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Abstract: With the advent of modern technologies, the healthcare industry is moving towards a more 
Personalised smart care model. The enablers of such care models are the Internet of Things (IoT) 
and Artificial Intelligence. These technologies collect and analyse data from persons in care to alert 
relevant parties if any anomaly is detected in a patient’s regular pattern. However, such reliance 
on IoT devices to capture continuous data extends the attack surfaces and demands high-security 
measures. Both patients and devices need to be authenticated to mitigate a large number of attack 
vectors. The biometric authentication method has been seen as a promising technique in these 
scenarios. To this end, this paper proposes an AI-based multimodal biometric authentication model 
for single and group-based users’ device-level authentication that increases protection against the 
traditional single modal approach. To test the efficacy of the proposed model, a series of AI models are 
trained and tested using physiological biometric features such as ECG (Electrocardiogram) and PPG 
(Photoplethysmography) signals from five publicly available datasets from Physionet and Mendeley 
data repositories. The multimodal fusion authentication model shows promising results with 99.8%
accuracy and an Equal Error Rate (EER) of 0.16.

Keywords: biometrics; ECG; Internet of Things; machine learning; Personalised Healthcare; PPG; 
Smart Aging 16

1. Introduction 17

In recent years, Personalised Healthcare (PH) has gone through promising advances 18

with the potential to provide a customised type of care based on specific patient health 19

and by using predictive analytic [1]. PH relies on data from patients’ health records 20

and measurements to predict unknown issues that might arise concerning the patient’s 21

health. For example, PH could help patients forecast how much weight they might gain 22

in the coming two months, considering their daily diet. Daily habits, diets and other 23

lifestyle-related factors can cause someone to get diabetes or dementia earlier than expected. 24

Early prediction of potential health issues can help proactively address them and provide 25

adequate therapy before it worsens. Consequently, PH can help to improve the quality of 26

care and decrease its related costs. 27

A reliable PH system comprises several key components, as shown in Figure 1. In a PH 28

system, various types of data about a patient are gathered through continuous monitoring 29

of their health. The procedure includes utilising multiple devices, including the Internet 30

of Things (IoT) sensors and smart devices. Patients discharged from hospitals, patients 31

living remotely and the elderly living in residential care can take advantage of such remote 32

health monitoring. By remote monitoring of health status through IoT devices, the patients’ 33

personal health data can be stored in a highly-secured cloud-based data source. The 34

monitoring data can then be used to perform intelligent analysis, often using cloud-based 35
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Figure 1. PH Healthcare Architecture

services, to predict potential health issues. In this model, the communication channel needs 36

to be actively and continuously passing the data of the monitored patient to re-enforce 37

the learning by the predictive analysis model. However, security and privacy concerns 38

remain among the significant challenges, especially in PH systems, due to the reliance on 39

IoT and cloud-based technologies [2]. In particular, the authentication challenges of these 40

systems are unique because the IoT-based sensors and smart devices frequently produce 41

a continuous stream of data and thus, require continuous authentication to ensure that 42

the data belongs to a particular patient. Specifically, the device’s legitimacy needs to be 43

continuously verified in a sensor-based PH network (a network of connected devices and 44

IoT sensors that monitor a patient’s health). 45

Therefore, in such a context, it becomes challenging to verify that a set of sensors 46

belong to the same PH network and they trust each other in providing and sharing patient 47

data. Let us assume a PH network that belongs to a patient, Bob and has sensors A, B, C 48

and D. Alice, on the other hand, has a PH network with three different sensors X, Y and Z. 49

Assume there is a rouge sensor W which tries to impersonate Bob or Alice’s network. In 50

this case, the challenge is to employ a reliable method to verify that Bob’s sensors should 51

trust each other in sharing and communicating Bob’s data but not Alice’s and the rough 52

sensors. Such settings stimulate the need for a continuous authentication method to verify 53

that a set of sensors belongs to the same patient. Thus, it can trust that the data belongs to 54

the same patient. Figure 2 depicts this scenario. 55

Figure 2. Scenario: Single User Authentication

The second type of scenario that instigates such an authentication method involves 56

a PH network that belongs to a group of users instead of a single user. They might be 57

from the same household sharing the same network. Figure 3 illustrates this scenario. Let 58

us assume that Bob and Alice share the same PH network in this context. The sensors A, 59

B, C, D adjunct to Bob and Alice. The intruder, Eve, tries to intrude the network using 60

a rouge sensor W. In this case, the network should employ an authentication method to 61

authenticate and verify Bob and Alice’s devices continuously and reject the rough sensor 62

from Eve. Such contexts also advocate for a robust continuous authentication method to 63

scrutinise a group of persons and their sensors belonging to a specific network. 64

In this paper, to address the challenges mentioned above, we propose a multimodal 65

biometric-based authentication model that comprises continuous single and group user and 66

device authentication in PH network environments. We utilise a person’s unique physio- 67

logical characteristics that are continuously monitored using various IoT sensors to classify 68

real users and intruders. Our method aims to overcome the potential security flaws in such 69

sensors by employing a person’s biological features that can be very difficult to borrow, 70
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Figure 3. Scenario: Group User Authentication

buy or forge. To achieve this, the performance of the multimodal authentication method 71

over a single modal is empirically investigated and analysed. Single modal authentication 72

utilises and considers a user’s single biometric trait (e.g., ECG), which is still feasible to 73

be compromised given the advancement in computation [3]. Unlike single signal modal, 74

multimodal authentication considers more than one characteristic of the human body while 75

processing an authentication scheme. Such approaches can result in higher accuracy and a 76

higher security level, making spoofing, device impersonation and replay attacks harder 77

to occur [4]. Therefore, we devise a multimodal individual and group-based biometric 78

authentication, which will combine the features among a few common biometric traits such 79

as ECG and PPG. The systematic approach investigates both user and device authenticity. 80

Furthermore, we employ various machine learning algorithms and empirically evaluate 81

the performance of our proposed method. The objectives and novel contributions of our 82

work are: 83

• We propose the first comprehensive deep learning-based multimodal authentication 84

model applying ECG and PPG signals fusion. Our objective is to prevent user im- 85

personation and device spoofing in the personalised healthcare network, heavily 86

dependent on IoT based sensors. 87

• Our model incorporates a two-level authentication to detect intruding users and 88

devices. The developed approach first enrols the authorised users using their multiple 89

biometric traits. It then attaches IoT sensors using those traits to an individual. Such 90

methods prevent the impersonation of both users and devices. It can easily detect the 91

presence of an intruder in IoT-based healthcare services. 92

• We have conducted extensive experiments over multiple public datasets, demonstrat- 93

ing the model’s efficiency for biometric authentication purposes, compared to the 94

previous research works that have used most of these datasets for clinical research 95

perspectives. 96

• To the best of the authors’ knowledge, very few works have addressed the device-level 97

authentication and audit mechanisms of IoT- based personal healthcare services. 98

The rest of this paper is organised as follows. In section 2, we present background and 99

motivation for multimodal continuous authentication method. The related works are also 100

described with a concise view. In section 3, the overall system architecture and relevant 101

algorithms and models are narrated. In section 4, multiple types of attack scenarios are 102

discussed in relation to biometric-based authentication. In section 5, details of the dataset, 103

experiments and the results are presented, followed by a discussion on the findings in 104

section 6. Finally, 7 illustrates the limitation of our work and 8 section summarises the 105

objective, outcome, and future direction of this work. 106

2. Background and Related Works 107

Biometric authentication has grown in popularity with the effective use and adoption 108

of IoT networks, especially in PH [2]. Many continuous authentication techniques have 109

recently emerged to offer more reliable solutions to the growing challenges. In continuous 110

authentication, users are monitored with a high frequency to validate their authority for a 111

particular session [5]. Compared with the traditional authentication process, continuous 112
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authentication mechanisms are equipped with a higher level of security and are well-known 113

for enhanced Quality of Experience (QoE) [6]. Continuous authentication incorporates 114

behavioural and physiological signal-based biometric authentication, which can make the 115

IoT networks more secure, which are prone to impersonation and injection attacks [7]. 116

The use of IoT sensors in any system poses serious security challenges [2]. The 117

PH systems which are heavily dependent on such sensors are not exceptional. Figure 4 118

summarises the main security threats that IoT device layer authentication techniques can 119

face in such contexts. 120

1. Device impersonation attack: The attacker impersonates a device pretending to be 121

an authenticated user [8]. 122

2. Injection attack: The attacker deploys malicious nodes to monitor or control the data 123

flows in the network [9]. 124

3. Side-channel attack: The attacker reads the leaked signals from a device to collect 125

and analyse sensitive data [10]. 126

4. Eavesdropping and interference: This type of attack is caused by a weakened con- 127

nection between an IoT device and the server. The intruder takes advantage of such a 128

vulnerable connection to intercept network traffic [11]. 129

5. Sleep deprivation attack: The attacker keeps the targeted node out of its sleep mode 130

to reduce its lifetime [12]. 131

6. DDoS attack: The attackers generate a large amount of traffic from compromised 132

devices to make services unavailable [2]. 133

7. Replay attack: The imposter produces a signal to control IoT devices [2]. 134

8. Man in the middle attack: The attacker hacks the communication channel between 135

two nodes and spoofs or interrupts communications [2]. 136

Figure 4. IoT Network Attacks

Many studies have focused on biometric behavioural and physiological authentication 137

in IoT healthcare networks since wearables and inertial sensors are gaining popularity. 138

One of the critical advantages of physiological signals over physiological features is their 139

sense of life [13]. ECG-based authentication has also gained growing interest, particularly 140

for continuous authentication scenarios [14]. For instance, the work in [15] proposed an 141

ECG-based cancelable biometric scheme that mitigates replay attacks. In [16], the authors 142

proposed a continuous authentication mechanism that incorporates sequential sampling 143

and One-Dimensional Multi-Resolution Local Binary Patterns extraction to identify users 144

over using ECG signals. The work in [17] defined a unified sparse representation framework 145

that uses joint and specific ECG signal patterns. 146

ECG-based authentication mechanisms can be further classified based on feature 147

extraction techniques. For instance, studies such as [1,18] have applied fiducial feature 148

extraction in their identification algorithms. Many other studies [19,20], on the other hand, 149

have used non-fiducial feature extraction techniques. Other studies, such as [21,22], have 150
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combined the benefits of fiducial and non-fiducial extraction to form a hybrid approach for 151

ECG-based authentication. 152

Some work, such as [23] focused on investigating various classification algorithms to 153

identify the best performing one for ECG-based authentication. Out of eight algorithms, 154

the study concluded that linear discriminant analysis (LDA), k-nearest neighbour, and 155

neural networks are best for ECG-based identification. Furthermore, it also concluded that 156

principal components analysis (PCA) has no noticeable impact on the classification process 157

performance but can lead to accuracy reduction. 158

A few studies have proposed PPG-based authentication methods. For example, In [13], 159

the authors studied the feasibility of using PPG data for authentication. They concluded 160

that the results heavily depend on the quality of data. 161

In [24], the authors combined both behavioural and physiological biometric features 162

for user identification. Specifically, they employed Gait and PPG as the biometric trait. 163

Their experimental results showed that Support Vector Machine (SVM) has superior per- 164

formance to KNN and Autoencoder Neural Network, although KNN achieved the fastest 165

performance. Furthermore, they noticed that with sample size increment, the gap between 166

KNN and Linear SVM accuracy becomes smaller. 167

Besides the above studies, some research work considered multimodal authentication 168

approaches. In [25], the authors implemented a multimodal biometric authentication 169

method integrating face and iris based on score level fusion. The performance excels 170

the performance of the unimodal biometric identification method and the previous fused 171

face-iris methods. 172

In [26], the authors adopted a SVM based multimodal approach for identification. 173

They applied a score level fusion approach, and k means clustering to classify a multi SVM 174

machine. A nonlinear classifier is used to allow the SVM to perform a ’two-dimensional’ 175

classification of a set of originally one-dimensional data. 176

In [27], a multimodal authentication model is proposed. The work applies a combina- 177

tion of ECG and fingerprint to authenticate the users and reports an EER of 0.1%. However, 178

the ECG only authentication method denotes a 90% accuracy. 179

The authors in [28] designed a PPG based nonfiducial biometric authentication method. 180

They apply Continuous Wavelet Transform (CWT) and Direct Linear Discriminant Analysis 181

(DLDA) and attained an EER of 0.5%-6%. 182

The study in [29] uses ECG and finger vein for multimodal authentication. The 183

researchers report an EER of 0.12% and 1.40% with feature and score fusion. They apply 184

Multi-Canonical Correlation Analysis (MCCA) with a range of classifiers, namely: Support 185

Vector Machine (SVM), K-Nearest Neighbors (KNNs), Random Forest (RF), Naive Bayes 186

(NB), and Artificial Neural Network (ANN). 187

The authors in [30] propose two multimodal authentication systems, which are se- 188

quential and parallel system and uses a combination of ECG and Fingerprint. They apply 189

Convolution Neural Network (CNN) and Q-Gaussian multi-support vector machine (QG- 190

MSVM). They attained an EER of 0.14% and 0.10% for the sequential systems using two 191

datasets. The parallel system achieves an EER of 0.40% and 0.32% for respective datasets. 192

Table 1 presents the overview of similar works to our study. Many studies have 193

focused on multimodal biometric authentication. However, only a few studies have com- 194

prehensively experimented with ECG and PPG signals. For example, the study [31] was one 195

of the few to use both ECG and PPG signals to detect spoof detection and authentication. 196

However, the method uses ECG and PPG signals separately. As a result, the processing 197

time for this model is 85.31 ms with an accuracy of 98.9%. The other prominent work in 198

this sense is the one reported in [28]. The authors denote an EER of 0.05 while combining 199

ECG, PPG and GSR with 25 subjects. However, the EER and details results in the case of 200

fused ECG and PPG have not been precisely reported. Additionally, the research did not 201

scrutinise the in-depth study of the applied classification algorithms and feature extraction 202

methods. Another recent work that has used ECG and PPG for biometric authentication is 203

[32]. The study uses ECG and PPG signals separately for authentication. The MATLAB 204
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functions applied for feature extraction and classification are not explained explicitly. As a 205

result, it is hard to reproduce the reported results. 206

Compared to other studies, our work proposes a novel biometric-based continuous 207

model that takes advantage of ECG and PPF fusion. We also consider user impersonation 208

and device spoofing by incorporating continuous authentication with biometric signal 209

fusion. Apart from this, our model also considers single-user and multi-user mode authen- 210

tication. We converse a series of machine learning and deep learning algorithms such as 211

SVM, KNN, Naive Bays, Ensemble, Generalised Additive Model (GAM), Convolutional 212

Neural Network (CNN), Long Short-Term Memory (LSTM) to address user and device 213

level continuous authentication in PH networks. We test our models with a range of pub- 214

licly available datasets. We have also made our code publicly available so that the other 215

researchers can reproduce the results and propose further improvements. 216

Table 1. Comparisons with other Machine Learning-based Biometric Authentication Studies

Study Signal type Method Results

[27] ECG, Fingerprint Score Fusion

Accuracy: ECG:
90.0%,

ECG+Fingerprint:
EER: 0.1%

[29] ECG, Finger Vein SVM, KNNs, RF,NB
and ANN EER: 0.12%, 1.40%

[28] PPG CWT and DLDA EER: 0.5%-6%

[30] ECG and Finger print CNN and QG-MSVM EER: 0.14%, 0.10%,
0.40% and 0.32%

[32] ECG, PPG Cross-Correlation
Function (CCF)

Accuracy: PPG:
99.98%, ECG: 88.79%

[33] PPG Naïve Bayes classifier

Achieved a
recognition rate of

98.65%, 97.76%, and
99.69%

[34] PPG Decision Tree, KNN,
Random Forest

Achieved accuracy
rate of 93%, 98%, and

99% respectively

[35] PPG Gradient boosting
tree (GBT)

Accuracy: over 90%
and false detection

rate: 4%
[31] Fused ECG and PPG CNN Accuracy: 98.9%

[36] PPG CNN AUC of 78.2% and
83.2%

[37] ECG, PPG, GSR Classifiers
Equal Error Rate
(EER): 0.05 for 25

subjects

2.1. Machine Learning Algorithms 217

In this part, to brief the readers, we present some concise pieces of background 218

information on the classification and deep learning algorithms used in our work. 219

2.1.1. SVM 220

We have used SVM along with other classification algorithms. It constructs a hyper- 221

plane in multidimensional space to differentiate different classes [38]. In this work, we have 222

two classes, AUTH to indicate the data of authenticated users and NAUTH, to indicate the 223

signal data of intruder SVM generates optimal hyperplane in an iterative manner that is 224

used to minimise any error in estimation. The core idea of using SVM is to find a maximum 225

marginal hyperplane that best divides the signal dataset into AUTH and NAUTH classes. 226

The SVM applies a decision function f (X) > 0 or f (X) < 0, to separate the input examples 227

into two classes, where X = (x1..., xd) with d being the dimension. The size of the training 228

set N can be derived as yi, xi, with i = 1, ..., N, xi ∈ Rn as the input part for the i-th example, 229

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 June 2022                   doi:10.20944/preprints202206.0223.v1

https://doi.org/10.20944/preprints202206.0223.v1


7 of 26

and the class label of yi ∈ −1, 1. SVM maps Xi to a higher dimensional feature space 230

that depends on a nonlinear function ϕ(X), optimising the separated hyperplane through 231

maximisation of the margin with the following quadratic equation: 232

Maximise :
n

∑
i=1

αi −
1
2

n

∑
j=1

αiyiK(Ki, Xj)αjyj (1)

Subject to :
n

∑
i=1

αiyi = 0, 0 <= αi <= C(i = 1, ..., n) (2)

where α >= 0 and it will be equal to 0 after optimisation. C expresses a degree of losing
constraint where it is a positive constant that was chosen by the user. This mean that
having a large value number of C would result in more accurate classification during
the learning phase. If K(x, X

′
) is the kernel function which is inner a product defined by

K(x, X
′
) = ϕ(X), Then the SVM decision function is narrated as:

f (x) = ∑
xi∈SV

αiyiK(Xi, X) (3)

with a common polynomial kernel that can be defined as follows:

K(X, X
′
) =< ϕ(X), ϕ(X

′
) > (4)

2.1.2. Naive Bayes 233

Naive Bays classifiers are one of the most popular families of machine learning algo- 234

rithms formulated on the simple probabilistic theorem. All Naive Bayes algorithms are 235

based on the principle that all features are independent for any given classes [39]. 236

Assume that F1, F2, ....., Fm are m feature variables, a test instance t can be represented 237

by a feature vector < f1, f2, . . . , fm >, where fi is the value of Fi. Let V represent the class 238

variable and v represent the value. 239

Assume that all features are fully independent given the class, NB uses the following
equation to classify t.

v(t) = arg max
v∈V

P(v)
m

∏
i=1

P( fi|v). (5)

where v(t) class value of t, prior probability P(v) and the conditional probability P(vi|c). 240

2.1.3. KNN 241

KNN is a simple supervised algorithm that relies on the assumption that data with 242

similar attributes will most likely have similar outcomes [40]. In KNN, the decision is taken 243

based on the similarity between a given training and test sets. The training examples are 244

asserted using a number n of attributes, and each of these attributes denotes a point in 245

n-dimensional space using distinct classes. To predict the unknown data set, it calculates 246

the closest distance between the K training sets. A given dataset DS, where D is a matrix of 247

features from a data point, and L is a class label. KNN then will estimate the conditional 248

distribution of L given D and classify a data point to the class with the highest probability. 249

Given a positive integer k, KNN looks at the k observations closest to a test data point 250

d0 and estimates the conditional probability that it belongs to class c using the following 251

formula: 252

P(L = c|D = d0) =
1
k ∑

i∈S0

I(li = c) (6)

where S0 is the set of k-nearest observations and I(li = c) is an indicator variable that is 253

equal to 1 if a given data point di, li in S0 is a member of class c, and 0 if otherwise. After 254
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estimating these probabilities, KNN classifies the data point d0 under the class in which the 255

previous possibility is the greatest. 256

2.1.4. Ensemble Bagged Tree 257

Ensemble methods combine several machine learning methods in a single predictive 258

model to minimise variance and bias or maximise prediction probability. Bootstrap aggre- 259

gating (Bagging) [41] is one of the earliest ensemble methods which create and integrate 260

multiple classification modes to solve a specific classification problem. This method has 261

been widely applied in biometric signal processing [42,43]. 262

2.1.5. GAM 263

The generalised additive model applies shape functions to capture the nonlinear 264

relationship between a predictor and the response variable. These are interpretable models 265

that explain class scores using single and bi-variate shape functions of predictors [44]. The 266

standard GAM uses a univariate shape function for each predictor. 267

y ∼ Binomial(n, µ) (7)

g(µ) = log
µ

(1 − µ)
= c + f1(x1) + f2(x2) + ... + fp(xp) (8)

where y is a response variable that follows the binomial distribution with the probability of 268

success (probability of positive class) µ in n observations. g(µ) is a logic link function, and 269

c is an intercept (constant) term. fi(xi) is a univariate shape function for the ith predictor, 270

which is a boosted tree for a linear term for the predictor (predictor tree). 271

2.1.6. CNN 272

CNN is a particular type of neural network that can extract spatial and temporal 273

dependencies from data, and this method is widely applied to digital images. More about 274

CNN can be found here [45]. 275

2.1.7. LSTM 276

LSTM is a particular type of deep neural network that can capture repetitive features 277

in the data [46]. It is widely used for time series data to extract features in the time domain. 278

2.2. Feature Extraction 279

We have applied both time domain and joint time-frequency domain feature extraction 280

methods to the physiological signals in this work. These features improved the accuracy 281

and EER of the ML model from the processed signals. Wavelet Packet Transform (WPT), a 282

joint time-frequency domain method, has been applied with the time-domain extraction 283

method based on the AutoRegressive (AR) model. The justification for using these methods 284

is detailed in the consequent subsections. We extracted Shanon’s Entropy values, Wavelet 285

variances, and AR coefficients from the signals. Figure 5 depicts the role of feature extraction 286

process in the proposed intrusion detection model. 287

Figure 5. Feature Extraction for the Proposed Model
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2.2.1. Wavelet Packet Transform 288

Wavelet packet transform (WPT) is an extension of wavelet decomposition (WD)[47]. 289

This method is chosen for its efficiency for non-stationary signal denoising, compression 290

and classification. It also allows the features to have more discrimination power than the 291

features from discrete wavelet transform. 292

The wavelet packet transform function of a signal f (x) can be defined as[48]:

Ws f (x) = f (x) ∗ Ψs(x) =
1
s

∫ +∞

−∞
f (t)Ψ(

x − t
s

)dt (9)

where s is a scale factor.Ψs(x) = 1
s Ψ( x

s ) is the dilation of a basic wavelet Ψ(x) by the scale 293

factor s. 294

The scale factor acts as a linear operator and divides the signals into two components: 295

approximation and detail. The approximation then can split itself into another approxi- 296

mation and detail. The process can be repeated till the signal that correlates well with the 297

frequencies required for the classification of the signal is retained in the wavelet coefficients 298

[49]. Figure 6 shows the wavelet tree for the ECG signal from one of the datasets. 299

Figure 6. ECG Wavelet Tree

However, with wavelet packet decomposition, the massive size of the decomposed 300

coefficient can be a hurdle for classification. Entropy has been introduced to tackle such 301

issues in WPD. It is prevalent in measuring the uncertainty of data in signal processing. 302

There are different types of entropy. Some of them are Shannon’s entropy (SE), Log Energy 303

Entropy (LEE), Renyi Entropy (RE), and Tsallis entropy (TE) [50]. 304

The entropy function is defined is as follows:

Eij =
N

∑
k=1

Eijk (10)

Eij =< x(i), x(j), x(k) >= |djk|2 (11)

where k is the number of coefficients, j is the number of nodes and i is the level on the node. 305

The probability of the coefficients can be calculated as follows: 306

Pxi =
Eijk

Eij
(12)

The entropy can be defined as follows:

H(X) = −
n

∑
i=1

Pxilog2Pxi (13)
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where P represents the probability, xi = 1, ...., i represents the possible outcomes, being:

0 < Pxi < 1,
n

∑
i=1

Pxi = 1 (14)

2.2.2. Autoregressive Model (AR) 307

The Autoregressive model is a time series model that analyses the values from the 308

previous time steps using a linear combination of past values of the variables to predict 309

future values. Here autoregression refers to a regression of the variable against itself. 310

Implementing the AR model includes some levels of randomness and uncertainty, where 311

future values can be predicted based on the past value. In most cases, the AR Model 312

predicts a trend close to accuracy to be useful for the given problem. 313

In an AR process of order p, the signal Xt with the time instant t will be represented as 314

a linear combination of p previous values of the same signal. The AR process is modelled 315

as: 316

Xt =
p

∑
i=1

φiXt−1 + ϵt (15)

where ϵt represents the white noise with a zero mean, var ϕi represents the i-th coefficient 317

of the model. It uses the authentication model’s coefficients as the feature input of the 318

classifier. We tune various "AR process order" to tune the accuracy and precision of the best 319

classification model for a scenario. 320

2.2.3. Instantaneous Frequency (IF) 321

The IF is a property of a non-stationary signal such as ECG that has a time-varying 322

parameter relating to the average of the frequencies present in the signal as it evolves. 323

Further details regarding the IF can be found in [51]. The IF features of the ECG and PPG 324

signals are used to train and test the CNN and LSTM models. 325

2.2.4. Spectral Entropy (SE) 326

SE is a property of a signal measured from the spectral power distribution. The SE 327

treats the signal’s normalized power distribution in the frequency domain as a probability 328

distribution, and calculates the Shannon entropy of it. Further details of SE can be found 329

in [52]. The SE feature values of the ECG and PPG signals are used for CNN and LSTM 330

models. 331

3. System Design 332

This section elaborates on our designed physiological biometric-based device authen- 333

tication system based on continuous authentication techniques. Figure 7 illustrates our 334

system. The system uses two phases to verify a legitimate device - the enrolment phase 335

and the constant authentication phase. The enrolment phase includes both user and device 336

registration. The preliminary step of device registration is user registration. 337

Figure 7. High-level Overview of the Proposed Authentication
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At first, a range of biometric signals si where i = 1, 2, 3, ...., n signifies a series of 338

biometric signals. These are collected from a valid user ui. The system is trained using a 339

machine learning model to recognise legitimate users. The model has training and testing 340

phases. In the training phase, the manager will use the right signal to make the model 341

recognise the correct user. In the testing phase, the manager uses the reference dataset to 342

test the success rate of the recognition. 343

The system progresses to the device registration after the user registration phase. In 344

this stage, the PH manager instructs the device to send biometric signals such as ECG 345

and PPG for a specific time window from the attached user. The manager then uses the 346

previously created model to authenticate and register the device in the system. 347

In the authentication phase, a device is asked to log in using the biometric signal of the 348

attached user. If the model can recognise the signal, the device is authenticated. Otherwise, 349

the system will request a higher privilege to reset the sensor or data to be passed or lock the 350

device to prevent further access. On the other hand, continuous authentication makes sure 351

that the device is constantly audited. This prevents session impersonation. After the device 352

is authenticated, it will continuously send the biometric signal maintaining a short interval 353

(every 20 seconds), and the manager will monitor the transmitted data. If the sensor starts 354

to send the wrong data at any point in time, the device will be locked out from the network. 355

Figure 8 illustrates the flow.

Figure 8. The Workflow of the Proposed Authentication
356

3.1. Algorithm Details 357

Let si be a set of signals from a user ui. In our case, si is a set of multiple signals such
as ECGi and PPGi.

si = (ECGi, PPGi) (16)

The signal is collected for a time period wi from a user ui. A device di is trained with the 358

signal for a time period trnwi. The device is tested with the signal for a time period tstwi. 359

Then horizontal concatenation is performed on the signals to derive a single metric. 360
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Algorithm 1 User Registration
Input :An array [si], i = 1, 2, · · · , n, where each element is a biometric signal
Output :Registration Notification
/* The device manager collects biometric signals from [ui] legitimate users

*/
while Input Signals from [ui] user r number of records=true do

The manager trains the system with authenticated and non-authenticated signals;
for r=0; r<=n; r++ do

Feature Selection;
Divide into Train and Test data;
Train=TrainData;
Test=TestData;
End train the system;
Test;

end
if Test successful then

register user [ui];
go to the next user;

end
end

Algorithm 2 Device Registration
Input :An array [si], i = 1, 2, · · · , n, where each element is a biometric signal
Output :Device Registration Notification
/* The device manager compares the device signal [si], with the user signal

[ui] */
while Input Signals from [di] matches the signal of [ui] do

register device [di];
go to the next device;

end

Algorithm 3 Authentication

/* A PH device sends data to manager */
if Valid Device then

Let the device send data;
end
else

Reject entry;
end

Algorithm 4 Continuous Verification

/* In every 5 minutes Time Window */
if The device signal matches with the stored signal then

Let the device send data;
end
else

Ask to re-login to the system;
end

3.2. Data Fusion 361

We have applied a few early fusion methods to process multimodal signals. This 362

section provides a brief description of each of these methods. 363
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• Horizontal concatenation: As part of horizontal concatenation, the data is stored as 364

a form of a matrix at first. As a result, we get two matrices for ECG, and PPG signal 365

consecutively: 366

MECG =



xECG
1

xECG
2
.
.
.

xECG
n

 (17)

MPPG =



xPPG
1

xPPG
2
.
.
.

xPPG
n

 (18)

The resultant concatenate matrix is as follows: 367

CEPG =



xECG
1 + xPPG

1
xECG

2 + xPPG
2

.

.

.
xECG

n + xPPG
n

 (19)

• Root Mean Square (RMS): The RMS denotes the statistical measure of the mean 368

square root of a set of data points. For a set of D number of data points and di data 369

items, the RMS is calculated as: 370

RMS =

√√√√ 1
D

D

∑
i=1

d2
i (20)

• Geometric Mean (GM): The GM implies a type of mean that calculates the central 371

tendency of a set of numbers. It uses the root of the product of the observed items. 372

For a set of D number of data points and di data points under observation, the GM is 373

expressed as: 374

GM =
D

∏
i=1

di =
D
√

d1d2 . . . dND (21)

• Arithmetic Mean (AM): The AM denotes the central tendency of a set of numbers 375

that applies the sum of observed items. For a set of D number of data points and di 376

items under observation, formally the AM can be calculated as: 377

GM =
D

∏
i=1

di =
D
√

d1d2 . . . dND (22)

• Harmonic Mean (HM): The harmonic mean denotes the reciprocal of AM of a given
set of data points. It inverses each data points in a given set, sums those data points
and then the sum is divided by the total number of data points.

GM =
D

∏
i=1

di =
D
√

d1d2 . . . dND (23)
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4. Security Analysis 378

This section verifies the informal security analysis of our proposed model to ensure 379

that it can defend against numerous prevalent attacks that persist in sensor-based PH 380

systems. The following scenarios assume that an imposter tries to control the whole PH 381

network through several well-known security breaches. 382

• Impersonation and Spoofing Attack: IoT sensors are prone to impersonation and 383

spoofing attacks. The device, which is attached to patients, is usually verified at the 384

beginning of any session. During the ongoing session, if the intruder inherits the 385

device and pretends to be the user, the patient’s data privacy is at risk. However, 386

continuous authentication prevents the system from such an attack. Also, using 387

multimodal biometric signals to authenticate instead of unimodal prevents a spoofing 388

attack from device and user perspectives. 389

• Injection and Tampering Attack: The network that adopts the proposed authenti- 390

cation approach is also secure from an injection attack. If attackers want to implant 391

a node in the patient’s PH network, they will not be able to do so as the biometric 392

trait will not match. Node tampering attack is also prevented as even if the intruders 393

intrude on the node and implant a new biometric authentication signal, the network 394

will reject the device. 395

• Registration Phase Attack: An imposter can register a rough device into the PH 396

network during the registration phase. However, to mitigate this attack in our model, 397

we use two-step registration: user registration and device registration. As a result, a 398

device is only registered if it is attached to any previously registered legitimate user. 399

5. Experiment Design and Results Analysis 400

We have used a few publicly available datasets to experiment with the proposed 401

authentication algorithm detailed in this section. We have implemented our model using 402

MATLAB. The design and implementation are done in a few steps: data acquisition and 403

pre-procession, feature extraction and selection, and finally, classification. The workflow 404

diagram of the authentication ML model is presented in Figure 9. 405

Figure 9. The workflow of creating ML based authentication model
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The notable elements of the workflow are as follows: 406

1. Physiological Signals: The signals are classified as authenticated and non-authenticated 407

signals. As the name suggests, authenticated signals refer to signals registered into 408

the database that are collected from a trusted source. The non-authenticated signals 409

attribute to the signals from an unknown source/user that needs identification/au- 410

thentication. 411

2. Data Preparation: As the physiological data being obtained are mostly raw sensor 412

data, data pre-processing is required. Some of the techniques that are used in this 413

stage are band-pass and noise filtering to remove the noise and artefacts from the 414

collected signal. 415

3. Feature Engineering: For single signal experiments, the features are directly extracted 416

using the feature extraction algorithm. For multimodal experiments, we apply early 417

fusion and then extract and select features from the fused signals. 418

4. Identification: The unknown signal is processed, and features are extracted from the 419

signal in this stage. Then the authentication algorithm is run to check the authenticity 420

against the stored patterns of the authenticated users. 421

In this research work, we have used five datasets. All the signals in each dataset have 422

been grouped in a single mat file. The signals are labelled as AUTH for authenticated users 423

and NAUTH for non-authenticated signals. 424

We use the work from [53] as a reference point to design our feature extraction part. 425

We extract between 18 to 34 features for each experiment. Then the most important features 426

are selected based on the chi-square test. All derived features are concatenated into a 427

feature vector. The detail of our code is available in Github [54]. 428

The classification algorithms described previously are used to train and test the model. 429

The parameters for each classification algorithm are selected based on the optimal perfor- 430

mance. We define this performance benchmark by tuning several parameters and running 431

each experiment at least five times. For example, when using the SVM algorithm, we 432

have chosen the polynomial kernel function for SVM to classify each trial to estimate the 433

misclassification rate and the confusion matrix. We selected the polynomial kernel function 434

since our model is parametric. The polynomial function also works better if the model uses 435

fewer data. Since we are training our model with authenticated user data, we do not expect 436

a lot of data for this type of PH system. 437

We have used multiple metrics to evaluate our model. Ten-fold cross-validation is 438

used to estimate the misclassification rate and construct the confusion matrix. Then we 439

have derived the accuracy precision rate, recall rate, F1 score, model loss and Equal Error 440

Rate (EER) for each of our experiments. Each of these metrics is calculated using True 441

Positive (TP), False Positive (FP), True Negative (TN) and False Negative (FN). We have a 442

range of specific settings for unimodal and multimodal signal experiments. The following 443

subsections detail the experiment settings and results, including the dataset details. 444

5.1. Dataset Details 445

Our research work focuses on two different physiological signals: ECG and PPG, to 446

detect any network intruder. Most of the published research works primarily focus on a 447

single physiological signal, ECG being the dominant one. We have used five datasets for 448

our study based on their diversity and vastness. 449

BIDMC PPG and Respiration Dataset [55] This dataset is available at Physionet [56]. 450

The collected data was from the admitted patients to the intensive care unit. The dataset 451

consists of 53 patients’ recordings. Each of the recorded signal is 8 minutes long in duration. 452

Each recording contains: 453

• ECG and PPG signals, both of these signals are sampled at 125Hz. 454

• Some of the physiological parameters such as heart rate and respiratory rate and blood 455

oxygen saturation level. These are sampled at 1Hz. 456
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MIT-BIH Arrhythmia Database [57] This dataset is also available at Physionet [56]. It 457

is a clinical dataset of 47 participants of 48 half-hour excerpts of two channels ambulatory 458

ECG recordings. Twenty-three recordings were randomly selected from a set of 4000 459

24-hour ambulatory ECG recordings. These recordings are from a mixed population of 460

inpatients and outpatients of the hospital. The rest of the records were picked from the 461

same group to include less common but clinically significant arrhythmia, however, in this 462

experiment we will use the samples for biometric purposes. 463

MIT-BIH Normal Sinus Rhythm Database This dataset is extracted from Physionet 464

[56]. The ECG data were collected at Boston’s Beth Israel Hospital from 18 subjects. The 465

subjects include five males between 26 and 45 years old and 13 females between 20 and 50 466

years old. 467

The BIDMC Congestive Heart Failure Database [58] This database contains ECG 468

recordings from 15 subjects. Each record has 20 hours of recording. The dataset details are 469

available at [59]. 470

Real-World PPG dataset [60] This dataset contains PPG signals from 35 healthy 471

subjects. Each recording has 300 samples (6 seconds) with a 50 sample/seconds sampling 472

rate. Each subject has 50 to 60 recordings. The dataset details are available at [60]. 473

5.2. Performance Benchmarking 474

To utilize the secure personalised healthcare network and usable authentication, per- 475

formance benchmark of the system needs to be drawn from the following conditions, 476

• Using shorter training data (5 minutes or less amount of physiological signal) to 477

develop a highly accurate authentication model. 478

• ML model accuracy needs to be close to 100% to prevent intrusive unauthorised access 479

to sensors. 480

• The ML model training and validation should be power and processing efficient and 481

highly accurate. 482

5.3. Experiments and Results 483

This section illustrates our experiment design and results. We have conducted three 484

sets of experiments that involve ECG, PPG and fusion signal combining ECG and PPG. 485

We run a series of single and group user authentication involving multiple classification 486

algorithms for each type of signal. A set of experiments focused on single signal mode 487

authentication with selected features, and other sets of experiments used multimodal mode 488

and IF and SE features to address group user authentication. AR coefficients, Shannon’s 489

entropy and wavelet variance features are extracted for all signals. The most optimal 490

parameters are chosen after running each experiment five times. Table 2 illustrates the 491

parameters we set for our first set of experiments. 492

Table 2. ECG Experiment Settings

Parameters Values
AR Order 12

Transform Level 8
Window Size 1000

Feature Extracted 276

CNN and LSTM deep learning models are introduced for ECG and PPG fusion based 493

authentication and to compare single user vs group based authentication. A sample CNN 494

model is presented in Figure 10. The CNN net has eight connected layers. Each of the 495

connected layers is sequenced as follows, one-dimensional convolution layer, followed 496

by the normalisation layer, then the dropout layer, followed by another one-dimensional 497

convolution layer, then the dropout layer, Rectified Linear Unit (ReLU) layer, the dropout 498

layer, then followed by next additional layer. Finally, the network is connected with a fully 499
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Figure 10. The CNN model for Data-Fusion-Centric Authentication

connected layer, softmax activation layer and classification output layer. The LSTM model 500

for the experiments is presented in Figure 11. 501

The LSTM model consists of Sequence Input Layer, bi-LSTM layer, fully connected 502

layer, softmax layer followed by classification output layer. Further details about the 503

models and the source code can be found in [54]. 504

5.3.1. ECG Signal Based Authentication 505

The first experiment for ECG signals has been conducted using the ECG signals of 53 506

users from BIMDC dataset [55]. 507

The dataset was initially divided into two portions – "TrainA" and "TestA". One of the 508

users, "UserA" from "TrainA" is marked as the authenticated user, and the rest of all the 509

data from "TrainA" and "TestA" are considered intruders. The ECG signal data of "UserA" 510

and other users is about 7 minutes long. These signals are processed to create multiple 511

instances of an equal length of 9 seconds. The data of "UserA" was then further partitioned 512

to 33% training and 67% testing data. The training samples of "UserA" are copied multiple 513

times to increase the training instances that will allow overtraining of the authenticated 514

user, and through this overtraining, it will enhance the security of the biometric model to 515

identify the authenticated user. 516

Additionally, it will improve data balance and symmetry during the training session. 517

The dataset of the remaining users from "TrainA" and the users of "TestA" are also processed 518

to create 9 seconds length samples. Multiple machine learning classifier algorithms are 519

used and compared to find the best performer within the training set and tested with the 520

test samples. The outcome of the test results of 2533 samples is presented in Table 3. 521

To validate the scalability of the biometric model, subsequently, we run the second 522

experiment for ECG signal adding the combination of three datasets which are: MIT-BIH 523

Arrhythmia Database [57], MIT-BIH Normal Sinus Rhythm Database [56], and BIDMC 524

Congestive Heart Failure Database [58]. We use the ECG records of 120 users. All these 120 525

users are regarded as intruders. The result of the test of 10213 samples is presented in Table 526

4. 527
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Figure 11. The LSTM Model for Data-Fusion-Centric Authentication

Table 3. ECG Result Details
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KNN Fine 75.6% 47.7% 98.3% 85.6% 0.013
Ensemble Bagged

Trees 95.1% 65.0% 99.1% 97.1% 0.03
Naive Bayes 95.1% 100% 99.9% 97.5% 0.03

SVM 100% 26.1% 95.4% 97.6% 0.02
GAM 97.6% 41.7% 97.8% 97.7% 0.02

Table 4. ECG Result Details - Scalable Attack Scenarios
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KNN Fine 75.6% 38.3% 99.4% 85.9% 0.12
Ensemble Bagged

Trees 100% 9.6% 96.2% 98.1% 0.19
Naive Bayes 95.1% 100% 99.9% 97.5% 0.02

SVM 100% 2.63% 85.2% 91.9% 0.08
GAM 97.6% 5.3% 93.1% 95.2% 0.05

After performing the single-user authentication for ECG only signals, we experi- 528

mented with the ECG only group authentication. For this experiment, a group of three is 529

created, considering that they belong to the same personal healthcare network. ECG signals 530

from these three users are regarded as authenticated users, and the others are considered 531
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intruders. We use the same strategies to process ECG signals, labelling, feature extractions, 532

training and testing as single-user experiments. 533

Multiple ML algorithms are used to find the best performing model. Out of these 534

algorithms, the SVM receives the given number of features in the learning phase and 535

performs a grid search optimisation algorithm to find the optimal normalisation resolution 536

factor α. Then the machine derives the normalisation resolution factor with the remaining 537

features by comparing them with those being used in the learning phase. The code for our 538

SVM template is as follows: 539

template = templateSVM ( . . . 540

’ KernelFunction ’ , ’ polynomial ’ , . . . 541

’ KernelSca le ’ , ’ auto ’ , . . . 542

’ BoxConstraint ’ , 1 , . . . 543

’ Standardize ’ , t rue ) ; 544

model = f i t c e c o c ( . . . 545

t r a i n F e a t u r e s , . . . 546

t r a i n _ n _ t e s t _ l a b e l , . . . 547

’ Learners ’ , template , . . . 548

’ Coding ’ , ’ onevsone ’ , . . . 549

’ ClassNames ’ , { ’AUTH’ , ’NAUTH’ } ) ; 550

The source codes of all the experiments and related files are available in Github [54]. 551

The model using Naive Bayes did not perform well in the multiuser authentication 552

model. Out of the algorithms used to train the model, GAM performed comparatively 553

better with a precision of 52.6% and EER 0.04. The results are presented in Table 5. 554

Table 5. ECG Result Details - Multiuser Authentication
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KNN Fine (3 Usr) 85.5% 31.6% 90.9% 88.2% 0.09
Ensemble Bagged

Trees (3 Usr) 91.1% 42.9% 95.3% 93.3% 0.05
Naive Bayes (3 Usr) 82.3% 43.2% 94.3% 88.1% 0.06

SVM (3 Usr) 100.0% 7.7% 45.8% 60.3% 0.54
GAM (3 Usr) 91.1% 52.6% 95.9% 93.5% 0.04

5.3.2. PPG Signal Based Authentication 555

We set up the PPG signal based authentication experiment using a similar data prepro- 556

cessing technique as ECG experiments. We combined two PPG datasets which are BIMDC 557

[55], and PPG real-world datasets [60]. The combined sample user number is 66. We follow 558

similar procedures to create 9 seconds length sample points for the training and testing 559

portion of the data. Multiple training algorithms are used and compared to find the best 560

performing algorithm to create a model. Then the models are tested with the test samples. 561

Similar parameters as Table 2 are used to extract features from the signals. 562

The results of the single user authentication using PPG are presented in Table 6. 563

To validate the group based multiuser authentication, a group of three is created. PPG 564

from these three users are regarded as authenticated users, and the others are considered as 565

intruders. AR coefficients, Shannon’s entropy and wavelet variance features are extracted. 566

The transform level, the window size of the signal and other settings are already mentioned 567

in Table 2. The results from the test samples are presented in Table 7. 568
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Table 6. PPG Result Details - Single User Authentication
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KNN Fine 75.6% 4.9% 79.8% 77.7% 0.20
Ensemble Bagged

Trees 97.6% 12.8% 91.0% 94.1% 0.09
Naive Bayes 100% 6.8% 85.5% 92.1% 0.15

SVM 56.1% 9.7% 92.3% 69.9% 0.08
GAM 97.6% 11.3% 89.6% 93.4% 0.10

Table 7. PPG Result Details - Multiuser Authentication

M
L Alg

orit
hm

Se
ns

it
iv

it
y

Pr
ec

is
io

n

A
cc

ur
ac

y

F1
Sc

or
e

EE
R

KNN Fine (3 Usr) 70.2% 13.8% 79.0% 74.5% 0.21
Ensemble Bagged

Trees (3 Usr) 52.4% 32.7% 93.0% 67.5% 0.07
Naive Bayes (3 Usr) 56.5% 6.9% 63.9% 60.1% 0.36

SVM (3 Usr) 48.4% 17.6% 87.5% 62.8% 0.13
GAM (3 Usr) 77.4% 28.2% 90.1% 83.6% 0.10

5.3.3. ECG-PPG Fusion Signal Based Authentication 569

Consequently, experiments are conducted with ECG and PPG fused signals from the 570

BIMDC dataset [55]. This dataset has over 6 minutes of these two signals of each 53 users. 571

Several fusion techniques were used to validate which fusion signal will provide better 572

result as described in the data fusion section. At first, we simply add the amplitude of the 573

ECG and PPG signals and apply classifier machine learning algorithms as follows. Firstly, 574

from the fused signal we extract Shanon’s Entropy (SE), Wavelet variances (WV) and AR 575

coefficients. Then we train and test the model to recognise a single authenticated user. The 576

signal data of each user are processed and prepared to create smaller sample data points 577

where each data point contained around 9 seconds length of signal (worth 11 heartbeats). 578

Training and testing portions of the data are separated in 70/30 proportion. 579

Multiple training algorithms are used to train the model. To select the best performing 580

model, many tests are conducted on the trained model using the testing sample portion of 581

the dataset. The extracted features based on Table 2 parameters are used to train multiple 582

classifiers. However, the above-mentioned classifiers with time and time-frequency joint 583

features have not achieved a promising result. The model was trained to apply the ten- 584

fold cross-validation method. Additionally, EER and F1 score was considered in selecting 585

the best model. The best performing classification model trained using GAM achieved a 586

precision of 44.4% and EER of 0.02. 587

We have tried different fusion methods and extracted some new features to improve 588

the result further. We also create smaller sampling points by reducing the frequency. The 589

preprocessed data is proportion to 70/30 for the training and testing. We conduct the fusion 590

using Square Root (SQRT), RMS, GM, AM and HM. A detailed discussion of these metrics 591

has been provided in the data fusion section. All these metrics except HM produce good 592

results for the fusion signal. For further fusion signal based experiments, we use RMS 593

fusion as standard as it provided slightly better F1 scores than other fusion approaches that 594

were applied. We have extracted IF and SE features as described in [61]. These features 595

are used in deep learning models: CNN and LSTM. LSTM model is specialized in finding 596
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Table 8. ECG-PPG Fusion Result Details - Single User Authentication
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KNN Fine 70% 76.7% 98.4% 82.1% 0.15
Ensemble Bagged

Trees 19.5% 61.5% 98.5% 32.6% 0.40
Naive Bayes 97.6% 29.9% 96.2% 96.9% 0.03

SVM 0.0% 0.0% 98.4% 0% 0.50
GAM 97.6% 44.4% 98.0% 97.8% 0.02

CNN (2 HB 1 Usr) 97.2% 92.1% 99.8% 98.5% 0.21
LSTM (2 HB 1 Usr) 94.4% 97.1% 99.8% 97.1% 0.16
CNN (8 HB 1 Usr) 85.7% 73.2% 99.2% 92.1% 0.85
LSTM (8 HB 1 Usr) 97.1% 94.4% 99.8% 98.5% 0.16
CNN (16 HB 1 Usr) 88.2% 40.5% 97.4% 92.7% 2.56
LSTM (16 HB 1 Usr) 70.6% 60.0% 98.6% 82.5% 1.39

patterns in a time series sequence. In the experiment of single-user authentication, LSTM 597

has demonstrated precision and F1 score rate as 97.1% and EER 0.16. CNN has provided a 598

precision rate of 92.1%, F1 score of 98.5% and EER of 0.21. Table 8 shows the comparison of 599

the experiment results. 600

After conducting the single user experiments, we run the group based authentication 601

experiments. The data processing and feature extraction method remains the same as 602

in previous experiments. The results of the multiuser ECG-PPG Fusion experiments are 603

presented in Table 9. Multiple LSTM training configurations are used as mentioned in 9. It is 604

observed that when user group member size is increased, the accuracy decreases. However, 605

when the window sample size is increased from two heartbeats to 8 heartbeats, the accuracy 606

and EER change rate are changed to a negligible amount. It indicates that the model trained 607

with LSTM and a minimum of two HBs can provide an excellent authentication scheme. 608

Table 9. ECG-PPG Fusion Result Details - Multiuser Authentication
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KNN Fine (3 Usr) 90.3% 37.0% 92.6% 91.5% 0.07
Ensemble Bagged

Trees (3 Usr) 93.5% 50.7% 95.6% 94.6% 0.04
Naive Bayes (3 Usr) 90.3% 19.7% 82.8% 86.2% 0.17

SVM (3 Usr) 97.6% 27.4% 88.1% 92.4% 0.12
GAM (3 Usr) 98.4% 35.3% 91.7% 94.8% 0.08

CNN (16 HB 3 Usr) 88.7% 73.4% 97.5% 93.1% 2.45
LSTM (16 HB 3 Usr) 30.2% 21.3% 89.8% 45.6% 10.23
CNN (16 HB 5 Usr) 76.4% 91.9% 97.1% 86.4% 2.88
LSTM (16 HB 5 Usr) 83.1% 73.3% 95.5% 89.5% 4.88

6. Discussion 609

The objective of the experiments was to find the best continuous authentication model 610

on (1) single signal vs fusion signal based authentication, and (2) single user vs group of 611

user-based authentication, using conventional classifiers and contemporary deep learning 612

algorithms. In Table 10 the summarised results presented from the experiments. From Table 613
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10 it is observed that in single authentication mode, among the classifiers, the Naive Bayes 614

model has provided the best result for ECG-only authentication reaching 100% precision 615

and 99.92% accuracy and zero false-positive cases out of 2533 test samples. The naive 616

Bayes based model demonstrated resiliency against a large number of intrusion attacks 617

during the scalability test. When 10213 samples were tested in the second experiment, 618

this model experienced zero false-positive cases and reached an EER of 0.024. During 619

the PPG only authentication experiments, none of the classifiers reached up to a good 620

benchmark, although LSTM provided a comparatively better result [61]. In the case of ECG 621

and PPG signals based on RMS type fusion, the deep learning LSTM model illustrated 622

good precision and low EER compared to CNN based model, even though we chose to 623

change signal sample length from 2 heartbeats to 16 heartbeats. It will ensure a multimodal 624

and reliable authentication scheme. 625

Table 10. Summary of the Biometric Experiments

Type of Exp
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EE
R

Single User
ECG Naive Bayes 100% 99.9% 0.02

Single User
PPG SVM 9.7% 92.3% 0.08

Single User
ECG and PPG Fusion LSTM 97.1% 99.8% 0.16

Multi User
ECG GAM 52.6% 95.9% 0.04

Multi User Ensemble Bagged
PPG Trees 32.7% 93% 0.07

Multi User
ECG and PPG Fusion CNN 73.4% 97.5% 2.45

When multiple user groups of 3 and 5 are created to verify the group authentication 626

model, overall authentication performance is reduced compared to ECG only model when 627

using the classifiers. LSTM deep learning net provided satisfactory accuracy and precision. 628

However, many valid login attempts are declined. Therefore, further research is required 629

to improve the sensitivity and accuracy of group authentication. Based on the benchmark 630

performance defined earlier, our proposed models can achieve high accuracy, especially in 631

single and multiuser authentication, using Naive Bayes, LSTM and CNN, as illustrated in 632

Table 10. 633

From our literature review, only a few notable works have reported ECG and PPG 634

together as biometric traits for multimodal authentication systems. We present the compar- 635

ison in Table 11. 636
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Table 11. Comparison with Multimodal ECG and PPG Studies

Study Feature
Extraction

Authentication
Type Classifier Result

[32] MATLAB
functions Single User Cross-

Correlation

Accuracy: PPG:
99.98%, ECG:
88.79%, EER:
Not reported

[31] CNN and Naive
Bayes Single User CNN

Accuracy: 98.9%,
EER: Not
reported

[28] Not reported Single User Classifiers
Accuracy: Not
Reported, EER:

0.20

This work WPT, AR, IF and
SE

Single and Multi
User

LSTM, CNN,
NB, GAM

Accuracy: Single
User: 99.8%,

EER: 0.16,
MultiUser:

97.5%

7. Limitations 637

Our work has some limitations. Firstly, in the case of combined ECG and PPG signals, 638

both single-user and multi-user authentication have room for further improvement. The 639

error rate can be improved with further investigations. Secondly, we have analysed our 640

model for impersonation and spoofing attacks, injection and tampering attacks and reg- 641

istration phase attacks. However, we did not explore DDoS, side-channel attacks, sleep 642

deprivation, eavesdropping or man in the middle attacks for our model. We will model and 643

test these attacks for our proposed method in our future work. Thirdly, the performance 644

of the group authentication model in the case of fusion signal deteriorated compared to 645

the ECG-only model. LSTM provided satisfactory accuracy and precision. However, many 646

valid login attempts were rejected. Therefore, further research is required to improve the 647

sensitivity and accuracy of group authentication. 648

8. Conclusion 649

This paper has proposed a multimodal biometric-based continuous authentication 650

model for personalised healthcare services. We show the feasibility of multimodal single 651

and group-based authentication mechanisms in such a network environment. We use both 652

time domain and joint time-frequency domain feature extraction methods to extract useful 653

features from ECG, PPG and fused ECG-PPG signals. Then we test the performance of each 654

type of signal with different classifications as well as deep learning algorithms with fused 655

data to enhance the performance of the model. ECG signal-based data works better than 656

PPG and fused signals in most cases. However, adding PPG as a fused signal to ECG gives 657

an extra layer of security for the users to minimise ECG spoofing attacks. Our future works 658

involve further improving the fused signal and group-based authentication models. 659

Author Contributions: Conceptualization, F.A. and F.F.; methodology, F.A., F.F and B.S; validation, 660

F.A., F.F. and B.S.; Simulation F.A.and F.F; writing—F.A and F.F.; writing—review and editing, F.A., 661

F.F, B.S, Z.J and L.W; All authors have read and agreed to the published version of the manuscript. 662

Conflicts of Interest: The authors declare no conflict of interest. 663

References 664

1. Tuerxunwaili.; Nor, R.M.; Rahman, A.W.B.A.; Sidek, K.A.; Ibrahim, A.A. Electrocardiogram Identification: Use a Simple Set of 665

Features in QRS Complex to Identify Individuals. In Proceedings of the Recent Advances in Information and Communication 666

Technology 2016; Meesad, P.; Boonkrong, S.; Unger, H., Eds.; Springer International Publishing: Cham, 2016; pp. 139–148. 667

2. Hossain, M.S.; Muhammad, G.; Rahman, S.M.M.; Abdul, W.; Alelaiwi, A.; Alamri, A. Toward end-to-end biometrics-based 668

security for IoT infrastructure. IEEE Wireless Communications 2016, 23, 44–51. https://doi.org/10.1109/MWC.2016.7721741. 669

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 June 2022                   doi:10.20944/preprints202206.0223.v1

https://doi.org/10.1109/MWC.2016.7721741
https://doi.org/10.20944/preprints202206.0223.v1


24 of 26

3. Eberz, S.; Paoletti, N.; Roeschlin, M.; Kwiatkowska, M.; Martinovic, I.; Patané, A. Broken Hearted: How to attack ECG Biometrics. 670

Internet Society, 2017. 671

4. Farid, F.; Elkhodr, M.; Sabrina, F.; Ahamed, F.; Gide, E. A Smart Biometric Identity Management Framework for Personalised IoT 672

and Cloud Computing-Based Healthcare Services. Sensors 2021, 21. https://doi.org/10.3390/s21020552. 673

5. Al-Naji, F.H.; Zagrouba, R. A survey on continuous authentication methods in Internet of Things environment. Computer 674

Communications 2020, 163, 109–133. https://doi.org/https://doi.org/10.1016/j.comcom.2020.09.006. 675

6. Gonzalez-Manzano, L.; Fuentes, J.M.D.; Ribagorda, A. Leveraging user-related Internet of Things for continuous authentication: 676

A survey. ACM Computing Surveys (CSUR) 2019, 52, 1–38. 677

7. Peris-Lopez, P.; González-Manzano, L.; Camara, C.; de Fuentes, J.M. Effect of attacker characterization in ECG-based continuous 678

authentication mechanisms for Internet of Things. Future Generation Computer Systems 2018, 81, 67–77. https://doi.org/https: 679

//doi.org/10.1016/j.future.2017.11.037. 680

8. Tu, S.; Waqas, M.; Rehman, S.U.; Mir, T.; Abbas, G.; Abbas, Z.H.; Halim, Z.; Ahmad, I. Reinforcement learning assisted 681

impersonation attack detection in device-to-device communications. IEEE Transactions on Vehicular Technology 2021, 70, 1474–1479. 682

9. Kaji, S.; Kinugawa, M.; Fujimoto, D.; Hayashi, Y.i. Data injection attack against electronic devices with locally weakened 683

immunity using a hardware Trojan. IEEE Transactions on Electromagnetic Compatibility 2018, 61, 1115–1121. 684

10. Gnad, D.R.; Krautter, J.; Tahoori, M.B. Leaky noise: New side-channel attack vectors in mixed-signal IoT devices. IACR 685

Transactions on Cryptographic Hardware and Embedded Systems 2019, pp. 305–339. 686

11. Ssettumba, T.; Abd El-Malek, A.H.; Elsabrouty, M.; Abo-Zahhad, M. Physical layer security enhancement for Internet of Things 687

in the presence of co-channel interference and multiple eavesdroppers. IEEE Internet of Things Journal 2019, 6, 6441–6452. 688

12. Udoh, E.; Getov, V. Performance analysis of denial-of-sleep attack-prone MAC protocols in wireless sensor networks. In 689

Proceedings of the 2018 UKSim-AMSS 20th International Conference on Computer Modelling and Simulation (UKSim). IEEE, 690

2018, pp. 151–156. 691

13. Sancho, J.; Alesanco, Á.; García, J. Biometric authentication using the PPG: A long-term feasibility study. Sensors 2018, 18, 1525. 692

14. Huang, Y.; Yang, G.; Wang, K.; Yin, Y. Multi-view discriminant analysis with sample diversity for ECG biometric recognition. 693

Pattern Recognition Letters 2021, 145, 110–117. https://doi.org/https://doi.org/10.1016/j.patrec.2021.01.027. 694

15. Wu, S.; Chen, P.; Swindlehurst, A.L.; Hung, P. Cancelable Biometric Recognition With ECGs: Subspace-Based Approaches. IEEE 695

Transactions on Information Forensics and Security 2019, 14, 1323–1336. https://doi.org/10.1109/TIFS.2018.2876838. 696

16. Louis, W.; Komeili, M.; Hatzinakos, D. Continuous authentication using one-dimensional multi-resolution local binary patterns 697

(1DMRLBP) in ECG biometrics. IEEE Transactions on Information Forensics and Security 2016, 11, 2818–2832. 698

17. Huang, Y.; Yang, G.; Wang, K.; Liu, H.; Yin, Y. Learning Joint and Specific Patterns: A Unified Sparse Representation for 699

Off-the-Person ECG Biometric Recognition. IEEE Transactions on Information Forensics and Security 2020, 16, 147–160. 700

18. Lim, C.L.P.; Woo, W.L.; Dlay, S.S.; Gao, B. Heartrate-Dependent Heartwave Biometric Identification With Thresholding-Based 701

GMM–HMM Methodology. IEEE Transactions on Industrial Informatics 2019, 15, 45–53. https://doi.org/10.1109/TII.2018.2874462. 702

19. Hejazi, M.; Al-Haddad, S.; Singh, Y.P.; Hashim, S.J.; Abdul Aziz, A.F. ECG biometric authentication based on non-fiducial approach 703

using kernel methods. Digital Signal Processing 2016, 52, 72–86. https://doi.org/https://doi.org/10.1016/j.dsp.2016.02.008. 704

20. Srivastva, R.; Singh, Y.N. ECG analysis for human recognition using non-fiducial methods. IET Biometrics 2019, 8, 295–305. 705

21. Bassiouni, M.M.; El-Dahshan, E.S.A.; Khalefa, W.; Salem, A.M. Intelligent hybrid approaches for human ECG signals identification. 706

Signal, Image and Video Processing 2018, 12, 941–949. 707

22. Ergin, S.; Uysal, A.K.; Gunal, E.S.; Gunal, S.; Gulmezoglu, M.B. ECG based biometric authentication using ensemble of features. 708

In Proceedings of the 2014 9th Iberian Conference on Information Systems and Technologies (CISTI). IEEE, 2014, pp. 1–6. 709

23. Pelc, M.; Khoma, Y.; Khoma, V. ECG signal as robust and reliable biometric marker: Datasets and algorithms comparison. Sensors 710

2019, 19, 2350. 711

24. Wu, G.; Wang, J.; Zhang, Y.; Jiang, S. A continuous identity authentication scheme based on physiological and behavioral 712

characteristics. Sensors 2018, 18, 179. 713

25. Wang, F.; Han, J. Multimodal biometric authentication based on score level fusion using Support Vector Machine. Opto-electronics 714

review 2009, 17, 59–64. 715

26. Kumar, G.S.; Devi, C.J. A Multimodal SVM Approach for Fused Biometric Recognition. Int. J. Comput. Sci. Inform. Technol 2014, 716

5, 3327–3330. 717

27. Kwon, Y.B.; Kim, J. Multi-modal authentication using score fusion of ECG and fingerprints. Journal of information and communication 718

convergence engineering 2020, 18, 132–146. 719

28. Yadav, U.; Abbas, S.N.; Hatzinakos, D. Evaluation of PPG Biometrics for Authentication in Different States. In Proceedings of the 720

2018 International Conference on Biometrics (ICB), 2018, pp. 277–282. https://doi.org/10.1109/ICB2018.2018.00049. 721

29. El-Rahiem, B.A.; El-Samie, F.E.A.; Amin, M. Multimodal biometric authentication based on deep fusion of electrocardiogram 722

(ECG) and finger vein. Multimedia Systems 2021, pp. 1–13. 723

30. Hammad, M.; Liu, Y.; Wang, K. Multimodal Biometric Authentication Systems Using Convolution Neural Network Based on 724

Different Level Fusion of ECG and Fingerprint. IEEE Access 2019, 7, 26527–26542. https://doi.org/10.1109/ACCESS.2018.2886573. 725

31. Mousavi, F.S. Fusion of ECG and PPG Signals in Apply to Spoof Detection and Biometric Authentication. PhD thesis, University 726

of Toronto (Canada), 2020. 727

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 June 2022                   doi:10.20944/preprints202206.0223.v1

https://doi.org/10.3390/s21020552
https://doi.org/https://doi.org/10.1016/j.comcom.2020.09.006
https://doi.org/https://doi.org/10.1016/j.future.2017.11.037
https://doi.org/https://doi.org/10.1016/j.future.2017.11.037
https://doi.org/https://doi.org/10.1016/j.future.2017.11.037
https://doi.org/https://doi.org/10.1016/j.patrec.2021.01.027
https://doi.org/10.1109/TIFS.2018.2876838
https://doi.org/10.1109/TII.2018.2874462
https://doi.org/https://doi.org/10.1016/j.dsp.2016.02.008
https://doi.org/10.1109/ICB2018.2018.00049
https://doi.org/10.1109/ACCESS.2018.2886573
https://doi.org/10.20944/preprints202206.0223.v1


25 of 26

32. Bastos, L.; Tavares, T.; Rosário, D.; Cerqueira, E.; Santos, A.; Nogueira, M. Double Authentication Model based on PPG and ECG 728

Signals. In Proceedings of the 2020 International Wireless Communications and Mobile Computing (IWCMC), 2020, pp. 601–606. 729

https://doi.org/10.1109/IWCMC48107.2020.9148521. 730

33. Yang, J.; Huang, Y.; Zhang, R.; Huang, F.; Meng, Q.; Feng, S. Study on PPG Biometric Recognition Based on Multifeature 731

Extraction and Naive Bayes Classifier. Sci. Program. 2021, 2021, 5597624:1–5597624:12. 732

34. Lee, S.W.; Woo, D.K.; Son, Y.K.; Mah, P.S. Wearable Bio-Signal (PPG)-Based Personal Authentication Method Using Random 733

Forest and Period Setting Considering the Feature of PPG Signals. J. Comput. 2019, 14, 283–294. 734

35. Zhao, T.; Wang, Y.; Liu, J.; Chen, Y.; Cheng, J.; Yu, J. TrueHeart: Continuous Authentication on Wrist-worn Wearables Using PPG 735

-based Biometrics. In Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, 2020, pp. 30–39. 736

https://doi.org/10.1109/INFOCOM41043.2020.9155526. 737

36. Luque, J.; Cortès, G.; Segura, C.; Maravilla, A.; Esteban, J.; Fabregat, J. END-to-END PHOTOPLETHYSMOGRAPHY (PPG) Based 738

Biometric Authentication by Using Convolutional Neural Networks. In Proceedings of the 2018 26th European Signal Processing 739

Conference (EUSIPCO), 2018, pp. 538–542. https://doi.org/10.23919/EUSIPCO.2018.8553585. 740

37. Blasco, J.; Peris-Lopez, P. On the Feasibility of Low-Cost Wearable Sensors for Multi-Modal Biometric Verification. Sensors 2018, 741

18. https://doi.org/10.3390/s18092782. 742

38. Mukherjee, S.; Tamayo, P.; Slonim, D.; Verri, A.; Golub, T.; Mesirov, J.; Poggio, T. Support vector machine classification of 743

microarray data. Technical report, AI Memo 1677, Massachusetts Institute of Technology, 1999. 744

39. Jiang, L.; Zhang, L.; Li, C.; Wu, J. A Correlation-Based Feature Weighting Filter for Naive Bayes. IEEE Transactions on Knowledge 745

and Data Engineering 2019, 31, 201–213. https://doi.org/10.1109/TKDE.2018.2836440. 746

40. Richman, J.S. Chapter Thirteen - Multivariate Neighborhood Sample Entropy: A Method for Data Reduction and Prediction of 747

Complex Data. In Computer Methods, Part C; Johnson, M.L.; Brand, L., Eds.; Academic Press, 2011; Vol. 487, Methods in Enzymology, 748

pp. 397–408. https://doi.org/https://doi.org/10.1016/B978-0-12-381270-4.00013-5. 749

41. Dietterich, T.G. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, 750

and randomization. Machine learning 2000, 40, 139–157. 751

42. Hassan, A.R.; Siuly, S.; Zhang, Y. Epileptic seizure detection in EEG signals using tunable-Q factor wavelet transform and 752

bootstrap aggregating. Computer Methods and Programs in Biomedicine 2016, 137, 247–259. https://doi.org/https://doi.org/10.101 753

6/j.cmpb.2016.09.008. 754

43. Plesinger, F.; Nejedly, P.; Viscor, I.; Halamek, J.; Jurak, P. Parallel use of a convolutional neural network and bagged tree ensemble 755

for the classification of Holter ECG. Physiological Measurement 2018, 39, 094002. https://doi.org/10.1088/1361-6579/aad9ee. 756

44. LLC, M. Classification GAM. 757

45. Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the 2017 758

International Conference on Engineering and Technology (ICET). IEEE, 2017, pp. 1–6. 759

46. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural computation 1997, 9, 1735–1780. 760

47. Ting, W.; Guo-Zheng, Y.; Bang-Hua, Y.; Hong, S. EEG feature extraction based on wavelet packet decomposition for brain 761

computer interface. Measurement 2008, 41, 618–625. 762

48. Li, C.; Zheng, C.; Tai, C. Detection of ECG characteristic points using wavelet transforms. IEEE Transactions on Biomedical 763

Engineering 1995, 42, 21–28. https://doi.org/10.1109/10.362922. 764

49. Zhao, Q.; Zhang, L. ECG Feature Extraction and Classification Using Wavelet Transform and Support Vector Machines. 765

In Proceedings of the 2005 International Conference on Neural Networks and Brain, 2005, Vol. 2, pp. 1089–1092. https: 766

//doi.org/10.1109/ICNNB.2005.1614807. 767

50. Li, T.; Zhou, M. ECG Classification Using Wavelet Packet Entropy and Random Forests. Entropy 2016, 18. https://doi.org/10.339 768

0/e18080285. 769

51. Boashash, B. Estimating and interpreting the instantaneous frequency of a signal. II. Algorithms and applications. Proceedings of 770

the IEEE 1992, 80, 540–568. 771

52. Pan, Y.; Chen, J.; Li, X. Spectral entropy: a complementary index for rolling element bearing performance degradation assessment. 772

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 2009, 223, 1223–1231. 773

53. LLC, M. Signal Classification Using Wavelet-Based Features and Support Vector Machines, 2021. 774

54. Farid, F.; Ahamed, F. Biometric Intrusion Detection using the Internet of Things and Machine Learning, 2021. https://github. 775

com/fsumon/BiometricIDS. 776

55. Pimentel, M.A.F.; Johnson, A.E.W.; Charlton, P.H.; Birrenkott, D.; Watkinson, P.J.; Tarassenko, L.; Clifton, D.A. Toward a 777

Robust Estimation of Respiratory Rate From Pulse Oximeters. IEEE Transactions on Biomedical Engineering 2017, 64, 1914–1923. 778

https://doi.org/10.1109/TBME.2016.2613124. 779

56. Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, 780

H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. 781

circulation 2000, 101, e215–e220. 782

57. Moody, G.B.; Mark, R.G. The impact of the MIT-BIH Arrhythmia Database. IEEE Engineering in Medicine and Biology Magazine 783

2001, 20, 45–50. https://doi.org/10.1109/51.932724. 784

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 June 2022                   doi:10.20944/preprints202206.0223.v1

https://doi.org/10.1109/IWCMC48107.2020.9148521
https://doi.org/10.1109/INFOCOM41043.2020.9155526
https://doi.org/10.23919/EUSIPCO.2018.8553585
https://doi.org/10.3390/s18092782
https://doi.org/10.1109/TKDE.2018.2836440
https://doi.org/https://doi.org/10.1016/B978-0-12-381270-4.00013-5
https://doi.org/https://doi.org/10.1016/j.cmpb.2016.09.008
https://doi.org/https://doi.org/10.1016/j.cmpb.2016.09.008
https://doi.org/https://doi.org/10.1016/j.cmpb.2016.09.008
https://doi.org/10.1088/1361-6579/aad9ee
https://doi.org/10.1109/10.362922
https://doi.org/10.1109/ICNNB.2005.1614807
https://doi.org/10.1109/ICNNB.2005.1614807
https://doi.org/10.1109/ICNNB.2005.1614807
https://doi.org/10.3390/e18080285
https://doi.org/10.3390/e18080285
https://doi.org/10.3390/e18080285
https://github.com/fsumon/BiometricIDS
https://github.com/fsumon/BiometricIDS
https://github.com/fsumon/BiometricIDS
https://doi.org/10.1109/TBME.2016.2613124
https://doi.org/10.1109/51.932724
https://doi.org/10.20944/preprints202206.0223.v1


26 of 26

58. Baim, D.S.; Colucci, W.S.; Monrad, E.S.; Smith, H.S.; Wright, R.F.; Lanoue, A.; Gauthier, D.F.; Ransil, B.J.; Grossman, W.; Braunwald, 785

E. Survival of patients with severe congestive heart failure treated with oral milrinone. Journal of the American College of Cardiology 786

1986, 7, 661–670. 787

59. Goldberger, A.; Amaral, L.; Glass, L.; Hausdorff, J.; Ivanov, P.C.; Mark, R.; Mietus, J.; Moody, G.; Peng, C.; Stanley, H. Components 788

of a new research resource for complex physiologic signals. PhysioBank, PhysioToolkit, and Physionet 2000. 789

60. Siam, A.; Abd El-Samie, F.; Abu Elazm, A.; El-Bahnasawy, N.; Elbanby, G. Real-world PPG dataset. Mendeley Data 2019. 790

61. Farid, F.; Ahamed, F. Biometric Authentication for Dementia Patients with Recurrent Neural Network. In Proceedings of the 2019 791

International Conference on Electrical Engineering Research Practice (ICEERP), 2019, pp. 1–6. https://doi.org/10.1109/ICEERP4 792

9088.2019.8956981. 793

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 June 2022                   doi:10.20944/preprints202206.0223.v1

https://doi.org/10.1109/ICEERP49088.2019.8956981
https://doi.org/10.1109/ICEERP49088.2019.8956981
https://doi.org/10.1109/ICEERP49088.2019.8956981
https://doi.org/10.20944/preprints202206.0223.v1

