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Abstract4

InSAR and associated analytic methods enable relative surface deformation

measurements from low Earth orbit with a potential accuracy of centimeters to

millimeters. However, assessing the actual accuracy of individual points can be

quite difficult. The analytic methods are complicated enough that näıve ana-

lytic error propagation is infeasible, and, in many settings, InSAR practitioners

lack sufficient ground truth to assess results. Phase noise due to partial decor-

relation from changes in the scattering properties of the ground is a prominent

source of accuracy loss. In this paper we present a method to assess the loss of

precision due to this component of phase noise. The proposed method consists

of generating synthetic data whose statistical properties match that of the ac-

tual input SAR data stacks, and then using the synthetic data for an ensemble

calculation. The spread of the results of the ensemble calculation indicates the

loss of precision. We show examples of the ensemble analysis at a mining op-

eration in South Africa, and demonstrate the ability to assess the most reliable

methods for particular points of interest using this ensemble analysis and the

ability to filter out points based on the width of the spread of results.

Keywords: InSAR, deformation, synthetic data, ensemble methods,5

uncertainty estimate, time series analysis6

1. Introduction7

Interferometric Synthetic Aperature Radar (InSAR) enables measurements8

of surface deformation with a potential accuracy of centimeters to millime-9

ters (Rosen et al., 2000). A complex valued Synthetic Aperture Radar (SAR)10

image consists of pixels whose phase is determined by the scattering properties11

on the Earth’s surface and the effective round trip distance between the satel-12

lite and the surface. If the scattering properties change minimally, the phase13
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change between corresponding pixels in two co-registered complex SAR images14

will reflect changes in the effective round trip distance between the satellite and15

the surface and can detect surface displacements in the imaged area. Methods16

such as the Small Baseline Subset (SBAS) method (Berardino et al., 2002), the17

Permanent Scatterers (PS) method (Ferretti et al., 2001), and their variants can18

then be used to extract surface deformation from phase differences in a series19

of complex SAR images.20

There are a number of potential sources of error that InSAR methods must21

address to extract the most accurate surface deformation. First, the effective22

round trip distance between the satellite and the surface includes effects from23

tropospheric moisture and free electrons in the ionosphere (Goldstein, 1995; Ze-24

bker et al., 1997). Second, successive passes do not revisit the same orbital paths25

exactly, which can lead to geometrical decorrelation (Rodriguez and Martin,26

1992; Zebker and Villasenor, 1992). Third, differences in the actual round-trip27

distance between the satellite and the ground can be estimated using precise28

orbit data and a digital elevation model (DEM), but the residual errors are still29

larger than the deformation one seeks to measure. Fourth, the desired com-30

ponent of the phase is the round trip distance between the satellite and the31

ground modulo the wavelength, which is a few centimeters, mapped to [−π, π),32

see Goldstein et al. (1988). The process of recovering an “absolute” phase from33

the observed or “wrapped” phase is called unwrapping, and without additional34

constraints the problem is ill-posed. Finally, the scattering properties of the35

ground change with time, resulting in temporal decorrelation, see Zebker and36

Villasenor (1992).37

Many of these issues have been addressed to an acceptable degree. Tropo-38

spheric moisture and its contribution to phase, known as atmospheric phase39

screening (APS), have been studied extensively, e.g. Hanssen (2001, Chapter 6),40

3

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 June 2022                   doi:10.20944/preprints202206.0251.v1

https://doi.org/10.20944/preprints202206.0251.v1


and Ferretti et al. (1999, Section 2), and a number of methods to address APS,41

without using external inputs like weather models, have been presented (Murray42

et al., 2019; Yu et al., 2017; Tymofyeyeva and Fialko, 2015). Absent real-time43

models of tropospheric moisture, one can assume APS varies slowly in space44

and any spatial variations in APS can be assumed to be uncorrelated between45

revisits (Zebker et al., 1997). This allows one to separate a deformation sig-46

nal that is consistent in time from APS. Ionospheric effects, which tend to be47

more significant for L-band and longer wavelength systems, have been similarly48

studied (Chen and Zebker, 2013; Fattahi et al., 2017; Liang et al., 2019). Geo-49

metrical decorrelation has been largely addressed by better orbit control. Errors50

in DEMs manifest as a phase contribution that correlates with the component of51

orbit offsets that is perpendicular to the look direction. This effect is sufficiently52

reliable to use InSAR to generate DEMs (Van Zyl, 2001; Zink et al., 2014).53

Assessments of the phase contribution due to changes in scattering proper-54

ties have largely focused on how to select ”good” pixels to include in an InSAR55

analysis, e.g. Ferretti et al. (2001). The phase of any single pixel changes sig-56

nificantly between successive collections. This remains true even after removing57

the estimated phase contribution associated with the round trip distance, since,58

as noted above, the combined uncertainty in the orbit data and DEM exceeds59

half a wavelength. This inability to access the ”phase on the ground” can been60

addressed in several ways. In Ferretti et al. (2001) the authors present an ele-61

gant argument relating phase noise to temporal variations in amplitude, which62

is not affected by APS or orbit variation. This allows one to identify likely63

permanent scatterers (PS), i.e. pixels where scattering is dominated by a single64

stable feature. These PS pixels are included in the InSAR analysis. The draw-65

back to this method is that it often selects too few pixels outside of urban areas.66

Indeed, the method presented in Ferretti et al. (2001) includes additional steps67
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to include more pixels that are consistent with the initial PS pixels, but which68

themselves do not have the desired amplitude statistics. Alternatively, because69

many pervasive phase contributions vary slowly in space, one can choose a spa-70

tial window to determine if the phase changes are at least consistent within71

that spatial window. At the simplest level one can estimate the interferometric72

phase difference between two SAR collections as shown in Eqs. 1.13 and 1.1473

in Ferretti et al. (2007a). Here one approximates the expectation value of the74

phase change for pixel (Eq. 1.13) by assuming the statistics are sufficiently75

uniform within the averaging window (Eq. 1.14). There are more sophisticated76

methods that incorporate a stack of coregistered complex SAR images to esti-77

mate a consistent time series for the phase, e.g. Guarnieri and Tebaldini (2008);78

Ansari et al. (2018). We refer to phase quality between two SAR collections as79

coherence, and the phase quality for a stack of (more than two) SAR collections80

temporal coherence. These methods to estimate the quality of interferometric81

phase, and, in the cases of Ferretti et al. (2007a, Eq. 1.14), Guarnieri and Tebal-82

dini (2008), and Ansari et al. (2018), the phase itself, are based on the idea that83

phase noise should be considered as a statistical process and these methods can84

estimate the parameters of that process.85

These coherence estimation methods can also be used to estimate uncertainty86

in phase (Bamler and Just, 1993; Jong-Sen Lee et al., 1994, Figs. 2,3). One could87

assume that uncertainty in the wrapped phase is the same as the uncertainty88

in the unwrapped phase, and finally, accumulate uncertainty according to the89

chosen interfergram network. While this approach can give a rough approxima-90

tion, there are two shortcomings worth noting. First, unwrapping is necessarily91

non-linear, and the uncertainty in the unwrapped phase will likely not be the92

same as the uncertainty in the wrapped phase. As an aside, it is the authors’93

experience that the iterative and conditional logic in unwrapping schemes makes94
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a näıve error propagation infeasible. Second, the historical uncertainty is often95

correlated in a manner that cannot be captured by a single number such as tem-96

poral coherence, or even by coherence between, say, successive SAR scenes. For97

example, coherence between fall and spring SAR scenes may be high, while snow98

causes scene-to-scene coherence involving scenes collected in winter months to be99

low. Indeed, phase-linking InSAR methods (cf. Guarnieri and Tebaldini (2008);100

Ansari et al. (2018)) use a sample correlation matrix (SCM) to reconstruct a101

consistent wrapped phase from all N(N − 1)/2 non-redundant interferometric102

pairs. This suggests that models of uncertainties should capture correlations in103

those uncertainties.104

This current work proposes a novel method to estimate uncertainty, more105

specifically precision, in deformation results based on uncertainty in phase on a106

point-by-point basis. The method is described in detail in Section 3. The two107

main ideas behind this method are, 1, we create synthetic data whose statistics108

match the statistics of the input data, then, 2, estimate the uncertainty based109

on the standard deviation of an ensemble calculation using these synthetic data.110

This method can then assess any deformation retrieval method by measuring111

the spread in results in the ensemble of deformations retrieved, and can al-112

low the estimation of uncertainty between any two test and reference points.113

We demonstrate this with an example from a mining site in South Africa in114

Section 4.115

2. Background116

Previous studies have attempted to assess the accuracy of InSAR derived117

deformation using GPS/GNSS data, e.g. Ferretti et al. (2007b); Zebker (2021);118

Lee et al. (2005); Jiang and Lohman (2021); Armaş et al. (2016), leveling mea-119

surements, e.g. Yang et al. (2016); Marinkovic et al. (2007); Luo et al. (2017),120
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or indirect methods such as water level, e.g. Wdowinski et al. (2004); Lu and121

Kwoun (2008) or precipitation, e.g. Palomino-Ángel et al. (2022). However,122

some of these methods cannot provide a direct comparison to deformation sig-123

nals and therefore make it difficult to estimate accuracy or precision, and the124

uncertainty of other methods such as GPS/GNSS and leveling data are compa-125

rable if not greater than what is anticipated for InSAR measurements, e.g. You126

(2006). Further, these sources of validation are often temporally or spatially127

sparse, which does not allow one to estimate the accuracy of all points or epochs128

used in the InSAR surface deformation measurement and limits the ability to129

detect where the signal is most reliable and where it may be less accurate. Sim-130

ulation has been used to assess particular phase contributions, e.g. Yunjun et al.131

(2019) provides a means to simulate atmospheric phase errors.132

The method presented here is most similar to Agram and Simons (2015)133

where the authors present a thorough model of the correlations in uncertainties.134

The matrix that describes these correlations is quite large, and the current135

work does not so much ”build on” but ”remove from” that work, with the goal136

of establishing a more computational tractible method.137

3. Method138

3.1. Overview139

Let N denote the number of complex SAR scenes. We choose a kernel k in140

the spatial domain and compute the Sample Correlation Matrix (SCM) for each141

pixel. Recall the r, c entry for the SCM (associated with time epochs r and c)142

corresponding to pixel i is143

SCM i
rc =

〈dir; dic〉k
‖dir‖k‖dic‖k

. (1)

where144
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• dba is the co-registered complex SAR data at epoch a for pixel b,145

• 〈f ; g〉k is the inner product generated by integrating the convolution of146

the product fg with the kernel k and147

• ‖ · ‖k is the induced L2 norm, i.e.
√
〈 · ; · 〉k.148

To generate sample data for pixel i, we notionally draw φ0 from (SCM i)1/2Z149

where Z is a random column-vector variable of N i.i.d. entries each drawn from150

the complex normal distribution CN (0, 1). We let151

φ = φ0/|φ0|, (2)

which we treat as the synthetic phase. The synthetic data for pixel i is then the152

Hadamard or element-wise product of amplitude vector of the input SAR data153

at pixel i and φ.154

In addition to stacks of coregistered complex SAR scenes, InSAR analysis155

pipelines require a number of ancillary data such as orbit data and collection156

dates. We use these data from the input stack. With this, we can create an157

ensemble of synthetic data that have the same form as the input data, and158

any InSAR analytic pipeline can run on both real and synthetic data without159

change.160

Running an InSAR analysis pipeline on an ensemble of such stacks generates161

a range of deformation results, which helps us understand the likely spread of162

deformation results due to decorrelation, and provides an estimate of precision163

per pixel and epoch.164

3.2. Properties165

There are a number properties of this method worth discussing.166

The SCM may not be positive semidefinite. Since the SCM is Hermitian,167

we compute (SCM i)1/2 using an eigenvalue decomposition, taking the square168
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roots of the eigenvalues. If we encounter any negative eigenvalues we set them169

to zero and proceed.170

The phase of the SCM is reflected in the synthetic data. To see this we171

consider the case of the SCM for a pixel for two epochs. The SCM will have the172

following form173

SCM =

 1 z

z∗ 1

 , (3)

where the modulus of z is the coherence and the argument of z is the estimated174

interferometric phase, both of which will depend on our choice of kernel. The175

eigenvalues and corresponding eigenvectors are 1+|z|, 1√
2
[exp(iθ), 1]T and 1−|z|,176

1√
2
[− exp(iθ), 1]T , where θ is chosen such that exp(iθ) = z

|z| . We can compute177

the square root of the SCM as178

SCM1/2 =
1

2

 U V exp(iθ)

V exp(−iθ) U

 , (4)

where179

• U =
√

1 + |z|+
√

1− |z| and180

• V =
√

1 + |z| −
√

1− |z|.181

For two i.i.d. random complex Gaussian variables Z1 and Z2, we can compute182

the synthetic phase at the two epochs as183

 P1

P2

 ≡ SCM1/2

 Z1

Z2

 =
1

2

 UZ1 + V exp(iθ)Z2

V exp(−iθ)Z1 + UZ2

 (5)
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We are interested in the relative phase of P1 and P2 so we consider184

P1P2 = 1
4 exp(iθ)(

UV |Z1|2

+U2Z1Z2 exp(−iθ)

+V 2Z2Z1 exp(iθ)

+UV |Z2|2

)

(6)

The expectation value of this is185

1

2
|z|E(|Z1|2) exp(iθ), (7)

and has phase θ. The standard deviation of the phase of P1P2 as a function of186

γ = |z| derived from numerical experiment is shown in Figure 1, and has the187

expected form (Bamler and Just, 1993).188

For this reason, phase contributions from sources whose length scales exceed189

the width of k – typically APS, deformation and gross DEM errors – will be re-190

produced in the synthetic data (Guarnieri and Tebaldini, 2007), and one should191

not add these phase contributions in via additional simulated data.192

We are using the SCM as a covariance matrix. It is natural to consider193

using the covariance matrix itself, which will only fail to be Hermitian positive194

semi-definite in the case of roundoff error. The covariance matrix would be195

appropriate if we were attempting to estimate the uncertainty in, and create196

synthetic versions of, both the amplitude and phase by using a windowed average197

specified by k. Our goal, however, is to create synthetic data that allows us to198
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estimate the uncertainty in phase estimations obtained by spatial averaging.1.199

One must choose k. The choice of k impacts the effective resolution of the200

synthetic data. One should choose k large enough to capture the uncertainty,201

but small enough to resolve the features of interest.202

Such synthetic data are only appropriate for kernel-based phase estimation.203

This process of generating synthetic data assumes that phase statistics are nearly204

uniform on a small scale, and that the kernel k can recover these phase statistics.205

This assumption does not hold for a single permanent scatterer surrounded206

by noisy pixels. Consequently, if one uses amplitude dispersion to detect PSs207

within a noisy surrounding environment, these synthetic data will not repre-208

sent the uncertainty in the phase recovered from pixels selected by amplitude209

dispersion. The method we propose here will construct synthetic data using210

the statistics from a windowed average, the synthetic version of a single PS211

surrounded by noisy pixels will reflect the entire neighborhood of that PS, and212

will not capture the quality of that single pixel on its own. Note that, because213

the synthetic data uses the original amplitudes, the amplitude dispersion cal-214

culation will agree exactly for both synthetic and real data, while the synthetic215

phase for the pixel will likely be less reliable than the corresponding real phase.216

One can create synthetic data for single pixels, essentially following Ferretti217

et al. (2001). One creates a Rice distribution that matches the observed am-218

plitude dispersion, selects the phase from the samples and pairs that with the219

input amplitude. While substantially simpler than our method based on the220

SCM, it suffers the drawback that the phase statistics are assumed to be fixed221

in time, as the estimate] is parametrized by a single input statistic. In this case,222

e.g., seasonal noise will not be captured. Further, such a method will, without223

1We attempted to use the actual covariance matrix and found that the resulting synthetic
data had coherence that was much lower than the coherence of the real data.
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additional inputs, produce synthetic data with mean zero phase.224

4. Example225

As an example, we apply our analytic methods to a mining operation in226

South Africa, shown in Figure 2. We use a stack of 31 images collected by227

Sentinel-1 track 131 between November of 2019 and November of 2020. The228

images were coregistered to a UTM grid with resolution of 2.5m East-West by229

10m North-South. We chose the anisotropic resolution of the UTM grid to230

approximate the anisotropy of range and azimuth resolutions in an IW-TOPS231

mode collection.232

We compare coherence between two scenes (Figure 3) and the magnitude of233

the SCM for an arbitrary pixel (Figure 4) derived from real data and synthetic234

data. In both cases it is evident that the coherence for the real data is slightly235

higher than it is for the synthetic data. We show this descrepency in Figure 5.236

This plot shows the absolute values of SCM entries for synthetic data plotted237

against the absolute value for corresponding entries for real data. We’ve binned238

the data into narrow intervals of real coherence and computed the standard239

deviation of the synthetic coherence.240

There are two notable features in Figure 5. First, the largest difference be-241

tween coherence of real and synthetic data occurs roughly when the coherence242

of the real data is 0.7. At this point the coherence of the synthetic data has243

a mean of 0.56. Our hypothesis is that our noise model fails to capture cor-244

relations between nearby pixels that increase coherence. Second, at very low245

coherence the synthetic coherence is higher than real coherence. We believe this246

is caused partly because noise perturbes the SCM from being purely diagonal,247

but primarily because the coherence is bounded below by zero, and the mean248

is likely not entirely appropriate for determining a ”representative” synthetic249
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coherence.250

We anticipate that the first issue – that our model fails to capture corre-251

lations between nearby pixels – will have two effects. First, we believe that252

ensemble studies will likely overestimate the uncertainties, and second we might253

see systematic biases in the mean of the ensemble results. For this reason, we254

use ensemble results primarily as a tool to estimate uncertainties in particular255

deformation retrieval methods, and take that as a likely upper bound on the256

uncertanty.257

We apply our ensemble methods to two deformation retrieval methods. The258

first, which we will call method 1, begins by using a variant of the recursive259

phase estimation scheme described in Ansari et al. (2018). Pixels are included260

based on temporal coherence, in particular the ability to find a rank-one approx-261

imation of the SCM per ministack. We then form a mesh of all spatial links less262

than a certain radius. For each link we apply the LAMBDA method described263

in Kampes and Hanssen (2004), rejecting links based on their temporal coher-264

ence. We reconstruct point data from link data using the method described265

in Gonzalez et al. (2011). The second method (method 2) estimates phase us-266

ing the phase-linking method described in Guarnieri and Tebaldini (2008). As267

with the first method, pixels are include based on temporal coherence. Follow-268

ing Pepe and Lanari (2006), we use a minimum cost-flow method to establish269

consistent link values in temporal-perpendicular baseline-space, and then use270

a minimum cost-flow method on the Delaunay triangulation of good points to271

recover unwrapped phase per point. With both methods we look for historically272

anomalous jumps of 2π, which we treat as unwrapping errors and attempt to273

remove. No effort has been made to identify and remove APS, nor have we274

applied any temporal smoothing.275

We’ve run each method on the real data, and on an ensemble of thirty syn-276

13

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 June 2022                   doi:10.20944/preprints202206.0251.v1

https://doi.org/10.20944/preprints202206.0251.v1


thetic stacks of data. These sixty-two deformation retrieval computations were277

performed on the Descartes Labs Platform (Beneke et al., 2017). Deformation278

histories for the test points relative to the reference point, as shown in Figure 2,279

are presented in Figures 6, 7, 8 and 9. The orange crosses in these figures show280

deformation histories derived only from actual complex SAR data, while the281

blue circles with error bars show the ensemble mean and standard deviation of282

deformation histories derived only from synthetic data.283

In Figures 6 and 7 the deformation at the green point relative to the orange284

point retrieved by the two methods from the actual data (orange crosses) are285

largely in agreement. The standard deviations of the ensemble results (blue dots286

and error bars) for method 1 are smaller than those of method 2, suggesting287

that for this pair of test and reference points method 1 is less sensitive to phase288

noise.289

In Figure 8 the deformation at the blue point relative to the orange point290

retrieved from the actual data by method 1 (orange crosses) suggests almost291

no deformation, however the ensemble mean standard deviation (blue dots and292

error bars) suggest that this method for this pair of test and reference points is293

very sensitive to the modeled phase noise. In Figure 9 method 2 shows roughly294

50mm of deformation and for this pair of test and reference points is not nearly295

so sensitive to phase noise.296

5. Discussion297

InSAR results can vary based on the deformation retrieval method, e.g. (Hu298

et al., 2016; Osmanoğlu et al., 2016; Parizzi and Brcic, 2010; Yang et al., 2016,299

Figs. 8,9), and even individual methods likely have accuracy and uncertainty300

that varies in space and time. This can make it difficult to determine which301

points in the results are actually reliable, or to determine the best deformation302
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retrieval method to use for a particular area of interest.303

The primary value in this ensemble calculation is that it allows us to deter-304

mine the method that is least sensitive to phase noise and therefore the best305

method to choose for a particular set of points or area of interest. For instance,306

we see that the estimated uncertainty is relatively small for the green test point307

relative to the orange reference point for both method 1 and 2, and while method308

1 may be less sensitive to phase noise, both methods have uncertainties within309

the range we can expect for InSAR measurements (Rosen et al., 2000). However,310

the relative uncertainty between the blue test point and the orange reference311

point for method 1 is quite high, indicating this method is very sensitive to312

phase noise for this test and reference pair combination, and therefore would313

not be the best deformation retrieval method to choose for recovering relative314

deformation between this pair of points.315

The other main benefit in using the presented approach is that, because316

this method estimates uncertainty point-by-point and epoch-by-epch, one can317

filter points based on the magnitude of their estimated uncertainty, which al-318

lows confidence that the extracted deformation at the remaining points is likely319

insensitive to phase noise and is likely more reliable. In the above example, if320

method 1 was selected and the orange point chosen as our reference, we would321

exclude the blue test point due to its high sensitivity to the modeled phase322

noise, but would preserve the green test point due to its lower uncertainty.323

As we can see in the second-to-last epoch of Figures 6 and 7, there are likely324

other sources of phase changes beyond expected deformation and estimated325

phase noise. These other sources add temporal ”jitter” to the signal that exceeds326

the standard deviations. This ”jitter” is correlated between the methods, and327

is captured in both the ensemble mean and the actual retrieved deformation.328

Further, the standard deviation doesn’t grow in time at these events. From this329
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we conclude that this jitter is caused by some other physical phase contribution,330

possibly APS or maybe spatially varying dielectric changes in the surface in331

response to other environmental effects.332

As we discussed in Section 3, we treat a correlation matrix as a covariance333

matrix, and take the square root of positive semi-definite approximation of this334

correlation matrix. While these approximations may not be entirely accurate,335

they appear to best match the real coherence data, and enable us to acheive336

beneficial insights into the reliability of each point we analyze. However, this337

method does not perfectly capture coherence using the correlation matrix, which338

may cause us to over estimate our uncertainty in some cases, so we take the339

standard deviation of the spread as the upper bound on the uncertainty.340

As for the computational and storage costs, aside from generating the syn-341

thetic data, we must run the entire deformation retrieval process tens of times342

to generate the actual retrieved deformation and the ensemble analysis, which343

can each be computationally-expensive, depending on the size and resolution of344

the area. We also must store each of these results before actually calculating345

the ensemble mean and standard deviation, which adds additional storage and346

computation costs. Because the standard deviations varies with choice of ref-347

erence point, there is not a way to compute the standard deviation ”up front”.348

Instead, when reviewing the results, we have all ensemble results available and349

re-compute the standard deviations for the test point if we move the reference350

point. Although this does add some additional computation and storage costs,351

it also allows for the flexibility assess the best reference point, and to compare352

relative differences in standard deviation for points that are near to each other353

spatially, which can help eliminate noisy points.354
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6. Conclusions355

We’ve developed a method for generating synthetic SAR data stacks based356

on real SAR data stacks. The coherence and estimated phase statistics of the357

synthetic data appears to match those same properties of the real data. This358

allows us to perform ensemble studies to assess the sensitivity of particular359

deformation retrieval method to phase noise. The proposed ensemble analysis360

can provide a point-by-point, epoch-by-epoch, indication of reliability of the361

result.362

Futher research includes a more thorough understanding of possible biases363

in the simulated synthetic phase.364
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Figure 1: Numerical experiments showing the standard deviation of phase of P1P2 as a func-
tion of γ = |z|.

25

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 June 2022                   doi:10.20944/preprints202206.0251.v1

https://doi.org/10.20944/preprints202206.0251.v1


18.936 18.948 18.961

-2
9.

21
8

-2
9.

23
-2

9.
24

1

Figure 2: Our area of interest with the reference point (orange) and test points (green and
blue).

26

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 June 2022                   doi:10.20944/preprints202206.0251.v1

https://doi.org/10.20944/preprints202206.0251.v1


Figure 3: Coherence between the tenth and twentieth scene for real input data (top) and
synthetic data (bottom).
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Figure 4: Absolute value of the sample correlation matrix for an arbitrary pixel using real
data (left) and synthetic data (right).
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Figure 5: A heat plot of coherence from synthetic data vs. coherence from real data. The red
line is y = x and the blue line is the mean synthetic coherence, with an error bar showing the
standard deviation of values.
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Figure 6: Recovered deformation histories of the green test point relative to the orange refer-
ence point as shown in Figure 2 for method 1.
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Figure 7: Recovered deformation histories of the green test point relative to the orange refer-
ence point as shown in Figure 2 for method 2.
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Figure 8: Recovered deformation histories of the blue test point relative to the orange reference
point as shown in Figure 2 for method 1.
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Figure 9: Recovered deformation histories of the blue test point relative to the orange reference
point as shown in Figure 2 for method 2.
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