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Abstract

We examine a nonlinear initial value problem both singularly perturbed in a complex parameter and
singular in complex time at the origin. The study undertaken in this paper is the continuation of a
joined work with A. Lastra published in 2015. A change of balance between the leading and a critical
subdominant term of the problem considered in our previous work is performed. It leads to a phenomenon
of coalescing singularities to the origin in the Borel plane w.r.t time for a finite set of holomorphic solutions
constructed as Fourier series in space on horizontal complex strips. In comparison to our former study, an
enlargement of the Gevrey order of the asymptotic expansion for these solutions relatively to the complex
parameter is induced.
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1 Introduction

In this paper, we focus our attention on a singularly perturbed nonlinear partial differential
equation outlined as

(1) Qd)ult, z,€) = P (tF+19,)°P Rp (0. )u(t, z, €) + P(t, z, €, 0y, 82 )u(t, z, €)
+ CQ17Q2Q1(aZ)u(t7 Z’ 6)@2(8z)u(t7 Z’ 6) + f(ta Z) 6)

for vanishing initial data u(0, z,€) = 0 where
e the constants k,0p > 1 are integers and cg, g, € C* is a given complex number,

e the expressions Q(X),Rp(X),Q1(X),Q2(X) stand for polynomials with complex coeffi-
cients and P(t, z,€, V1, V) represents a polynomial in the arguments t, Vi, Vo with holo-
morphic coefficients w.r.t the perturbation parameter € on a disc D, centered at 0 with
prescribed radius €y > 0 and holomorphic in the space variable z on a horizontal strip in
C framed as Hg = {z € C/|Im(z)| < B} with assigned width 25 > 0,

e the forcing term f(¢, z, €) entails coefficients that rely polynomially on the time variable ¢,
analytically in € on D, and holomorphically in z on Hpg.
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This work is a natural continuation of the study [8] by A. Lastra and the author. Namely, in
that paper, we have investigated a similar initial value problem as (1) shaped as

(2) Q(:)dy(t, z,€) = PP~ VR CO=VEINGID R 1y (9. )y (t, 2, €) + H (t, €, 0y, :)y(t, 2, €)
+ Ql(az)y(ta Z, 6)@2(62)y(t7 2 6) + f(ta 2, 6)

for prescribed null initial data y(0, z,e) = 0, where k > 1,0p > 2 are integers, H, Q, Q5 are
polynomials in their corresponding variables and where the forcing term f is subjected to the
same features as the forcing term f appearing in (1). Among other constraints imposed on the
profile of (2), we took for granted that the next key condition

(3) deg(Q) > deg(Rp)

hold. We constructed a set of genuine bounded holomorphic solutions y,,(t, z, €), for 0 < p < ¢—1,
for some integer ¢ > 2, to (2), on domains T x Hg x &, for a well chosen bounded sector T
edging the origin in C*, where H g is some horizontal strip in C with width 28 > 0 and where
(Ep)o<p<c—1 stands for a set of bounded sectors with radius €y > 0 whose union contains a
full neighborhood of 0 in C*, called a good covering in C*, see Definition 4 in this work. Such
functions are modeled as Laplace transform of order k and inverse Fourier transforms on R,

k oo u du
Yp(t, 2z, €) = 7(2@1/2 /oo /Lﬂ/p wp(u, m, €) exp ( — (g)k)eﬁzm;dm
along halflines L, = [0, +oo)eY " Cc U d, U {0}, where Ug, is an unbounded sector bisected
in direction d, € R and where the so-called Borel map w), represents a holomorphic function
with exponential growth w.r.t u on a union Ug, U D, for some radius r > 0, continuous w.r.t
m on R with exponential decay and holomorphic w.r.t € on the punctured disc De, \ {0}.
Furthermore, informations concerning asymptotic expansions as € tends to 0 could be ex-
tracted. We proved that all the functions y,, share a common asymptotic expansion g(t, z, €) =
Y ons0Yn(t, 2)e” wr.t e, uniformly relatively to (t,z) € T x Hpg, where y represents a formal
power series with bounded coefficients y,, on T x Hg. This asymptotic expansion is (at most)
of Gevrey order 1/k, meaning that

n—1

(4) sup |y, (t, 2, €) — Zyl(t, 2)el| < CM"T(1+ %)]d"

for all n > 1, all € € €, for suitable constants C', M > 0.
The program undertaken in this work remains the same as in [8] and brings up

e the construction of bounded holomorphic solutions to (1),
e asymptotic expansions of these solutions as the parameter € borders the origin.

As we will acknowledge later on, both aspects of the above record will substantially be altered,
compared to [8], by the new assumption

(5) deg(Q) < deg(Rp)

we here require for the equation (1).
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The first item is completed in Section 5, Theorem 1. A finite set of bounded holomorphic
solutions uy(t, z,€), for 0 < p < ¢ — 1, for some integer ¢ > 2, to (1) are built up on domains
T x Hg x &, that mirror the ones described above for yp(t, z,€), for well chosen bounded sector
T edging the origin, for the given strip Hg and for a set (&p)o<p<c—1 forming a good covering in
C*. However, in the approach we follow, the restriction (5) disallows the setting up of solutions
in the form of Fourier transforms on R in space z. Instead, they are presented as 2w —periodic
Fourier series with non negative modes. Indeed, each solution u, is expressed as a Fourier sum

up(t, z,€) = Z Up.m (£, (—:)eﬁzm

m>0
whose coefficients u, (¢, €) are molded as Laplace transforms of order k,

du
u

(6) Up.m (t,€) = k/ wa, (1, M, €) exp ( — (ﬁ)k)

L'yp et

along similar halflines L., as in the Laplace integral part of y,(t,z,¢), for Borel maps u +
wy, (u,m, €) having at most exponential growth on fitting unbounded sectors S, bisected in
direction 9, € R.

The second item is achieved in Section 6, Theorem 2. The existence of a formal power series
u(t,z,€) =Y, 0 Gn(t, 2)e", with holomorphic bounded coefficients G,, on T x Hpg, is established
that represents the common asymptotic expansion for all the partial maps e — up(t, z,€) on the
sectors &,, uniformly on 7 x Hg w.r.t the couple (t, z). This expansion remains of Gevrey type
as in our former setting (2) but its order is no longer the inverse 1/k of the order of the Laplace
transforms (6) involved but a larger quantity 1/k relying both on 1/k, on the degrees of @ and
Rp and on dp, see (176).

We now discuss the origin of the discrepancy between [8] and the present contribution. In
[8], the condition (3) allows the Borel map u — wy(u, m,€) to be analytic on a mutual small
disc D,. enclosing the origin, for all m € R. Devoided of this assumption, under the constraint
(5), the Borel maps u — wy,(u,m,€) are still analytic on discs centered at 0, but their radius
pm > 0 are shown to rely on m and furthermore the whole sequence (pp,)m>0 tends to 0 as m
becomes large, see (44). It is worth noticing that both

e the construction of these Borel maps wyp, (1, m,€), m > 0 (reached by induction and fixed
points arguments discussed in the technical and outstretched sections 3 and 4),

e the special arrangement of the singularities of the partial maps u > wp, (u, m, €) and their
discret nature

result from the shape of the solutions wu,(t, 2, €) we impose to be written as Fourier series with
non negative modes. As shown in Theorem 1, the discret set {g;(m), m > 0}, for 0 <[ < kép —1
given by (42) of potential complex singularities of the Borel maps u +— wy, (v, m, €), m > 0, which
accumulates at 0, has a direct effect on the order of exponential flatness for the difference of
consecutive solutions up4+1 — u,. At last, such an order is known to be related to the Gevrey
order of the formal expansions of the solutions u, w.r.t € by the classical Ramis-Sibuya theorem.

The first occurence of such a correlation between small and approching 0 singularities in the
Borel place and large multipliers for the asymptotic expansions in the physical plane arises in
the seminal paper [2] by B. Braaksma and L. Stolovitch. They study normal forms of nonlinear
differential systems

odx

(7) 22 = (A+ 2A4)a(2) + 2f(2,2(2))
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4
of so-called irregular type at z = 0 where A, A are diagonal constant matrices, x = (x1,...,zy)
denotes a vector of C", n > 1 and f is analytic near 0. By means of analytic changes of
coordinates

LIZ‘%(Z) = yl(’z) +gi(z7y17 e 7yn)7 Z = ]-7 e ,Tl,

they transform the given system (7) into a so-called normal form consisting in its linear part

dy

2 A+zA

L= (A+2)(2)

with y = (y1,...,yn). They show that under diophantine conditions on A, the partial maps
z gi(zyur, . up) = Z go(2)uf' -+ udr
Q=(q1,-..,qn)EN"

for (ui,...,u,) in a prescribed small polydisc in C", have asymptotic expansions of Gevrey

order 1 + « on appropriate sectors edging 0 in C, for v > 0 related to the condition imposed
on A. The amplification v arises from the fact the 1 — Borel transform of gg(z) (see [1] for
an explanation of this terminology) are shown to be analytic only on a disc D.)qy, for some
constant ¢ > 0, whose radius tends to 0 as |Q| = ¢1 + ... + ¢, becomes large.

Later on, the author and colleagues have unveiled comparable small divisors and large multi-
pliers phenomena in different settings, see [6], [7], [9], [14], [16], [18]. Among them, two conspic-
uous contributions can be distinguished, one in the framework of partial differential equations
and the second that concerns g—difference differential equations.

e In the paper [15], A. Lastra, J. Sanz and the author consider a nonlinear Cauchy problem
framed as

(8)  €0(28.) "1 (£20,)20° X (t,z,€) = H(t, z,€,8;,0.) X (L, z,€) + P(t, z,e, X (L, 2, €))
for given Cauchy data
(9) (82X)(ta0a€) = Qﬁj(t, 6) , 0< ] <SS - 17

that are holomorphic on a product 7 x &, for a fixed bounded sector 7 edging 0 and for
a bounded sector £ belonging to a good covering in C*. The equation (8) is singularly
perturbed in the complex parameter € and is both of irregular type at ¢t = 0 and of
Fuchsian type at z = 0. Its leading term is on the left handside of (8), for positive
integers rg,r1,72,S > 1, H denotes a lower order differential operator, polynomial in
t and holomorphic relatively to (z,€) near the origin in C? and P is some multivariate
polynomial. A genuine holomorphic solution to (8), (9) is achieved as a convergent series

X(t, z,€) ZXBtE

B=0

on some small disc D, r > 0, whose coefficients X3(t, €) are expressed as Laplace trans-
forms of order 1 of some Borel maps 7 — V3(7,€) that turn out to be analytic only on
discs D, /(341yr1/r, Whose radii tends to 0 as § — +00 and on well chosen unbounded sec-
tors avoiding its set of singularities. The coalescence to the origin of these singularities at
polynomial speed induces a magniﬁcation of the Gevrey order of the asymptotic expansion

tze Zth
n>0

of X(t, z,€), uniformly in (¢,2) on T x D,, w.r.t € on £, which shows to be equal to ”'”2
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e In the work [6], A. Lastra and the author address the next linear Cauchy problem
(10) €OTY (t,2,€) = P(2,€, 044, Oz, O, 02)Y (L, 2, €)
for prescribed Cauchy data
(11) (9IY)(t,0,6) = $5(te) , 0<j<S—1

which are holomorphic on a product 7 x &, for a suitable unbounded sector 7 laying apart
of the origin at some large distance R > 0 and for a bounded sector £ singled out of a
good covering in C*. Equation (10) is singularly perturbed in the complex parameter e
and is of irregular type at ¢ = oco. Its principal term is displayed on the left handside
of (10) for a positive integer S > 1. The lower order linear differential operator P with
polynomial coefficients contains contraction operators o4 and o4, acting on functions
through g+ f(t, 2) = f(qt, z) and o4, f(t,2) = f(t, qz) for some fixed real number 0 < ¢ <
1. An actual holomorphic solution to (10), (11) is built up as a convergent series

Y(t,z,¢€) ZYﬁtE

B=0

on some small disc D,, r > 0, with coefficients Yj(¢, €) shaped as Laplace transforms of
order 1 of analytic Borel maps 7 — Wj3(7,€). These Borel maps are shown to be convergent
around 0 only on a disc with radius ¢;¢®*” for some constants ¢i,co > 0. Again, their
singularities merge at the origin but this time with geometric speed entailing a complete
change of nature of the asymptotic expansions in € on & for Y (¢, z,¢). Namely, Y (t,z,¢€)
admits a formal asymptotic expansion

Y(t, z,¢€) thz

n>0

of so-called g—Gevrey type of some order s > 1 relatively to €, a growth which belongs to
a larger scale than the Gevrey rate, meaning that

n—1
sup ‘Y(tv 2, 6) - ZIk(tvz)€k| S LOqu 2n ’ ’n
teT k=0

2€Dy
for all integers n > 1, all € € £, for fitting constants Lg, L1 > 0.

In the context of this paper, the singularly perturbed leading term €*p (t*+19,)°0 R (9.) of (1)
is modeled with a regular differential operator Rp(0;) in space at z = 0 and with an irregular
operator t*+19; in time at t = 0 and remains essentially the same as in our former work [8]. In
contrast with our previous paper [15] depicted above and the two quoted references [14], [16],
the small divisor phenomenon does not appear only from the peculiar shape of the leading term,
but from a change of balance between the principal term of (1) and the lower order term @Q(9,),
compared to the one considered in [8]. Here, the couple of operators "0 (tk¥19,)%p Rp(0,) and
Q(0) holds a central place in the origin of the coalescing singularities arising in the Borel plane
for the set of sectorial holomorphic solutions built up in the study.
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2 Outline of the main initial value problem and associated aux-
iliary problems

2.1 Laplace transforms

In this tiny paragraph, we include some lead-in definition and features of the Laplace transform
of integer order k > 1, stated in the work [8], that will show up in the upcoming sections.

Definition 1 Let k > 1 be an integer. We denote Sqs5 = {7 € C* : |d — arg(7)| < 0} some
unbounded sector with bisecting direction d € R and opening 20 > 0 and we consider a disc D,
centered at 0 with radius p > 0. Let w: Sgs5U D, — C be a holomorphic function that vanishes
at 0 and suffers the bounds : there exist C' > 0 and K > 0 such that

(12) [w(r)| < Clr|exp(K|7|)

for all 7 € Sgs5. We define the Laplace transform of w of order k in the direction d as the

integral transform
£iw)T) = [ wu)expl(-(7)"

Ly

du

u

along a half-line L, = [0, +o0)eV 17 Sa,s U{0}, where v relies on T and is chosen in such a
way that cos(k(y — arg(T))) > 81, for some fized real number §; > 0. The function L (w)(T) is
well defined, holomorphic and bounded on any sector

Saomn ={T €C*:|T| < RY* | |d—arg(T)| < 0/2},

where 0 < 0 < T +20 and 0 < R < 61/K.

We pinpoint some important feature : if w(r) = Zn>1 wp,T" represents an entire function
w.r.t T € C with the bounds (12), its Laplace transform L&(w)(T) does not depend on the
direction d in R and represents a bounded holomorphic function on D p1/x whose Taylor expansion
is represented by the convergent series X(T') = > < waI'(2)T™ on Dpijk, where T'(x) stands
for the Gamma function.

2.2 The main problem displayed

Within this subsection, we introduce the principal nonlinear initial value problem under analysis
in this paper. Its shape is stated as

D-1
(13) Q(d:)u(t, z,€) = 22 (t"10,)°P Rp(0.)ult, z,¢) + > X110} ay(z, €) Ry(0:)ult, 2, €)
=1
+ €Q1,Q:@1(0:2)u(t, z,€)Q2(:)u(t, z,€) + f(t, 2, €)

where D > 2, k > 1 stand for some integers, cg, g, € C* is some non zero complex number, for
vanishing initial data u(0, z,€) = 0.

The constants Ap,dp,A;,d; and §; for 1 < [ < D — 1 represent positive integers that are
subjected to the next lineup of technical conditions (which are listed in the order of appearence
through the work):

1. The next two equalities

(14) Ap=kép , di=(k+1)5+ di,
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hold for some integers dy,; > 1, forall 1 <1 < D — 1.
2. Forall1 <1< D —1, we ask that

(15) kép > dk,l + k(5l + 2)

for the integer dj,; introduced above.
3. We require that

(16) A —d;+ 6 > 2k

forany 1 <1< D—1.

The maps Q(X), Rp(X), Ri(X), for 1 <1< D—1and Q;(X),Q2(X) are polynomials with
complex coefficients that obey the next restrictions:

4. We have

(17) deg(Rp) > deg(Q).

and we assume the existence of some open bounded sector Sq r,, centered at 0, not containing
the origin (that will be determined later on in the work), such that

(18) Q(im)/Rp(im) € Sq,ry,
for all integers m > 0. In particular, one can find two constants £,9Rp > 0 such that
(19) Q(im)| < Q(1+m)*@ | |Rp(im)| > Rp(1 + m)esr)

which yields

(20) Rp(im) = (1 + m)dee(Rp)—des(Q)

for all integers m > 0.
5. The positive sequence

(21) um = |Q(im)|/|Rp(im)| , m >0

is decreasing.
6. For each 1 <[ < D — 1, the next inequality on degrees

deg(Rp) — deg(Q)

(22) deg(R;) < deg(Q) + "on (dy — &)
holds.

7. We have
(23) deg(Q) > max(deg(Q1), deg(Q2))

We describe some set of Banach spaces of complex sequences which are discrete versions of
Banach spaces of continuous functions used for the first time by the author in the work [17] and
established in [4].
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Definition 2 Let 3,y be real numbers. We denote SEg ) the vector space of all sequences
h: N~ C such that

A (M)l (g, = SH>I(>)(1 +m)" exp(Bm)|h(m)]

is a finite quantity. The space SE g ) endowed with the norm ||.||(g ) turns out to be a Banach
space.

The coefficients a;(z,€), 1 <1< D—1, are built up in the next manner. Forall1 <[ < D-1,
let (A;(m,€))m>0 be a sequence

e that belong to SE for some given positive real numbers [, > 0 that are required to
& (8, H

fulfill the conditions

n)?

(24) p>1+deg(Q1) , p>1+deg(Q2)

e that rely analytically on € on a disc D, with center at 0 in C and with radius ¢y > 0 for
which a constant A; ., > 0 can be picked out with

(25) sup ||Al(m, 6)”(5,#) < Al,eo

EGDeO
for all m > 0.

We set the coeflicient a; as the Fourier series

CL[(Z, 6) = Z Al(m? E)ex/jzm

m>0
forall 1 <1< D —1. According to the bounds

(26) } Z Ai(m, e)e\/lem‘ <Al Z(l + m)—ue—b‘me—lm(z)m

m>0 m>0

<A, Z (1+ m)fuef(ﬁfﬁ’)m

m>0
provided that z belongs to any horizontal strip
(27) Hg = {z € C/|Im(z)| < 8}

for given 0 < 8’ < 3, we observe that the maps (z,¢€) — a;(z,€) are bounded holomorphic on
the product Hg x D, for any fixed 0 < 8’ < f3.

The forcing term f(¢, z,€) is constructed in the next way. Let J be a given subset of the
positive integers N*. For j € J, let (¢;(m, €))m>0 be a sequence

e that appertains to the space SEg ), for 8, u > 0 prescribed above.

e that depends analytically on € in D, with a constant ¢; . such that

(28) sup ||o; (M. €)ll(5,0) < Pje

eEDEO
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We introduce the next polynomial

(29) QO(U, m, 6) = Z Pj (m7 e)uj
JjeJ

in the variable u, with coefficients in SEg ,), that depends analytically in € on D,. We set

F(T,m,e) = k/ o(u, m,€) exp(—(u/T)k)dﬁ

L, U

as Laplace transform of order k of ¢, for all integers m > 0, where L, = [0, +oo)e‘/_717 stands
for a halfline in direction v € R, which relies on 7" in a way that cos(k(y — arg(T"))) remains
strictly positive.

We set the forcing term f as

(30) ft,z,e) = Z F(et,m, e)e¥ 1=

m>0

On grounds of Definition 1, the expression f(t, z, €) can be written as a polynomial

s =3 £ e)F(%)(et}j

Jj€J

in the variable et, where

filz o) =Y pi(m,e)eY71em

m>0

for j € J and represents a bounded holomorphic map relatively to (z,€) € Hg x D, for any
given 0 < ' < .

2.3 Sequences of related initial value problems

In the first part of this section, we reduce the study of our principal problem (13) to a sequence
of parameter depending ordinary differential equations in one single complex variable.

We figure out to seek for solutions wu(t,z,€) to (13) with vanishing initial data at ¢ = 0 in
the form of a 2r—periodic Fourier series in z and rescaled in time,

(31) u(t, z,€) = Z U(et,m, e)eﬁzm

m>0

for some sequence of expressions U(T, m, €) standing for its Fourier coefficients.

By following the usual derivation rule under the summation sign and product of Fourier
series, applied at a formal level at this point of the work, we arrive at the next sequence of
ordinary differential equations fulfilled by the Fourier coefficients U (T, m, €),

(32) Q(im)U(T,m,€) = AP~k (Tk+19.)90 R (im)U (T, m, €)

D—1
+Zeﬂz—dz+5Zsza§1( 3 Al(ml,e)Rl(img)U(T,mg,e)>
=1

mi+mao=m

teguo: Y, Qulim)U(T,ma,€)Qa(im2)U(T, ma,€) + F(T,m,e)

mi+mao=m

do0i:10.20944/preprints202206.0224.v1
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for all integers m > 0.

At a second stage, we convert this latter sequence of ODEs (32) into a sequence of convo-
lution equations that will be analyzed in the forthcoming sections. Now, we search for Fourier
coefficients U (T, m, €) in the form of a Laplace transform of order k,

du

(33) U(T,m,e) =k ; w(u, m,€) exp(—(u/T)k);

where L, = [0, —i—oo)eﬁ” stands for a halfline in well chosen directions v (described later on
in the work). In order to let the above integrals be well defined, we assume that the so-called
Borel maps u +— w(u, m, €) are holomorphic on some common unbounded sector S, centered at
0 with bisecting direction v and subjected to exponential bounds of order k,

(34) lw(u,m,e)| < Kp, exp(A|u|k)

for all v € S,, for given constants K,, > 0 (relying on m) and A > 0. Furthermore, the
dependence in € is supposed to be holomorphic on the disc D.,. More precise bounds will be
disclosed in the upcoming sections.

We recall a key formula introduced in the work [19].

Lemma 1 Let k,6 > 1 be integers. One can single out real numbers Asp, for 1 < p <4 —1
such that

(35) o) = (T or) + 3 A, THOTP(TH o)

1<p<s-1
where, by convention, we assume that the sum 3,5 [...] vanishes when § =1 in (35).

Under the assumption (14), by means of the above lemma, we rewrite the sequence (32) into
the form

D—-1
(36) QUm)U(T,m,€) = (T*07)P Rp(im)U (T, m,e) + 3 eMdrtopds
=1
X [(Tk+16T)6l + Z A5l ,ka(él —p) (T"‘“&T)p] ( Z Al(ml, E)Rl(img)U(T, ma, 6))

1<p<6;—1 mi+ma=m

tegue: Y, Quim)U(T,my,€)Qa(im2)U(T, ma,€) + F(T,m,e)

mi+mao=m

where all the differential operators appearing in (32) are expresses through the one single oper-
ator of so-called irregular type TF+10p.

Now, we bring to mind some handy formulas for the Laplace transform under the action
of product, product with a monomial and action of the differential operator T%*t197. These
identities have already been stated in our forgoing work [8] using formal expansions but a
thorough proof in the analytic setting can be found in the paper [10], Lemma 2.

Lemma 2 Assume that the map w in the expression (33) undergoes the upper bounds (34).
Then, the next three identities hold.

1. The action of the differential operator T*T10r on the Laplace transform (33) has the
shape

(37) THLOrU (T, m, €) = k:/L {kuFw(u, m, 6)}exp(—(u/T)k)CZL.
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2. Let h > 1 be an integer. The product of T" with (33) has the form

k du

(38) ThU (T, m, €) :k:/L {F(Z/k:)/ou (u” —s)%_lw(sl/k,m,e)%}exp( (u/T)*)=— "

3. For any given integers my,mg > 0, the product U(T,my,€)U (T, ma,€) has the next Laplace
transform profile

(39) U(T,m1,e)U(T,ma,¢)

uk

:k/L {uk/o w((uk—s)l/k,ml,e)w(sl/k,mg,e)(ukis)sds} exp(—(u/T)*)—

~

du

u

This last lemma applied to the recast sequence (36) enables the following statement.
The sequence of maps U(T,m,e), m > 0 fulfills the relation (36) if the sequence of Borel
maps w(u, m,€), m > 0 is subjected to the next convolution relation

(40) Q(Zm) (u,m, €) = (ku¥)°? Rp(im)w(u, m, )

IA —d+6 , A P N R A ds
—G—Ze ! l[ Z Aj(ma, €)Ry(img) " /0 (u® —s)7 % " (ks)w(s",mg, €)—

d
=1 mi+mao=m F(T) 8

k

+ Z Al(ml, )Rl ng Z A5L,P Y

k0

mi+mo=m 1<p<§—1 F(M)
u dg, 1 +k(8—p) d
X / (uF — §) T L (ks)Pw(sVE ma, )2
S

. 1
+ Z €Q1,Q2U / Ql Zml - S)l/ka my, 6)Q2 (ZmQ)w(sl/k’ ma, 6) (uk _ ds

s)s
mi1+mo=m
+ @(u7 m7 6)
In order to solve this latter relation in the ongoing sections, our strategy consists in reorganizing

it into fixed point equations (unveiled later in (47) and (48)). In the process, we ask to perform
a division by the next sequence of polynomials

(41) P (u) = Q(im) — (kuF)°P Rp(im)

for all integers m > 0. By straight computation, we observe that the roots of u — P,,(u) are
given by the explicit expressions

Q(im)|  \wy Q(im) 1 2ml
42 — (o) P exp (VT :
(42) a(m) IRp(im)[ko) &P ( (arg(RD(zm)k5D V5n T k(SD))
for all 0 <1 < kép — 1, all integers m > 0.
Provided that the aperture of the sector Sg r,, selected in (18) is taken small enough, one
can single out an unbounded sector Sy, centered at 0, with bisecting direction d € R, with small
aperture, such that

(43) Sa N (Um0 Uo<i<spr—1{a(m)}) = 0.
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We set

_latm)| _ 1 1QGm)| \wp
(44) Pm =" _§(|RD(z'm)|k5D>

for all integers m > 0.
In the subsequent sections, we request sharp lower bounds for P, (u) provided that u belongs
to Sq4 or to the disc D, , for any given integer m > 0.

e When u belongs to Sy, according to the condition (43), one can express u in a factorized
form

u = pe¥"qy(m)

for some radius p > 0, some real angle 6 ¢ 27Z, for some fixed root ¢;(m) of Pp,(u). As a
result, we get the next equality

(45) [P ()] = |Q(im) — K (pe¥ )57 (qy(m) )" Rp (im)| = |Q(im)|(1 = (pe¥~10)"P|
since, by construction, we observe that

(QZ(m))kéD = RDQ(Z(:FL”;ZIJD :

e When u € D, ,, one can split u in the shape
\/—Teql(m)

u = pe

for some radius p such that 0 < p < 1/2 and some angle § € R, for some prescribed root
qi(m). Following the same computation as above, one reaches

(46) [P ()] = [Q(im)|(1 = (pe¥~1)*7 | > |Q(im)|(1 — (%)k‘SD)-

According to the above constrution, for m = 0, the convolution relation (40) can be rewritten
in the form of a nonlinear fixed point equation

k

A (0,€)Ry (0 u v ARG e Y 1k ds
B — E A(sl,pdk&/ (u® —s) k kP sPw(s'/%,0,6) =
Py(u) i I( kit k( 1 p)) 0 3}

D-1 k uk
(47) CL)(U 0 6) — Z EAlfdl‘i’(sl [AZ(O,E)RI(O) u / (uk: _ S)%*lk(slstslw(sl/k 0 6)@
Yy l:1 P()(U) F(dz’l) 0 » Yy S
l

G k_ gk 1k 1 plu, 0, ¢)
+ CQI’QQID()(U)/O Q1<O)w((u - 5) 0, E)QZ(O)W(S 0, E)mds + W

provided that u belongs to Sy U D, for the unbounded sector Sq and disc D,, introduced
overhead.
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For any integer m > 1, we recast the equation (40) in the form of a linear fixed point equation
with suitably chosen forcing term

D—1
(48) w(u,m,e€) A ditd
=1
k uk d d
< (A0 R (i) / (uF — 5) 5 1 (s (s1F, m, ) 22
P (u)L(F) Jo §
uF u® dg,1+k (6 —p) ds
+A4;(0,€) Ry (im) Z As, p o / (u¥—s) z _1(ks)pw(sl/k,m,6)—]
i <u>r<W> 0 s
1
1/k , 1/k
+ ch,QQP / Q1(0 —8)7%0,6)Q2(im)w(s™ ", m,€) (o = s)sds
1
+ CQLQQP / Ql 'Lm ((uk - S) » M, 6)Q2( ) ( 1/k7076)md8 + ¢(U,m’ 6)
where the forcing term ¢ (u, m, €) is given by the expression
(u,m,¢€) =
(49) (u,m,€) = 901377(7;) LN Aidiy
m =1
k uk d
[ Z Al(ml,e)Rl(img)udkl/ (u* — s)%_l(ks)alw(sl/k,mg,e)@
m1+mo=m Pm(u F(T) 0 8
ma<m
uk
+ Z Ai(ma, €) Ri(im2) Z A&;,p (BTG )
m+mo=m 1<p<8;—1 Pr(u) (7/% )
mo<m
uF dy, +k(8;—p) d
X/ (uk ) et A P *1(ks)pw(81/k,m2,6)§
0
1
+ ) CQl,QzP / Q1 (im)w((uF — )% my, €)Qa(ima)w(s l/kamzae)mds
mi+mo=m

mi1<m,ma<m

In the sequel, we introduce a modification of the Banach spaces discussed in [8] in which we
plan to solve both fixed point equations introduced above.

Definition 3 Let v, 5, u > 0 be positive real numbers, e¢g > 0 a fixed radius and k > 1 be an
integer. We set Sq as an unbounded sector centered at 0 with bisecting direction d € R. For any
integer m > 0 and any given complex number € € D¢, \ {0}, we denote F(%z,,@,uk em) the vector
space of holomorphic functions T — h(t) on D, U Sq such that

14|z -
50 h()|lw em = sup  (1+m)F——<—exp (Bm — v|=|F)|h(r
50 sk = s (1 m) e (5m— i L))

where the radius py, is given by (44). The space F(dyﬂ jokem) equipped with the norm |[.|](,. 8,1 k,e,m)
is a Banach space.

do0i:10.20944/preprints202206.0224.v1
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3 Solving the nonlinear convolution equation (47).

Within this section, we intend to provide a solution to the nonlinear fixed point equation dis-
played in (47) within the Banach space F, (‘fl B, 1,)6,6,0) introduced in Definition 3 for m = 0.
For all € € D, \ {0}, let us consider the nonlinear map

D—-1
._ Ar—dyr, [A1(0, )Ry (0)  uF /u kL1 s 6 1k o) 95
(51)  Ge(w(u,0)) ._;e [ B & J, (O 07

Ay(0,€)R(0) uk /uk k A RGP U o ds
+ ———" Asp—a w50 (u¥ —s)" F kP sPu(s 7, 0) 2
Py(u) 13%_1 lpI‘(%(‘sl—p)) i : ]
+c uk/qu (O)W((uk_s)l/k O)Q (O)W(Sl/k 0)*&94—%
SR u) Jo V)2 b = s)s Po(u)

In the forthcoming proposition, we show that G, stands for a 1/2—Lipschitz map on a well chosen
ball of the Banach space F(‘fj B.uke,0)"

Proposition 1 We select the aperture of the sector Sq g, introduced in (18) in a way that we
can pick up an unbounded sector Sy that fulfills the constraint (43). Then, one can choose a
radius €g > 0 small enough, a constant cg, g, € C* close enough to 0 and an appropriate radius
w > 0 such that for all € € D¢, \ {0}, the map G enjoys the next two qualities

o The next inclusion
(52) Ge(Bw) C Bg

holds, where By represents the closed ball of radius @ > 0 centered at 0 in the space
Fd
(V7IB7I’L7k7€7O) :

o The shrinking property

1
(53) [[Ge(w1) — Ge(wa)ll(1,8,1,k,6,0) < §Hw1 — W2l (1,8,11,k,6,0)

for all wy,ws € By.

Proof We check the first item claiming the inclusion (52). We take some real number w > 0
and consider an element w(u,0) of F(‘fjﬁ k.0 Subjected to

llw(w, )| (w8 uk,e0) < @

It means in particular that the next inequality

|u/e| Uk
(54 (.0 < 3 b (1Y)
holds for all v € D,, U Sg.
1. We first provide bounds on the disc D,, for the first piece

k

A(0,€)Ry(0)  uF Y ety s 5 Ak o S
(55) Po(u) F(Cl,’;’l)/o (u” =) 75 TR (sH/E, 0)—
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appearing in Ge.

We parametrize the segment [0, u*] by means of s = u”

r with 0 <7 < 1 which gives rise to

i1 ds

(56) /Ou (uF — s) % Lsdiw(st/E )=

S

1
:uk(d’z’llﬂsz)/ (1 _r)%*lr‘slw(url/k,())ﬁ.
0 r

By means of the lower bounds (46) along with the upper estimates (25) and (54), we reach

(57) )Al(()’E)Rl(O) ut )/Ou (uk—s)%_lk‘sls‘le(sl/k,O)@‘

Bolu) T s
kO R (0 dii+ké, U U 1 Ay L dr
< Al’eo di.1 | ( )|1 kép pok,l lw|7| exp (V|7|k) / (1 - T) k 17"6l+’“ —
(%) [Q0)[(1 = (3)™P) € e J ;
5, L )
<A kd ’Rl(o)‘l - pgk,lJrkél/ (1- r)%—lﬂsﬁ%ﬁ
(%) [QO)[(1 = (3)*P) 0 r

1

2k 2k
1+‘y‘2k Mgk[p() +60 ]

u U\
>< — —
| 2] exp (v 1)
provided that u € D, since

U2k ro" Lorop | ok
(58) L+ = <1+ 5 < —agled” + €]
€ €] €]
for all u € D,,.
2. We give bounds on the sector Sy for the first piece (55). By dint of the equality (45) coupled
with the upper estimates (25) and (54), we observe that

A k uk dp,
0

kO 1 (p2p0)%*
<A, [Ry(0)] k01 (2pq ) RO (1 )
D% Q)1 — (pevTT0)kon| el

u
X w|—
€ r

1 Uk ! Akt g 5 o1dr
— X 1— k 1t
e o (1) (=t

whenever u = peV~1¢,(0) € Sy, due to

(p2po)?*

U 2k
60 1+ |- <1
(60) HIoT <1+ HEC

for all u = peV~19(0) € Sy Furthermore, under the condition (15), we get some constant
Ck.op.di1,6, > 0 such that

)2k

itk (1 (P2p0 pletTROL((2p0) % p?F + €2F) 1

(61) |6|2k ) — |1 _ (pe\/jle)k5p| |€|2k

11— (pev—10)kn )"

_ 1
< Ck,éD,dk,z,&W
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for all p > 0. According to (59) and (61), we deduce that

02) [AOORO [ g %)
) Jo

Bo(u)  p(d s
ko C_’k Spydp 0 1 dr. 1 +kS
< Ao g [R(0)|[— 57 (2po) @t
BNEE Q) e[

1 Uk ! Akt 5 o1dr
X W|=|——=55 € —|") x 1—7r)* Fr—
el o (1) ([ =t

for all u = pe¥ =g (0) € Sy.
3. Bounds on the disc D, for the second piece

A;(0,€)R;(0) uk uk N di 1RO —p) ) »op 1/k ds
(63) W 1<§ 1A61’pf(dkl+k(6lp))/0 (U — S) k kPs w(s ,0)?
1=

of G, are presented.
We parametrize the segment [0, u*] through s = u*r for 0 < r < 1 which yields

g, 1 +k(5;—p) ds

(64) / (u” — s) k 713pw(31/k,0)—
0 s
1 (6;—p)
_uk(dl’?“r&ll)/ (1—7')M LrPo(urt/*, 0)@
0 r

Based on the lower bounds (46) together with the upper estimates (25) and (54), we obtain

A0, ) Ry( uk ut & g TkG—p) Uk o ds
(65) )7 Z A5zpd/ (u” —s) % kPsPuw(s / ,0)—}
; k(o
PO(U) 1<p<d;—1 F(M) 0 s
kP 1 1 g, 1+ (8 —p) 1dr
< Al,eo Z ‘A&,Pl dr o Lk(6— 1\k6 (/ (1 - 7') k 71Tp+%7)
il p(w) 1—(5)k0 " Jo r
[Ri(0)] dy ks u (N

1 2k 2k
P8 U e (o ey — L Lk iy
Q)" o V) T o

for all w € D,,, according to (58).
4. Estimates on the sector Sy for the second piece (63) are displayed. Due to the equality
(45) in addition to the upper estimates (25) and (54), we check that

k

A k U dy 1 +k(5;—p)
(66) M Z Aélvpuélp))/o (uk _ 8)7kl . el _lkpspw(sl/k,0)§}

dr k(0=
Po(w) i, (Gt s
kP |R(0)] ~ 1
<A | A5, p] (2pg) ettt Ch.op.dy 1.6, 5%
o, L Mool e, Q) Chéott g

1 dy 1 +k(5;—p) 1dr |u/€| u
N Bl b DR PP Y k
X (/0 (1—r7) 3 P k7)w1+|%|2k exp (1/];\ )

for all u = peV~"¢(0) € Sy, owing to (60) and (61).
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5. Bounds of the third piece of G,
1
(67 00 / QuO)( (0 = %) Qo 05/, 0)
are disclosed on the union SqU D,,. On account of (54), we know that
’w((uk_s)l/k 0)’ <w|(uk_8)1/k’/|€| V‘uk_8|)
T |uk—s|? Ek
1 + ‘G‘Qk
and 1k
s € s
w(s%,0)) < o= ey (1121
1+ 50 le|
el
for all s € [0,uf], all u € Sy U D,,,. We deduce that
’LLk 1
’U,k/ov Ql(O)W((uk — S)I/k,O)QQ(O)W(Sl/k,O)md’S‘ S |Q1(O)||Q2(O)|w
lul* (1, 1k _ p\L/k 1/k 1
0 1+ (|“||E|;k) 1+ (IUI h)h €

for all u € SqU D,,. The following lemma is crucial.

Lemma 3 There exists a constant Ky, (relying on k) such that

[ul® (1% — B)1/k 1/k
) A
o 1y BERT Ty - mnt S T

for alluw € SqU D,,, all € € D¢, \ {0}.

Proof We first make the change of variable h = |e|Fh’ in the integral appearing on the left
handside of (69) that yields

[ul® kE_ 1\1/k 1/k
oy g [ QIR 1y,
o 1y G 1 e (=)

M k (l\%l)k ((%) —h/)l/k (h/)l/k 1 l , M . Lu’ )
/ 1+((‘\u*|) — )1+ (1) (M)k_h/h/dh = ()" Fe(()7)

el

where the map F}; is given by the integral expression

B T (:C—h/)l/k (h/)l/k 1 1 ,
F’“(””)_/O T+ @2t (R ™

For k = 1, this function F; can be explicitely computed in the form

log(1 4 x?) + z arctan(x)

Fir) =2 x(z? 4+ 4)

do0i:10.20944/preprints202206.0224.v1
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for all z > 0. As a result, we deduce a constant K7 > 0 for which

K
1+ 22

(71) Fi(x) <

for all > 0. Gathering (70) and (71) gives rise to the expected bounds (69) for k = 1.
Let k > 2. We make the further change of variable A’ = zu, for 0 < u < 1 in the integral
defining Fj and get
1 / ' 1
0 (1+22(1 —u)2)(1 4 22u2)(1 — u)' " Fu' "+

Fi(z) = ok du.

A partial fraction decomposition gives rise to the splitting
Fi(z) = Fi1(2) + Fr2(2)

where ) 1
_ 2 - 29 ~
Fii(z) = z* 3 +4Fk,1(l‘) s Fro(z) = * = +4Fk,2

()

with

1
. 3—2u
Fuao) = [ —rdu
0 (1+22(1—uw)?)(1—u) " *ku "%
2u+1

1
Fya(x) :/ du
0 (14 22u?)(1—u) " tul"*

At last, we provide upper bounds for each piece ij(ac) on (0,4+00) for j = 1,2. Indeed, by
carrying out the change of variable v’ = zu, we get that

A~ 1 1 x
Fraw) <3 = SY
0 (1+a2u?)(l—u) "Ful s 0 (14 ()?)(1— %) "x(w)' "+

which yields a constant K k,2 > 0 such that

Fro(z) < Koz~ Yk

for all x > 0. In a similar manner, by means of the change of variable v’ = z(1 — u), we obtain
a constant Kj, 1 > 0 for which
F(z) < Kyqa

holds whenever x > 0. Therefore, a constant K} > 0 can be found such that

(72) Fi.(x) < Ky,

for all > 0 and according to (70) we reach the awaited bounds (69) for any integer k£ > 2. O

Besides, owing to the equality (45) and the lower bounds (46), we get a constant Cp, > 0 with

(73) [Po(u)| = Cr,|Q(0)]
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provided that u € S;U D, . Finally, collecting the estimates (68), (69) and (73), we arrive at

uk uk i 1/k 1/k 1
() |eara:py /0 Qu(0)w((u” = )77, 0)Q2(0)w(s 70>Wg_s)sd5)

(1 O)[|Q2(0) o [u/€] an
< K —
> ’CQ17Q2’ CP0|Q<0)’ w kl + ‘%‘Qk exXp (V’ 6‘ )
for all u € SqU D,,.
6. Bounds of the tail piece
@(u? 07 6)
75 —_—
(75) Po(u)
of G are displayed. Departing from the very definition (29) and according to (28), we observe
that
U u u |2 u
(76) 1o, 0,6)| < [ D2 @0 el 12111+ [ 2*) exp (= vI= ) | 7= exp (v =)
ey € € € + |4 €
< [ S eslel swpart(1+ 2] Ll (0 < gy Lo exp (4 49
Cla e Lo [R5 e =TT ek TR e
i >
for all u € SqU D,,, all € € D, \ {0}, for the constant
(77) Py = Z P, 606% supa’ (1 + x%)e*”zk.
jer =20
Bearing in mind (73), we deduce that
QD(’LL,O,G) (106 ‘y‘ U k
78 ‘ ‘ < K ¢ exp (v|—
(72 R | = o) T+ 2P P )

for all u € SqU D,,, all € € D¢, \ {0}.
Now, we select the radius ¢y > 0 and the constant |cg, g,| > 0 small enough and take w > 0
suitably in a way that

D—-1
kO |Ri(0)] dog ks 1 ket _q g1 dr
(79) ‘E‘Az—dz—&-(sz{max (Al, Py / (1—r)*® 'r ity 2L
2 © P(8) [QUO)I(L - (3)F0) ! ;
Loop | ok kO C’kaéD:dkl»‘Sl 1 dy,1+kd
A R;(0 ’ 2o )Gk 1RO
X w’d% [:00 +EO ]7 Z’Eof(d2»1)| l( )| ‘Q(O)’ ‘EPk( pO)
1 d
X w X (/ (1-— r)%—lyﬁﬁiﬁ))
0 T
kP 1 1 dg, 1 +k(8;—p) 1 dr
+ max (Al o E | A5, pl y (/ (1— r)ﬁ—lrwr;i)
’ ’ +k(6— — (ks
1<p<d;-1 I (4O 1= (5)40 " o r
[Ri(O)] dptksr 1 op | o 3 dpy+ks
P w [po +€0 ],Al’ ‘Ag’ —_(2p0) k.l l
1Q(0)[ |€[2F K 1<p<d,—1 " p(dethoe))

R (0)] = 1 1 dp 1 +k(5—p) 1dr
% | Ry( )|Ck,6p,dk,z,5z|€|2k % (/0 (1—7) z lrp+k—)w)}
Pey

Q(0)] '
|Q1(0)[]Q2(0)] 5
+ |CQ17Q2‘WW Ky + m =%

holds for all € € D¢, \ {0}. Notice that such an inequality can be reached since
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e The quantity |e|*~%+%=2k can be taken appropriately small when e € D, \ {0}, for ¢g > 0

small enough, according to the condition (16).

e The constant ¢, displayed in (77) is suitably close to 0 provided that €y > 0 is taken
small enough.

At last, the collection of the six above bounds (57), (62), (65), (66), (74), (78) under the
restriction (79) implies that
|u/el U g
G, )] < =y fapr e (111
for all w € D,, U Sq and prescribed € in D, \ {0}, which means that the inclusion (52) holds
true.
In the second part of the proof, we focus on the Lipschitz property (53).
Let € € D¢, \ {0} and set two elements wy,ws of the closed ball By in F‘f} Bopikne0) where the
radius @ > 0 has been prescribed in the first step of the proof.
By construction of the norm, we observe that

|u/€l u
(80) |w1 (u,0) — wa(u, 0)] < [|wr — w2||(u,ﬂ,u,k,e,0)w exp (V|z|k)
€
together with
|u/el Uk
(s1) 0,01 < 1 o (214
€

for j = 1,2, as long as u € D,, U S4. The next list of bounds A. B. C. and D. is a direct
aftermath of the bounds 1. 2. 3. and 4. reached in the first part of the proof.
A. Upper bounds on the disc D, for the first piece

A0, )Ry (0)  uF /uk koL g5 8 1/k 1k o) 98
u® —8) 7k k%% (wr(sT7,0) —wa(s,0)) —
P(](u) F(le) 0 ( ) ( 1( ) 2( )

(52 :

that shows up in G¢(w1) — Ge(w2) are supplied. Indeed,

A0, ) Ri(0)  u* /u k Wl _y, 5 5 1/k 1/k ds
(83) Po(u) F(%) A (u™ — )& ks (w1(s ,0) — wa(s ,0))8

D(%0) [QMO)I(1 = (3)*») .

X ||UJ1 —WQ|

u N S
(Vﬁ,u,k7670)| 6|exp (V| 6| )1 T ‘%‘% l€[2F [p5" + €3]

provided that u € D,,.
B. Bounds on the sector Sy for the first piece (82) are displayed. Namely,

k u
gqy [AO)R(0) u S ) 18 01(57%.0) — wa(s1/% 0 ds
l) 0

Po(uw)  p(dt 5
kal CYk(Sdel(;l 1 1)
< Ay g [Ri(0) | — 575 (2po) ko
Ve [QO)] [ef**
u 1 (I ! et _q 5 o1dr
x |lwy — I 21k) % 1— ) F hpdrtg
e = el e 0 (A1) (0 8 i
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for all u € Sy.
C. Bounds on the disc D), for the second block
Al(O, E)RZ(O) uk u® k A1tk Ci=p) o
(85) —f~— Y Aéz,pdk(;/ (u* —s) F
Py(u) i I( kit k( L P)) 0
d
x kPsP (w1 (s/%,0) — wa(s'/*,0)) ?S

of the difference G.(w;) — Gc(w2) are established. Indeed,

A;(0,€) Ry (0 uk ut A R Op)
) AU & e

6l7p di 1+k
Po(u) i p(%
d
X kpsp(wl(sl/k,[))—O.)Q(Sl/k70))—8
S
kP 1 ! dg 1 +k(8;—p) 1 dr
SAIEO Z ‘A(;lpl d (/ (1_7»)#717,p+%7)
’ ’ +k(6;— — (1\ks
1<p<;—1 F(W)l (3)%r " Jo r
[R1(0)] dy, 1 +ka u w1 Lo
“Too e mellesuneolgles () T el + <)

for all u € D,,.
D. Bounds on the sector Sy for the second block (85) are stated. As expected,

k

A;(0,€)R;(0) uk w Atk —p)
(87) |—=——= Z A6l’p(51—1?))/0 (uk —5) % Lgpgp

di1+k
Po(u) 1<p<é,—1 F(%
ds
x (wi(s'%,0) —wz(Sl/k’O))gl
kP d ko |Rl(0)| ~ 1
<A Z IAal,p|m(2po) k,1Hk0; 000)] Ck,ﬁD,dk,zﬁz |2k
1<p<8;—1 F(ﬁ)

1 A1 TR0 —p) 1dr u/e u
x (/ (1-r)= % PR — ) Jwr — W2H<u7,6,u,k,e,0)%exp (vI=1)
0 r L+ [¢] €

whenever u € Sy.
E. We focus on bounds for the third block

uk uF
(88) 0@y /0 QI(O)wl((uk—s)l/k,o)Qz(o)m(sl/k,o)Mds
uF uF 1
~conanpi [ QO = ) 00Qa(0wals 0 s

of the difference G (w1) — Ge(w2). At first, by means of the identity ab—cd = (a — )b+ ¢(b—d),
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we can rewrite the above difference as
ub oo ko N1k 1k 1
89 — 0 — 0 0 0)—F——d
89) conan gy | QO (=) 0)Qa(0)un (4, 0) s
uF ut 1
- CQLQQPO(U)/O Q1(0)wa((uF — $)'/*, 0)Qa(0)wa(s"/*, O)Mds
k
_ Lok [° k_ 1/k 1/k 1
= CQl,Qle(O)Qz(O)PO(u) [u /0 (w1 — wa) ((uF — 5)/%, 0wy (s ao)md‘s
k
“ 1
+ uk/ wa((u® — )%, 0)(wy — wg)(sl/k,O)mds}.
0 _
In view of (80) and (81), we know that
|(u* — 5)"7%]/le] |u* — |
(w1 — w2) (¥ = 5)'7%,0)] < [Jwr = wall(,8,k.c0) L aE OXP VW)
‘E‘Zk
and n
s € s
n(s%,0)] < ol ey (1171
1ok €]
along with
uk — 5)1/F|/|e uf — s
(s 0 < =PIl =
1+ s €]
and "
|57/l sl
(w1 = w2) (1%, 0)] < llwi — wal g bc0) (o XD (Vw)
‘GIQk
for all s € [0,u¥], whenever u € Sy U D,,. We deduce that
00 [ [ QuO0)r — ) (0 — )%, 0)Qa(0)r (515, 0) |
0 (uk —s)s

< Qi(O)[|Q2(0)[[lwr = w2l w8 k.c0)®

|ul® k _ p)L/k Bi/k 1
" Mk/ (lul )k h/2|6| /h|2€| ; dh x exp (] 2")
o 1g WERE T (- Rk ¢

|E|2k

together with

(91) hfﬂuQﬂmwAWk—@”ﬂmme@n—wﬂ@”“mowisﬁ“‘

< [Q1(0)[1Q2(0)[[[wr — wallw,p,u,kc0®

el (ul® — R)VE|e] BVRJle] 1 y
g ik
X |ul /0 1+M 1+|E}|L§k (‘u|k_h)hdh><exp(y|€| )

‘E‘Qk

for all u € SqU D,,.
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By means of Lemma 3 and paying regard to the lower bounds (73), we conclude from (90)
and (91) that

uk uk
92) [cou0. 5 /0 Ql(O)wl((uk—s)l/k,O)Qg(O)wl(sl/k,O)(ukis)sds
ub k 1/k 1/k 1
~coan g [ QO = ) 00Qu(0wa(s 0

(uk — s)s

|Q1(0)[|Q2(0)] |u/e|

<le — = 2w |wr — wall 0 m
= ’ Q17Q2| CPO|Q(O)| || 1 2“( \Bs sk, 70) k1+ |z|2k

ds‘

u
exp (1/|7 |k )
€
for all u € SqU D,,.
We prescribe €y > 0 and |cg, g,| > 0 close enough to 0 enabling the next inequality

D—-1

kO [R,(0)] dis ks [ g | s 1 dr
(93) ‘E‘Az—dl—&-&{max <A17 o / (1—7r) % 1r +Lar
; (%) [Q0)|(1 — (3)Mp) 0 r
Lo 2k K _k’JD»dkl:lsl 1 dy 1+ké
A R (0 ’ 9 k1 Hkdy
X ‘E‘Qk [pO +€0 ]7 l,eor(%ﬂ l( )‘ ’Q(O)‘ ’6’2k( ,00)
1 d
Y RIEDR )
0 T
kP 1 1 g1 +k(5—p) Ldr
+ max <Al€0 > Aspl— (/ CIEES R R il
’ ’ +k(6— _ (1\ks
1<p<d—1 (== k(’ Dy 1— (5)%0 " Jo r
[Ri(0)] dyo+ks, 1 o 2k kP dj,1+k6
x Py (06" + €5 ], A |Asipl — gy (2p0) T
1Q(0)]"° e[0T 0 Olgg_l lpr(%(él—m)
R;(0)| = 1 1 dj,1+k (S —p) 1dr
X ||Q((0))|‘ Ck,5D7dk,la5l7|6|2k X (/0 (1—r) % 1Tp+k7))}
0 0
+leqy o ML ON, 216, <172

Cpy|Q(0)]

to hold. We come to the above inequality by observing that the quantity |e|*~%+%—2k can be
taken arbitrarily small when € € D, \ {0}, for ¢y > 0 small enough, owing to the condition (16).

Eventually, gathering the bounds (83), (84), (86), (87), (92) subjected to the condition (93),
we arrive at

1 u/e U
O 16.{un (1) = Gulwal )] < llr = w2l ko1 e exp (12 1)

for all u € SqU D, for any given € € D, \ {0}, which points to the Lipschitz feature (53). O

The next proposition provides a solution to the nonlinear fixed point equation displayed in
(47) within the Banach spaces presented in Definition 3 for m = 0.

Proposition 2 We adjust the aperture of the sector Sq r,, introduced in (18) in a manner that
we can single out an unbounded sector Sy that fulfills the constraint (43). Then, for the choice
of the radius eg > 0, of the constant cq, g, € C* and of the radius @ > 0 made in Proposition

1, there exists a unique solution u — wg(u,0,€) of the nonlinear convolution equation (47), for
all given € € D¢, \ {0} with the next features:

do0i:10.20944/preprints202206.0224.v1
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e The map u +— wq(u,0,€) belongs to Fcf/,ﬁ,#,k,e,o) under the constraint

|u/el U
(95) |wa(u, 0,€)| < GW exp (V|;| )

for allw € SqU D, , granted that € € D, \ {0}.

e The partial map € — wq(u,0,€) is holomorphic from D, \ {0} into C, for any prescribed
u € SqU Dpo.

Proof We select the constants ¢ > 0, cg,,0, € C* and @w > 0 as in Proposition 1. Since
F(dyﬁ,“’m’o) is a Banach space for the norm [|.||, 5 .k.,0), it follows that the closed ball By, C

F(Cf/ﬁ%k’e,o) represents a complete space for the metric d(X, Y)_: X = Y|(,8,uke0- The
proposition 1 asserts that G, induces a 1/2—Lipschitz map from (B, d) into itself. Then, owing
to the classical Banach fixed point theorem, G, possesses a unique fixed point denoted wy(u, 0, €)

in B, meaning that
(96) gE (wd(u7 O’ 6)) = OJd(U, 07 6)

provided that € € D, \ {0}. Observe that this latter equation (96) exactly confirms that u —
wq(u, 0, €) solves the nonlinear equation (47) on the domain S;U D, , granted that € € D, \ {0}.
Furthermore, since G relies holomorphically on € on D¢, \ {0}, it follows that wg(u,0,€) itself
hinges analytically on € on the same punctured disc. Proposition 2 follows. O

4 Solving the linear convolution equation (48) with forcing term
(49)

The principal objective of this section is to prove the next proposition.

Proposition 3 One can select a radius g > 0 and a constant cq, g, € C* close enough to
the origin in a way that the next property holds: for each integer m > 1, there exists a unique
solution u — wq(u, m,€) of the linear convolution equation (48), for all prescribed € € D¢, \ {0},
with the next two features:

e The map u+— wq(u, m,€) appertains to F(ijﬁ P and is subjected to the upper bounds

/€]

(97) |wa(u, m, €)| < “3 T |%|2k

u _
exp (I/‘;|k)(1 +m) Hexp(—pm)
for alluw € SgU D, , granted that € € D¢, \ {0}, where the radius py, is given by (44) and
w > 0 together with the sector Sy are given in Proposition 2.

e The partial map € — wq(u, m,€) stands for an holomorphic function from De, \ {0} into
C, for any given u € SqU D, .

The proof of the above proposition is grounded on a recursion procedure. Namely, let m > 1 be
a fixed integer. We assume that for all 0 < h < m, there exists a map wgy(u, h, €) which solves
the convolution relation (40) where m is replaced by h, such that
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e the map u — wq(u, h, €) belongs to ngﬁ juke,ny With the bounds

(99) i, )] € s exp (v214) (14 1) x50

for all u € SqU D, , provided that € € D, \ {0}, where @ > 0 is given in Proposition 2.

e The partial map € — wq(u, h, €) stands for an holomorphic function from Dy, \ {0} into C,
for any given v € SqU D,, .

Notice that the existence of such a map wgy(u, 0, €) for the case h = 0 results from Proposition

Since the complete chain of reasoning is rather lenghty, we break it up in two separate
subsections, one dedicated to bounds related to the forcing term (49) and the other devoted to
the very contruction of the map wg(u, m, €) by means of a fixed point argument.

4.1 Bounds for the forcing term (49)

In this subsection, we discuss the next result. Let m > 1 be the integer fixed above.

Proposition 4 One can prescribe the radius ey > 0 and the constant |cq, g,| > 0 independently
of m and close enough to 0 such that the forcing term u — ¥ (u,m,€) given by the expression
(49) is submitted to the next two properties

e The map u > (u, m,€) belongs to F‘iﬁu esem) and is constrained to
w  |u/e u _
(99) o, ] < 51 oxp (1) 1+ ) xp(—6im)
€

for allw e SqU D, , provided that € € D¢, \ {0}, where w > 0 is given in Proposition 2.

o The partial map € — (u,m,€) is a holomorphic function from De, \ {0} into C, for any
fized u € SqU D, .

Proof By construction, the forcing term (49) contains only maps wg(u, h, €) with 0 < h < m for
which the bounds (98) can be applied.
1) We first provide bounds for the piece

u® ut g1 ds
(100) Z Al(mlae)Rl(imQ)d/ (u — 5)7% H(ks) wq(s/F, ma, €)—
P, u)F(%) 0 S

mi+mo=m
ma<m
on the disc D,,,. We bear in mind that the sequence (21) is assumed to be decreasing. Hence,
the sequence of radius m — py, is also decreasing and we observe that D,,, C D,,, as long as
mg < m. From the induction hypothesis, we know that

|u/€]

u _
(101) lwa(u, ma, €)] < w7 e exp (l/|z|k)(1 + ma) # exp(—LBma)
€
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for all w € SqU Dy, C SqU D,,, , provided that my < m. We parametrize the segment [0, uk)
by means of s = uFp for 0 < p < 1, which yields

k

u d ) d
(102) / (ub — s)%_ls‘slwd(sl/k,mg, e)?s
0

1 dy., d
=tk O [ )y gt ma, )T
0 p
By means of the lower bounds (46) along with the upper estimates (25) and (101), we reach

k uk d
U k.l ds
103) |A Ry(ima) 5 D R Gl —
(103) 1(mq,€) l(zmg)Pm(u)/O (u® —s5) 7% T s%wg(s ", ma,€) .
1 pdk,z+k5z
. m
Q(im)[(1 - (3)*P)
|ul U g, /1 Dkt g 541dp
X —exp (v|— 1—p) & p""r—
o () [0 )
for all w € D,,,. By definition of the polynomial R;(X) and by construction of Q(X), two
constants 7 > 0 and $3; > 0 can be singled out with

< Apo(1+ma) #e P Ry (imy))| @ (1 + mg) " exp(—pBma)

(104) [Ru(ims)] < (14 ma) 0 Q(im)] > 91(1+ m) e

for all given non negative integers mo < m. Keeping in mind the definition of p,, set up in (44)
and the bounds (20), (22), we deduce a constant C; g g5, > 0 (independent of m,ms) such
that

(105) |Rl(im2)’p7dr,§,l+k6l < &(l)dk,l-f-kél(ﬂ/?%[)) dkl,cl;Dktsz [ 1 di—8;
—_— >~ deg(Rp)—deg(Q)
QGim) a2 e (11 m) D

(1 + m)des(Fr)

1t )o@ = CL.Q.Rp 61

The next lemma will be helpful.

Lemma 4 A constant éu > 0 (depending on p) can be found with

(106) > (A ma) (L +mg) < Cu(l 4+ m)

my +m2:m
mo<m

for all integers m > 1.

Proof The proof follows the same lines of arguments as in Lemma 2.2 from [4] or in Lemma 4
from [17]. Namely, let us break up the sum

m

(107) (14 m)* Zl (1+m—m11)“(1+m1)“ = (14+m)"(Apn + Bn)

mi=

in two pieces

Am: Z ! , Bm: 1

— M H
0<m1<% (1+m ml) (1+m1)
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On the one hand, from the inequality 1 +m —mq > %(m + 1) provided that 0 < m; < m/2, we
get a constant C, 1 > 0 (relying on p) such that

B Iz 9
108)  An<—— y L o2 > 1 Cu

1 n= m 0 1
(I+m) St (I+m) (14+m) = 1+my) (I+m)

for all m > 1, according to (24). On the other hand, owing to the inequality 1+ m; > (m+1)
for my > m/2, we observe that

17 M 5
(109) Bn<— " 3 ! < 2 > 1L Cu

(I+m)H (I+m—mp* — (14+m)H = I+m*  (1+m)+

F<mi<m

for all m > 1. Gathering (107), (108) and (109) yields the lemma. O
The collection of bounds (103), (105) and (106) begets the upper estimates for the piece (100)

, u RN VY 1/k ds

(110) ‘ S Ami O Ri(imy) [ (W = 5 F T (k) a5 ma, )
mlv”izzm Pm(u)F(T’) 0 S
mo<m

kK Ciorps ! k.1 1 dp
S Al7 s D0 D (/ (1 —p)T_lp(le’_Ei) X O
VR - (1)) b
|ul

x Cu(1+ m) He P exp (U‘%|k)

el

1

2% | 2k
1+‘y‘2k Mgk[p() +60]
for all w € D,,,,, since

(1) LU g A L
€ = ‘6‘% = M% = ‘6‘% 0 0

holds for v € D,,, , according to the assumption that m > p,, is decreasing.
2) We exhibit bounds for the piece (100) on the sector Sy. Paying regard to (45) and owing
to the bounds (101), by means of the expression (102), we notice that

k uk d
U k.l ds
112)  |A;(mq, €)Ry(imao / uF — ) 1%y, sl/k,mg,e —
(12) [Admr,Ofima) 5 s [ = ( )
oy — . 1 (p2p )Qk

< Aol Rl ey gy oM )

X (1—1— )‘N —Bma ’u‘ 1 ( |u|k)(/1(1 )%—1 5l+%dp)

w m e ———exp (V|- — v
’ e TR TPV TR

for u € Sy, under the factorization u = peY g, (m), for p > 0 and 6 ¢ 27Z.
Under the condition (15) and the assumption that m — p,, is decreasing, according to (61),
we check that

1
1= (pe/ 1))

i thbi (1 4 (p2pm)*" < 1 kS (] 4 (p2p0)?"

)= T (e oy )

1
76D 7dk,l 751 ‘ 6|2k

(113)

< Cy
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for the constant ék,ép,dk,z,& > 0 appearing in (61), for all p > 0.
Piling up the bounds (105), (106) and (113), we come to the estimates for the piece (100)

. u” A el _y 0 s 1/k ds
(114) ‘ Z Al(ml’e)Rl(Zm2)P(dk,l)/0 (u® —8)F " (ks)wy(s ,mg,e)?

mi+mo=m m U F k
mo<m
kO19dri+kdr _ 1 1 Akt _q 541dp
_ % L1072
< A F(%) Cva,RD:‘SDCk,&Dydk,l’él |€|2k(/0 (I—p)* " p"T% D )w

< . |u/€| U
X CuLm) e g exp (v 1)
€

for all u € Sy.
3) We display bounds for the piece

k
U
15) 3 AlmR(ima) Y Ay
my+mo=m 1<p<8;—1 P (u)T( & )
mo<m

u dj, 1 +k(3; D) d
></ (u* — s) S ‘_1(ks)pwd(sl/k,m2,e)—8
0 S

on the disc D, . The segment [0, u*] is parametrized through s = u*r, for 0 < r < 1, which
brings

k

u dg 1 +k(5;—p) d
(116) [ (k) sy (6 ma,
0

1 dj, 1 +k(5,—p) dr
— ki tk(@=1) / (1—r)"F  Pwg(ur'* mqy,e)—
0 r

Calling to mind the lower bounds (46) along with the upper estimates (25) and (101), we come

up to
117) A( R ( Uk uk( k dk,l*’“(‘slfp)il » ( 1/k )ds
_ % __
( 1(my,€) Ry ZmZ)Pm(u)/O u® —s) stwa(s™/", ma, €)—
< A, (14 my) " e ™| Ry(imsy)] ! pUATEOL (1 4 o) exp(— Bma)
- Q(im)| (1 — (5)#p)
1 dy, 1+k(8;—p) d
u u k,l ! _ 14ar
X Hexp (V|E‘k) X (/ (1—r) k 17”p+k7)
0

forallue D,,,.
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Flocking the bounds (105), (106) and (111), we deduce from (117) that

k
U
(118) ‘ Z Ai(ma, €) Ri(im2) Z Aéz,p (et Gi=p)
my+mo=m 1<p<§;—1 P (u) (7;C )
mao<m
u® djy 1+ (5, —p) d 1
k Tk JATEOUITP) 4 1/k S
< e, D < Ay
kP . 1 dk,l+k(5l_p)_1 l dr
X Z |A517p|1_‘ i1 +k(6—p) Cva,RDﬁD(/ (L—r) . P 7“)
1<p<ai—1 (=) 0

= - U 1
x wCy(1+m) e ﬁmu exp( |— |k)m’ ’%[,00 +6(2)k]

forallu e D,,,.

4) We handle the piece (115) on the sector S;. Owing to the equality (45), the upper
estimates (25), (101) and by means of the parametrization (116), we get

k u® djy 1+ (5, —p) d
u k,l 1 S
119) [A;(mq, €)Ry(imao / uF — s k “ePwg(st* ma, €)—
(119) [Am. ) Rufima) 2 [ (0 =) ( <
. . 1 (Pme)Qk
< Ay, (14 my) e PRy (img) | —— p itk (2p, Ak HROL (] 4 SRR )
K |Q(im)||(pev10)kop — 1] " e[2%
1 U 1 di,1 k(81 —p) 1dr
1 —po—Pma 71 |ul - 2k / 1) % —Lptp 20
’W( —{—m2) (& ‘6‘1+|u|2k (V|€| )( 0 ( T) r 7,.)

that is valid for all u € Sy by means of the factorization u = pe¥ =g (m), for p > 0 and 6 ¢ 277Z.
Grouping the bounds (105), (106) and (113), we derive from (119) that

k
u
(120) ‘ Z Al mla Rl Zm2 Z A(Slvp T di,1+k(6;—p)
my+mo=m 1<p<d;—1 P (u) (41C )
ma<m

dg 1 +k(5;—p)

v _ ds kP
X / (uk — 8) k 1(k‘8)pwcl<31/k?, ma, 6)?‘ S Al7€0 Z ‘Aél’p‘dkﬁ'—k((sl—p)
0 1<p<d;—1 L(=—F—)

% p—Bm A - 1 ! A+ G-p)
|ul

1 dr
, 5l|6|2k
U g
X - p—
o 1+ 2 o 1)

Lppty
r

as long as u € Sy.
5) We treat the nonlinear piece

12y Y ceep /Q1 ima e — )%, 1, )

mi+mog=m
mi<m,mo<m

X Qg(img)wd(sl/k,mg,e)( 1 ds

uk — s)s

do0i:10.20944/preprints202206.0224.v1
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on the union Sy U D,, . We check from (101) that

E_ \1/k k _
— — U S € u 5
jwal(u® = )V*,my, o) < w(1+my) e '™ : Iu)’“—SIL/‘ e (V||€|k|)
1 + |€|2k
and 1/k
jwa(s'/*,ma, )] < @ (1+mg) He Bm?%e}{p (VLL)
1+ Te[2% e

for all s € [0,u*], all u € Sy U D,,,, according to the fact that D,,, C D,, and D), C D,

for any integers 0 < my, mo < m, since the sequence of radius p,, is assumed to be decreasing.
We deduce that

(122) ‘Uk /Ou Qi (im1 )wa((u* — S)l/kamlv€)Q2(im2)wd(51/k’m2’€)(ukls)s

< &2 PMQ(im)|(L + m1) IQ(ima)|(1 + my)

Jul® k_ 1\1/k 1/k 1
e [ QIR WAL
0 1+ (|U||€|;k ) 1+ W (|u| — h)h €

ds‘

provided that u € SqU D, ..
The next technical lemma is useful.

Lemma 5 Let D = max(deg(Q1),deg(Q2)). A constant Cy, g, 0, > 0 (relying on pu and Q1,Q2)
can be singled out with

(123) > 1Qulima)|(1 4 ma) H|Qa(ima) (1 + ma) ™ < Crgy.gu(1+m) #HP

mi1<m,ma<m

for all integers m > 1.

Proof By construction, we can select two constant 97, Qs > 0 with
(124) Q1 (ima)| < D11+ m) @) | | Qa(ima)] < (1 + ma)ter(@2)

for all integers mi,ms > 0. The remaining part of the proof is an adjustment of the one of
Lemma 4. Namely, we split up the sum

m—1

(125) (L+m)HP >°

mi1=1

1 1 o .
_ p—D
(1 + ml)—deg(Q1)+,u (1 +m — ml)—deg(Q2)+u = (1 + m) (-Am + Bm)

in two parts

. 1
Am = Z (1 + ml)—deg(Ql)'ﬂl(l +m — ml)—deg(Q2)+ﬂ’
O<m1<%

y 1
Bm - Z (1 + ml)_deg(Q1)+N(1 +m — ml)_deg(Q2)+N

%Sml <m
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From the inequality 1+m—m; > %(m—i—l) for 0 < my < m/2, we obtain a constant 017M7Q11Q2 >0
(depending on u,Q1,Q2) such that

9—deg(Q2)+pu 1
(126) A, < (1 + m)—des(Q2)+n 0<Z (1 + my)~des(@)+n

my <7

9—deg(Q2)+p 1

< _ Cueie
- (1+ m)fdeg(Qz)ﬂA

(14 mq)~des(@)+n (1 + m)—dea(@2)+n

m1>0

for all m > 1, according to (24). Futhermore, owing to the inequality 1+ m; > (1 +m) for
my > m/2, we reach a constant Cs ,, g, 0, > 0 (depending on 1,Q1,Q2) for which

9—deg(Q1)+n 1
(1 + m)—deg(@)+n Z (1 +m — mq)—des(Q2)+p

%§m1<m
9—deg(Q1)+p
<
~(1+ m)—deg(Q1)+#

(127) B, =

Z 1 _ 027.“7Q17Q2
(1+ ml)—deg(Qz)+# (1+ m)—deg(Ql)‘HL

m1>0
for all m > 1, based on (24).

Eventually, gathering (124), (125), (126) and (127) gives rise to the awaited bounds (123).
|

On the other hand, in line with the equality (45) on the sector Sy and the lower bounds (46) on
the disc D,,,, we deduce a constant Cy 5, > 0 for which

(128) |Pr(u)] > Cas,|Q(m)|

for all u € SqU D,, ., all integers m > 1.
At last, the collection of (122), (123), (128) and (69) from Lemma 3 begets the bounds

uk uk
120 | Y g Qlmwdet -9 im0

mq+mo=m
m1<m,ma<m

L+m)? -

1
. 1/k 2 —u —Bm
X Q2(ima)wq(s ,m2,67d5‘<c Q.| (L +m) He P —— ——C), 0,
( Jwa( )(uk 5)s | Q1 Q2| ( ) Cd,k,JD’Q(lm)‘ #,Q1,Q2

|u/e| g, ) i —pmCp0Cuaia
x Kp——L Z1R) < 1 po—Bm L~ 1,E1,E2
k 1 4 ’%Pk exp (V| € | ) — |CQ17Q2|w ( + m) € Cd,k76D

|u/€| Uik
x K —
SENTIET (vIZh)

for all u € SyU D, , for some constant Cp o > 0 under the restriction (23).

6) We deal with the remaining piece p(u,m,€)/P,,(u) on the domain SqU D,,,. Owing to
(128) and the assumption (18), we first notice that

1 < 1 < 1 1

. < max ——

[Pn(w)| — Casp|QUim)| — Capsp m>0 |Qim)]
for all u € S4U D,,,, all integers m > 1. According to the computations already made in (76),
the very definition (29) of ¢(u, m,€) and the constraint (28) give rise to the bounds

(130)

—y ; o |u/€| u
(131)  folum, O <D @1+ m) e ufl < g (14 m) e g exp (v
jeJ €
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for all u € SqU D,,,, all € € D, \ {0}, for the constant ¢ ., > 0 introduced in (77). By dint of
(130), we deduce

o(u,m,e) Peo 1
<
(132) | = G (s i

as long as u € SqU D, , for all e € D, \ {0}.
We prescribe ¢ > 0 and the quantity |cg, Q,| > 0 small enough, warranting the next

—p,—pBm |’LL/€| Ek:
)(1+m) € 1+|%|2kexp(y|€|)

constraint
Pe 1
133 9 _ max
( ) CdkéD m>0 |Q(zm)|
D-1 .
K CiRps ! Aty 5 1dp
S s (s e [ttt o
; 6°P(d“)(1—(%>’f%)( 0 »)
° L 1 ' Bty 541 dp
x Gy o[k [Po + "], AleOWClQRD,EDCkéD,dH,él| |2k(/ (1—p)* Ip 15 4P ) )w
1
x 2k tkoL ) + max (A o —————
12 l, 0 1 _ (%)k(SD
k” A ! e tkEZP) g1 dr
x E: P%MFdMM@W)QQﬁM%(/(I—M 2 Wk;ﬂ
1<p<di—1 (&%) 0

. 1 2k 2k W
x O 00+ L A D Aol — e
el 1<p<g;—1 F(#)

1 dg,1+k(5,—p) d
oo dy,1+kdy 1 bl 2 1t O
X WCHCI,Q,RD,5D2 CkﬁD,dk,lﬁz ’6’% ( 0 (1 - T) k ek r )

+ |c w
| QLQQ‘ Cd, hom

Such an inequality is justified from the facts that

e The coefficient |e|*~%*%=2k can be taken appropriately small when € € D, \ {0}, for
€0 > 0 small enough, according to the condition (16).

e The constant ¢, displayed in (77) is suitably close to 0 provided that ¢y > 0 is taken
small enough.

Finally, the expression of ¢ (u, m, €) displayed in (49) and the list of bounds (110), (114), (118),
(120), (129) and (132) under the restriction (133) spawn the bounds (99), which implies the first
item of Proposition 4. The second item is a direct consequence of the fact that the forcing term
¥ (u, m, €) contains only maps wq(u, h,€) for 0 < h < m which are, by the recursion hypothesis,
holomorphic from D, \ {0} into C for any given v € S;U D,), . O

4.2 Construction of w;(u, m,¢) as a fixed point

Let m > 1 be the integer fixed at the beginning of Section 4, after Proposition 3. In this
subsection, we plan to build up a map wq(u, m,€) which fulfills the two items of Proposition 3
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and solves the linear convolution equation (48). Thereupon, for all € € D, \ {0}, we introduce
the linear map

D—-1
(134) He(w(u,m)) := cAi—di+4;
=1
[A (0,€)Ry(im) ut /Uk( k )%*l(k )6; ( 1/k )ds
x | A0, €) Ry (tm) ————— u® —s $)%tw(s™ ", m)—
P(u)l(%y Jo s
uk uk dp, 1 +k(8;—p) ds
+Al(0 € Rl Zm Z Aéhp p o / (uk _ s)f—l(ks)pw(sl/k’m)i
1<p<51 1 U)F(M) 0 s
1
+ CQ17Q2P / Ql wd s)lﬂf’O, E)QQ(im)w(sl/kam)mdS

+eanp / Qu(im)w((u — )%, m)Qa(0)wa(s™*, 0, €)————ds + t(u, m, )

1
(uF = s)s
where wg(u, 0, ¢€) is constructed in Proposition 2 and where the forcing term (u, m,¢€) is given
by the expression (49) that comprises maps wq(u, h,€), for 0 < h < m that are assumed to be
already built up.

In the upcoming proposition, we show that H, represents a 1/2—Lipschitz map on a properly
selected ball of the Banach space F(y 8 kem)’
Proposition 5 One can specify the radius eg > 0 and the constant |cg, g,| > 0 independently

of m and prozimate to the origin in a way that for all € € D¢, \ {0}, the map H upholds the
next two attributes

e The inclusion

(135) He(Bz) C B

holds, where By stands for the closed ball of radius w > 0 centered at 0 in the space
d

Flu ppkem)

e The contractive feature

1
(136) HHE(wl) - He(w2)"(u,ﬁ,u,k,e,m) < inl - WQH(V,,B,,U,,]C,G,TR)

occurs for all wy,wy € By.

where the radius @w > 0 is given in Proposition 2.

Proof We inspect the first item asserting the inclusion (135). We consider an element w(u,m)
of F(uﬁ Jkem) that obeys

[l (s M) w8,k em) < @
where @ > 0 is given in Proposition 2. In particular, the next bounds

y |u/€l u
(137) ooty m)] < (14 m)He™ " g oy exp (v1 1)
€
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hold for all w € D, USy.
1. At first, we supply bounds on the disc D, for the starting piece

i1 ds

u” Yok L1 \0, (1)K
(138) Al(O,e)Rl(im)M/o (uF — s) % " (ks)Ow(s"/ 7m)?

of H..
We parametrize the segment [0, u*] through s = u*r with 0 < < 1 which allows

k

u 1
(139) / (u* — s)%_lsélw(sl/k,m)@ = uk(%_l"'él) / (1-— T)%_lrélw(url/k,m)@.
0 8 0 r

By means of the lower bounds (46) along with the upper estimates (25) and (137), we reach

. k uk d
(140) ‘AZ(O,E)RI(ZTTL) U / (uk _ S)%—lkélstslw(sl/k’m)@‘
Prn(u) F(%) 0 s

kO [Ry(im)] dy,1+kd;
< Al,e . Pom’
(D QGm)I(L — (1)

1 dy, d
x ]%|exp (1/|1:|k)/0 (1 —p)F g &

w(1 4 m) e M

r
for w € D,,,. Besides, similarly to the the upper bounds (105), under the constraints (20) and
(22), we deduce that

Ri(tm)| a4k A
| Ry (im)| et o

(14D Qi)

for the constant él,Q, Rp.6p appearing in (105). As a result, we arrive at

k uk d
(142) m@ﬂ&wm”(My/(ﬁ$ﬁk%mWM§Wmﬂﬂ
o 0

P (u)T( A s
Ko él Q,Rp,dp 1 Aty 541 dr U U 1
&y s . — £ —pn,—pm 7 LAY
SAI’EOF(dZ’l)].—(%)kJDX(/O (1—r) % 1r%ts . )w(1+m) e ><|€|exp(y|€| )1+|%|2k

1 k k
X W[ﬂ% + 5]

provided that u € D, since

U ok P%f Lo 2k
(143) 1+|;’ §1+|6T2k§‘6‘72k[,00 + €]

for all w € D,,,, bearing in mind that the sequence (o, )m>0 is descreasing.
2. Bounds on the sector Sy for the first piece (138) of H. are disclosed.
Through the parametrization (139), the equality (45), the upper estimates (25) and (137),
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we check that
(144) A0, ) Ri(im)  u* /Uk(uk )R 1 (Sl/kz’m)@’
P (u) F(%) 0 s
- Al’“r(]f;l) ey o+ L
w(l+m)” #e—5m||1+|1u’2kexp (V|Z|k)(/01(1 - T)%_lrdl"’%%)

for all w € Sy, under the factorization u = peﬁeql(m), for p > 0 with real angle § ¢ 277Z.
Besides, paying regard to (113) and (141), we come to

A00,R(im) Wb A e\ ds
(145) P () F(dk’l)/o (u¥ — )7 TR (s ,m)?

kél di.1+ko; ! i -1 (51-{- L dr 1
SAl,eOFT2 ’ ( 0 (1_T) k— r )ClQRD76DCk6D7dkl:5l’ ’21@

1 U
B k
@w(1+m) He” m’ ‘1+‘u‘2k eXp(V’;\ )

for all u € Sy.
3. We discuss bounds for the second piece of H, given by

u
(146)  A;(0,€)Ry(im) Z Asp ey +k(5,—
1<p<§;—1 (“)F(w)
dy 1 +k(8,—p) ds

uuk—s’ffl $)Pw(s'/F m)—
e (ks)Puo(st/*, m)

on the disc D, . The segment [0, ] is parametrized through s = u¥r for 0 < r < 1 which
enable to rewrite

k
dg 1 +k(5;—p) dS

u
(147) / (uF —s)~ % 1Ptk m)—
0 S
dg 1 +k(8;—p)

dy 1 +k(5;—1) ! L ) 1/k dr
= TR (1—r) z rPw(ur’", m)—
0 r

Thanks to the lower bounds (46) along with the upper estimates (25) and (137), we get

k uk dy, 1 +k(8;—p)
(148) | 4,0, ) Ri(im) Pj(u) /0 (b — ) p_lspw(sl/k’m)%‘

) 1 dje 1 +k6,
< Aj | Ri(im)] s

Qim)|(1 — (L)kon) "™
dg 1 +k(8;—p)

1
X Mexp (U|%‘k) X (/ (1—r)" & _er+%@)
0

€] r

@(1+m)~" exp(—pm)
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provided that uw € D, . According to (141), we are pined down to

uk

(149) | Ai(0, €) R, (im) As),
‘ Z lme(u)F(dk,z-‘rkk(isl—P))

1<p<é—1
uk dj, 1 +k(5;—p) ds 1
X / (uk — 5)#—1(168)1’(0(31/16’171)?‘ < Al7€0 1 (1)k5D
0 2
ual . ' e tKO) o dr
S Ml gy o [ 00t
1<p<d;—1 (=) 0

R ‘U| U\ 1 2 2k
w(1+m) iu‘e mHeXp (l/‘€| )T%Pkw[po +€0 ]
for all u € D,,,,, keeping in mind (143).

4. Bounds for the second piece (146) are given on the sector S;. Based on the equality (45),
the upper estimates (25) and (137), the parametrization (147) yields

k u® dj, 1 +(5,—p)
(150) | A;(0, €)Ry(im) P:(u) /0 Wk — )" p_lspw(sl/k’m)%‘
1

|Q(im)||(pev=10)kop —1]

2 2k
pdk,l""k(sl (2pm)dk’l+k6l (1 + M)

< Al,eo ‘Rl(zm)‘ |e|2k

dg 1 +k(d;—p)

1 , 3 ld
0+ m) espl(—m) g exp (o219 ([ (1= B e )

for all u € S, under the factorization u = peﬁgql(m), for p > 0 with real angle 0 ¢ 27Z.
Besides, having in mind (113) and (141), we arrive at

uk

(151)  [A(0,)Ry(im) > Agy

g+ k(01—
1<p<éi—1 Pm(“)ﬂ%)

dy, 1 +k(8;—p) ds

uuk—s’ﬁ*l $)Pw(s'/F m)—
G (s)Ps/*, m)

S

kP di 1k A A 1
<A Y |A51,p|dkl+—kM2 " lClaQ,RD75DCk75D7dk,l,5l|6|2k
1<p<d—1 L

o

1 dj, 1 +k(5;—p)
o1+ m)  exp(—m) L e (o 2 ([ (1) e
0

L[
as long as u € Sy.
5. Estimates for the third piece

1) coepg / QuO)wa((u — $)/*,0,6)Qalim)e(s/* m)Mds

of H. are presented on the union SqU D,,,. Owing to (95) from Proposition 2, we know that

[(u* — 5)'7*1/|e] uf — s

[F—s]?

|wd((uk - S)l/ka 07 €)| Sw k
1+ €]
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and from (137) we check that
1/k
s, m)] < (1 m) e b e, oL
L+ o €]

for all s € [0,uf], all u € Sy U D,,,. We deduce that

(153) ‘uk /0 ' Ql(o>wd<<u’f—s>1/’“,0,e)@(z‘m)w(s”’“,m)M

<1Q1(0)]|Q2(im) | (1 + m) Fe ™

’LLk
e MO 1

ds‘

for all w € S4UD,,,. By mindful of the condition (23), we get a constant CA’Q’Q2 > 0 (independent
of m) such that

Q2 }< Q.Q2

and paying heed to (69), (128), we conclude that

1
(159) [cor0p 75 / Q0N (0 = 5)17%,0. ) Qalims(s/,m)
[@1(0)] ~ o —pm e U/€] Uk
< |CQ17Q2|C ,k,JDC 2 W (1 +m) e g Ky, k7 i ‘u‘Qk exXp (U|Z| )
whenever u € SqU D, .
6. We seek bounds for the fourth piece
1
1/k 1/k
Ql,sz / Q1 (im)w((uF — 5)V*, m)Qa(0)wa(s"*,0, f)mds
of H¢ on the domain SqU D, .. From (137) we see that
kE_ \1/k k _
|w((uk - S)I/k,m)‘ < w(l _}_m)ﬁuefﬂmKu S)k |2/|6| |’LL 5|)
e et
| |2k
and due to (95) in Proposition 2, we notice that
1/k
’wd(sl/k,o,ﬁ)’ <w ’5 |/’2 ’ exp (Vﬂ)
1+ 2 e
for all s € [0,u¥], all w € Sy U D,,,. It follows that
1
(155) / Q1(im)w s)l/k,m)Qg(O)wd(sl/k,O,e)(uk_s)sds‘
< [Q1(im)[|Q2(0) [ (1 + m) Fe=
|ul® k _ p)L/k Bi/k 1
% |u‘k/ (|u‘ ?C h/2| | /| | e dh x exp (V’EVC)
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for all w € Sy U D, . Paying regard to the condition (23), a constant Cg g, > 0 (independent
of m) can be singled out with

Ql } <CQQ1

and not forgetting (69), (128), it entails that

1
(156) |e.0: 55 / Quim)e(u = )%, m) Qa(O)(5%.0.)
[Q2(0)] ~ 9 - |u/€l U,
< C 1 re=Bmpc, -
< !CQl,QQICdMD Q@ (1+m) He KT P (vI=I%)

whenever u € SqU D, ..

7. At last, we remember the bounds (99) from Proposition 4 which gives rise to upper
estimates for the tail piece of H..

The quantities ¢y > 0 and |cg, @,| > 0 are prescribed nearby 0, granting the next constraint

D—-1

Z ko C’lQR s
157 | |Al di+0; { max (Al o i ’ 71D7 D
(G 1= ()

1 - 1 8 1 e,
X(/O (=) Mlcﬁ) e 00" + €07, Ave, w Qdkl““sl(/o (1_r)%*1r6z+%ﬁ)

dy,
|25 D(%l) r
R _ 1 1
X Cz,Q,RD,aDCk,aD,dk,l,azWW) + max (Al&ol_(%)wlj
kP . 1 dj 1 +k(5,—p) 1 1dr
—_— )y et &
X Z |A5Z7P|F dy+k(0,—p) CZ,Q,RD76D(/O (1—r) k ek 7‘)
1<p<é;—1 ( k )
Lok ok a A kP dp 1+k) A ~ 1
X w‘d% [Po + € ]7 l,€0 Z | 5l:p| di 1 +K(6,—p) 2% CZ:QyRDyéDCkyéDadk,lvélMTk
1<p<é;—1 F(#)
1 dg 1tk —p) dr
X @ X (/ (=) e ) ) lea 2\|Q1( leqai
0 r D
Q2 w
| Q1,Q 2|‘ ( )’ Q,Q1w2Kk+§§w
76D

This latter inequality is confirmed from the fact that the coefficient |e|~%+%=2k can be taken

appropriately small when ¢ € D, \ {0}, for ¢g > 0 small enough, according to the condition
(16).

At last, the collection of the seven above bounds (142), (145), (149), (151), (154), (156) and
(99) subjected to the restriction (157) entails

—u —Bm u/e u
[He(wo(u,m))| < (1 +m) Fe 1‘+‘/u|‘2kexp (1219

for all w € SqU D,,, and given € € D, \ {0}. This means that the inclusion (135) holds.

In the second part of the proof, the Lipschitz property (136) is discussed. Let € € D, \ {0}

and set two elements wi,ws of the closed ball By, in F(V Bk em) where the radius @ > 0 has

been prescribed in Proposition 2 and considered in the first part of the proof.
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By construction of the norm, we observe that

—y - uj/e (7
(158) o m) —walu,m)] < 61 = el an (1 m) e e (01211
€

as long as u € D,,, USg. The next list of bounds A. B. C. D. E. and F. is a direct upshot of the
bounds 1. 2. 3. 4. 5. and 6. reached in the first part of the proof.
A. We provide upper bounds on the disc D, for the first piece

4 . u® A Bl 1 (1g)0 1/k 1/k ds
(159) l(O,e)Rl(zm)Rn(wF(le)/o (u¥ — 8) 7% "1 (ks) (wi(sF,m) — wa(s ,m))?

that crops up in He(wi) — He(wz). Namely,

uk ut il ds
(160) AI(O, G)Rl(Zm)W /0 (uk — S)Til(ks)lsl ((,Ul(sl/k7 m) — WQ(sl/k7 m))?
m (WL~

ko OZQR 5 ! Ik, 1dr
- e < Uy )

(V7ﬁ7u7k7€7m)

1

—y — u u
x (1+m) Fe ™ x \;|6Xp (V\jk)mw[lﬁk‘i‘ﬁgk]
€

provided that u € D, ,
B. Estimates for the first piece (159) are given on the sector Sy. Indeed,

k

(161) Al(O,E)Rl(im) uF /U (uk—s) k —1p01 ¢ 61( (sl/k,m)—a&(sl/k,m))@
) Jo

P (u) F(% s
1 dpg 1 dr 1
<A r 2dkl+k6l(/ (I—r)* ! 6l+k7)ClQRD75DC’f 0p,dk,1,01 ) 12k
(%) 0 r €]
m ,Bm 1 U\
* lwr = wall, g, em) (1 +m)~He™ ] = |WGXP (vI=1%)

for all u € Sy.
C. The second piece

k
u
(162) Al(O € Rl Zm Z A5l,p dp 1 +k(5;—
S P () (Bt O,

dj, 1 +k(5;—p) ds

X /Ou (u* — s)ﬁ_l(ks)p(wl(sl/k,m) - wz(sl/k,m))—

S
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of the difference He(w1) — He(ws) is considered on the disc D,,,. We arrive at

uk

(163) | A4:(0, €) Ry(im) Z Asp di1+k(6—
‘ 1<p<o—1 Pm(u)r(w)

u A1 Tk —p) ds 1
X / (uk —s) l(k;s)l’(m(sl/k,m) - wg(sl/k,m))? < Az,eow
‘ — (3

dy, 1 +k(5;—p)

kP A 1 : _ 1dr
X Z |A§l’p|1-\dk,l+—k(5l_p))cl’Q’RD’6D (/0 (1 — T‘) k 1pt3 7)
k

( T
1<p<f—1

- L ocon | o
X w1 = wall(v,8,1,,e,m) (1 +m) He™ |6| exp (V\*| )ww[ﬂo + €5
€

forallu e D,,,.
D. The second piece (162) is upper bounded on the sector S;. We get

uk

(164) |40, Rulim) Y Agy
1<p<é—1 m

u dy. 1 +k(8;—p)
<[t B s (55, m) = s )
0

(U)F(%@*m)

kP
<A Z |A617p|m2
1<p<6; -1 (#)

di,1+kd; A S, 1
Cva,RD,fSD Ck,5D7dk,z75z ‘6‘2]4

|u/e]

1+ [
1 dy, 1 +k(8;—p)

x (/ (1) e O
0

r

_ u
X ||w1 - w?”(u,ﬁ,,u,k,e,m)(l + m) “exp( Bm) eXp (V‘E|k)

as long as u € Sy.
E. The third piece

(165) cou0:5 15 / Qu(O)wa( (0 —5)"1%,0, Qi) (1 (51/%,m) —es'/¥, m)) s

of the difference He(wi) — He(wo2) is examined on the union Sy U D), . We reach

166) eqr0n s / Qi (O)wa((u — 5)"%,0,)Qa(im)

1

1/k
(uk —s)s

X (wi(s'/",m) —wQ(sl/k,m)) ds‘

Q1 |u/el
’ ( )| CQ szle - WQH (v,8, u,k,e,m)(l + m) Fe™ ﬁmK T w2k
d.k,0p 1 + ‘ ‘

whenever v € SqU D, .
F. The rear part

u
—’ 1Q2‘ exp(l/’z‘k)

(167) ¢ 5~ Q1 (im) (wr ((u* — )%, m) — wa((u* — 5)'/*, m))
P

X QQ (O)Wd(sl/k, 0, E)mdS
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of He(w1) — He(wz) is perused on the union SqU D, . It follows that

(168) CQLQQP / Ql im (wl((u - 3)1/k m) — WQ((uk - 3)1/k7m))

X QQ(O)wd(sl/k, 0, e)(ukis)sds

[Q2(0)] »

< |CQ17Q2| C

ju/e u
Caullen — el o)1+ m) e~ Ko Ui exp (v1211)
€

shv,0D

whenever u € SqUD,, ..
We assign €y > 0 and |cg,,Q,| > 0 small enough enabling the next inequality

D A
(169) Z el %1 dl+6’{max (Ale kLGt
0
F(dkl) 1— (%)kdp

1 d vdr, 1 ko ! dy, d
« (/ (1 _7,) k -1 5l+k T) [p2k +60 ];Al,eo i Qdk,z-i-kél(/ (1 _ T)%—lrﬁﬁ-%l)
0 |€[** (=) 0 r
A = 1 1
X Cl:Q,RD»(;D Ck,(sp,dk,zﬁz |6|2k> + max <Al,€0 1— (l)kép
2

al A ! DeathGime) 1 dr
X Z |A51’p|de,l-|-k(51—p)CvavRD:5D(/O (1_7«) 2 7P ki)

1<p<t;—1 (=) "
> L[ 2k 4 €2k A Z |A ‘L2dk,l+kalé C 1
|€|2k Po 0 I» €0 01,p di 1 +K(6,—p) 1,Q,Rp,6p“k,6p,dr,1,01 |€|2k
1<p<s,—1 F(#)
1 dk,z+’€(5z—P) 1 d7"
x (/ (1 _T) k brptE— r ))} +’ Q1,Q 2|’Q1(6)| Q,Q2WK’€
0 D
|Q2(0)] ~
+ ‘CQ17Q2|Cdk s CQ7Q1WK1€ < 1/2
s/0D

This latter inequality is warranted from the fact that the coefficient |e|*~%+%=2F can be taken
appropriately small when € € D, \ {0}, for g > 0 small enough, according to the condition
(16).

Eventually, the gathering of the six above bounds (160), (161), (163), (164), (166) and (168)
under the constraint (169) entails

|u/e]

1 -
[He(wi(u,m)) — He(wa(u,m))| < §||W1 - w2||(u,5,p,,k,e,m)(1 +m) e Bmw
€

exp (y|%|’f)

for all w € SqU D,,, and fixed € € D¢, \ {0}. As a result, the shrinking feature (136) holds. O

In the next proposition, we build up a map wg(u, m, €) that obeys the two items of Proposition
3 and solves the linear convolution equation (48) for the prescribed integer m > 1 at the
beginning of Section 4, after Proposition 3.

Proposition 6 One can choose a radius g > 0 and a constant |cg, Q,| > 0 close enough to 0
(independently of m) in a way that there exists a unique solution u — wg(u, m,€) of the linear
convolution equation (48), for all € € D¢, \ {0} fulfilling the next two properties
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e The map u — wq(u, m,€) appertains to F(Cll/ﬁ“ & and is subjected to the upper bounds

’E’m)

(170) lwa(u, m,€)| < WM

Uk —p .
< @y o () (L m) ™ exp(=fm)

for alluw e S4UD,, , granted that € € D¢, \ {0}, where the radius py, is given by (44) and
where w > 0 is given in Proposition 2.

o The partial map € — wq(u, m,€) stands for an holomorphic function from D, \ {0} into
C, for any given u € SqU D, .

Proof We select the constants ey > 0, |cg, Q.| > 0 as in Proposition 5 and we consider the
radius w > 0 singled out in Proposition 2. The spa(ie F(‘f/ Bok.em) is of Banach type for the
norm ||.||(, 3, ke;m)- 1t follows that the closed ball By C Fg/,,ﬁ,u,k,e,m) represents a complete
space for the metric d(X,Y) = [|X — Y|(,,8,k,e,m)- The proposition 5 claims that . induces
a 1/2—Lipschitz map from (Bg,d) into itself. Then, owing to the classical Banach fixed point
theorem, H, possesses a unique fixed point denotes wq(u, m,€) in By, meaning that

(171) He(wg(u, m,€)) = wg(u, m,€)

provided that € € D¢, \ {0}. Observe that this latter equation (171) states that u +— wg(u, m,€)
solves the linear convolution equation (48) on the domain SqU D,,,, granted that e € D, \ {0}.
Furthermore, since H. relies holomorphically on € on D¢, \ {0}, it follows that wq(u,m,€) itself
depends analytically on ¢ on the same punctured disc. Proposition 6 holds. O

As a result, Proposition 3 follows.

5 Building a finite set of holomorphic solutions to the initial
value problem (13)

We first remind the concept of a good covering in C* following the definition stated in the
reference text book [5], Section XI-2.

Definition 4 Let ¢ > 2 be an integer. For all 0 < p < ¢ — 1, we consider open sectors &,
centered at 0 with radius ¢g > 0 owning the next three qualities

1. The intersection £,NEpt1 is not empty for any 0 < p < ¢ —1, with the convention & = &y.

2. The intersection of any three sectors £, N E, N &, is empty for distinct integers p,q,r €
{0,...,¢ —1}.

3. The union of all the sectors &,, 0 < p < ¢ — 1, cups some punctured neighborhood in C*,

meaning that
s—1

U&=\ {0}

p=0
for some neighborhood U of 0 in C.

Such a set € = {Ep}to<p<c—1 of sectors is called a good covering in C*.

We further need to define a notion of set of sectors associated to a good covering in C*.
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Definition 5 We set £ = {&p}o<p<c—1 as a good covering in C*. We consider a finite set of
open unbounded sectors Sy, centered at 0 with bisecting direction 0, € R distinguished in a way
that the next two attributes hold

1. The next intersection

(172) So, N (Um>0 Uo<i<spk—1{@(m)}) =0
is empty for all0 <p <¢—1.

2. A bounded sector T centered at 0, with radius v > 0, can be singled out that fulfills the
next constraint : For any given 0 < p < ¢ — 1, there exists a constant A, > 0 such that for
all e € &,, one can select a direction v, € R (that may rely on €) with

o exp(v—1v) € S,
o cos(k(y, —arg(et)) > A, forallt € T.

The family of sectors {Sy, Yo<p<c—1 U{T} is called to be associated to £.

The next statement represents the first major achievement of our work. Namely, we build
up a finite set of holomorphic solutions to the main problem (13) and provide an important
qualitative information on the control of their consecutive differences which turns out to be
essential for reaching their asymptotic features relatively to the parameter e discussed in the
upcoming section 6.

Theorem 1 We consider a good covering € = {&p}to<p<c—1 in C* to which one associates a
Jamily of sectors { Sy, }o<p<c—1 U{T} accordingly to Definition 5.

Then, provided that the radii g > 0, 77 > 0 and the constant cq, g, € C* are taken close
enough to the origin, one can construct, for all 0 < p < ¢ —1, a genuine solution u,(t, z,€)
to equation (13) with u,(0,z,€) = 0, which defines a bounded holomorphic map on the product
T x Hg x &y, for any given 0 < ' < . Furthermore, for each 0 <p < ¢ —1,

o The map uy(t, z,€) is expressed by means of a Fourier series in z,

(173) up(t, 2,€) = > tpm(t,)eY 1M

m>0

with coefficients up m(t, €) that are represented by Laplace transforms of order k,

(174) Upm (L, €) = k/ wa, (U, M, €) exp ( — (u )k)dﬁ

Lo, et U

along the halfline L., = [0, +oo)e\/jl'yp, with direction vy, assigned in Definition 5, where
wa, (u,m,€) stands for a map which is holomorphic on the union Sy, U D, w.r.t u and
holomorphic on D¢, \ {0} relatively to € and subjected to the bounds

|u/e]

(175) |wap(uama€)| < wpl + ‘%Pk

exp (v] Z1F) (L4 m) ¥ exp(—(m)

as long as u € Sy, UD,, , € € D, \ {0}, for some constant @, > 0 and where the radius
pm > 0 is displayed in (44).

do0i:10.20944/preprints202206.0224.v1
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e Let us define

k
deg(Rp)—des(Q) | |

op

(176) K=

The difference of consecutive solutions u, and u,41 obeys the next bounds : there exist
constants Ay, B, > 0 with

B
(177) sup |up+1(t, 2,€) — up(t, z,€)| < Apexp (— ﬁ)
€
Zéef};g/

forall e € €541 NEp, for all 0 < p < ¢ —1, where by convention we define u¢ = ug.

Proof According to Propositions 2 and 3 and the construction of the set of sectors Sy, submitted
to (172), one can prescribe some small radius ey > 0 and small constant cq, g, € C* such that, for
each integer m > 0 and each sector Sy, for 0 < p < ¢ —1, one can shape a map u — wy, (u, m, €)
which

e is holomorphic on the union Sy, U D,,, and analytic relatively to € on the punctured disc

De, \ {0}

ap
e belongs to the Banach space F(u,ﬁ,u,k,e,m)

S, UD,,,, for all € € D, \ {0}

and suffers the bounds (175) provided that u €

e solves the nonlinear convolution equation (47) when m = 0, for all u € Sy, U D, for all
e € D, \ {0}

e satisfies the linear convolution equation (48) for m > 1, as long as u € Sy, U D,,, for any
given € € D, \ {0}.

We set p € {0,...,¢ —1}. For all integers m > 0, all € € &,, one sets the function

d
(178) Up(T,m,€) = k/ wo, (u, m, €) exp ( — (%)k)—u
u
P
along the halfline of integration L., = [0,+oo)eﬁ7p, with given direction 7, in accordance

with the second requirement 2. of Definition 5. For any fixed € € D, \ {0}, the partial map
T — Up(T', m,€) stands for a bounded holomorphic map on a domain of the form

N A 1/k
(179) Dy, = (T € C*/cos(k(ny —T)) > A, , |T| < (ﬁ) Flel)

P

for some given constant Ap > 0. Indeed, owing to (175), we reach

1
|ul

u

(180)  |wa, (u, m, €)|| exp (— (f)k)|
1 rk "r’k
< pr(l +m) Hexp(—pm)exp (VW) exp ( — APW)

< wp‘il(l +m) * exp(—pm)exp (— E—prk)
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provided that u = reV=1r ¢ L,,, for r > 0 and that T € D n,. We deduce that

+o0 N
(181) |Up(T,m,€)| < kwp(l4+m)™ " exp(—ﬂm)/ |1|exp (- ﬁ’;rk)d?a
0 € €

< kwp(1 +m) *exp(—pm)( /+OO e_ApSde)
0

by means of the change of variable s = r/|e| in the integral, for all integers m > 0, all € € &,
and T € D|€|7AP'

Since the map wy, (u, 0, €) solves (47), for all u € Sy, U Dy, and wy, (u, m, €) fulfills (48) for
m > 1, whenever u € Sy, U D, , provided that ¢ € D, \ {0}, we deduce that the sequence
of maps wp,(u,m,€), m > 0, as a whole, is subjected to the convolution relation (40), for all
u € Sp,UD,,, and fixed € € D¢, \{0}. As aresult, the bunch of computations made in Subsection
2.3 leads to the fact that the maps Uy(T, m,€), m > 0, solve the differential recursion (36) and
then ought to fulfill the sequence of ordinary differential equations (32) whenever T' € Di¢ A,
for any given € € D, \ {0}.

At last, we set

(182) up(t, z,€) = Z up m(t, e)emzm

m>0

with coefficients uy, , (¢, €) = U, (et,m, €), for all m > 0, which represents a bounded holomorphic
function on the product 7 x Hg x &,, provided that the radius 77 is restricted to the bounds

Ay \1/k
183 ry < (—2—)"".
(183) T (V + Ap)
Namely, according to (181), we get

+oo .
(184) ’U/p(t, z, 6)‘ S k@p(/ e_Apskds) Z(l 4 m)—lle—ﬁme—mlm(z)
0

m>0

+0o0 R
< kwp(/ e*Al’skds) Z (14 m) He=(B=Fm
0

m>0

which is a finite quantity, provided that z € Hg with 0 < 5’ < 8, for all t € T under the condition
(183), as long as € € £,. Furthermore, since the coefficients U, (T, m,€), m > 0, conform to the
sequence of ordinary differential equations (32), we deduce from straight standard computations
that u,(t, 2, €) obey the initial value problem (13) with vanishing initial condition u,(0, z,€) =0
provided that z € Hg and € € &,.

In the second part of the discussion, we give attention to the second item of the theorem.
We first observe that, owing to the construction of wy,(u,m,€) described at the beginning of
the proof, each partial map u +— wp,(u, m, €), for any prescribed integers 0 <p < ¢ —1, m >0,
any fixed € € D, \ {0}, is the analytic continuation on the unbounded sector S;, of a common
analytic map we denote u — w(u, m,€) on the disc D,,,.

Let us fix some integer 0 < p < ¢ —1. We notice that, for all integers m > 0, the partial map

u 1

u— wy, (u,m,€) exp (— (%£)¥)1 is holomorphic on the domain Sy, U D,,,, for all € € D, \ {0}

€t u

and t € T. The classical Cauchy’s theorem enables the warping of the halflines L., and L.,
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of integration for the difference of Laplace transforms wpi1,m(t,€) — upm(t,€), for each integer
m > 0, that can be rewritten as a sum of three contributions

du

u

(155) tpt1n(t:0) = gt ) =k [ St esp (= ()
U du U
—k/L w, (u, m, €) eXP(— (et>k)u+k/ w(u,m,e€) exp(—( )k)

et
pm/2;7p

du

u
pm/27p Yp+1

along an arrangement of integration paths depicted as the union of

e Two halflines

me/Z;'yj = [pm/27 +oo)e\/j17j

in direction v;, laying apart of the origin with distance p,/2, for j =p,p+1
e An arc of circle

Pm /=
{SreV 16 e

with radius p,,/2 joining the above halflines L, , /2,0 J = P,p+1, endowed with a suitable
orientation.

C

Pm /2 Vo1 7p77p+1)}

1) Bounds for the first piece of the above decomposition

du

[l:‘k;/L wap+1(u,m,e)exp(—(u)k)u

pm/2Vp41 €t
are provided. Namely, based on the upper estimates (180), we get

+o00 Ap+1 r

exp(— ( nt —V)(—)k)dr
e }<A|f? — v)kr*
Botl )V py /2)R1 |€[¥

[t

1
(186) I < kwwpyq(1 +m) He Pm =
|€’ Pm/?

1 [T
< bmpaa(t 4 my e [
‘6’ pm/2 (

|€|k71

(Tt = v)k(pm/2)8

Api1 Pm/2 K —p - |€|k_1 A (Pm/Z)k
- - <k 1 He=hm_ — A PR
xexp( ( |t|k V)( |€| ) ) = wp+1( +m) € Aerlki(pm/Q)k*l eXp( p+1 |6|k )

provided that ¢ € 7 under the constraint (183) and that € € £,11 N E),.
2) The second element

A r i —Bm
x exp (— ( ‘f‘zl —V)(‘?l)k)dr:kwp+1(1—|—m) re=P

L= ’k/L wa, (1, m, €) exp (— (")

et
pm/2vp

du
u

of the above splitting can be upper estimated in a similar way as done in (186). Indeed,

el o (/2"
Ryie(pmyayit P &)

for all ¢ € T subjected to (183) and for all € € £,41 N E,.

(187) Iy < kwy(1 4 m) " Fe Pm
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3) The third component

I3 = ‘k/c w(u,m,e)exp( (et) )du

Pm/2:Yp Vp+1

is controled as follows. According to the second item 2. of Definition 5, we can single out a
constant A, ;11 > 0 (that can be taken as min(Ap, Apt1)) with the condition

cos (k(0 — arg(et))) > Appi1

for all t € T, all € € & N E41, whenever the angle 6 belongs to (Vp, Yp+1) O (Vp+1,7p)-
Furthermore, bearing in mind the upper bounds (175) for the Borel map w and the hypothesis

(21) granting that the sequence (pm)m>0 is decreasing, we come up with a constant AWJH >0
such that

(188) I3 < kmax(wp, wpr1)(1 +m) He Pm

Tp+1 k
p /2 (pm/2) (,Om/2
A R
—u_—Bm Pm 1 1 A P11 Pm 2
< kmax(wp, wpt1)(1 +m) e g |7p+1_7p|7HeXp(_§( ﬁ’pl:r —v)( |e|/ )k)
1 A7 1 Pm 2 —u —Bm
X eXp(— 5( ﬁﬁj —v)( | |/ )k) < kmax(wp, wp+1)(1 +m) He A [Yp+1 — Ypl

x”’ﬁ{zexp(—lA,pm H/ ) exp (— 1A,p+1<”T,/2>)

o 1
< kmax(wy, wp1)(1 +m) He Py, — 'yp|(supxexp( 2Ap,p+1xk)>

1, 2 —He~
X exp ( — QAp7p+1(pT|n6|/ ") < b max(wp, wp1)(1+m) e "

1. 14 Pm/2. 1 _
X [Yp+1 — Yl (sg%:cexp ( - iAp,erlﬂ?k)) X eXp( A pp+1( T|/ ) )(Po/ﬂm)k '
Tz
given that ¢t € 7 under the restriction (183), for all e € £,41 N Ep.
Proceeding from the decomposition (185) and summing up the above bounds (186), (187),
(188), we arrive at some constants Cy, 1 > 0 and V,, 11 > 0 (relying on p, €9, k, ) such that

. 1
(189)  |upsrm(t,€) = upm(t, ) < Cppra(l+m) e My

(,Om)k exp ( - vp,p+1(p7m)k)

€]
granting that ¢t € T, for all € € £,41 N &, and all integers m > 0.

Departing from the definition (44) of p,, and owing to the bounds (19) and (104), we can
select a constant R > 0 such that

L (0 4+m)*@ %
(190) pm Z —_ D 2 - —
2<ERD(1 +m)deg(RD)k;6D) a +m)%;g@>

for all integers m > 0.
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From (189) and (190), we deduce a constant My, 5, 55 > 0 with
(191) |up+1(t7 2 6) - up(t7 2 6)|
- _ 1 D
< Cppt1 Z(l +m) e Pme mm(z)mexl’ (— Vp,p+1(ﬁ)k)
m>0 pm
C ket - /
< S):}fpjll Z(l +m) N 3= (deg(RD) deg(Q))e—(ﬁ—ﬁ ym
m>0
1 1 Cp g5
k p+1 -
x exp (= VppiR deg(Rp)) —des(Q) W) < M bp.,6/ mp e” z ™
(1+m) Sp m>0
N 1 1
X exp ( - vp7p+1% deg(Rp)—deg(Q) W)
4m) o

forallt € T, all z € Hy with 0 < 8’ < f and € € 1 N E,.
In the last step, we need a technical lemma that has been established and discussed in our
former joint work [15] with A. Lastra and J. Sanz.

Lemma 6 Let 0 < a <1 and o > 0 be real numbers. There exist three constants K, M, > 0
such that

1 __1
Zexp k:—f—l) )a < Kexp(—Me a+1)

for all € € (0,9].

As a result of this lemma and the bounds (191) overhead, provided that ¢y > 0 is small enough,
one can find two constants K, M > 0 with

(192) |up+1(t7 2 6) - up(t7 2 6)|

< My

k -1
le] T )3 Q) +1)

Cpp
,0D,8,6' D‘i’f 1Ke P( M(m

forallt € T, all z € Hgy with 0 < ' < 8 and € € y11 N E,. This yields the second item (177)
of Theorem 1. O

6 Parametric Gevrey asymptotic expansions for the finite set of
holomorphic solutions to (13)

In this section, we show the existence of a common asymptotic expansion in the parameter e of
Gevrey type for the set of holomorphic solutions to our main initial value problem constructed
in the previous section.

We first call attention to a result known as the Ramis-Sibuya theorem stated in Lemma
XI-2-6 in [5].

Theorem (R.S.) Let (F,||.||[r) be a Banach space over C and we consider a good covering
{&to<p<c—1 in C* as described in Definition 4. For all0 < p <¢—1, we set Gp : &, = F as
holomorphic functions that are subjected to the next two constraints

1. The maps G, are bounded on &, for all0 <p < ¢ —1.
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2. The difference ©p(€) = Gpi1(€) — Gp(e) defines a holomorphic map on the intersection
Zp = Epy1 N E, which is exponentially flat of order k, for some integer k > 1, meaning
that one can select two constants Cp, A, > 0 for which

A

1©p()]lr < Gy exp(—ﬁ)

holds provided that € € Zp, for all 0 < p < ¢ — 1. By convention, we set G, = Go and
& =&.

Then, one can single out a formal power series G(e) = > >0 Gn€" with coefficients Gy,
belonging to F, which is the common Gevrey asymptotic expansion of order 1/k relatively to ¢
on &, for all the maps Gy, for 0 < p < ¢ — 1. It means that two constants Ky, M, > 0 can be
pinpointed with the error bounds

N
(193) 1Gp(€) — Z Gne"|lr < Kleﬁv‘HF(l +
n=0

for all integers N >0, alle € &€y, all0 < p < ¢ —1.

The next claim represents the second salient result of our work.

N+1
i)‘E‘NH
K

Theorem 2 There exist a formal power series u(t,z,€) = > <, Gn(t,2)e" whose coefficients
Gn(t,z), n > 0, are bounded holomorphic functions on the product T x Hpg:, which stands for
the common asymptotic expansion of Gevrey order k=1 for k given in (176) of the partial maps
€ = up(t, z,€) on every sectors E,, for 0 < p < ¢ — 1, uniformly in (t,z) on T x Hg. More
precisely, one can select two constants K, M,, > 0, for which the next error bounds

N
N+1
(194) Sup [uy(t,2,6) = D Gult,2)e"] < K MYHT(1+ T*)\e\NH
Zé%ﬁl n=0

hold, for all integers N > 0, as long as € € &,, for any 0 <p < ¢ —1.

Proof Let us consider the set of functions u,(t, z,€), 0 < p < ¢—1, constructed in the first main
statement Theorem 1. We set F as the Banach space of bounded holomorphic functions on the
product 7 x Hg equipped with the sup norm. For all 0 < p < ¢ — 1, we introduce the maps
Gp : &, — I defined as

Gple) :==(t, z) = up(t, 2, €).
According to Theorem 1, we observe that for each 0 <p <¢ —1,

e The map € — G)p(e) is holomorphic and bounded on &,, since uy,(t, z,€) is holomorphic
and bounded on the product 7 x Hg X &,

o The difference ©,(¢) = Gpt1(€) — Gp(€) is submitted to the bounds
B
1Gpr1(e) = Gple)llr < Apexp (— ﬁ)
for the constants Ay, B, > 0 given in (177),  displayed in (176), provided that € € £,11NE),
where the convention G. = Gy and & = & holds.

As an outcome, the requirements 1. and 2. of Theorem (R.S.) are fufilled for the set of
maps (Gp)o<p<c—1 and we deduce the existence of a formal power series @(t,z,¢) = G(e) =
Y >0 Gn(t, 2)€™ with coefficients Gy, belonging to F which is the common asymptotic expansion
of Gevrey order 1/k relatively to € on &p for all the maps G, 0 < p < ¢ — 1. In other words,
the bounds (194) follow. O
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