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Abstract: With the advent of modern technologies, the healthcare industry is moving towards a more 1
Personalised smart care model. The enablers of such care models are the Internet of Things (IoT) 2
and Artificial Intelligence. These technologies collect and analyse data from persons in care to alert s
relevant parties if any anomaly is detected in a patient’s regular pattern. However, such reliance &
on IoT devices to capture continuous data extends the attack surfaces and demands high-security s
measures. Both patients and devices need to be authenticated to mitigate a large number of attack
vectors. The biometric authentication method has been seen as a promising technique in these -
scenarios. To this end, this paper proposes an Al-based multimodal biometric authentication model s
for single and group-based users’ device-level authentication that increases protection against the o
traditional single modal approach. To test the efficacy of the proposed model, a series of Al models are 10
trained and tested using physiological biometric features such as ECG (Electrocardiogram) and PPG 11
(Photoplethysmography) signals from five publicly available datasets from Physionet and Mendeley  i2
data repositories. The multimodal fusion authentication model shows promising results with 99.8% 13
accuracy and an Equal Error Rate (EER) of 0.16. 14

Keywords: biometrics; ECG; Internet of Things; machine learning; Personalised Healthcare; PPG; 15
Smart Aging 16

1. Introduction .

In recent years, Personalised Healthcare (PH) has gone through promising advances 1.
with the potential to provide a customised type of care based on specific patient health
and by using predictive analytic [1]. PH relies on data from patients’ health records 2o
and measurements to predict unknown issues that might arise concerning the patient’s 2
health. For example, PH could help patients forecast how much weight they might gain 22
in the coming two months, considering their daily diet. Daily habits, diets and other s
lifestyle-related factors can cause someone to get diabetes or dementia earlier than expected. 24
Early prediction of potential health issues can help proactively address them and provide  =s
adequate therapy before it worsens. Consequently, PH can help to improve the quality of 26
care and decrease its related costs. 27

A reliable PH system comprises several key components, as shown in Figure 1. InaPH 2
system, various types of data about a patient are gathered through continuous monitoring  2e
of their health. The procedure includes utilising multiple devices, including the Internet o
of Things (IoT) sensors and smart devices. Patients discharged from hospitals, patients s
living remotely and the elderly living in residential care can take advantage of such remote 2
health monitoring. By remote monitoring of health status through IoT devices, the patients” s
personal health data can be stored in a highly-secured cloud-based data source. The s
monitoring data can then be used to perform intelligent analysis, often using cloud-based s
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Figure 1. PH Healthcare Architecture

services, to predict potential health issues. In this model, the communication channel needs e
to be actively and continuously passing the data of the monitored patient to re-enforce a7
the learning by the predictive analysis model. However, security and privacy concerns s
remain among the significant challenges, especially in PH systems, due to the reliance on 10
IoT and cloud-based technologies [2]. In particular, the authentication challenges of these 40
systems are unique because the IoT-based sensors and smart devices frequently produce
a continuous stream of data and thus, require continuous authentication to ensure that
the data belongs to a particular patient. Specifically, the device’s legitimacy needs to be 43
continuously verified in a sensor-based PH network (a network of connected devices and 44
IoT sensors that monitor a patient’s health). 45

Therefore, in such a context, it becomes challenging to verify that a set of sensors s
belong to the same PH network and they trust each other in providing and sharing patient 47
data. Let us assume a PH network that belongs to a patient, Bob and has sensors A, B, C s
and D. Alice, on the other hand, has a PH network with three different sensors X, Y and Z. 4
Assume there is a rouge sensor W which tries to impersonate Bob or Alice’s network. In s
this case, the challenge is to employ a reliable method to verify that Bob’s sensors should s
trust each other in sharing and communicating Bob’s data but not Alice’s and the rough s
sensors. Such settings stimulate the need for a continuous authentication method to verify  ss
that a set of sensors belongs to the same patient. Thus, it can trust that the data belongs to s
the same patient. Figure 2 depicts this scenario. 55
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e

Figure 2. Scenario: Single User Authentication

The second type of scenario that instigates such an authentication method involves  ss
a PH network that belongs to a group of users instead of a single user. They might be s
from the same household sharing the same network. Figure 3 illustrates this scenario. Let  ss
us assume that Bob and Alice share the same PH network in this context. The sensors A, se
B, C, D adjunct to Bob and Alice. The intruder, Eve, tries to intrude the network using o
a rouge sensor W. In this case, the network should employ an authentication method to &
authenticate and verify Bob and Alice’s devices continuously and reject the rough sensor e
from Eve. Such contexts also advocate for a robust continuous authentication method to e
scrutinise a group of persons and their sensors belonging to a specific network. 6s

In this paper, to address the challenges mentioned above, we propose a multimodal s
biometric-based authentication model that comprises continuous single and group user and  «s
device authentication in PH network environments. We utilise a person’s unique physio- e
logical characteristics that are continuously monitored using various IoT sensors to classify s
real users and intruders. Our method aims to overcome the potential security flaws in such e
sensors by employing a person’s biological features that can be very difficult to borrow, 7
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buy or forge. To achieve this, the performance of the multimodal authentication method .
over a single modal is empirically investigated and analysed. Single modal authentication 7
utilises and considers a user’s single biometric trait (e.g., ECG), which is still feasible to 7
be compromised given the advancement in computation [3]. Unlike single signal modal, 7
multimodal authentication considers more than one characteristic of the human body while s
processing an authentication scheme. Such approaches can result in higher accuracy and a 7
higher security level, making spoofing, device impersonation and replay attacks harder
to occur [4]. Therefore, we devise a multimodal individual and group-based biometric 7
authentication, which will combine the features among a few common biometric traits such 7
as ECG and PPG. The systematic approach investigates both user and device authenticity. o
Furthermore, we employ various machine learning algorithms and empirically evaluate &
the performance of our proposed method. The objectives and novel contributions of our s
work are: e

*  We propose the first comprehensive deep learning-based multimodal authentication s
model applying ECG and PPG signals fusion. Our objective is to prevent user im- s
personation and device spoofing in the personalised healthcare network, heavily s
dependent on IoT based sensors. o7

*  Our model incorporates a two-level authentication to detect intruding users and s
devices. The developed approach first enrols the authorised users using their multiple e
biometric traits. It then attaches IoT sensors using those traits to an individual. Such s
methods prevent the impersonation of both users and devices. It can easily detect the o
presence of an intruder in IoT-based healthcare services. 02

*  We have conducted extensive experiments over multiple public datasets, demonstrat- o3
ing the model’s efficiency for biometric authentication purposes, compared to the os
previous research works that have used most of these datasets for clinical research s

perspectives. %
*  To the best of the authors” knowledge, very few works have addressed the device-level o7
authentication and audit mechanisms of IoT- based personal healthcare services. o8

The rest of this paper is organised as follows. In section 2, we present background and e
motivation for multimodal continuous authentication method. The related works are also 100
described with a concise view. In section 3, the overall system architecture and relevant 10
algorithms and models are narrated. In section 4, multiple types of attack scenarios are o2
discussed in relation to biometric-based authentication. In section 5, details of the dataset, 103
experiments and the results are presented, followed by a discussion on the findings in 104
section 6. Finally, 7 illustrates the limitation of our work and 8 section summarises the o5
objective, outcome, and future direction of this work. 106

2. Background and Related Works 107

Biometric authentication has grown in popularity with the effective use and adoption  10e
of IoT networks, especially in PH [2]. Many continuous authentication techniques have 100
recently emerged to offer more reliable solutions to the growing challenges. In continuous 110
authentication, users are monitored with a high frequency to validate their authority fora 1.
particular session [5]. Compared with the traditional authentication process, continuous 112
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authentication mechanisms are equipped with a higher level of security and are well-known 13
for enhanced Quality of Experience (QoE) [6]. Continuous authentication incorporates 114
behavioural and physiological signal-based biometric authentication, which can make the 115
IoT networks more secure, which are prone to impersonation and injection attacks [7]. 116

The use of IoT sensors in any system poses serious security challenges [2]. The 1
PH systems which are heavily dependent on such sensors are not exceptional. Figure 4 11
summarises the main security threats that IoT device layer authentication techniques can 110
face in such contexts. 120

1. Device impersonation attack: The attacker impersonates a device pretending to be 121

an authenticated user [8]. 122
2. Injection attack: The attacker deploys malicious nodes to monitor or control the data  12:
flows in the network [9]. 124
3.  Side-channel attack: The attacker reads the leaked signals from a device to collect 125
and analyse sensitive data [10]. 126

4. Eavesdropping and interference: This type of attack is caused by a weakened con- 127
nection between an loT device and the server. The intruder takes advantage of sucha  12s

vulnerable connection to intercept network traffic [11]. 120
5. Sleep deprivation attack: The attacker keeps the targeted node out of its sleep mode 130
to reduce its lifetime [12]. 131
6. DDoS attack: The attackers generate a large amount of traffic from compromised 1s2
devices to make services unavailable [2]. 133
7. Replay attack: The imposter produces a signal to control IoT devices [2]. 134
8. Man in the middle attack: The attacker hacks the communication channel between 135
two nodes and spoofs or interrupts communications [2]. 136
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Figure 4. IoT Network Attacks

Many studies have focused on biometric behavioural and physiological authentication 1s7
in IoT healthcare networks since wearables and inertial sensors are gaining popularity. 1se
One of the critical advantages of physiological signals over physiological features is their 130
sense of life [13]. ECG-based authentication has also gained growing interest, particularly 1a0
for continuous authentication scenarios [14]. For instance, the work in [15] proposed an  1a
ECG-based cancelable biometric scheme that mitigates replay attacks. In [16], the authors 1
proposed a continuous authentication mechanism that incorporates sequential sampling 1
and One-Dimensional Multi-Resolution Local Binary Patterns extraction to identify users 1ss
over using ECG signals. The work in [17] defined a unified sparse representation framework s
that uses joint and specific ECG signal patterns. 146

ECG-based authentication mechanisms can be further classified based on feature 1
extraction techniques. For instance, studies such as [1,18] have applied fiducial feature 1ss
extraction in their identification algorithms. Many other studies [19,20], on the other hand, 140
have used non-fiducial feature extraction techniques. Other studies, such as [21,22], have 1

I
o
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combined the benefits of fiducial and non-fiducial extraction to form a hybrid approach for s
ECG-based authentication. 152

Some work, such as [23] focused on investigating various classification algorithms to  1ss
identify the best performing one for ECG-based authentication. Out of eight algorithms, 1sa
the study concluded that linear discriminant analysis (LDA), k-nearest neighbour, and  1ss
neural networks are best for ECG-based identification. Furthermore, it also concluded that 1se
principal components analysis (PCA) has no noticeable impact on the classification process sz
performance but can lead to accuracy reduction. 158

A few studies have proposed PPG-based authentication methods. For example, In [13], 150
the authors studied the feasibility of using PPG data for authentication. They concluded 1e0
that the results heavily depend on the quality of data. 161

In [24], the authors combined both behavioural and physiological biometric features 1s2
for user identification. Specifically, they employed Gait and PPG as the biometric trait. 1es
Their experimental results showed that Support Vector Machine (SVM) has superior per- 1es
formance to KNN and Autoencoder Neural Network, although KNN achieved the fastest 1es
performance. Furthermore, they noticed that with sample size increment, the gap between 16
KNN and Linear SVM accuracy becomes smaller. 167

Besides the above studies, some research work considered multimodal authentication 1es
approaches. In [25], the authors implemented a multimodal biometric authentication 1ee
method integrating face and iris based on score level fusion. The performance excels 170
the performance of the unimodal biometric identification method and the previous fused 17
face-iris methods. 172

In [26], the authors adopted a SVM based multimodal approach for identification. 17s
They applied a score level fusion approach, and k means clustering to classify a multi SVM 174
machine. A nonlinear classifier is used to allow the SVM to perform a ‘two-dimensional” 175
classification of a set of originally one-dimensional data. 176

In [27], a multimodal authentication model is proposed. The work applies a combina- 177
tion of ECG and fingerprint to authenticate the users and reports an EER of 0.1%. However, 17
the ECG only authentication method denotes a 90% accuracy. 179

The authors in [28] designed a PPG based nonfiducial biometric authentication method. 1eo
They apply Continuous Wavelet Transform (CWT) and Direct Linear Discriminant Analysis 1e:
(DLDA) and attained an EER of 0.5%-6%. 182

The study in [29] uses ECG and finger vein for multimodal authentication. The 1es
researchers report an EER of 0.12% and 1.40% with feature and score fusion. They apply s
Multi-Canonical Correlation Analysis (MCCA) with a range of classifiers, namely: Support 1ss
Vector Machine (SVM), K-Nearest Neighbors (KNNs), Random Forest (RF), Naive Bayes 1es
(NB), and Artificial Neural Network (ANN). 187

The authors in [30] propose two multimodal authentication systems, which are se- 1ss
quential and parallel system and uses a combination of ECG and Fingerprint. They apply  1so
Convolution Neural Network (CNN) and Q-Gaussian multi-support vector machine (QG- 100
MSVM). They attained an EER of 0.14% and 0.10% for the sequential systems using two 10
datasets. The parallel system achieves an EER of 0.40% and 0.32% for respective datasets. ez

Table 1 presents the overview of similar works to our study. Many studies have 103
focused on multimodal biometric authentication. However, only a few studies have com- 104
prehensively experimented with ECG and PPG signals. For example, the study [31] was one 105
of the few to use both ECG and PPG signals to detect spoof detection and authentication. 106
However, the method uses ECG and PPG signals separately. As a result, the processing 1o
time for this model is 85.31 ms with an accuracy of 98.9%. The other prominent work in 108
this sense is the one reported in [28]. The authors denote an EER of 0.05 while combining  1es
ECG, PPG and GSR with 25 subjects. However, the EER and details results in the case of 200
fused ECG and PPG have not been precisely reported. Additionally, the research did not 20
scrutinise the in-depth study of the applied classification algorithms and feature extraction =02
methods. Another recent work that has used ECG and PPG for biometric authentication is 203
[32]. The study uses ECG and PPG signals separately for authentication. The MATLAB  20.
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functions applied for feature extraction and classification are not explained explicitly. Asa =zos
result, it is hard to reproduce the reported results. 206

Compared to other studies, our work proposes a novel biometric-based continuous 2oz
model that takes advantage of ECG and PPF fusion. We also consider user impersonation  zos
and device spoofing by incorporating continuous authentication with biometric signal 200
fusion. Apart from this, our model also considers single-user and multi-user mode authen- =210
tication. We converse a series of machine learning and deep learning algorithms such as 21
SVM, KNN, Naive Bays, Ensemble, Generalised Additive Model (GAM), Convolutional =i
Neural Network (CNN), Long Short-Term Memory (LSTM) to address user and device 21
level continuous authentication in PH networks. We test our models with a range of pub- 214
licly available datasets. We have also made our code publicly available so that the other 215
researchers can reproduce the results and propose further improvements. 216

Table 1. Comparisons with other Machine Learning-based Biometric Authentication Studies

Study Signal type Method Results
Accuracy: ECG:
[27] ECG, Fi int Score Fusi 20.0%,
, Fingerprin core Fusion ECG+Fingerprint:
EER: 0.1%
. . SVM, KNNs, RENB ) o 5
[29] ECG, Finger Vein nd ANN EER: 0.12%, 1.40%
[28] PPG CWT and DLDA EER: 0.5%-6%
. . EER: 0.14%, 0.10%,
[30] ECG and Finger print CNN and QG-MSVM 0.40% and 0.32%
Cross-Correlation Accuracy: PPG:
[32] ECG, PPG Function (CCF) 99.98%, ECG: 88.79%
Achieved a
" . recognition rate of
[33] PPG Naive Bayes classifier 98.65%, 97.76%, and
99.69%
.. Achieved accuracy
[34] PPG Decision Tree, KNN, - (£ 935/, 98%, and
Random Forest o .
99% respectively
. . Accuracy: over 90%
[35] PPG Gradient boosting and false detection
tree (GBT) A
rate: 4%
[31] Fused ECG and PPG CNN Accuracy: 98.9%
AUC of 78.2% and
[36] PPG CNN 83.2%
Equal Error Rate
[37] ECG, PPG, GSR Classifiers (EER): 0.05 for 25
subjects

2.1. Machine Learning Algorithms

In this part, to brief the readers, we present some concise pieces of background
information on the classification and deep learning algorithms used in our work.

2.1.1. SVM

We have used SVM along with other classification algorithms. It constructs a hyper-
plane in multidimensional space to differentiate different classes [38]. In this work, we have
two classes, AUTH to indicate the data of authenticated users and NAUTH, to indicate the
signal data of intruder SVM generates optimal hyperplane in an iterative manner that is
used to minimise any error in estimation. The core idea of using SVM is to find a maximum
marginal hyperplane that best divides the signal dataset into AUTH and NAUTH classes.
The SVM applies a decision function f(X) > 0 or f(X) < 0, to separate the input examples
into two classes, where X = (x'..., x?) with d being the dimension. The size of the training
set N can be derived as yi, xi, withi=1,.., N,x' € R" as the input part for the i-th example,
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and the class label of y' € —1,1. SVM maps X' to a higher dimensional feature space 250
that depends on a nonlinear function ¢(X), optimising the separated hyperplane through  za:

maximisation of the margin with the following quadratic equation: 232
n
Maximise : szi Z a;iy; K KZ,X aY; 1
i=1
n
Subject to : thlyi =0,0<=¢a;<=C(i=1,..,n) (2)

i=1
where & >= 0 and it will be equal to 0 after optimisation. C expresses a degree of losing
constraint where it is a positive constant that was chosen by the user. This mean that
having a large value number of C would result in more accurate classification during
the learning phase. If K(x, X/) is the kernel function which is inner a product defined by
K(x,X') = ¢(X), Then the SVM decision function is narrated as:

flx) =Y ayiK(X;, X) ®)

x,'ESV

with a common polynomial kernel that can be defined as follows:

!

K(X,X') =< ¢(X),p(X) > )

2.1.2. Naive Bayes 233

Naive Bays classifiers are one of the most popular families of machine learning algo- 2:.
rithms formulated on the simple probabilistic theorem. All Naive Bayes algorithms are 235
based on the principle that all features are independent for any given classes [39]. 236

Assume that Fy, B, ....., F;, are m feature variables, a test instance t can be represented 237
by a feature vector < f1, fa,..., fu >, where f; is the value of F;. Let V represent the class =23s
variable and v represent the value. 239

Assume that all features are fully independent given the class, NB uses the following

equation to classify .
m

o(t) —argmaxP o) [ TP(filv). )
=1

~

where v(t) class value of t, prior probability P(v) and the conditional probability P(v;|c).  2s0

2.1.3. KNN 201

KNN is a simple supervised algorithm that relies on the assumption that data with  2s2
similar attributes will most likely have similar outcomes [40]. In KNN, the decision is taken  2a3
based on the similarity between a given training and test sets. The training examples are zaa
asserted using a number 7 of attributes, and each of these attributes denotes a point in 245
n-dimensional space using distinct classes. To predict the unknown data set, it calculates 246
the closest distance between the K training sets. A given dataset DS, where D is a matrix of 247
features from a data point, and L is a class label. KNN then will estimate the conditional 24s
distribution of L given D and classify a data point to the class with the highest probability. 24
Given a positive integer k, KNN looks at the k observations closest to a test data point =zso
dp and estimates the conditional probability that it belongs to class ¢ using the following =zs:
formula: 252

P(L =c|D =dy) = Z I(l; =) (6)
ZESO

where Sy is the set of k-nearest observations and I(/; = ¢) is an indicator variable that is =ss
equal to 1 if a given data point d;, [; in Sp is a member of class ¢, and 0 if otherwise. After s
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estimating these probabilities, KNN classifies the data point dy under the class in which the =zss
previous possibility is the greatest. 256

2.1.4. Ensemble Bagged Tree 257

Ensemble methods combine several machine learning methods in a single predictive zss
model to minimise variance and bias or maximise prediction probability. Bootstrap aggre- =zse
gating (Bagging) [41] is one of the earliest ensemble methods which create and integrate zeo
multiple classification modes to solve a specific classification problem. This method has 26
been widely applied in biometric signal processing [42,43]. 262

2.1.5. GAM 263

The generalised additive model applies shape functions to capture the nonlinear 2es
relationship between a predictor and the response variable. These are interpretable models zes
that explain class scores using single and bi-variate shape functions of predictors [44]. The =ze6

standard GAM uses a univariate shape function for each predictor. 267
y ~ Binomial (n, u) (7)
g(u) = 108(1 ﬁ i ¢+ fi(x1) + falx2) + .. + fp(xp) (8)

where v is a response variable that follows the binomial distribution with the probability of = zes
success (probability of positive class) y in n observations. () is a logic link function, and  zee
c is an intercept (constant) term. f;(x;) is a univariate shape function for the ith predictor, =7
which is a boosted tree for a linear term for the predictor (predictor tree). a1

2.1.6. CNN 272

CNN is a particular type of neural network that can extract spatial and temporal 27
dependencies from data, and this method is widely applied to digital images. More about 27
CNN can be found here [45]. 275

2.1.7. LSTM 276

LSTM is a particular type of deep neural network that can capture repetitive features 277
in the data [46]. It is widely used for time series data to extract features in the time domain. =27

2.2. Feature Extraction 270

We have applied both time domain and joint time-frequency domain feature extraction 2eo
methods to the physiological signals in this work. These features improved the accuracy e
and EER of the ML model from the processed signals. Wavelet Packet Transform (WPT), a  2e2
joint time-frequency domain method, has been applied with the time-domain extraction zes
method based on the AutoRegressive (AR) model. The justification for using these methods  zss
is detailed in the consequent subsections. We extracted Shanon’s Entropy values, Wavelet  zes
variances, and AR coefficients from the signals. Figure 5 depicts the role of feature extraction 2es
process in the proposed intrusion detection model. 287

Preprocess
Signals

Raw
Time Domain - Autoregressive coeficient

Biometric:
Signals

Joint Time Frequency Domain - Shanon's enfropy and Wavelet variance
( ] [Ready for Continuous
GE"“@;;E?E‘“’E H Train the Classifer H Test and Validate

Figure 5. Feature Extraction for the Proposed Model



https://doi.org/10.20944/preprints202206.0223.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 June 2022 d0i:10.20944/preprints202206.0223.v1

9 of 26

2.2.1. Wavelet Packet Transform 288

Wavelet packet transform (WPT) is an extension of wavelet decomposition (WD)[47].  2ee
This method is chosen for its efficiency for non-stationary signal denoising, compression  ze0
and classification. It also allows the features to have more discrimination power than the 20
features from discrete wavelet transform. 202

The wavelet packet transform function of a signal f(x) can be defined as[48]:

1 pFe x—t
Wef (x) = f(0) + ¥o(x) = < [ (¥t ©)
where s is a scale factor.¥s(x) = 1¥(%) is the dilation of a basic wavelet ¥ (x) by the scale 203
factor s. 208

The scale factor acts as a linear operator and divides the signals into two components: 205
approximation and detail. The approximation then can split itself into another approxi- e
mation and detail. The process can be repeated till the signal that correlates well with the 2o
frequencies required for the classification of the signal is retained in the wavelet coefficients 2es
[49]. Figure 6 shows the wavelet tree for the ECG signal from one of the datasets. 200

747 ,_&aﬂlm;"i
(

Figure 6. ECG Wavelet Tree

However, with wavelet packet decomposition, the massive size of the decomposed 300
coefficient can be a hurdle for classification. Entropy has been introduced to tackle such = so:
issues in WPD. It is prevalent in measuring the uncertainty of data in signal processing. o
There are different types of entropy. Some of them are Shannon’s entropy (SE), Log Energy  sos
Entropy (LEE), Renyi Entropy (RE), and Tsallis entropy (TE) [50]. 304

The entropy function is defined is as follows:

N
Eij =) Ei (10)
k=1
Eij =< x(i),x(j), x(k) >= |dy[? (11)
where k is the number of coefficients, j is the number of nodes and i is the level on the node. s0s
The probability of the coefficients can be calculated as follows: 306
Eij
Prxi =5 (12)

]
The entropy can be defined as follows:

n
H(X) = —Y_ Px;log,Px; (13)
i=1
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where P represents the probability, x; = 1, ...., i represents the possible outcomes, being:

n
0<Px;j<1,) Pxj=1 (14)
i=1

2.2.2. Autoregressive Model (AR) 307

The Autoregressive model is a time series model that analyses the values from the 0
previous time steps using a linear combination of past values of the variables to predict s
future values. Here autoregression refers to a regression of the variable against itself. 310
Implementing the AR model includes some levels of randomness and uncertainty, where s
future values can be predicted based on the past value. In most cases, the AR Model 1
predicts a trend close to accuracy to be useful for the given problem. a3

In an AR process of order p, the signal X; with the time instant ¢ will be represented as 31
a linear combination of p previous values of the same signal. The AR process is modelled s
as: 316

p
X =) ¢iXiq1+e (15)
i=1
where €; represents the white noise with a zero mean, var ¢; represents the i-th coefficient s
of the model. It uses the authentication model’s coefficients as the feature input of the sis
classifier. We tune various "AR process order” to tune the accuracy and precision of the best 310
classification model for a scenario. 320

2.2.3. Instantaneous Frequency (IF) 321

The IF is a property of a non-stationary signal such as ECG that has a time-varying sz
parameter relating to the average of the frequencies present in the signal as it evolves. 2
Further details regarding the IF can be found in [51]. The IF features of the ECG and PPG 324
signals are used to train and test the CNN and LSTM models. 225

2.2.4. Spectral Entropy (SE) 326

SE is a property of a signal measured from the spectral power distribution. The SE 27
treats the signal’s normalized power distribution in the frequency domain as a probability szs
distribution, and calculates the Shannon entropy of it. Further details of SE can be found 320
in [52]. The SE feature values of the ECG and PPG signals are used for CNN and LSTM 330
models. 331

3. System Design 332

This section elaborates on our designed physiological biometric-based device authen- 33
tication system based on continuous authentication techniques. Figure 7 illustrates our sss
system. The system uses two phases to verify a legitimate device - the enrolment phase 35
and the constant authentication phase. The enrolment phase includes both user and device s3s
registration. The preliminary step of device registration is user registration. 337

Send

P Device authenticated

Enrolment Data

. > \

N - ﬂ@ —_— )
@ » -

N Galeway L=

Personalised Receive
Healthcare Network Constant authenticated

Devices Amhem\catlf)n Data
via Biometric

Signal

)

& e
31}
1)
User
Enrolment

Figure 7. High-level Overview of the Proposed Authentication
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At first, a range of biometric signals s; where i =1,2,3, ..., n signifies a series of s
biometric signals. These are collected from a valid user u;. The system is trained using a ss
machine learning model to recognise legitimate users. The model has training and testing s
phases. In the training phase, the manager will use the right signal to make the model sa
recognise the correct user. In the testing phase, the manager uses the reference dataset to  ss2
test the success rate of the recognition. 343

The system progresses to the device registration after the user registration phase. In a4
this stage, the PH manager instructs the device to send biometric signals such as ECG s
and PPG for a specific time window from the attached user. The manager then uses the 46
previously created model to authenticate and register the device in the system. 2a7

In the authentication phase, a device is asked to log in using the biometric signal of the 48
attached user. If the model can recognise the signal, the device is authenticated. Otherwise, 34
the system will request a higher privilege to reset the sensor or data to be passed or lock the  sso
device to prevent further access. On the other hand, continuous authentication makes sure s
that the device is constantly audited. This prevents session impersonation. After the device s
is authenticated, it will continuously send the biometric signal maintaining a short interval sss
(every 20 seconds), and the manager will monitor the transmitted data. If the sensor starts sa
to send the wrong data at any point in time, the device will be locked out from the network. sss

Figure 8 illustrates the flow.

( ] Enrolment
Data Collection Phase
Data Fusion

| Feature Exiraction
and Selection

Authentication

Continuous
Authentication
........... PhaEe
Figure 8. The Workflow of the Proposed Authentication
356
3.1. Algorithm Details 357

Let s; be a set of signals from a user u;. In our case, s; is a set of multiple signals such
as ECG; and PPG,;.
S; = (ECGZ,PPGZ) (16)

The signal is collected for a time period w; from a user u;. A device d; is trained with the sss
signal for a time period trnw;. The device is tested with the signal for a time period tstw;. sse
Then horizontal concatenation is performed on the signals to derive a single metric. 360
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Algorithm 1 User Registration

Input :Anarray [s;],i =1,2,--- ,n, where each element is a biometric signal
Output:Registration Notification
/* The device manager collects biometric signals from [ui] legitimate users
*/
while Input Signals from [u;] user r number of records=true do
The manager trains the system with authenticated and non-authenticated signals;
for r=0; r<=mn; r++ do
Feature Selection;
Divide into Train and Test data;
Train=TrainData;
Test=TestData;
End train the system;
Test;
end
if Test successful then
register user [u;];
go to the next user;

=

end
end

Algorithm 2 Device Registration

Input :Anarray [s;],i =1,2,--- ,n, where each element is a biometric signal
Output: Device Registration Notification
/* The device manager compares the device signal [si] , with the user signal
[ui] */
while Input Signals from [d;| matches the signal of [u;] do
register device [d;];
go to the next device;
end

Algorithm 3 Authentication

/* A PH device sends data to manager */
if Valid Device then
| Let the device send data;
end
else
| Reject entry;
end

Algorithm 4 Continuous Verification

/* In every 5 minutes Time Window */
if The device signal matches with the stored signal then
| Let the device send data;
end
else
| Ask to re-login to the system;
end

3.2. Data Fusion 361

We have applied a few early fusion methods to process multimodal signals. This e
section provides a brief description of each of these methods. 363
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e  Horizontal concatenation: As part of horizontal concatenation, the data is stored as  es
a form of a matrix at first. As a result, we get two matrices for ECG, and PPG signal ses
consecutively: 366

_xfCG_

ECG
*2

Megcg = (17)

[xgec

-.PPG-
X1

PPG
X

Mppg = (18)

[ X6 |
The resultant concatenate matrix is as follows: 367
xECG + xPPG
ECG PPG
X7t
Cepc = ) (19)

xECG 4 xEPG

e Root Mean Square (RMS): The RMS denotes the statistical measure of the mean ses
square root of a set of data points. For a set of D number of data points and d; data s
items, the RMS is calculated as: 370

RMS = (20)

*  Geometric Mean (GM): The GM implies a type of mean that calculates the central 7
tendency of a set of numbers. It uses the root of the product of the observed items. sz
For a set of D number of data points and d; data points under observation, the GM is 37
expressed as: 374

D

GM =]]di= ¥did>...dnp (21)
i=1
*  Arithmetic Mean (AM): The AM denotes the central tendency of a set of numbers 75
that applies the sum of observed items. For a set of D number of data points and d; 7
items under observation, formally the AM can be calculated as: 377

D

GM =]]di = ¥didy...dnp (22)

i=1

e Harmonic Mean (HM): The harmonic mean denotes the reciprocal of AM of a given
set of data points. It inverses each data points in a given set, sums those data points
and then the sum is divided by the total number of data points.

D

GM =]]di= ¥did>...dnp (23)

i=1
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4. Security Analysis

This section verifies the informal security analysis of our proposed model to ensure

that it can defend against numerous prevalent attacks that persist in sensor-based PH
systems. The following scenarios assume that an imposter tries to control the whole PH
network through several well-known security breaches.

Impersonation and Spoofing Attack: IoT sensors are prone to impersonation and
spoofing attacks. The device, which is attached to patients, is usually verified at the
beginning of any session. During the ongoing session, if the intruder inherits the
device and pretends to be the user, the patient’s data privacy is at risk. However,
continuous authentication prevents the system from such an attack. Also, using
multimodal biometric signals to authenticate instead of unimodal prevents a spoofing
attack from device and user perspectives.

Injection and Tampering Attack: The network that adopts the proposed authenti-
cation approach is also secure from an injection attack. If attackers want to implant
a node in the patient’s PH network, they will not be able to do so as the biometric
trait will not match. Node tampering attack is also prevented as even if the intruders
intrude on the node and implant a new biometric authentication signal, the network
will reject the device.

Registration Phase Attack: An imposter can register a rough device into the PH
network during the registration phase. However, to mitigate this attack in our model,
we use two-step registration: user registration and device registration. As a result, a
device is only registered if it is attached to any previously registered legitimate user.

5. Experiment Design and Results Analysis

We have used a few publicly available datasets to experiment with the proposed

authentication algorithm detailed in this section. We have implemented our model using
MATLAB. The design and implementation are done in a few steps: data acquisition and
pre-procession, feature extraction and selection, and finally, classification. The workflow
diagram of the authentication ML model is presented in Figure 9.

Physiological Signals
Data (ECG, PPG)

L4
[ Testing Dataset l [ Traning Dataset l
Signals ( Signals
Preprocessing, Preprocessing,
Fusion Fusion )
‘ Feature Engineering ’ Feature Engineering

.

v

Traning, Evaluation
Y with ML Algorithms

Prediction J4—

Legitimate user ?

Yes No
[ User authenticated ] [Unsuccessful attempt]

Figure 9. The workflow of creating ML based authentication model
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The notable elements of the workflow are as follows: 406

1.  Physiological Signals: The signals are classified as authenticated and non-authenticated 4o
signals. As the name suggests, authenticated signals refer to signals registered into  4os
the database that are collected from a trusted source. The non-authenticated signals 00
attribute to the signals from an unknown source/user that needs identification/au-
thentication. a1
2. Data Preparation: As the physiological data being obtained are mostly raw sensor 41
data, data pre-processing is required. Some of the techniques that are used in this s
stage are band-pass and noise filtering to remove the noise and artefacts from the a1
collected signal. a15
3. Feature Engineering: For single signal experiments, the features are directly extracted 416
using the feature extraction algorithm. For multimodal experiments, we apply early -
fusion and then extract and select features from the fused signals. a18
4.  Identification: The unknown signal is processed, and features are extracted from the 410
signal in this stage. Then the authentication algorithm is run to check the authenticity 2o
against the stored patterns of the authenticated users. az

In this research work, we have used five datasets. All the signals in each dataset have 422
been grouped in a single mat file. The signals are labelled as AUTH for authenticated users s2s
and NAUTH for non-authenticated signals. aza

We use the work from [53] as a reference point to design our feature extraction part. szs
We extract between 18 to 34 features for each experiment. Then the most important features sz
are selected based on the chi-square test. All derived features are concatenated into a 27
feature vector. The detail of our code is available in Github [54]. 428

The classification algorithms described previously are used to train and test the model. 20
The parameters for each classification algorithm are selected based on the optimal perfor- 4s0
mance. We define this performance benchmark by tuning several parameters and running s
each experiment at least five times. For example, when using the SVM algorithm, we 432
have chosen the polynomial kernel function for SVM to classify each trial to estimate the 433
misclassification rate and the confusion matrix. We selected the polynomial kernel function sa
since our model is parametric. The polynomial function also works better if the model uses a3s
fewer data. Since we are training our model with authenticated user data, we do not expect 436
a lot of data for this type of PH system. a37

We have used multiple metrics to evaluate our model. Ten-fold cross-validation is  ase
used to estimate the misclassification rate and construct the confusion matrix. Then we 439
have derived the accuracy precision rate, recall rate, F1 score, model loss and Equal Error 440
Rate (EER) for each of our experiments. Each of these metrics is calculated using True s
Positive (TP), False Positive (FP), True Negative (TN) and False Negative (FN). We have a 442
range of specific settings for unimodal and multimodal signal experiments. The following 4as
subsections detail the experiment settings and results, including the dataset details. a4a

5.1. Dataset Details 445

Our research work focuses on two different physiological signals: ECG and PPG, to  44s
detect any network intruder. Most of the published research works primarily focusona a7
single physiological signal, ECG being the dominant one. We have used five datasets for ass
our study based on their diversity and vastness. as9

BIDMC PPG and Respiration Dataset [55] This dataset is available at Physionet [56]. 50
The collected data was from the admitted patients to the intensive care unit. The dataset 4s:
consists of 53 patients’ recordings. Each of the recorded signal is 8 minutes long in duration. s:
Each recording contains: 453

*  ECG and PPG signals, both of these signals are sampled at 125Hz. asa
*  Some of the physiological parameters such as heart rate and respiratory rate and blood  ss
oxygen saturation level. These are sampled at 1Hz. 456
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MIT-BIH Arrhythmia Database [57] This dataset is also available at Physionet [56]. It sz
is a clinical dataset of 47 participants of 48 half-hour excerpts of two channels ambulatory ass
ECG recordings. Twenty-three recordings were randomly selected from a set of 4000 4se
24-hour ambulatory ECG recordings. These recordings are from a mixed population of 4so
inpatients and outpatients of the hospital. The rest of the records were picked from the 46
same group to include less common but clinically significant arrhythmia, however, in this sz
experiment we will use the samples for biometric purposes. 163

MIT-BIH Normal Sinus Rhythm Database This dataset is extracted from Physionet ases
[56]. The ECG data were collected at Boston’s Beth Israel Hospital from 18 subjects. The  4es
subjects include five males between 26 and 45 years old and 13 females between 20 and 50  4s6
years old. 467

The BIDMC Congestive Heart Failure Database [58] This database contains ECG  ses
recordings from 15 subjects. Each record has 20 hours of recording. The dataset details are 460
available at [59]. 470

Real-World PPG dataset [60] This dataset contains PPG signals from 35 healthy 47
subjects. Each recording has 300 samples (6 seconds) with a 50 sample/seconds sampling 472

rate. Each subject has 50 to 60 recordings. The dataset details are available at [60]. a73
5.2. Performance Benchmarking ara
To utilize the secure personalised healthcare network and usable authentication, per- s
formance benchmark of the system needs to be drawn from the following conditions, a76
*  Using shorter training data (5 minutes or less amount of physiological signal) to 477
develop a highly accurate authentication model. a78
¢ ML model accuracy needs to be close to 100% to prevent intrusive unauthorised access a7
to sensors. 480
¢  The ML model training and validation should be power and processing efficient and  se
highly accurate. as2
5.3. Experiments and Results a83

This section illustrates our experiment design and results. We have conducted three ses
sets of experiments that involve ECG, PPG and fusion signal combining ECG and PPG. aes
We run a series of single and group user authentication involving multiple classification  ass
algorithms for each type of signal. A set of experiments focused on single signal mode ss7
authentication with selected features, and other sets of experiments used multimodal mode  es
and IF and SE features to address group user authentication. AR coefficients, Shannon’s  sse
entropy and wavelet variance features are extracted for all signals. The most optimal as0
parameters are chosen after running each experiment five times. Table 2 illustrates the 4o
parameters we set for our first set of experiments. 402

Table 2. ECG Experiment Settings

Parameters Values
AR Order 12
Transform Level 8

Window Size 1000
Feature Extracted 276

CNN and LSTM deep learning models are introduced for ECG and PPG fusion based 403
authentication and to compare single user vs group based authentication. A sample CNN 404
model is presented in Figure 10. The CNN net has eight connected layers. Each of the 05
connected layers is sequenced as follows, one-dimensional convolution layer, followed 4s6
by the normalisation layer, then the dropout layer, followed by another one-dimensional 4oz
convolution layer, then the dropout layer, Rectified Linear Unit (ReLU) layer, the dropout 4es
layer, then followed by next additional layer. Finally, the network is connected with a fully  aee
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Figure 10. The CNN model for Data-Fusion-Centric Authentication

connected layer, softmax activation layer and classification output layer. The LSTM model  so0
for the experiments is presented in Figure 11. so1

The LSTM model consists of Sequence Input Layer, bi-LSTM layer, fully connected  so2
layer, softmax layer followed by classification output layer. Further details about the sos

models and the source code can be found in [54]. 504
5.3.1. ECG Signal Based Authentication 508

The first experiment for ECG signals has been conducted using the ECG signals of 53  sos
users from BIMDC dataset [55]. 507

The dataset was initially divided into two portions — "TrainA" and "TestA". One of the sos
users, "UserA" from "TrainA" is marked as the authenticated user, and the rest of all the soo
data from "TrainA" and "TestA" are considered intruders. The ECG signal data of "UserA" sio
and other users is about 7 minutes long. These signals are processed to create multiple s
instances of an equal length of 9 seconds. The data of "UserA" was then further partitioned s
to 33% training and 67% testing data. The training samples of "UserA" are copied multiple s
times to increase the training instances that will allow overtraining of the authenticated s
user, and through this overtraining, it will enhance the security of the biometric model to s
identify the authenticated user. s16

Additionally, it will improve data balance and symmetry during the training session. sz
The dataset of the remaining users from "TrainA" and the users of "TestA" are also processed  sis
to create 9 seconds length samples. Multiple machine learning classifier algorithms are s
used and compared to find the best performer within the training set and tested with the szo
test samples. The outcome of the test results of 2533 samples is presented in Table 3. s21

To validate the scalability of the biometric model, subsequently, we run the second s22
experiment for ECG signal adding the combination of three datasets which are: MIT-BIH  s2s
Arrhythmia Database [57], MIT-BIH Normal Sinus Rhythm Database [56], and BIDMC  szs
Congestive Heart Failure Database [58]. We use the ECG records of 120 users. All these 120  s2s
users are regarded as intruders. The result of the test of 10213 samples is presented in Table sz
4. 527
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Figure 11. The LSTM Model for Data-Fusion-Centric Authentication

Table 3. ECG Result Details

& 2
& s g 2 @
Q = — (4] o
\‘70 B 2 ; Q
A\ & & < = 73]
KNN Fine 75.6% 47.7% 98.3% 85.6% 0.013
Ensemble Bagged
Trees 95.1% 65.0% 99.1% 97.1% 0.03
Naive Bayes 95.1% 100% 99.9% 97.5% 0.03
SVM 100% 26.1% 95.4% 97.6% 0.02
GAM 97.6% 41.7% 97.8% 97.7%  0.02
Table 4. ECG Result Details - Scalable Attack Scenarios
& 2
& s § oy v
Q = — o] °
xqo o a E [}
& g S g £ &
A\ b & < = =
KNN Fine 75.6% 383% 99.4% 85.9% 0.12
Ensemble Bagged
Trees 100%  9.6% 96.2% 98.1% 0.19
Naive Bayes 95.1% 100% 99.9% 97.5% 0.02
SVM 100% 2.63% 85.2% 91.9% 0.08
GAM 97.6% 53% 93.1% 952% 0.05

After performing the single-user authentication for ECG only signals, we experi- sz
mented with the ECG only group authentication. For this experiment, a group of threeis s
created, considering that they belong to the same personal healthcare network. ECG signals  sso
from these three users are regarded as authenticated users, and the others are considered  ss:

N
©
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intruders. We use the same strategies to process ECG signals, labelling, feature extractions, ss:
training and testing as single-user experiments. 533

Multiple ML algorithms are used to find the best performing model. Out of these ssa
algorithms, the SVM receives the given number of features in the learning phase and s
performs a grid search optimisation algorithm to find the optimal normalisation resolution sss
factor a. Then the machine derives the normalisation resolution factor with the remaining  ss7
features by comparing them with those being used in the learning phase. The code for our sss

SVM template is as follows: 530
template = templateSVM (... 540
"KernelFunction’, ’polynomial ’ ,... sa1
"KernelScale’,’auto’ , ... 542
"BoxConstraint”’ ,1,... 543
"Standardize ', true); 544
model = fitcecoc (... 545
trainFeatures , ... 546
train_n_test_label , ... 547
"Learners’,template, ... 548
"Coding’, “onevsone”, ... 540
"ClassNames "’ ,{ "AUTH’ , 'NAUIH' }); 550

The source codes of all the experiments and related files are available in Github [54]. s
The model using Naive Bayes did not perform well in the multiuser authentication ss2
model. Out of the algorithms used to train the model, GAM performed comparatively sss
better with a precision of 52.6% and EER 0.04. The results are presented in Table 5. 554

Table 5. ECG Result Details - Multiuser Authentication

& 2
& SR - B S
Ao = 2 5 S
At c 9 3] n =
* g &£ 2 g &
KNN Fine 3Usr)  85.5% 31.6% 90.9% 882% 0.09
Ensemble Bagged
Trees (3 Usr) 91.1% 429% 953% 93.3% 0.05
Naive Bayes (3 Usr) 82.3% 43.2% 94.3% 88.1% 0.06
SVM (3 Usr) 100.0% 7.7% 45.8% 60.3% 0.54
GAM (3 Usr) 91.1% 52.6% 95.9% 93.5% 0.04
5.3.2. PPG Signal Based Authentication 555

We set up the PPG signal based authentication experiment using a similar data prepro- sse
cessing technique as ECG experiments. We combined two PPG datasets which are BIMDC  ss7
[55], and PPG real-world datasets [60]. The combined sample user number is 66. We follow  sse
similar procedures to create 9 seconds length sample points for the training and testing  sse
portion of the data. Multiple training algorithms are used and compared to find the best  seo
performing algorithm to create a model. Then the models are tested with the test samples. s
Similar parameters as Table 2 are used to extract features from the signals. s62

The results of the single user authentication using PPG are presented in Table 6. s63

To validate the group based multiuser authentication, a group of three is created. PPG  ses
from these three users are regarded as authenticated users, and the others are considered as  ses
intruders. AR coefficients, Shannon’s entropy and wavelet variance features are extracted. ses
The transform level, the window size of the signal and other settings are already mentioned  ser
in Table 2. The results from the test samples are presented in Table 7. s6s
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Table 6. PPG Result Details - Single User Authentication
S E s o e
b = ol 5 S
& g ] g B
S @ & < = =
KNN Fine 75.6% 49% 79.8% 77.7% 0.20
Ensemble Bagged
Trees 97.6% 12.8% 91.0% 94.1% 0.09
Naive Bayes 100%  6.8% 85.5% 92.1% 0.15
SVM 56.1% 9.7% 92.3% 69.9% 0.08
GAM 97.6% 11.3% 89.6% 934% 0.10
Table 7. PPG Result Details - Multiuser Authentication
>
& : 0§ & ¢
Q ] - <] 8
PP 2 g g R~
Qv g & 51 75,
S & > < = =
KNN Fine 3Usr) 702% 13.8% 79.0% 74.5% 0.21
Ensemble Bagged
Trees (3 Usr) 52.4% 32.7% 93.0% 67.5% 0.07
Naive Bayes (3 Usr) 56.5% 6.9% 63.9% 60.1% 0.36
SVM (3 Usr) 48.4% 17.6% 87.5% 62.8% 0.13
GAM (3 Usr) 77.4% 282% 90.1% 83.6% 0.10
5.3.3. ECG-PPG Fusion Signal Based Authentication 569

Consequently, experiments are conducted with ECG and PPG fused signals from the sz
BIMDC dataset [55]. This dataset has over 6 minutes of these two signals of each 53 users. s7
Several fusion techniques were used to validate which fusion signal will provide better sz
result as described in the data fusion section. At first, we simply add the amplitude of the sz
ECG and PPG signals and apply classifier machine learning algorithms as follows. Firstly, sz
from the fused signal we extract Shanon’s Entropy (SE), Wavelet variances (WV) and AR s
coefficients. Then we train and test the model to recognise a single authenticated user. The sz
signal data of each user are processed and prepared to create smaller sample data points sz
where each data point contained around 9 seconds length of signal (worth 11 heartbeats). sz
Training and testing portions of the data are separated in 70/30 proportion. s79

Multiple training algorithms are used to train the model. To select the best performing  sso
model, many tests are conducted on the trained model using the testing sample portion of  sex
the dataset. The extracted features based on Table 2 parameters are used to train multiple ss:
classifiers. However, the above-mentioned classifiers with time and time-frequency joint sss
features have not achieved a promising result. The model was trained to apply the ten- ss
fold cross-validation method. Additionally, EER and F1 score was considered in selecting sss
the best model. The best performing classification model trained using GAM achieved a  sss
precision of 44.4% and EER of 0.02. 587

We have tried different fusion methods and extracted some new features to improve ses
the result further. We also create smaller sampling points by reducing the frequency. The sso
preprocessed data is proportion to 70/30 for the training and testing. We conduct the fusion seo
using Square Root (SQRT), RMS, GM, AM and HM. A detailed discussion of these metrics so:
has been provided in the data fusion section. All these metrics except HM produce good  se:
results for the fusion signal. For further fusion signal based experiments, we use RMS  sos
fusion as standard as it provided slightly better F1 scores than other fusion approaches that ses
were applied. We have extracted IF and SE features as described in [61]. These features sos
are used in deep learning models: CNN and LSTM. LSTM model is specialized in finding ses
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Table 8. ECG-PPG Fusion Result Details - Single User Authentication

& 2
& = § 2 v
Q = - I b
\Qo o 21 = Q
8 g g g © A
S ¥ & < ) =
KNN Fine 70%  76.7% 98.4% 82.1% 0.15
Ensemble Bagged
Trees 19.5% 615% 985% 32.6% 0.40
Naive Bayes 97.6% 29.9% 96.2% 96.9% 0.03
SVM 0.0% 0.0% 984% 0% 050
GAM 97.6% 44.4% 98.0% 97.8% 0.02

CNN(2HB1Usr) 972% 921% 99.8% 985% 0.21
LSTM 2HB1Usr) 944% 971% 99.8% 971% 0.16
CNN 8HB1Usr) 857% 732% 99.2% 92.1% 0.85
LSTM 8HB1Usr) 97.1% 94.4% 99.8% 98.5% 0.16
CNN (16 HB1 Usr) 882% 40.5% 97.4% 92.7% 2.56
LSTM (16 HB1 Usr) 70.6% 60.0% 98.6% 82.5% 1.39

patterns in a time series sequence. In the experiment of single-user authentication, LSTM  sor
has demonstrated precision and F1 score rate as 97.1% and EER 0.16. CNN has provided a  ses
precision rate of 92.1%, F1 score of 98.5% and EER of 0.21. Table 8 shows the comparison of s
the experiment results. 600

After conducting the single user experiments, we run the group based authentication o
experiments. The data processing and feature extraction method remains the same as o2
in previous experiments. The results of the multiuser ECG-PPG Fusion experiments are eos
presented in Table 9. Multiple LSTM training configurations are used as mentioned in 9. Itis soa
observed that when user group member size is increased, the accuracy decreases. However, eos
when the window sample size is increased from two heartbeats to 8 heartbeats, the accuracy  sos
and EER change rate are changed to a negligible amount. It indicates that the model trained eor
with LSTM and a minimum of two HBs can provide an excellent authentication scheme.  cos

Table 9. ECG-PPG Fusion Result Details - Multiuser Authentication

B
& : 5§ B g
& = 2 & S
N z 8 § h [~
<+ & & < & &
KNN Fine 3Usr)  90.3% 37.0% 92.6% 91.5% 0.07
Ensemble Bagged
Trees (3 Usr) 93.5% 50.7% 95.6% 94.6% 0.04
Naive Bayes (3 Usr) 90.3% 19.7% 82.8% 86.2% 0.17
SVM (3 Usr) 97.6% 274% 88.1% 92.4% 0.12

GAM (3 Usr) 98.4% 353% 91.7% 94.8% 0.08
CNN (16 HB3Usr) 88.7% 73.4% 97.5% 93.1% 245
LSTM (16 HB3 Usr) 30.2% 21.3% 89.8% 45.6% 10.23
CNN (16 HB5Usr) 76.4% 91.9% 97.1% 86.4% 2.88
LSTM (16 HB5Usr) 83.1% 73.3% 95.5% 89.5% 4.88

6. Discussion 609

The objective of the experiments was to find the best continuous authentication model 10
on (1) single signal vs fusion signal based authentication, and (2) single user vs group of e
user-based authentication, using conventional classifiers and contemporary deep learning e:=
algorithms. In Table 10 the summarised results presented from the experiments. From Table s
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10 it is observed that in single authentication mode, among the classifiers, the Naive Bayes e
model has provided the best result for ECG-only authentication reaching 100% precision es
and 99.92% accuracy and zero false-positive cases out of 2533 test samples. The naive e
Bayes based model demonstrated resiliency against a large number of intrusion attacks e7
during the scalability test. When 10213 samples were tested in the second experiment, s
this model experienced zero false-positive cases and reached an EER of 0.024. During e
the PPG only authentication experiments, none of the classifiers reached up to a good 20
benchmark, although LSTM provided a comparatively better result [61]. In the case of ECG 621
and PPG signals based on RMS type fusion, the deep learning LSTM model illustrated 22
good precision and low EER compared to CNN based model, even though we chose to 23
change signal sample length from 2 heartbeats to 16 heartbeats. It will ensure a multimodal eza
and reliable authentication scheme. 625

Table 10. Summary of the Biometric Experiments

&
S :
& =
& S 2 >
C e s g
o‘g < 17 -
3] =]
< & g 0§ A
&3 S S
Single User
ECG Naive Bayes 100% 99.9% 0.02
Single User
PPG SVM 9.7% 92.3% 0.08
Single User
ECG and PPG Fusion LSTM 971% 99.8% 0.16
Multi User
ECG GAM 52.6% 95.9% 0.04
Multi User Ensemble Bagged
PPG Trees 32.7%  93% 0.07
Multi User
ECG and PPG Fusion CNN 73.4% 97.5% 245

When multiple user groups of 3 and 5 are created to verify the group authentication eze
model, overall authentication performance is reduced compared to ECG only model when 627
using the classifiers. LSTM deep learning net provided satisfactory accuracy and precision. ezs
However, many valid login attempts are declined. Therefore, further research is required 2o
to improve the sensitivity and accuracy of group authentication. Based on the benchmark 30
performance defined earlier, our proposed models can achieve high accuracy, especially in 631
single and multiuser authentication, using Naive Bayes, LSTM and CNN, as illustrated in  es2
Table 10. 633

From our literature review, only a few notable works have reported ECG and PPG ¢4
together as biometric traits for multimodal authentication systems. We present the compar- e3s
ison in Table 11. 636
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Table 11. Comparison with Multimodal ECG and PPG Studies
Study Featufe Authentication Classifier Result
Extraction Type
Accuracy: PPG:
MATLAB . Cross- 99.98%, ECG:
[32] functions Single User Correlation 88.79%, EER:
Not reported
. Accuracy: 98.9%,
[31] CNNand Naive g3 01e User CNN EER: Not
Bayes
reported
Accuracy: Not
[28] Not reported Single User Classifiers Reported, EER:
0.20
Accuracy: Single
. WPT, AR, IFand  Singleand Multi ~ LSTM, CNN, User: 99.8%,
This work EER: 0.16,
SE User NB, GAM .
MultiUser:
97.5%

7. Limitations

Our work has some limitations. Firstly, in the case of combined ECG and PPG signals,
both single-user and multi-user authentication have room for further improvement. The
error rate can be improved with further investigations. Secondly, we have analysed our
model for impersonation and spoofing attacks, injection and tampering attacks and reg-
istration phase attacks. However, we did not explore DDoS, side-channel attacks, sleep
deprivation, eavesdropping or man in the middle attacks for our model. We will model and
test these attacks for our proposed method in our future work. Thirdly, the performance
of the group authentication model in the case of fusion signal deteriorated compared to
the ECG-only model. LSTM provided satisfactory accuracy and precision. However, many
valid login attempts were rejected. Therefore, further research is required to improve the
sensitivity and accuracy of group authentication.

8. Conclusion

This paper has proposed a multimodal biometric-based continuous authentication
model for personalised healthcare services. We show the feasibility of multimodal single
and group-based authentication mechanisms in such a network environment. We use both
time domain and joint time-frequency domain feature extraction methods to extract useful
features from ECG, PPG and fused ECG-PPG signals. Then we test the performance of each
type of signal with different classifications as well as deep learning algorithms with fused
data to enhance the performance of the model. ECG signal-based data works better than
PPG and fused signals in most cases. However, adding PPG as a fused signal to ECG gives
an extra layer of security for the users to minimise ECG spoofing attacks. Our future works
involve further improving the fused signal and group-based authentication models.
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