (2007); Genest et al., (2007); Reddy and Ganguli (2013); Fan and Zheng 

(2016) and references therein.  

In the trivariate joint modelling, the applicability of traditional symmetric Archime-

dean copulas (3-D Frank or Gumbel copula) would be impractical in preserving all lower-

level dependencies among multiple intercorrelated random pairs (Kao and Govindaraju 

2008). In reality, the multidimensional CF event can exhibit heterogeneous dependencies 

among variables of interest. In this 3-D copula framework, all the mutual concurrencies 

must be averaged to the same value where the selected copula utilizes a single depend-

ence parameter to approximate their joint dependence structure. These symmetric Archi-

medean copulas can be an appropriate choice when all the random pair's correlation struc-

tures are identical. However, they would not be an appropriate choice for the CF events 

due to complex dependence patterns between multiple extreme or non-extreme factors. 

In addition, the performance of meta-elliptical or Gaussian copula in the trivariate joint 

analysis would be questionable and have limitations under low probabilities unless the 

asymptotic properties of data are justified through solid arguments. In reality, the Gauss-

ian (or Normal) copula exhibits zero upper or lower tail dependence. Thus it would not 

be able to capture extreme tail dependence behaviour at the upper-right or lower-left 

quadrant tail of the given multivariate observations. To overcome the above-raised mod-

elling challenges, asymmetric or fully nested Archimedean (FNA) copulas would be a bet-

ter choice due to the multiple parametric joint asymmetric functions involved (Whelan 

2004; Savu and Trede 2010; Hofert and Pham 2013; Reddy and Ganguli 2013). Compared 

to the symmetric 3-D copulas, the FNA models can capture different inter-dependencies 

between and within the other groups of extreme variables and provide better flexibility 

in building a higher dimensional structure.  

From the above arguments, it is inferred that justifiable preservation of all the lower-

level dependencies is often challenging in the higher dimensional multivariate or copula 

joint simulations, especially when a complex pattern of dependencies is exhibited. Due to 

the higher degree of randomness and complex dependence within compound events, re-

solving extreme multidimensional dependence structure via the copulas mentioned above 

(3-D symmetric and asymmetric or FNA) is complex and lacks flexibility. The applicability 

of the FNA copula framework is only practical when two correlation structures are near 

or equal and smaller than the third correlation structure (Reddy and Ganguli 2013) and 

only limited to the positive range. As the dimension increases, only a narrow range of 

negative dependencies are permissible in the asymmetric FNA framework (Joe 1997). To 

overcome all the above-raised statistical issues, the vine or pair-copula construction (PCC) 

can be a practical and highly flexible approach to modelling high dimension extreme 

events (Bedford and Cook 2001, 2002; Aas and Berg 2009; Aas et al. 2009). The vine copula 

methodology can provide a more flexible dependence structure and a more comprehen-

sive way of approximating joint structure by mixing multiple 2-D (bivariate) copulas in a 

stage-wise hierarchical nesting procedure. Due to conditional mixing via the stage-wise 

hierarchical nesting procedure, the pair-copula framework can facilitate more effective 

and flexible modelling environments by eliminating the restriction of assigning a fixed 

multivariate copula structure to all variables of interest. In the recent demonstration, few 

studies incorporated vine copula in modelling flood characteristics (Song and Kang, 2011; 

Graler et al., 2013; Daneshkhan et al., 2016; Tosunoglu et al., 2020), drought (Saghafian 

and Mehdikhani, 2014), and rainfall modelling (Gyasi-Agyei and Melching 2012; 
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Vernieuwe et al. 2015). The incorporation of the vine copula framework in the modelling 

of extreme compound phenomena is rare worldwide and has never been used in  Can-

ada. For instance, Bevacqua et al. (2017) first included the vine copula framework in the 

joint distribution modelling of the compound events to analyze the flooding events in 

Ravenna, Italy. In this demonstration, the conditional joint PDFs of river discharge and 

sea levels (given meteorological predictors) were estimated to assess compound flood 

risk. In the recent application, Jane et al. (2020) introduced the vine methodology in the 

trivariate joint distribution modelling of rainfall, ocean-side water level and groundwater 

level observations in South Florida, USA. 

According to Public Safety Canada (2021), flooding can be considered one of the cost-

liest natural disasters in Canada. Flooding hurts the economy and causes infrastructure 

failures, loss of life, and damage to the ecological systems. Climate change significantly 

increases the risk of extreme events across Canada (Lemmen and Warren, 2016). For in-

stance, both east and west Canada's coasts have been experiencing an SLR throughout this 

century (Atkinson et al., 2016). Similarly, according to the Environment Ministry of British 

Columbia (2013), the sea level is expected to increase by about half a meter by the end of 

2050 and one meter by 2100. Most British Columbia (B.C.) residents live within a few kil-

ometers of the province's coastline, with more than 60%  living in the Lower Mainland, 

including Metro Vancouver. This rising sea-level phenomenon will increase the risk of 

extreme water levels, resulting in coastal extreme flood events, especially for the low-lying 

communities of the B.C. coasts.   

To the best of the author's knowledge, the studies of the compound flooding (CF) 

extremes are not available for the Canadian estuarine or coastal areas. The present study 

is a part of the research project that aims to develop a higher dimensional (trivariate) prob-

abilistic framework for modelling the risk of flooding events in Canada's coastal regions 

(west and east). Each methodological finding is documented in a separate manuscript. 

The one paper under review (Latif and Simonovic, 2022) tested the adequacy of asymmet-

ric or fully nested Archimedean (FNA) copulas constructed under parametric settings.  

This manuscript presents new work by introducing vine copula-based methodology. It 

also reveals a more comprehensive approach to uncertainty analysis and precise joint den-

sity structure approximation than the asymmetric or FNA copulas framework. Canada's 

coastal areas are being impacted by changing climate continuously. The climate change 

impacts will continue to increase in the future, affecting the severity and frequency of 

extreme precipitation, storms of greater intensity, and sea levels leading to an increased 

likelihood of flood risks. A study by Pirani and Najafi (2020) pointed out the increasing 

risk of compound flooding over Canada's Pacific and Atlantic coasts due to a combination 

of streamflow, precipitation and total water level extremes.  

The primary goal of the presented work is to develop a trivariate joint distribution 

framework in the hydrologic risk assessments of compound flooding events for Canada's 

coastal area. This study also highlights the importance of trivariate joint and conditional 

joint return periods and failure probability (FP) to assess the risk of failure associate with 

trivariate (and bivariate) return periods in performing the multivariate hydrologic risk 

assessments. The study goal is addressed by: (1) the development of a trivariate probabil-

ity distribution framework by incorporating the 3-D vine copula framework and compar-

ing its performance with 3-D fully nested Archimedean (FNA) copula in compounding 

the joint occurrence of rainfall, storm surges and river discharge observations; and (2) the 

estimation of the trivariate joint and conditional joint return periods and failure probabil-

ity statistics using the best-fitted trivariate dependence model in the assessments of hy-

drologic risk associated with compound flooding events. The present work's primary 

methodological significance is constructing the n-dimensional vine copula. The previous 

work (Daneshkhan et al. (2016) and Vernieuwe et al. (2015)) used the strength of depend-

ency between given random pairs as the guidance for selecting and locating the random 

variable to be used as a conditioning variable in the D-vine structure.  For example, sup-

pose the strongest dependencies are exhibited between random pairs (X, Y) and (Z, Y). In 

that case, variable Y must be placed between the other two variables in constructing the 
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drawable or D-vine structure. In this paper, we presented a much more practical approach 

to developing vine structure first, placing each random variable at a centre ( conditioning 

variable) separately and then identifying the best 3-D vine structure to develop the mul-

tivariate dependence structure. In addition, this paper explores the applicability of failure 

probability to the trivariate hydrologic risk analysis of rainfall, storm surge and river dis-

charge. To the best of the authors ' knowledge, this work was never done before, neither 

on Canada’s coast nor worldwide. In previous work, for example, Moftakhari et al. (2017) 

used failure probability to assess bivariate coastal flood risk between fluvial flow and 

coastal water (also future sea-level rise). Similarly, Xu et al. (2019) incorporated FP statis-

tics to perform bivariate hydrologic risk between rainfall and river discharge events and 

reference therein. The following Section of the paper presents the methodological frame-

work developed in this research. Section 3 of the paper describes the application of the 

developed 3-D vine copula framework to a case study of Canada’s west coast to investi-

gate the compound effect of rainfall, storm surge and river discharge observations on 

flood risk. The research summary and conclusions are presented in Section 4. All the esti-

mated trivariate joint and conditional joint return periods and FP statistics can be used in 

the water infrastructure design and management in the coastal areas.  

2. Methodological framework 

2.1. Trivariate joint probability analysis via a fully nested copula framework 

The hydrological risk assessments of the CF events in the low-lying coastal region (or 

estuary) are essential for disaster risk reduction and resilience building. The complex and 

heterogeneous dependency in the CF events can demand a highly flexible multivariate 

framework that can comprehensively approximate the flood dependence structure's prob-

ability density, and corresponding measures are capable of practical flood hazard assess-

ments.  Figure 1 illustrates the methodological work steps followed in the present study. 

The present study investigates the modelling adequacy of 3-D vine or pair-copula 

construction (PCC) in the trivariate joint distribution analysis of storm surge, rainfall and 

river discharge observations in the assessments of compound flood risk on the west coast 

of Canada. The performance of the incorporated 3-D vine copula framework is compared 

with some frequently used asymmetric (or FNA) versions of Archimedean copulas, such 

as Clayton, Frank, and Gumbel-Hougaard (G-H) (refer to Supplementary Table (ST 1)). 

Instead of assigning a fixed trivariate structure in the approximation of joint dependence 

structure, the vine copula framework comprises the most justifiable 2-D copulas fitted to 

each random pair in a stage-wise hierarchical nesting approach. Statistically, this model-

ling approach could be more effective in tackling heterogeneous dependency of multidi-

mensional compound events. 
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Figure 1. Flowchart of the trivariate joint analysis using D-vine copula framework. 

Saklar (1959) introduces the copula function concept. This highly flexible multivari-

ate statistical tool can capture linear and nonlinear mutual concurrency between the var-

iable of interest and model univariate marginals distribution separately from their joint 

dependence structure (Nelsen 2006). The bivariate (2-D) (or multivariate) joint cumulative 

distribution functions (CDFs) F(x1, x2) (or F(x1, x2, x3, … , xn)) of random observations 
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(X1, X2) (or (X1, X2, X3, … , Xn))  with continuous univariate marginal distribution functions 

(F1(x1), F2(x2)) (or (F1(x1), F2(x2), F3(x3), … , Fn(xn) can be expressed as: 

F(x1, x2) = Cθ(F1(x1), F2(x2);  θ) (1) 

F(x1, x2, x3, … , xn) = C′θ(F1(x1), F2(x2), F3(x3), … … . , Fn(xn);  θ) (2) 

where  Cθ and Cθ
′  are the two-dimension (2-D) and n-dimension copula functions. θ is 

the copula dependence parameters. Also, the bivariate (2-D) Archimedean copula can be 

mathematically expressed as : 

C(x1, x2) = ∅−1(∅(x1), ∅(x2)), for x1, x1  ∈ [0,1] (3) 

Where ∅(∙) and ∅−1 are the selected Archimedean copula's generator function and their 

inverse.  

The 3-D vine copula framework development requires fitting multiple 2-D copulas 

in the D-vine structure's trees ( Tree-1 and Tree-2) (refer to the following sub-section 2.2 

for details and their statistical approach). Fifteen different 2-D parametric copulas are 

tested as candidate functions in modelling the bivariate joint dependence structure of the 

flood variables; refer to Supplementary Table (ST 2). The dependence parameters of the 

fitted 2-D copulas are estimated using the maximum pseudo-likelihood (MPL) estimation 

procedure (Reddy and Ganguli 2012)  

The MPL estimator estimates copula dependence parameters using the rank-based 

empirical distribution approach without depending on the marginal distribution of the 

targeted random observation (Klein et al., 2010; Kojadinovic and Yan 2010).  

The FNA structure comprises two or more ordinary two-dimension or higher-dimen-

sional Archimedean copulas by another Archimedean copula, also called parent Archi-

medean copula (Savu and Trede 2010; Reddy and Ganguli 2013). Mathematically, the 3-D 

FNA structure can be expressed as: 

C (F𝑋1
(x1), F𝑋2

(x2), F𝑋3
(x3)) = φ2(φ2

−1 ∘ φ1[φ1
−1(x1) + φ1

−1(x2)] + φ2
−1(x3)) = C2[C1(x1, x2), x3) (4) 

Where the first derivative of 𝜑2
−1 ∘ 𝜑1 is completely monotonic where 𝜑1 and 𝜑2 are 

Laplace transforms, and symbol ' ∘ ′  represents the composite function. C2 and C1  in 

Equation (4) are the inner and outer copula of the fitted 3-D FNA copulas. The random 

pair (x1, x2) has the bivariate marginal distribution in the form of Equation (1) with a La-

place transform 𝜑1 . Similarly, other random pairs (x2, x3) and (x1, x3) have the bivari-

ate margins in the form of Equation (1) with Laplace transform 𝜑2.  

The higher dimensional copula joint simulation via an asymmetric copula framework 

is complex. It might not be rich enough to accommodate all possible mutual concurrency 

among the variables of interest. Also, the applicability of the FNA copula in the trivariate 

joint modelling is only valid or meaningful if the correlation between the first two random 

variables is higher than between the first and third and second and third variable of inter-

est (Savu and Trede 2010). Venter et al. (2007) study already pointed out that it is chal-

lenging to approximate most multivariate copula joint densities with an increase in their 

dimension. In such circumstances, the pair copula construction (or PCC) can facilitate a 

flexible environment in building multidimensional extreme episodes that do not have lim-

itations. 

2.2. A 3-D vine copula framework for the trivariate analysis 

The vine or pair-copula-based multivariate joint simulation originates from the 

works by Joe (1997), and the underlying structural theory was extended by Bedford and 

Cooke (2001). The critical idea of vine copula-based methodology is to decompose the 

joint density function into a cascade of the local building blocks of the bivariate (2-D) cop-

ula functions and their conditional and unconditional distribution functions (Bedford and 

Cook 2002; Aas and Berg 2009; Graler et al. 2013; Czado et al. 2013). In other words, a vine 
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copula mixes (conditional) bivariate copulas in a stagewise hierarchical nesting procedure 

to build a high-dimensional (n-dimensional) multivariate joint density structure. Due to 

conditional mixing, the vine framework facilitates much more effective and flexible mod-

elling environments. It can provide a more flexible dependence structure and a compre-

hensive way of approximating the joint dependency by mixing multiple 2-D copulas in a 

stage-wise nesting procedure (Graler et al., 2013; Daneshkhan et al., 2016).  

Under a regular vine framework, the distinct varieties of pair-copula decomposition 

are canonical or C-vine and drawable or D-vine distribution. They represent the two 

modes of parametric regular vine construction (Kurowicka and Cooke 2006; Czado et al. 

2013). The previous study observed that the D-vine copula's applicability is widespread 

because of its higher flexibility than the C-vine structure (Aas et al., 2009; Daneshkhan et 

al., 2016). In reality, the applicability of the D-vine structure seems more effective if we 

want to consider all mutual intercorrelations between the targeted random variables one 

after the other. Nevertheless, there is no difference between C- and D-vine frameworks 

when considering a 3-D (or trivariate) joint distribution framework (Graler et al., 2013; 

Tosunglou et al., 2020). The construction of an n-dimensional vine copula framework can 

demand (𝑛(𝑛 − 1) 2⁄ ) 2-D (bivariate) copulas and have (n-1) tree levels. Figure 2 illus-

trates the general structure of constructing a three-dimensional D-vine copula joint anal-

ysis.  

 

Figure 2. Schematic diagram of the parametric D-vine copula construction in modelling trivariate 

flood dependence structure [ Note: the above diagram only illustrates river discharge (RD) series as 

a conditioning variable (centred variable in the above D-vine structure). The other D-vine structures 

can be obtained by placing rainfall or storm surge as a conditioning variable. 

Mathematically, the D-vine copula in the 3-D joint distribution modelling can be ex-

pressed as: 

f(x, y, z) = f(x). f(y|x) ∙ f(z|x, y) (5) 

Where 

f(y|x) =
f(x, y)

f(x)
= cxy(F(x), F(y)) ∙ f(y);  f(z|x, y) =

f(y, z|x)
f(y|x)⁄

=                                                 cyz|x(F(y|x), F(z|x)) ∙ cxz(F(x), F(z)) ∙ f(z) 
(6) 

where 𝑓(𝑦|𝑥) and 𝑓(𝑧|𝑥, 𝑦) are the conditional cumulative densities that can be esti-

mated using the pair-copula densities. 

The present study targeted three flood contributing variables (𝑛 = 3), rainfall, storm 

surge, and river discharge, in building a 3-D vine copula framework to model compound 

flooding (CF) events. The present 3-D vine simulation can comprise two trees (Tree-1 and 

Tree-2), five nodes, and three edges (Figure 2). This D-vine copula simulation can require 
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three best-fitted 2-D parametric copulas to model the trivariate dependence structure via 

stage-wise hierarchical nesting. Referring to Figure 2, the first tree (Tree 1) comprises two 

best-fitted 2-D copulas, say CR RD and CSS RD, in capturing the joint dependence structure 

between each random pair (  between flood pairs rainfall (R)-storm surges (SS) and also 

storm surges (SS) - river discharge (RD)). The graphical illustration in Figure 2 considered 

river discharge (RD) as a conditioning variable (positioning at the centre of the D-vine 

structure). The selected best-fitted 2-D copulas in Tree 1 are employed further in deriving 

the conditional cumulative distribution functions (CCDFs), also called the h-function. 

CCDFs are estimated by taking the partial derivative of the best-fitted 2-D copula with 

respect to  the conditioning variable and can be evaluated by: 

FR|RD(r, rd) = hRRD =  
∂CR RD(F(R), F(RD))

∂F(RD)
 & FSS|RD(𝑠𝑠, 𝑟𝑑) = hSSRD =  

∂CSS RD(F(SS), F(RD))

∂F(RD)
 (7) 

Also, the generalized form of Equation 7, for any trivariate random observations (say 

X, Z, Y), where variable Z is assumed conditioning variable, can be expressed as: 

FX|Z(𝑥, 𝑧) = hXZ =  
∂CX Z(F(X), F(Z))

∂F(Z)
 & FY|Z(𝑦, 𝑧) = hYZ =  

∂CY Z(F(Y), F(Z))

∂F(Z)
 (8) 

The estimated CCDFs obtained from Tree-1 (using Equation 7) become the input in 

defining the best-fitted 2-D copula 𝐶𝑅 𝑆𝑆| 𝑅𝐷, in the second tree (Tree-2). Finally, the full 

density structure of the 3-D copula is estimated by 

CR RD SS(r, rd, ss) = CR SS|RD(FR|RD(r, rd), FSS|RD(ss, rd))  ⋅ CR RD ⋅ CSS RD (9) 

Also, the generalized form of Equation 9, in building full density trivariate structure 

for the variable sequences (say, X-Z-Y) (where variable Z is assumed conditioning varia-

ble, can be expressed as: 

CX Z Y(x, z, y) = CX Y|Z(FX\Z(x, z), FY|Z(y, z))  ⋅ CX Z ⋅ CY Z (10) 

In this study, D-vine copula structures are developed in three alternative ways or 

cases, each by permutation of the conditioning variables, refer to Figures 3 (a-c). In the 

existing approach to constructing a vine copula framework, the conditioning variable, 

centred at the middle location of the D-vine structure, must be selected based on the 

strength of dependencies between the variables of interest. In the presented work we offer  

more practical solution of considering each variable as a conditioning variable separately 

in generating multiple vine structures and then determining the best-fitted D-vine struc-

ture that depends on the estimated fitness test statistics. This approach provides a better 

way of constructing a vine structure. In the first case of developing vine structure, case-1, 

the D-vine framework is constructed by placing the river discharge (RD) observations 

(variable 3) in the centre, also called the conditioning variable (refer to Figure 3 (a)). The 

storm surge (variable 2) and rainfall (variable 1) are conditioning variables in the second 

(Case-2) and third (Case-3) case of constructing D-vine copula structures (refer to Figures 

3 (b) and (c)). The D-vine frameworks are built for three cases using  Equations 5-8. The 

best-fitted D-vine structure is selected based on the goodness-of-fit (GOF) test statistics. 

Finally, the performance of the selected best-fitted D-vine structure is compared with the 

fitted 3-D asymmetric or FNA copulas (refer to Supplementary Table (ST 1)) in defining 

the trivariate dependence structure of compound events. 
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Figure 3. Schematic diagram of different ways of constructing the D-vine copula structure in this 

study (a) Case 1-river discharge (variable 3) as a conditioning variable (b) Case 2- storm surge (var-

iable 2) as a conditioning variable (c) Case 3- rainfall series (variable 1) as a conditioning variable. 

2.3. Generating random observations from the selected D-vine copula structure 

The present study is based on a random triplet of flood observations to model 3-D 

CF events. In the vine copula analysis, the theory of the conditional mixture copula ap-

proach is employed to simulate random samples of any size or length, as already pointed 

in the literature (De Michele et al., 2007; Aas et al., 2009; Aas and Berg 2009; Vernieuwe et 

al., 2015). The general algorithm for sampling n dependent uniform,  [0, 1] variables is 

identical for the D- or C-vine copula structure. Let us consider a three-dimensional case 

(𝑑 = 3) to generate a random triplet observation (m1, m2, m3) out of the 3-D conditional 

mixture copula (or 3-D vine structure),   with conditioning variables (M1 = m1, M2 =

m2, M3 = m3)  uniformly distributed in [0, 1]. A random samples (𝑠1, 𝑠2, 𝑠3) which are 

uniformly distributed on [0, 1] should be generated first from (𝑆1, 𝑆2, 𝑆3). The following 

steps are used in the implementation process: 

Step 1: Estimating the first random variable, m1 = s1 

Step 2: Estimating the second random variable, m2 = K2|1
−1 (s2|m1) , where 

K2|1(m2|m1) =
∂C12(m1,m2)

∂m1
 

Step 3: Estimating the third random variable, m3 = K3|12
−1 (s3|m1, m2) , where 

K3|21(m3|m1, m2) =         

∂2

∂m1 ∂m2
C123(m1,m2,m3)

∂2

∂m1 ∂m2
C12(m1,m2)

 

Step 4: Finally, the corresponding value of the flood characteristics (   rainfall (R), 

storm surge  (SS) and river discharges (RD))  are estimated by taking the inverse of the 
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univariate marginal cumulative distribution function, F−1(m1) = Simulated Rainfall (R) 

observations; F−1(m2) = Simulated storm surge (SS) observation; F−1(m3) = Simulated 

river discharge (RD) observations. 

3. Application 

3.1. Study area and delineation of compound flooding characteristics  

The multivariate analysis of the CF events often demands a flexible statistical ap-

proach to perform the uncertainty analysis better and with higher precision in their joint 

density approximation because of heterogeneous dependency between the variables of 

interest. The vine copula-based joint distribution analysis can facilitate modelling higher 

dimensional extreme events much more comprehensively than the traditional multivari-

ate probabilistic approach (FNA copulas). This study introduces the vine copula frame-

work in the trivariate analysis to assess the risk of CF events on the west Canada coast. 

The west coast parts of Vancouver, within low-lying regions near the Pacific Ocean and 

Fraser River, are highly vulnerable to coastal and river flooding. The area often experi-

ences mature and large extra-tropical storm systems that often stall when encountering 

the coast mountains, creating the potential for prolonged impact. Near the mouth of the 

Fraser River, the occurrence of extremely high tides along with storms can cause flood 

conditions too. The Fraser River is located south of the Metro Vancouver, BC. It is the 

longest river in this province. Its annual discharge at its mouth is about 3,550 m3/sec, 

flowing for 1,375 km and finally draining into the Strait of Georgia.  

In extreme multivariate modelling, annual (maxima) (AM) series or block (annual) 

maxima and peak over threshold (POT) are two widely used approaches for constructing 

a probabilistic framework (Hosking 1987; Bras 1990). The event-based  AM series defines 

the extreme sample at an annual scale for a specified study location. At first, the observed 

coastal water level (CWL) or sea-level observations are collected at the New Westminster 

tidal gauge station (tidal gauge station id 7654, 49.2°N Lat and 122.91° W Long) and ob-

tained from the Fisheries and Oceans Canada (https://tides.gc.ca/eng/data) from 1970 to 

2018. The CWL data is collected at chart datum (CD), and geolocation is Fraser River. On 

the other side, the Canadian Hydrographic Service (CHS) provides predicted astronomi-

cal high tide data. The storm surge values are then calculated by subtracting the high tide 

value from the CWL data for each calendar year. Estimating storm surges requires proper 

time matching between predicted high tides and CWL data. The calculated storm surge 

values are either positive or negative depending upon whether the observed CWL is be-

low or above the high tide value.  

The rainfall data is collected at the Haney UBC RF Admin gauge station (geograph-

ical coordinates 49°15′52.1′′N Lat and 122°34′400′′ W Long) for the same calendar year, 

where the selection of rain gauge station is solely based on proximity within a radial dis-

tance of 50 km from the targeted tidal gauge station. The streamflow gauge station is also 

selected using the same approach. The daily streamflow discharge observation are col-

lected at the gauge station Fraser River at Hope (geographical coordinates 49°23′09′′N 

Lat and 121°27′15′′W Long) and provided by the Environment and Climate Change 

Canada (https://wateroffice.ec.gc.ca/search/historical_e.html,  last accessed June 15, 

2022). 

First, the annual maximum 24-hr rainfall series are defined using daily-basis 24-hr 

rainfall observations. After transforming the rainfall data into block (annual) maxima, the 

river discharge and storm surge values are identified within a time lag of ±1 day from 

when the rainfall attained their maximum values. The descriptive statistics of the ex-

tracted triplet flood characteristics are provided in the Supplementary Table (ST 3). Sup-

plementary Figures SF 1 (a-c) illustrates some univariate plots, including histogram plot, 

box plot and normal Q-Q (quantiles-quantiles) plot of extracted flood characteristics, an-

nual maximum 24-hr rainfall (R), maximum storm surge (Time interval = ±1 day) (SS) 

and maximum river discharge (time interval = ±1 day) (RD). 
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3.2. Marginal behaviour of the targeted flood characteristics  

Test for the serial correlation (or autocorrelation), monotonic time-trend, and homo-

geneity within individual time series of flood characteristics is a mandatory pre-requisite 

before launching into the univariate or multivariate distribution analyses. Ljung and Box 

(1978) test, based on hypothesis testing called Q-statistics, is used to test the presence of 

serial correlation (Daneshkhan et al., 2016). The estimated results of the Q-statistics for 

different lag size is listed in Supplementary Table (ST 4). It is found that all the three-flood 

variables exhibited zero autocorrelation (acceptance of the null hypothesis 𝐻𝑜). Supple-

mentary Figure (SF 2) shows the autocorrelation function (ACF) and partial ACF plots of 

the targeted flood variables. Similarly, time-varying consequences within individual flood 

series are examined using the nonparametric Mann-Kendall (M-K) test (Mann 1945; Ken-

dall 1975; Hameed 2008) and a modified M-K test (Hameed and Rao 1998; Tosunoglu and 

Kisi 2017) (refer to Supplementary Table (ST 5)). On the other side, the test for homogene-

ity is performed to examine if there is a time when a change occurs within individual flood 

characteristics. For this, four different tests are used, such as Pettitt's test (Pettitt 1979), 

SNHT (Standard Normal Homogeneity Test) (Alexandersson 1986), Buishand's test 

(Buishand 1982), and von Neumann's ratio test (Jaiswal 2015). The results of homogeneity 

tests are presented in Supplementary Table (ST 6). Based on the results (refer to ST 5 and 

ST 6), it is observed that both rainfall and river discharge observations exhibit time-invar-

iant behaviour (no significant trends are identified, acceptance of the null hypothesis Ho) 

and have homogenous behaviour (time-series is homogenous between two given times). 

On the other side, the storm surge exhibits time-varying behaviour and is non-homoge-

nous at the significance level of 0.05 or 5% (refer to ST 5 and ST 6). Supplementary Figure 

(SF 3) shows the selected flood variables' time series plot, indicating non-homogenous 

behaviour within storm surge observations. Therefore, pre-whitening is required to re-

move the time-trend or detrend the storm surge observations (see Supplementary Figure 

SF 4) and then use them in the univariate and multivariate modelling along with other 

selected flood variables, rainfall and river discharge. 

Frequently used 1-D parametric distributions are tested in modelling univariate mar-

ginals of the flood characteristics (refer to Supplementary Table (ST 7)). The parameters 

of the fitted distributions are estimated using the maximum likelihood estimation (MLE) 

procedure. The performance of the best-fitted univariate functions is tested using the Kol-

mogorov-Smirnov (K-S) test statistics (Xu et al., 2015), Anderson-Darling (A-D) test (An-

derson and Darling 1954), and Cramer-von Mises (CvM) criterion (Cramer 1928; von 

Mises 1928) (refer to Supplementary Table ST 8). It is concluded that GEV, normal and 

GEV distribution are identified as the best fitted for defining the univariate marginal dis-

tribution of annual maximum 24-hr rainfall, maximum storm surge (Time interval = ±1 

day) and maximum river discharge (±1 day) series ( selected distributions have a mini-

mum value of K-S test, A-D test and CvM test statistics). The graphical visual inspection 

is also carried out using the probability density function (PDF) plot, cumulative distribu-

tion functions (CDF) plot, probability-probability (P-P) plot and quantile-quantile (Q-Q) 

plot of the fitted candidate functions for each flood variable (refer to Supplementary Fig-

ures (SF 5(a-c))). It is concluded that the selected 1-D probability function for each flood 

variable via an analytical approach supports the qualitative visual inspection. 

3.3. Incorporating vine copula in the trivariate flood dependence structure 

3.3.1. Approximating bivariate joint dependence structure via 2-D copulas  

The first analysis step in building a multivariate distribution is to examine the de-

pendency strength between the variables of interest. Both the parametric, Pearson's linear 

correlation (r), and nonparametric rank-based correlation measures, Kendall's tau (𝜏) and 

Spearman's rho (ρ) correlation coefficient (Klein et al., 2011), are used to measure the de-

gree of mutual concurrency. Table 1 presented the estimated correlation measured at a 

significance level of 5% (0.05) (confidence interval is 95% (0.95)). A positive correlation is 

exhibited between the variable of interest. Besides the analytical approach, the graphical-
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based visual inspection is performed to examine dependency using the 3-D scatterplot 

(Supplementary Figure (SF 6)), 2-D chi-plot (Fisher and Switzer 2001) (Supplementary 

Figures (SF 7(a-c))), and 2-D Kendall's (K)-plot (Genest and Boies 2003) (referred to Sup-

plementary Figures (SF 8 (a-c))). In reality, a chi-plot is a scatterplot of the random pairs 

(𝜆𝑖𝜒𝑖) that uses data ranks and 𝜆𝑖  a value which measures the distance of bivariate ob-

servations from the centre of the data within a range of [-1, 1]. In the case of a positively 

(or negatively) correlated random variables, the value of  𝜆𝑖 is positive (or negative). An-

other measuring factor of the chi-plot is the control limit 𝜒𝑖 ,  (𝜒 = ± 𝑐𝑝 √𝑛⁄ ). When all 

random variables are inside this control limit region, they must reveal independent be-

haviour. In Kendall's plot (K-plot), the degree of mutual concurrency between random 

pairs is directly proportional to its deviation from the central diagonal region ( close to 

45° angle) of the K-plot (refer to SF 8 (a-c)). 

Table 1. Measures of dependency strength between flood characteristics. 

Dependency measure 

statistics 

Compound flood variables 

Annual maximum 24-hr 

rainfall-Maximum storm 

surge (Time interval = 

±1 days) 

Maximum storm surge 

(Time interval = ±1 days) 

– Maximum river 

discharge (Time interval = 

±1 days) 

Annual maximum 24-hr 

rainfall-Maximum river 

discharge (Time interval = 

±1 days) 

Pearson 0.301 0.469 0.118 

Kendall 0.208 0.341 0.094 

Spearman 0.297 0.504 0.122 

Note: The correlation coefficients are measured at a significance level of 5% or 95% confidence interval. The 

computed p-value of all the above correlation measures is less than 0.05, i.e., significance correlation exhibited 

between variable of interest 

 

In this study, fifteen different parametric class 2-D copulas are tested, such as 1-pa-

rameter Archimedean class ( Frank, Clayton, Joe, Gumbel-Hougaard), mixed Archime-

dean copulas ( BB1 (mixture of Clayton-Gumbel), BB6 (mixture of Joe-Gumbel), BB7 (mix-

ture of Joe-Clayton), BB8 (mixture of Joe-Frank)), rotated version of Archimedean copula 

by 180 degrees ( survival Clayton, rotated Clayton by 180 degrees), survival Joe (rotated 

Joe by 180 degrees), survival Gumbel (rotated Gumbel by 180 degrees)), rotated version 

of mixed Archimedean copulas ( survival BB1-rotated BB1 by 180 degrees), survival BB6 

(rotated BB6 by 180 degrees), survival BB7 (rotated BB7 by 180 degrees) and survival BB8 

(rotated BB8 by 180 degrees)) (Nelsen 2006; Constantino et al., 2008; Tang et al., 2015; Li 

et al., 2016). The above-selected 2-D copulas define the bivariate joint dependence struc-

ture of selected flood pairs, rainfall-storm surge, storm surge-river discharge, and rainfall-

river discharge. The copulas dependence parameters are estimated using maximum 

pseudo-likelihood (MPL) estimators. The estimated 2-D copulas dependence parameters 

are listed in Supplementary TableS (STs 9 (a-c)). 

The adequacy of the best-fitted 2-D copulas fitted to each flood pair is tested using 

the Cramer-von Mises (CvM) test statistics (Genest and Rémillard, 2008; Genest et al., 

2009). The parametric bootstrap sampling procedure is adopted that uses Cramer-von 

Mises functional test statistic 𝑆𝑛, with bootstrap sample N = 1000, where the acceptance 

or rejection depends upon the estimated 𝑆𝑛, statistics and their associated p-values (must 

be greater than 0.05)(refer to ST 9 (a-c)). Minimum the value of test statistics 𝑆𝑛 must 

indicate a better fit (the minimum gap between theoretical and empirical copula). Investi-

gation reveals that BB7 copula is selected as the best-fitted for flood pair (rainfall-storm 
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surge), Gumbel-Hougaard (G-H) for flood pair (storm surge-river discharge) and Survival 

BB7 for flood pair (rainfall-river discharge). To cross-validate the performance of the se-

lected 2-D copulas in capturing extreme behaviour, the tail dependence assessments are 

performed (refer to Supplementary Table (ST 10)). They are often essential in the fre-

quency analysis of hydrologic events (Poulin et al., 2007). In this regard, the value of the 

upper tail dependence coefficient (UTDC) is estimated via the nonparametric (𝜆𝑢𝑝
𝐶𝐹𝐺  , esti-

mator suggested by Caperaa et al. (1997) ) and parametric estimates 𝜆𝑢𝑝, and then com-

pared (refer to ST 10). The minimum difference is observed between the nonparametric 

coefficient of UTDC (𝜆𝑢𝑝
𝐶𝐹𝐺) and parametric coefficient of UTDC (𝜆𝑢𝑝). Overall, it is re-

vealed that the selected 2-D copulas satisfactorily capture extreme tail dependence behav-

iour. Supplementary Figures (SF 9, 10 (a-c)) illustrate the scatter plots, chi-plots and K-

plots drawn from the random samples (N= 1000) generated using the best-fitted 2-D cop-

ulas fitted to flood pairs. Visual inspection supports the choice of analytically selected 

copulas. The selected 2-D copulas are utilized to fit the 3-D vine copula framework of 

section 3.3.2. They are also used in estimating the bivariate joint and conditional joint re-

turn periods (RPs) in section 3.4.1. Supplementary Figures (SF 11) (a-d), 12 (a-d) and 13 (a-

d) illustrate the joint probability density functions (JPDFs) and the joint cumulative distri-

bution functions (JCDFs) plots (via the 3-D scatterplots, perspective plots and contours 

plots) derived from the best-fitted 2-D copulas. 

3.3.2. Constructing the D-vine copula structure in the trivariate analysis  

This study constructs D-vine copula frameworks for assessing the risk of flooding 

events due to the collective impact of rainfall, storm surge and river discharge. Three dif-

ferent D-vine structures are considered by permutation of conditioning variables (chang-

ing the location of the flood variable at the centre of the selected D-vine framework in the 

first Tree (Tree-1), refer to Figures 3(a-c) in section 2.2. The computation involved devel-

oping three-dimensional D-vine copulas using R software (R Core Team 2021) packages 

called Vine Copula (Nagler et al., 2021) and Vines (Gonzalez-Fernandez et al., 2016). The 

construction of each D-vine structure is separately presented below: 

Case 1 (D-vine structure 1): Placing maximum river discharge (Time interval = ±1 

day) series (variable 3) as a centre or conditioning variable (referring to Figure 3 (a) and 

Table 2 and Supplementary Table (ST 11)) 

In this form of vine structure, the river discharge observation is defined as a condi-

tioning variable placed at the centre between rainfall and storm surge observations. In the 

first tree (Tree 1), Survival BB7 (𝐶13) and Gumbel-Hougaard (𝐶23) copulas are identified 

and selected in approximating bivariate joint structure between rainfall-river discharge 

and storm surge-river discharge (refer to ST 9 (b & c)). The conditional cumulative distri-

bution functions (CCDFs) (or h-function), ℎ13 and ℎ23  are estimated by taking partial 

derivatives of selected 2-D copulas using Equation 7 (or Equation 8). To identify the 2-D 

copula 𝐶12|3 in the second tree (Tree 2), where the input variables are ℎ13 and  ℎ23Clay-

ton copula is selected as the best-fitted 2-D structure 𝐶13|2 (selected copula exhibits the 

minimum value of CvM functional test statistics 𝑆𝑛, with the parametric bootstrap proce-

dure, N=1000 samples and copula parameter estimated using  MPL estimator), referring 

to Supplementary Table (ST 11). Finally, the full density trivariate copula structure is ob-

tained using Equation 9 (or Equation 10, assuming variable X = rainfall, Y = river dis-

charge, Z= storm surge). 

Case 2 (D-vine structure 2): Placing maximum storm surge (Time interval = ±1 day) 

series (variable 2) as a centre or conditioning variable (referring to Figure 3 (b) and Table 

2 and Supplementary Table (ST 12)) 
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Table 2. Overall summary table of fitted 3-D vine copula frameworks constructed via permutation 

of conditioning variables ( flood variable centred at the selected D-vine structure). 

 

Vine 

Structure 

(Conditionin

g variable) 

Tree 

Leve

l 

Flood 

attribute 

pairs 

Most 

parsimonio

us or Best-

fitted 

copula 

Copula 

dependence 

parameters 
(θ) 

Log-

likelihoo

d (LL) 

Akaike 

Informatio

n Criterion 

(AIC) 

Bayesian 

Informatio

n Criterion 

(BIC) 

Cas

e 1 

(1-3-

2) * 

D-vine 

structure-1 

(Variable 3 

or 

Maximum 

river 

discharge 

(Time 

interval = 

±𝟏 𝐝𝐚𝐲𝐬) is 

placed in 

the center) 

Tree 

1 

1-3 

(Rain-

River 

discharg

e) 

Survival 

BB7 

(Rotated 

BB7 180 

degrees) 

𝛉(𝐭𝐡𝐞𝐭𝐚) =
𝐩𝐚𝐫 =

𝟏. 𝟎𝟗𝟓𝟕; 
𝛅(𝐝𝐞𝐥𝐭𝐚) =

𝐩𝐚𝐫𝟐 =
𝟎. 𝟏𝟓𝟎𝟒 

9.53788 -10.87909 -3.564521 

3-2 

(Storm 

surge-

River 

discharg

e) 

Gumbel 
𝜽(𝒕𝒉𝒆𝒕𝒂)= 

par= 1.554 

Tree 

2 
12|3 Clayton 

𝛉(𝐭𝐡𝐞𝐭𝐚) =
𝐩𝐚𝐫 = 

0.3688 

Case 

2 (1-

2-3) 

D-vine 

structure-2 

(Variable 2 

or 

Maximum 

storm surge 

(Time 

interval = 
±1 days) 

placed in the 

center) 

Tree 

1 

1-2 (Rain 

– Storm 

surge) 

BB7 (Joe-

Clayton) 

θ = theta =

1.153; δ =

delta =
0.433 

8.194824 -6.389647 2.75356 

2-3 

(Storm 

surge – 

River 

discharg

e) 

Gumbel 
𝜽(𝒕𝒉𝒆𝒕𝒂)= 

par= 1.554 

Tree 

2 
13|2 

Rotated BB8 

270 degrees 

𝜽(𝒕𝒉𝒆𝒕𝒂)= 

par =-1.083 

δ(delta) = 

par2 = -

1.000 

Case 

3 (2-

1-3) 

D-vine 

structure-1 

(Variable 1 

or Annual 

maximum 

24-hr 

rainfall 

placed in the 

center) 

Tree 

1 

2-1 

(Storm 

surge-

Rain) 

BB7 (Joe-

Clayton) 

θ = theta =

1.153; δ =

delta =
0.433 

9.34687 -8.693741 0.449466 3-1 

(River 

discharg

e-

Rainfall) 

Survival 

BB7 

(Rotated 

BB7 180 

degrees) 

θ(theta) =
par =

1.0957; 
δ(delta) =

par2 =
0.1504 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 June 2022                   doi:10.20944/preprints202206.0259.v1

https://doi.org/10.20944/preprints202206.0259.v1


 

 

Tree 

2 
23|1 Frank 

θ(theta) =

par =  3.689 

Note: Case 1 (Maximum river discharge (Time interval = ±1 days)  is a conditioning variable, indicated by bold 

letter with asterisk) is the best description of the 3-D vine copula dependence structure with minimum value of 

AIC and BIC test statistics (highest log-likelihood of the model).  

 

The storm surge is a centred or conditioning variable between rainfall and river dis-

charge. In the first tree (Tree 1), BB7 (C12) and Gumbel-Hougaard (C23) copulas are selected 

in modelling joint structure between rainfall-storm surge and storm surge-river discharge 

(refer to ST 9 (a and b)). The conditional cumulative distribution functions (CCDFs),  h12 

and h32  are estimated by taking partial derivatives of selected 2-D copulas  concerning 

marginal distribution of the conditioning variable (storm surge) (refer to Equation 8). Ro-

tated BB8 270 degrees copula is selected as most parsimonious in the second tree (Tree 2), 

referring to Supplementary Table (ST 12). Finally, the full density 3-D structure is obtained 

using Equation (10) (assuming variable, X=rainfall, Y = storm surge, Z = river discharge). 

Case 3 (D-vine structure 3): Placing rainfall series as a centre or conditioning variable 

(referring to Figure 3 (c) and Table 2 and Supplementary Table (ST 13)) 

In this case of developing the D-vine copula structure, the annual maximum 24-hr 

rainfall is defined as a conditioning variable. Refer to ST 8 (a and c), BB7 and Survival BB7 

copula is selected for the first tree (Tree 1) in defining bivariate joint dependency model-

ling between flood pairs storm surge-rainfall and rainfall-river discharge. The estimated 

h-functions h21 and h31 is used in determining the best-fitted copula in the second tree 

(Tree-2). The Frank copula is identified as the best-fitted structure in modelling the joint 

dependence structure in Tree-2, 𝐶23|1 (refer to Supplementary Table (ST 13). The full den-

sity 3-D vine-based joint density is obtained by using Equation 10 (assuming variable X = 

storm surge, Y = rainfall, Z = river discharge).  

The performance of the above constructed D-vine structures is compared using in-

formation criterion statistics called Akaike information criterion (AIC) (Akaike 1974) and 

Bayesian information criterion (BIC) (Schwarz 1978). It is concluded that vine copula con-

structed by placing river discharge series as a conditioning variable,  D-vine structure 1 

(case 1) exhibits a minimum value of both AIC and BIC test statistics. It also has the highest 

value of log-likelihood (L-L) of the model compared to other vine structures (D-vine struc-

tures 2 and 3). Based on the above outcomes, it is inferred that this approach to construct-

ing the vine copula framework is more practical by permuting the conditioning variable 

instead of fixing its location. For example, as we switched from case-1 to case-2, the D-

vine copula structure's performance was reduced by placing storm surge as a condition-

ing variable (refer to Table 2). It is also observed that model adequacy of D-vine structure 

3 (case-3) is much better than case-2.  

The performance of the above selected D-vine structures is compared with asymmet-

ric versions of Archimedean copulas, called fully nested Archimedean (FNA) framework, 

such as Frank, Gumbel and Clayton (refer to ST 1). The dependence parameter of the fitted 

FNA copulas, both inner and outer copula, is estimated using the maximum likelihood 

estimation procedure, using the R library, HAC (Okhrin and Ristig 2014) (refer to Table 3 

and Equation 4). It is observed that the performance of the asymmetric Gumbel copula 

(the minimum value of AIC, BIC and highest value of L-L) is best among the fitted 3-D 

FNA copulas. Similarly, from Table 3, it is inferred that the performance of the selected D-

vine copula structure-1 (case-1) outperforms the best-fitted asymmetric Gumbel copula in 

the trivariate modelling of the compound flooding variables or events. The reliability and 

suitability of the selected D-vine copula are examined by comparing Kendall's tau corre-

lation coefficient calculated from the generated random samples (sample size N = 1000) 

using the best-fitted vine copula ( D-vine structure-1) and asymmetric FNA copulas ( 

Gumbel-Hougaard copula) and compared with the empirical Kendall's 𝜏 coefficient es-

timated from the historical flood characteristics (refer to Table 4). The best-fitted D-vine 
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structure-1 (case 1) shows a minimum difference between the theoretical and empirical 

Kendall's 𝜏. It regenerates the correlation structure of historical flood variables more ef-

fectively. 

Table 3. Estimation of dependence parameters of the fitted 3-D FNA copulas and comparing their 

performance with selected best-fitted D-vine copula (D-vine structure-1). 

Trivariate 

distribution 

framework 

Copula function Log-likelihood (LL) 

Akaike 

Information 

Criterion (AIC) 

Bayesian 

Information 

Criterion (BIC) 

Parametric 3-D 

vine or pair-

copula 

construction 

(PCC) 

D-vine copula* 9.53788 -10.87909 -3.564521 

  Estimated 

parameters 

Log-

likelihood 

(LL) 

  

Asymmetric or 

fully nested 

Archimedean 

(FNA) framework 

(parametric 

marginals) 

Gumbel copula 
θ1 = 1.2; θ2

= 1.54 
9.063 -0.408 3.248 

Clayton copula 
θ1 = 0.17; θ2

= 0.59 
5.627 0.544 4.201 

Frank copula 
θ1 = 1.51 ; θ2

= 3.46 
8.594 -0.302 3.355 

Note: First, the Gumbel copula is recognized as the best-fitted among the fitted 3-D FNA copulas. D-vine copula 

(bold letter with an asterisk) exhibited minimum value of information criteria-based goodness-of-fit (GOF) test 

statistics (i.e., AIC and BIC), also highest value of log-likelihood of the fitted model compared to nested Gumbel 

copula. Thus, selected as the best-fitted distribution in the trivariate joint probability analysis of compound 

flooding events. 
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Table 4. Examining the reliability of the developed 3-D parametric vine copula structure vs 3-D 

FNA Gumbel-Hougaard copula by comparing the Kendall’s 𝜏 correlation coefficient estimated us-

ing the generated random samples (size N= 1,000) obtained from the above-selected model with 

Empirical Kendall’s 𝜏 values estimated from historical observations. 

 

 

 

 

Flood attribute pairs 

Kendall’s 

τ estimate

d from 

historical 

observatio

ns 

(Empirical 

estimates) 

Kendall’s 

τ estimate

d from 

best-fitted 

fully 

nested 

Gumbel 

copula 

with 

parametri

c 

marginals 

(Theoretic

al 

estimates) 

Kendall’s 
𝜏 

correlatio

n 

coefficien

t 

estimate

d from 

the best-

fitted D-

vine 

copula 

structure 

(sample 

size =N = 

1,000) 

Annual maximum 24-hr rainfall (mm)-

Maximum storm surge (m) (Time interval = 
±1 days) 

0.207 0.192 0.196 

Maximum storm surge (m) (Time interval = 
±1 days) −

Maximum river discharge (m3/sec) (Time interval = ±
1 days) 

0.341 0.358 0.342 

Annual maximum 24-hr rainfall (mm) - 

Maximum river discharge (m3/sec) (Time 

interval = ±1 days) 

0.093 0.156 0.120 

Note: The selected D-vine copula structure regenerates the dependency of historical 

flood characteristics more  effectively 

 

The performance of the selected D-vine structure is examined graphically using the 

overlapped scatterplot (refer to Figures 4 (a)) between the generated random samples 

(sample size N=1000) derived from the fitted model. The random samples from the se-

lected D-vine copula are estimated based on the algorithm presented in section 2.3.  It is 

concluded that derived D-vine copula performs adequately since the generated random 

observations (indicated by light blue colour) overlapped with the natural mutual concur-

rency of the historical samples (red colour); refer to Figure 4 a. Figure 4 (b) illustrates a 3-

D scatterplot derived from the selected D-vine copula structure of sample size (N = 1000). 

In conclusion, based on the above quantitative (and qualitative) model's performance 

comparisons, the D-vine copula structure for case 1 (centring river discharge as condition-

ing variable) provides a much more efficient approach in the trivariate joint modelling. It 

is thus further used in deriving the trivariate joint and conditional joint return periods 

(RPs). The estimated joint CDF derived from the fitted D-vine structure is employed fur-

ther to estimate failure probability (FP), which is often considered a practical approach for 

assessing the hydrologic risk associated with CF events. Supplementary Figures (SF 14 (a-

c)) illustrate the joint density of 2-D copulas families employed in constructing the selected 

D-vine copula structure (vine structure 1) in trivariate joint dependency modelling. The 
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vine tree plot and matrix of the contour plot associated with the D-vine structure are pre-

sented in Figures 5 and 6.  

 

Figure 4. (a) Overlapped 2-D scatterplots between generated random samples (sample size N=1000) 

derived from the selected D-vine structure (light blue color) with observed historical characteristics 

(b) 3-D scatterplot derived from the fitted D-vine copula structure with trivariate flood characteris-

tics. 
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Figure 5. Vine tree plot of selected D-vine copula structure (D-vine structure-1 (case-1), refer to Table 

2). 
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Figure 6. Matrix of contour plots associated with the pair-copulas in the selected D-vine copula 

structure. 

3.4. Assessing the hydrologic risk of compound flooding events 

3.4.1. Primary OR and AND joint return period 

Estimating the flood exceedance probability or design quantiles under different no-

tation of return periods, for instance, joint return periods (JRPs) or conditional return pe-

riods, is essential in evaluating hydrologic risk. To reveal a better understanding of the 

water-related queries (or in the hydraulic design facilities), it motivated hydrologists and 

water practioner toward the estimate of multivariate return periods (Salvadori 2004; Brun-

ner et al., 2016). The present manuscript focused on two different return approaches based 

on the joint probability distribution relationship: OR- and AND-joint return periods (JRPs) 

(Shiau 2003; Salvadori 2004; Reddy and Ganguli 2012, 2013). In the OR-joint return period 

(RP), the probability of either of the targeted flood characteristics exceeding a specific 

threshold value is estimated by: 

For the trivariate joint distribution event ( X ≥ x OR Y ≥ y OR Z ≥ z  ),  the OR-joint 

RP is estimated using the best-fitted 3-D copula (D-vine structure-1, refer to Table 2), as 

given below. 

TX,Y,Z
OR (x, y, z) =

1

P (X ≥ x ∨  Y ≥ y ∨ Z ≥ z)
=

1

(1 − H(x, y, z))
=

1

(1 − C(F(x), F(y), F(z))
 (11) 

Where H(x, y, z) is the trivariate joint cumulative distribution functions (JCDFs) that can 

be expressed using the best-fitted 3-D (trivariate) copula function C(F(x), F(y), F(z)) 

along with best-fitted univariate flood marginals F(x), F(y) and F(z).  

In the second joint dependency situation, the probability of all the targeted flood 

characteristics exceeding a certain threshold simultaneously, called AND-joint RP, is esti-

mated by: 
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For a trivariate joint distribution event (X ≥ x AND Y ≥ y AND Z ≥ z ), the AND-joint 

RP is estimated using the best-fitted 3-D vine copula structure (refer to Table 2) as given 

below:  

TX,Y,Z
AND(x, y, z) =

1

P (X ≥ x ∧  Y ≥ y ∧  Z ≥ z)
=

1

(1 − F(x) − F(y) − F(z) + H(x, y) + H(y, z) + H(z, x) − H(x, y, z)

=                                                     
1

(1 − F(x) − F(y) − F(z) + C(F(x), F(y)) + C(F(y), F(z)) + C(F(x), F(z)) − C(F(x), F(y), F(z))
 

(12) 

Where C(F(x), F(y)), C(F(y), F(z)) and C(F(x), F(z)) are the bivariate JCDFs derived from 

best-fitted 2-D copulas. The bivariate OR- and AND-joint RPs, for the targeted flood pair, 

such as rainfall-storm surges, storm surges-river discharge, and rainfall-river discharge, 

are estimated using the best-fitted 2-D copulas (refer to STs 9 (a-c)), followed by Brunner 

et al., (2016) and Latif and Mustafa (2020). The bivariate and trivariate RPs are listed in 

Table 5 (a comparative table indicating univariate, bivariate and trivariate RPs are esti-

mated for the various possible combinations of flood characteristics). The investigation 

results pointed out that the value of AND-joint RP, for any trivariate (or bivariate) flood 

events is higher than the OR-joint RP. For instance, consider 100-yr flood events having 

the following characteristic (refer to Table 5), Rainfall = 183.68 mm, Storm surges = 0.401 

m, River discharge  = 10005.067 m3/sec, the bivariate OR- and AND-joint RP is TOR =

54.98 years and TAND = 551.45 years  (between flood pair rainfall-storm surges), TOR =

51.80 years and TAND = 1435.13 years (between flood pair rainfall – river discharge), and 

TOR = 64.35 years and TAND = 224.15 years (between flood pair storm surges – river dis-

charge). Similarly, for a 100-yr flood event with above-above mentioned flood character-

istics (refer to Table 5), the trivariate OR- and AND-joint RPs is TOR =

43.90 years and TAND =  1280 years. For every possible combination of the given flood 

characteristics, RP obtained in the "AND-joint" case for trivariate flood events is longer 

than in the "OR-joint" case,   , TOR < TAND. Based on the above-estimated statistics, it 

could be more practical to account for both OR- and AND cases of trivariate joint return 

periods. It must be observed from the estimated values, refer to Table 5, how much it 

could be effective when simultaneously integrating the joint distribution behaviour of the 

above flood variable instead of just considering pairwise dependency modelling. Ac-

counting for either AND- or OR-joint cases would be problematic in the flood risk analy-

sis; in other words, their importance will solely depend on the nature of the problem. 

Otherwise, it might underestimate or overestimate the hydrologic risk associated with 

compound flooding (CF) events. 
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Table 5. Univariate, bivariate and trivariate joint return periods (JRPs) estimated for various com-

binations of selected flood characteristics. 

 

Flood quantiles estimated 

using the inverse of the best-

fitted marginal cumulative 

distribution functions 

(CDFs)  

Bivariate joint return periods (JRPs) 

Trivariate joint return 

periods (JRPs) estimated 

using the best-fitted D-

vine copula structure 

(case-1, refer to Table 2) 

Retur

n 

perio

d 

(RPs) 

(years

), T 

Annual 

Maximu

m 24-hr 

Rainfall 

(R) 

(mm) 

Maximu

m 

Storm 

surge 

(m) 

(SS)(Ti

me 

interval 

= 

±1days) 

Maximum 

River 

discharge 

(RD)(m3/s

ec) (Time 

interval = 

±1 days)) 

OR-JRP, 

TRS
OR 

AND-

JRP  

TRS
AND 

OR-JRP, 

TRRD
OR  

AND-

JRP 

TRRD
AND 

OR-JRP, 

TSSRD
OR  

AND-

JRP, 

T𝑆𝑆𝑅𝐷
AND  

OR-JRP, 

𝑇𝑅𝑆𝑆𝑅𝐷
𝑂𝑅  

AND-JRP, 

𝑇𝑅𝑆𝑆𝑅𝐷
𝐴𝑁𝐷  

5 102.90 0.145 2412.582 3.01 14.58 2.91 17.43 3.40 9.40 2.380 19.31 

10 120.68 0.221 3374.429 5.72 39.47 5.52 52.75 6.60 20.57 4.40 50.98 

20 138.75 0.284 4685.815 11.18 94.71 10.71 150.38 13.01 43.13 8.52 133.76 

50 163.73 0.354 7215.067 27.59 265.73 26.17 557.63 32.26 110.99 21.48 964.97 

100 183.68 0.401 10005.067 54.98 551.45 51.80 1435.13 64.35 224.15 43.90 1280 

200 204.69 0.444 13886.119 109.78 1121.95 102.87 3575.25 128.52 450.51 79.19 1002.40 

500 234.24 0.497 21446.821 274.22 2830.45 255.57 11454.75 321.05 1129.56 188.38 1596.42 

1000 258.04 0.533 29822.745 548.27 5678.59 509.45 26954.17 641.93 2261.42 364.00 2508.15 

3.4.2. Conditional joint return periods of CF events 

The conditional joint return period of one flood contributing variable given various 

percentile values of another inter-associated variable are also examined in this study (Sal-

vadori and De Michele 2004; Zhang and Singh 2007; Salvadori and De Michele 2010; 

Reddy and Ganguli 2013; Sraj et al., 2014; Brunner et al., 2016). In reality, in most engi-

neering-based hydraulic or flood defence infrastructure designs, it would be demanding 

to consider a flood events situation by focusing on the importance of one flood variable 

over other variables via the conditional joint probability distribution relationship. The 

present study estimates two different approaches to estimating conditional return periods 

(RPs): 

Approach 1 

For trivariate distribution case (via 3-D vine copula): 

The conditional return period of one flood variable (say, X = rainfall) conditioning to 

two other variables (say, (Y ≤ y) = storm surge and (Z ≤ z)  = river discharge), is esti-

mated by: 

 TX\Y≤y,Z≤Z =
1

1 − FX,Y,Z(x,\Y ≤ y, Z ≤ z)
=

1

1 −
C(F(x), F(y), F(z))

C(F(y), F(z))

 (13) 

For bivariate distribution case (via 2-D copula): 

TX\Y≤y = 1
1 − (C(F(x), F(y))/F(y))⁄  (14) 
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Approach 2 

For trivariate distribution case (via 3-D vine copula): 

The conditional joint return period of two flood variables (say, X and Y) given various 

percentile values of the third flood variable (Z ≤ z) can be estimated by: 

TX,Y\Z≤Z =
1

1 − FX,Y,Z(x, y\Z ≤ z)
=

1

1 −
C(x, y, z)

F(z)

 (15) 

Similarly, for bivariate distribution analysis via 2-D copula: 

TX\Y>y = 1
(1 − F(y) ∙ (1 − F(x) − F(y) + C(F(x), F(y))⁄  (16) 

Using Equations 13-16, the conditional RPs are estimated by employing the best-fit-

ted D-vine copula (and 2-D copula) structure for trivariate (and bivariate) joint distribu-

tion cases (refer to Figures 7 (a-c)-12). 

 

(a) 
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(b) 

 

(c) 

Figure 7. Trivariate joint return period of rainfall and storm surge given various percentile values 

of river discharge series for case TRAIN,STORM SURGE|RIVER DISCHARGE≤river discharge (threshold), when (a) 

RIVER DISCHARGE ≤ river discharge (25th and 50th percentiles), (b) RIVER DISCHARGE ≤ river 

discharge (75th and 90th percentiles), (c) RIVER DISCHARGE ≤ river discharge (95th and 99th percen-

tiles). 
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Figure 8. Trivariate conditional joint return periods (RPs) for case 
TRAIN|STORM SURGES≤storm surge (threshold),RIVER DISCHARGE≤river discharge (threshold). 
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Figure 9. Trivariate conditional joint return periods (RPs) of rainfall given various percentile value 

of storm surge with constant river discharge, 
TRAIN|STORM SURGE≤storm surge (threshold),RIVER DISCHARGE=constant). 

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160

R
et

u
rn

 P
er

io
d
 T

 (
R

ai
n
fa

ll
 | 

M
ax

im
u
m

 S
to

rm
 s

u
rg

es
  

≤
  
st

o
rm

 s
u
rg

es
 t

h
re

sh
o
ld

, 
M

ax
im

u
m

 R
iv

er
 

d
is

ch
ar

g
e 

=
 5

3
7
7
 m

3
/s

ec
 (

co
n
st

an
t)

 (
y
ea

rs
) 

Annual Maximum 24-hr Rainfall (mm)

Maximum Storm Surge  (Time interval = ±1 days) ≤ 0.068 m (25th percentile), 

Maximum River Discharge  (Time interval = ±1 days) = 5377 m3/sec 

Maximum Storm Surge  (Time interval = ±1 days) ≤ 0.238 m (50th percentile), 

Maximum River Discharge  (Time interval = ±1 days) = 5377 m3/sec 

Maximum Storm Surge  (Time interval = ±1 days) ≤ 0.35825 m (75th 

percentile), Maximum River Discharge  (Time interval = ±1 days) = 5377 m3/sec 

Maximum Storm Surge  (Time interval = ±1 days) ≤ 0.4455 m (90th percentile), 

Maximum River Discharge  (Time interval = ±1 days) = 5377 m3/sec 

Maximum Storm Surge  (Time interval = ±1 days) ≤ 0.55575 m (95th 

percentile), Maximum River Discharge  (Time interval = ±1 days) = 5377 m3/sec 

Maximum Storm Surge  (Time interval = ±1 days) ≤ 0.62605 m (99th 

percentile), Maximum River Discharge  (Time interval = ±1 days) = 5377 m3/sec 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 June 2022                   doi:10.20944/preprints202206.0259.v1

https://doi.org/10.20944/preprints202206.0259.v1


 

 

 

Figure 10. Trivariate conditional joint return periods (RPs) of rainfall given various percentile value 

of river discharge with constant storm surge value, 
TRAIN|RIVER DISCHARGE≤river discharge (threshold),STORM SURGE=constant). 
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Figure 11. Conditional joint return periods (JRPs) of (a) storm surge conditional to rainfall 

series, for case 𝑇𝑆𝑇𝑂𝑅𝑀 𝑆𝑈𝑅𝐺𝐸|𝑅𝐴𝐼𝑁𝐹𝐴𝐿𝐿≤𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙 (𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) (b) storm surge conditional to rain-

fall series, for case 𝑇𝑆𝑇𝑂𝑅𝑀 𝑆𝑈𝑅𝐺𝐸|𝑅𝐴𝐼𝑁𝐹𝐴𝐿𝐿 > 𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙 (𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) (c) rainfall conditional to storm 

surge for case, TRAINFALL|STORM SURGE≤storm surge(threshold) (d) rainfall conditional to storm 

surge for case, TRAINFALL|STORM SURGE > storm surge (threshold) 
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Figure 12. Conditional joint return periods (JRPs) of (a) Rainfall conditional to river discharge, for 

case TRAINFALL|RIVER DISCHARGE≤river discharge (threshold) (b) Rainfall conditional to River discharge, for 

case TRAINFALL|RIVER DISCHARGE> river discharge (threshold) (c) River discharge conditional to rainfall for 

case, TRIVER DISCHARGE|RAINFALL≤rainfall(threshold) (d) River discharge conditional to rainfall for case, 
TRIVER DISCHARGE|RAINFALL > rainfall (threshold). 

From Figures 7 (a-c), it is observed that return periods (RPs) of trivariate flood de-

crease with an increase in the percentile value of the conditional flood variable, river dis-

charge. For instance, refer to Figures 7(a-c), flood events with the following characteristics, 

Rainfall = 145.8 mm, Storm surge = 0.68 m, the conditional joint RP is 47.20 years (when 

river discharge ≤ 1,085 m3/sec (25th percentile)), 41.86 years (when river discharge ≤ 1,615 

m3/sec (50th percentile)), 35.25 years (when river discharge ≤ 2,162.5 m3/sec (75th percen-

tile)), and 29.65 years when river discharge ≤ 3,100 m3/sec (90th percentile)), and so on. 

The conditional joint return period of rainfall events given various percentile values 

of storm surge (STORM SURGE ≤  storm surge (threshold)) and river discharge (i..e, 

RIVER DISCHARGE≤ river discharge (threshold)) observations are illustrated in Figure 

8 (using Equation 13). It is observed that higher return periods are obtained from the lower 
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percentile value of storm surge and river discharge observations than the lower river dis-

charge and storm surge values for the same specified values of rainfall characteristics. For 

instance, in a flood event with flood characteristics, Rainfall = 145.8 mm, the conditional 

JRP is 49.65 years (when storm surge ≤ 0.068 m and river discharge ≤ 1,085 m3/sec (25th 

percentile for both variables)), 43.25 years (when storm surge ≤ 0.23 m and river discharge 

≤ 1,615 m3/sec (50th percentile for both variables), and 29.97 years (when storm surge ≤ 

0.45 m and river discharge ≤ 3,100 m3/sec (90th  percentile for both variables), and so on. 

Therefore, it is observed that the return period decreases with an increase in the percentile 

values of both conditional variables (storm surge and river discharge).  

The trivariate conditional return periods of the rainfall series given various percentile 

values of storm surge,  STORM SURGE≤ storm surge (threshold)  (or river discharge, 

RIVER DISCHARGE ≤ river discharge (threshold)) with a constant value of the river 

discharge, RIVER DISCHARGE = CONSTANT (say, 5,377 m3/sec, 99th percentile value of 

river discharge events) (or storm surges, STORM SURGE =CONSTANT (say 0.62 m, 99th 

percentile value of storm surge events) are illustrated in Figures 9 and 10. By fixing the 

river discharge value, RIVER DISCHARGE = 5,377 m3/sec,; the return period decreases 

with an increase in the percentile value of the storm surges (with a constant river dis-

charge value). For instance, in a flood event with flood characteristics, Rainfall = 145.8 m 

and River discharge = 5,377 m3/sec (constant), the return period is 40.70 years (when 

Storm surge ≤ 0.06 m), 32.57 years (when Storm surge ≤ 0.23 m) and 30.71 years (when 

Storm surge ≤ 0.35 m). In conclusion, the RPs are higher at the lower value of storm surge 

than the lower storm surge for the same specified values of rainfall events. Also, from 

Figure 10, it is observed that the estimated RP is higher at a higher conditional river dis-

charge with a constant storm surge (STORM SURGE = 0.62 m) than the lower river dis-

charge for the same specified values of rainfall events. For instance, in a flood event with 

flood characteristics, Rainfall = 145.8 m and Storm surge = 0.62 m (constant, 99th percentile 

value), the return period are 47.26 years (when River discharge ≤ 1,085 m3/sec), 41.94 years 

(when River discharge ≤ 1,615 m3/sec) and 35.32 years (when River discharge  ≤ 2,162.5 

m3/sec) and so on. 

Similarly, conditional return periods for the bivariate joint cases are examined, return 

periods of rainfall events conditioned to river discharge (or vice-versa) and rainfall events 

conditioned to storm surge (refer to Figures 11 (a-d) and 12(a-d)). Figures 11 (a and b) 

show that the conditional return periods of the storm surge events decrease with an in-

crease in the percentile value of rainfall observation in both cases of the estimated condi-

tional RPs, using Equations 14 and 16. Similarly, the conditional RPs of rainfall events 

decrease with an increase in the value of storm surge events (refer to Figures 11 (c and d)). 

Comparing Figures 11 (a and c), it is concluded that higher return periods are obtained 

when conditioning to rainfall series than when considering storm surge events as a con-

ditioning variable. 

The joint return period of rainfall events conditioned to river discharge observation 

(and vice-versa) is estimated using Equations 14 and 16, and their values are visually in-

spected in Figures 12 (a-d). It is observed that the conditional return period of rainfall 

events (or river discharge) decreases with an increase in the river discharge (or rainfall) 

events. Also, by comparing Figures 12 (b and d), the conditional return period is higher 

when conditioned to the rainfall observation for different percentile values than when 

considering river discharge events as a conditioning variable. 

3.4.3. Analyzing the hydrologic risk of flooding events 

Risk can be defined as the chance of extreme events resulting in devastating hydro-

logic situations in the coastal region or estuaries. The estimated return periods (both joint 

and conditional, refer to sections 3.4.1 and 3.4.2) would be incapable of highlighting po-

tential flood risk hazards during the entire project lifetime, which has already been 

pointed out in few existing literature such as Salvadori et al. (2011); Huang and Chen 

(2015), Xu et al., (2019). Also, the estimated RPs would not account for the planning 
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horizon (Read and Vogel 2015). In the hydrologic risk assessments, the importance of the 

risk of failure associated with the return period, called failure probability (FP), is already 

highlighted, such by Yen (2970), Salvadori et al. (2016), Serinaldi (2015), and Moftakhari 

et al., (2017), Xu et al., (2017) and references therein. FP statistics facilitates an effective 

and practical approach to hydrologic risk assessments rather than just considering the 

definition of return period values (joint RP). An approach in the hydrologic risk assess-

ments using the FP statistics is limited to bivariate joint distribution cases. For instance, 

Xu et al. (2017) examined the bivariate hydrologic risk between flood peak and duration 

series using FP statistics. Moftakhari et al. (2017) utilized FP statistics in the bivariate 

coastal flood risk assessments between coastal water level and river discharge events. The 

present study estimated FP statistics in examining the hydrologic risk associated with tri-

variate compound flooding events. 

L e t  u s  s u p p o s e ,  (R1, R2, R3, … . . , RT), (SS1, SS2, SS3, … . . , SST)  and  (

RD1, RD2, RD3, … . . , RDT) are the targeted triplet hydrologic series (where R, SS and 

RD are abbreviated as Rainfall, Storm surges and River discharge series) with an 

arbitrary project lifetime is T. The FP statistics can be mathematically expressed as 

FPT = 1 − ∏ P(Ri, SSi, RDi)

T

i=1

= 1 − (1 − P)T (17) 

The risk of failure associated with return periods or failure probability (FP) for the 

trivariate flood hazard scenario is estimated for the OR- joint case as given below: 

FPT
OR = 1 − (1 − P (R ≥ r OR SS ≥ ss OR RD ≥ rd))T (18) 
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(e) 

Figure 13. Hydrologic risk assessments of CF events for different return periods (a) 100-yr (b) 50-yr 

(c) 20-yr (d) 10-yr (e) 5-yr. 

Figures 13 (a-e) illustrate the variation in trivariate (bivariate and univariate) flood 

hazard scenarios by the service design lifetime under different return periods RPs100-yr, 

50-yr, 20-yr, 10-yr and 5-yr.  It is observed that trivariate flood events produce a higher 

failure probability (FP) than the bivariate (or univariate) flood events for OR-joint cases 

(refer to Figures 13 (a-e)). For instance, at the return period RP = 100-yr, the estimated 

value of FP for the trivariate (and bivariate) hazard scenario is 0.90 (and 0.84). However, 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160 180 200

F
P

Life Time (years)

RP = 5-yr

Trivariate Hazard Scenerio for OR-joint case

Bivariate Hazard Scenerio for OR-joint case (Annual Maximum 24-hr Rainfall (mm)-

Maximum Storm Surge (m) (Time interval = ±1 days))

Bivariate Hazard Scenerio for OR-joint case (Maximum Storm Surge (m) (Time interval =

±1 days)-Maximum River Discharge (m3/sec) (Time interval = ±1 days))

Bivariate Hazard Scenerio for OR-joint case (Annual Maximum 24-hr Rainfall (mm)-

Maximum River Discharge (m3/sec) (Time interval = ±1 days))

Univariate Hazard Scenerio (Annual Maximum 24-hr Rainfall (mm))

Univariate Hazard Scenerio (Maximum Storm Surge (m) (Time interval = ±1 days))

Univariate Hazard Scenerio (Maximum River Discharge (m3/sec) (Time interval = ±1

days))

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 June 2022                   doi:10.20944/preprints202206.0259.v1

https://doi.org/10.20944/preprints202206.0259.v1


 

 

when the return period RP is reduced to (RP = 50-yr), the value of the trivariate (and bi-

variate) flood hazard scenario or FP is 0.85 (and 0.63).  The trivariate (also bivariate) hy-

drologic risk decreases with an increase in the return period. At the same time, hydrologic 

risk value would increase with an increase in the service design lifetime of the hydraulic 

infrastructure. This point further inferred that the return period (RP) is not explicitly tied 

to a planning period and is ineffective in characterizing the chance of events occurring 

during a project lifetime. It is also concluded that ignoring trivariate probability analysis 

by compounding the joint impact of the targeted flood characteristics results in underes-

timating the failure probabilities FPs.  

Similarly, the failure probability (FP) for a bivariate flood hazard scenario is esti-

mated for both the bivariate OR-joint and AND-joint cases as given below 

FPT
OR = 1 − (1 − P (X ≥ x OR Y ≥ y))

T
 (19) 

And 

FPT
AND = 1 − (1 − P (X ≥ x AND Y ≥ y))

T
 (20) 

The bivariate hydrologic risk for flood pair rainfall-storm surges and rainfall-river 

discharge is estimated (refer to Equation 23). The variation of bivariate flood hazard sce-

narios (or FP statistics) for different design lifetimes of the hydraulic infrastructure is il-

lustrated in Supplementary Figures (SF 15 (a-g) and 16 (a-g).  The bivariate hydrologic 

risk for both flood hazard scenarios,  rainfall-storm surge and rainfall-river discharge, 

increases with a decrease in return periods, and, at the same time, the value of FPs in-

creases with an increase in the value of the design lifetime of the hydraulic infrastructure. 

It is also observed that bivariate events produce higher FP than univariate flood events. 

Supplementary Figures (SF 17(a-c) and 18(a-c)) illustrate the variation of the bivariate 

hydrologic risk (or FP) with changes in the rainfall events in differently designed storm 

surges and river discharge events separately. The designed storm surge and river dis-

charge series are considered for return periods, 200-yrs, 100-yrs, 50-yrs, 20-yrs and 10-yrs. 

Their values are estimated from the inverse of the best-fitted univariate flood marginal 

distribution (Normal and GEV). The project design lifetime (or service time of the hydrau-

lic facilities) is assumed to be 100 years, 50 years and 30 years. It is revealed that the biva-

riate hydrologic risk (joint analysis of flood pair rainfall-storm surge) increases with an 

increase in the project design lifetime (or service time) and decreases with an increase in 

the return period of storm surge observations. From the results shown in SF 18 (a-c), the 

bivariate hydrologic risk (collective impact of rainfall and river discharge observations) 

increases with an increase in the project design lifetime (or service time). It decreases with 

an increase in the return period of river discharge observations.  

In conclusion, the simultaneous accounting of the above-three flood characteristics, 

e.g., rainfall, storm surge, and river discharge, can better understand and visualise com-

pound flooding and provide more critical information for flood risk assessments. These 

analytical and graphical investigations are vital for flood management strategies' sustain-

able design and planning in coastal regions. 

4. Research summary and conclusions 

The coastal areas' flooding is attributed to the joint occurrence of multiple intercorre-

lated extreme or non-extreme events such as storm surges, rainfall, or river discharge.  

These events might not be dangerous if they occur independently but would be disastrous 

if they coincide or are in close succession. They can be driven by the same meteorological 

conditions, like tropical or extra-tropical cyclones. In the hydrologic risk assessments of 

the compound flooding (CF) events, univariate or bivariate joint distribution analysis's 

applicability is insufficient due to their multidimensional character. The complex inter-

play between storm surge, river discharge and rainfall in the coastal region cannot be ne-

glected due to the common forcing mechanism responsible for driving these events. A 

comprehensive understanding of the probabilistic behaviour of CF events can be obtained 

by considering flood contributing variables simultaneously in a trivariate flood 
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dependence structure analysis. This approach allows for a better understanding of the 

complex CF events instead of just visualizing pairwise joint dependency (or bivariate re-

turn periods) of CF variables.  

Flooding is becoming one of the most severe hydrologic hazards affecting Canada's 

East and West coasts. The significant impact of climate change further increases the risk 

of extreme hydrologic events due to rising sea levels and their interaction with other 

flood-creating processes. In modelling a high-dimensional joint dependence structure, 

preserving all the lower-level dependencies among the selected random observations is 

often challenging. For instance, the adequacy of the traditional (or symmetric) 3-D Archi-

medean copulas is not appropriate due to their monoparametric behaviour (or single de-

pendence parameter associated with fitted copulas). All the mutual dependencies must 

be averaged to the same value in such copulas, which renders this approach impractical 

and inconsistent. The CF events can exhibit complex or heterogeneous dependences. The 

asymmetric or FNA copula framework could be of value in this case but still may have a 

problem in faithfully preserving all the lower-level dependencies. In practice, the asym-

metric copulas approach will not be sufficiently flexible for resolving the multidimen-

sional dependence structure of CF events.  This paper introduces parametric vine copula 

methodology to the trivariate analysis of compound flooding (CF) events by combing the 

joint probability of annual maximum 24-hr rainfall series,  storm surge and river dis-

charge observed within a time lag of ± 1 day from the date of the highest annual 24-hr 

rainfall event. The vine copula conditional mixing procedure (via the stage-wise hierar-

chical nesting) eliminates the restriction of assigning a fixed trivariate (or multivariate) 

copula structure to selected flood variables. The developed multivariate framework is 

used in assessing hydrologic risk in a case study on the West Coast of Canada. The main 

findings of the present study are given below: 

1. No significant trend (via MK test) and serial correlation (via Ljung-Box test) are iden-

tified within the time series of Annual maximum 24-hr rainfall and Maximum river 

discharge (time interval = ±1 day) series. Also, both series exhibited homogenous be-

haviour. The Maximum storm surge (time interval = ±1 day) series showed a signifi-

cant time trend and non-homogenous behaviour. 

2. All three selected flood variables exhibit a significant positive correlation.  

3. Fifteen 2-D copulas are used as candidate functions in modelling bivariate joint struc-

ture between pairs of flood variables: rainfall-storm surge, storm surge-river dis-

charge, and rainfall-river discharge. Copula's dependence parameters are estimated 

using the maximum pseudo-likelihood (MPL) estimator. The best-fitted 2-D copulas 

are identified for each flood pair by the Cramer von mises (CvM) functional test sta-

tistics Sn with the parametric bootstrap procedure. BB7 copula, Gumbel-Hougaard 

(G-H) copula, and Survival BB7 copula are the most appropriate for describing de-

pendence structures for flood pair rainfall-storm surge, storm surge, river discharge, 

and rainfall-river discharge, respectively. 

4. D-vine copula structure is selected for modelling of trivariate joint dependence struc-

ture. Three different forms of the D-vine copula are constructed by the permutation 

of a conditioning variable ( changing the flood variable located at the centre of the D-

vine structure) in the first tree (Tree-1). The best-fitted D-vine structure is selected by 

comparing the estimated AIC, BIC and model LL values. The D-vine structure-1 with 

river discharge as a conditioning variable is the best. Then the performance of the 

selected D- vine structure is compared with frequently used asymmetric Frank, Gum-

bel and Clayton copulas analytically and graphically (visual inspection). In conclu-

sion, the selected D-vine copula structure-1 (river discharge as a conditioning varia-

ble) outperforms asymmetric copulas and is thus employed in estimating trivariate 

JCDFs and their associated joint and conditional return periods. This way of devel-

oping a vine structure facilitates flexibility in selecting the best-fitted D-vine structure 

by changing the location of the conditioning variable.     
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5. By comparing trivariate joint return periods for OR- and AND-joint cases, it is con-

cluded that the AND-joint case produces a higher return period than the OR-joint 

case for the same combination of flood variables. The best-fitted 2-D copulas are used 

in deriving bivariate joint and conditional RPs. In conclusion, the return period's im-

portance depends solely on the nature of the undertaken problem.  In other words,  

the importance of different return periods cannot be interchanged, and it is difficult 

to select them consistently. The appropriate choice of return period can depend on 

the impact of design variable quantiles. Besides the importance of joint RP, the sig-

nificance of the conditional joint return periods is often crucial in water infrastructure 

design. For the trivariate joint case, the conditional return period of one variable ( for 

example, rainfall) is conditional to the other two variables ( storm surge and river 

discharge) is examined. It is observed that, at the lower value of both conditional 

variables, storm surge and river discharge, return periods are higher than those ob-

tained at a lower value of the above conditional variables for the same specified value 

of the rainfall events. The return period of two variables conditioning the third vari-

able is also examined. For instance, the trivariate return periods of rainfall and storm 

surges, conditional to the river discharge series, increase with a decrease in the value 

of the conditional variable (river discharge). In addition, the return periods of one 

variable conditioning to the second variable with the constant value of the third var-

iable are also estimated. In summary, the trivariate return period of rainfall events 

decreases with an increase in the conditional variable storm surge at the fixed value 

of river discharge events. Similarly, the trivariate return period of rainfall events is 

higher at a higher value of river discharge events with a constant value of storm surge 

events.  

6. The conditional return periods for bivariate joint cases are also investigated using the 

best-fitted 2-D copulas. For instance, return periods of rainfall (or storm surge) events 

given various percentile values of storm surge (or rainfall) events and rainfall (or 

river discharge) events conditioned to river discharge (or rainfall) events. The condi-

tional return periods of storm surge events are inversely proportional to the percen-

tile value of the rainfall series; in other words, higher return periods can result in 

higher rainfall events when conditioning to storm surge events and vice-versa. It is 

also inferred that higher return periods are obtained when conditioned to rainfall 

events than when considering storm surge events as a conditioning variable. Simi-

larly, observing the conditional joint distribution relationship between river dis-

charge and rainfall events, return periods of river discharge (or rainfall) events are 

inversely proportional to the percentile value of rainfall (or river discharge) events. 

It is also observed that higher return periods have resulted when conditioning to 

rainfall events than river discharge series. 

7. The estimated trivariate and bivariate joint CDFs are used further to assess the risk 

of failure associated with trivariate (and bivariate) return periods, also called Failure 

probability (FP) statistics. In reality, the definition of the return period (OR-joint or 

AND-joint) cannot describe the potential risk of flood events. FP statistics highlight 

the potential risk of flood hazards during the entire infrastructure lifetime. An inves-

tigation concluded that the failure probability would be an underestimation if the 

trivariate joint probability analysis is ignored in compounding the collective impact 

of the selected flood variables. The trivariate flood events produced higher FP than 

the bivariate (or univariate) events. The investigation revealed that trivariate (also 

bivariate) hydrologic risk decreases with increased return periods. At the same time, 

FP increases with the increase in the service lifetime of the water infrastructure. 

Changes in the bivariate hydrologic risk following rainfall events in differently de-

signed storm surges and river discharge are also examined, derived from CDF of 

best-fitted 2-D copulas. Both designed events are considered for different RPs (refer 

to SF 17 (a-c) and 18 (a-c)), and three different project design lifetimes are considered 

(e.g., 100-yr, 50-yr and 30-yr). 
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The present study highlighted the adequacy of the vine copula framework in the 

higher dimensional probabilistic assessments of the CF events. The proposed approach 

can provide higher flexibility and a more accurate approximation of the flood joint prob-

ability density strengthening the practical compound flood hazard assessments. The ac-

curacy of the estimated risk statistics can be improved further by increasing the data series 

length. Due to lack of data availability, the present study used available 46 years of obser-

vations that may still carry some level of uncertainty. The nonparametric kernel density 

estimation (KDE) has been recognized as having high flexibility and a much more stable 

way of approximating marginal probability density, having no prior assumption about 

the PDF type compared to parametric family functions. Therefore, introducing the kernel 

function to approximate the vine copula's marginal distribution provides a more flexible 

way to represent a multidimensional flood dependence structure. The kernel function can 

derive flood marginals in a data-driven model that lacks any distributional assumption or 

prior subjective hypothesis of the function type for the fitted probability density of the 

selected flood variables. The ongoing work considers an approach of parametric vine cop-

ula with nonparametric marginals called semiparametric distribution settings.  
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