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four-divergence of the proposed stress-energy tensor expresses relativistic Cauchy’s
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1. Introduction

Currently, field phenomena in physics is described in many ways, e.g., [1], [2], [3], [4], [5],
[6], but in most field theories [7], the field is still something additional to the spacetime
- not natural consequence of spacetime existence. There are also still some challenges in
describing systems that contain electromagnetic field. Stress-energy tensor for a system
with electromagnetic field [8], derived from the widely accepted Lagrangian density [9],
is not symmetrical [10] and attempts are still being made to link the description of such
a system with the GR, e.g. [11], [12], [13].

Much theoretical work was also done to combine the equations of GR and fluid dy-
namics, e.g. [14], [15], [16], [17], [18], however, so far the general solutions connecting
these two branches of physics are unknown. There are also some unresolved problems,
e.g. with the dependence of four-velocity on four-position. In relativistic electrody-
namics, it is often assumed that the four-velocity is independent of the four-position,
while a large number of fluid dynamics equations operate on velocity gradients, such as
Navier-Stokes equations [19] and many others.

The motivation of this article was to find a general solution to the Einstein Field Equa-
tions that would explain electrodynamics in curved spacetime, allow for generalization
to other fields and be consistent with the equations of the continuum mechanics. The
article may also be considered as the voice in still present scientific discussion about
foundations of electromagnetism and its relation to spacetime geometry and spacetime
itself, discussed e.g. in [20], [21], [22], [23], [24] and [25].

In the first part of the article, the consequences of Hamiltonian mechanics for elec-
trodynamics were considered. The conclusions were then used to make a minor tweak
to relativistic continuum mechanics equations. Finally, the symmetric stress-energy ten-
sor was proposed for a system containing an electromagnetic field, and then it was used
to analyze the transformation to curvilinear coordinates and its relation to Einstein
Field Equations.

The author uses the Einstein summation convention, metric signature (4, —, —, —) and
some standard definitions: t denotes coordinate time, 7 denotes test body proper-time,
m denotes test body rest mass, q denotes test body charge, S denotes Hamilton’s prin-
cipal function (action), L denotes Lagrangian, £ denotes Lagrangian density, H denotes
Hamiltonian.

The author also uses some standard four-vector definitions: U for four-velocities, P*
for four-momentums, F'“ for four-forces, F*? for electromagnetic tensors, A® for four-
accelerations, A® = (%,1&) for electromagnetic four-potentials, J* for four-currents,

He = (%, p‘;}) for generalized, canonical four-momentums.
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2. From Hamiltonian mechanics to geometry of spacetime

One may start discussion considering Lagrangian and Hamiltonian mechanics [26] in flat
Minkowski spacetime. Using Hamilton—Jacobi equations, one may express generalized
canonical four-momentum H® as a function of Hamilton’s principal function S [27] as
follows

H® = (E,pz) =-0"S (2.1)

c

For a system containing only electromagnetic field above takes form of

H* = P* + gA® (2.2)
where A“ is the electromagnetic four-potential. This equation yields the relativistic
Lagrangian [27] (minimal coupling) for the electromagnetic field

1 1 S
—L:;-%H“:m3;+d¢—mm (2.3)

It is known relativistic version of Lagrangian and Hamiltonian for electromagnetism,
however, there is something that was missed what is oversight of important
consequences. Taking four-gradient on (2.2) for both indexes and subtracting from
each other, one obtains

PP —9°PP = q(0°A° — 0P A®) (2.4)

Element related to H* vanished, since H* = —0“S and from calculus rules for any
scalar S there is

9%9°S — 0°9°S =0 (2.5)

what is fundamental rule behind gauge fixing [28] for electromagnetic field.

Above reasoning and eq. (2.4) shows that in considered system, four-momentum is
dependent on four-position. It is also worth noting, that there are many concepts of
continuum mechanics that depend on velocity gradients. An example would be Cauchy
stress tensor, deviatoric stress tensor [29] or vorticity [30], which is a term from dynam-
ical theory of fluids that describes velocity rotation of a fluid element, usually denoted
as w and defined as & =V x 4.

Velocity gradients and velocity gradient tensors are important concepts of fluid dynam-
ics [31], [32], [33] thus velocity independent of the four-position would create significant
problems for continuum mechanics. It would be also difficult to combine continuum
mechanics with GR, discarding the key elements of continuum mechanics.

Therefore, for further discussion, the conclusion from (2.4) and conclusions from the
continuum mechanics will be adopted and it will be assumed that in considered system
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four-velocity depends on four-position. As it will be shown soon, such an assumption
(after a minor amendment) does not cause problems for GR and electrodynamics, and
in fact leads to the integration of these branches of physics.

Analyzing (2.4) from the gauge theory perspective, in considered system (system con-
taining only electromagnetic field), four-momentum P® is just some chosen gauge for
the electromagnetic four-potential. Electromagnetic filed tensor F*? for such system
may then be expressed equivalently as

1
FP = 9°AP — 9°A* = — (0°P* — 9*PP) (2.6)

q

what produces the Lorentz force F'“ by
F* = Ugd° P> = qUs F*° (2.7)

since the Minkowski metric property gives

1
UsP’ =me® = Usd"P’ =5 0" (UsP’) =0 (2.8)

The four-current J¢ issue remains to be clarified, where
fioJ® = Qg TP (2.9)

and where u, represents the permeability of free space. The continuity equation re-
quires that d,J% = 0. Denoting p, as rest charge density, it is clear, that the classical
equation J* = p,U® requires vanishing four-divergence of U*. However, assuming U®
as dependent on four-position, one may also assume, that four-divergence of U* does
not vanish and note some inconsistency in the classical calculation of the density flux,
which is clearly visible for volumetric mass density.

In the considered system, analyzed as a continuum, there is four-momentum density
and four-current. One may thus consider g, as volumetric mass density in some volume
V for the system at rest

0 =+ (2.10)

Following the reasoning behind the calculation of the energy density in the stress-energy
tensor [34], it should be noted that both the mass m and the volume V' are subject to
Lorentz contraction effects (m — m~y and V — V%) In the four-momentum P“ mass
is increased alone, thus contraction of the volume alone would change the density as
follows

0= 057 (2.11)

For this reason, the total effect due to the increase of the mass (or charge) and volume
contraction leads to four-momentum density of the form p U® and the four-current given
by equation

J*=pU* = p,yU” (2.12)
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Calculating the vanishing four-divergence of above, keeping in mind that ~ is a function
of the four-position only (2.7), one obtains

dry
(6% .1
0 U* = — (2.13)

The above amendment is easy to explain by analyzing the integral below

1
PO‘:—/QU“ dV (2.14)
Y Jv

There is no absolute rest. If it is assumed that V describes volume percieved by observer

at rest, it means that the integrated matter is in motion (v # 1) and thus o = dg”—‘]. If it

is assumed that matter is at rest and the integrating observer moves with U® velocity

in relation to immobile total mass m of this matter density, then the observer should

dm
dvi-
5

integrate over contracted volume V%, because in this case p = This means that

m~y will also be obtained.

The above reasoning would remain correct for any density in motion, providing a conti-
nuity equation for any density flux in flat Minkowski spacetime. Moreover, this amend-
ment has very favorable ramifications for the merger with the GR.

If one would like to perceive the effects of the existence of a field in flat spacetime, as
some form of spacetime curvature in curvilinear coordinates, then the four-divergence
of U should vanish in curved spacetime, where the four-acceleration is replaced by the
curvature of spacetime and geodesics. Therefore,
dy

dt

where I'* 5 represents Christoffel symbols of the second kind. This leads to further

Ury=0 — T°,U0°=

e

(2.15)

conclusions. In flat Minkowski spacetime, four-divergence of the following tensor does
not vanish

d
0. UV = —ZLU% + 47 = (0, @) (2.16)

where @ = fl—’; is the classic acceleration. Its disappearance in curved spacetime thus

leads immediately to the following conclusion
uv’,=0 — T U0 +TP U U =—(0,d) (2.17)
what, taking into account (2.15), yields
8 apre — B
r?,,UU" = —A (2.18)

This is the expected result, making that intrinsic covariant derivative of four-velocity
vanishes in curved spacetime.

DUP  qus
b = o Tl =0 (2.19)
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According to above findings, the total force density f” acting in the system should be
defined as follows

[P = 0AP = pyAP =0, pUUP (2.20)

which is in line with the assumption behind the derivation of the Navier—Stokes equa-
tions, making it possible to derive their relativistic counterpart.

Finally, analyzing all above on the transition to curved spacetime for
Ou0UU =7 — oUU’,=0 (2.21)

it is clear that this requires a relationship between the density tensors and some tensors
describing the curvature of spacetime with vanishing covariant four-divergence, which
opens the way to linking the continuum mechanics with GR.

Reasoning presented in this chapter opens the possibility of perceiving the presence
of a field by some spacetime curvature and vice versa. Adding other fields to the sys-
tem by adding to (2.2) successive four-potentials A® and related constants ¢; of i-fields
(marked with the ¢ index), would generalize the force equation (2.7) to the form of

Fo=U0°P" =Y 4. U (amf - aﬂAg) (2.22)
which opens up the possibility of expanding the reasoning with additional fields.

It is also possible to propose a solution where some interactions are the result of fluid
dynamics, as presented in the next chapter. This will prove crucial for the explanation
of the gravitational interaction described in GR, which cannot be described by an ordi-
nary field four-potential.

3. Results

Analyzing the conclusions from the previous chapter, one may consider their application
for the analysis of the stress-energy tensors.

One could build a stress-energy tensor for a system with an electromagnetic field, based
on the density tensor o U*U” in such a way, that the vanishing four-divergence of the
stress-energy tensor would result from a cancellation of force densities.

The density of force due to electromagnetism ff,, in flat Minkowski spacetime may
be calculated as

(03 (67 (e} 1
fEMEJﬁFﬁzaﬁ(nﬁ4u

1
F*F,, — —F°, WW) (3.1)
Ho

o
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where n®? %FW‘ F,, - L FA7 is the classic [35] stress—energy tensor for electromag-
Mo Mo Y
netic field and where n®? represents Minkowski metric tensor.

For universality and to facilitate the further analysis, one may introduce a more general
definition of the stress-energy tensor for the electromagnetic field, in the form indepen-
dent of the metric tensor ¢g*’. For this purpose, at first step, one may introduce scalar
A, with the dimension of energy density (subscript p), equal to the Lorentz invariant of
the electromagnetic field tensor in the metric

1

A, = 1 F g,y thgag (3.2)

o
Next, there will be introduced some tensor h*? with the dimension of the metric tensor,
defined in such a way to satisfy following properties

et R EM e BT L EY g, B (3.3)
%haﬁgaﬁ iiFa“ Gy T Gags A, .
D gus byt = 4 (3.4)
what yields
Fed A
hed =2 Ll (3.5)

\/Fa& s~ F'B7 9us Fom gnf Fug

Thanks to above, using (3.2) and (3.3) one may define generalized (for any metric tensor
g°?) stress—energy tensor for electromagnetic filed, denoted as T and defined as follows
b = A <gaﬂ _ Lﬁ) (3.6)
g T G
which in the Minkowski spacetime will turn into the classic stress—energy tensor for
electromagnetic field, mentioned in (3.1).

Assuming that the only field in the system is an electromagnetic field and remain-
ing in the Minkowski spacetime (¢** = 1n°?), the below equation brings conservation of
linear momentum and energy by electromagnetic interactions

05 (QUUP —X%) = f° — fiy (3.7)

so this expression fits well as an expression to describe vanishing four-divergence of the
stress-energy tensor for the whole system.

However, such stress-energy tensor would not ensure compliance with the Cauchy mo-
mentum equation [36], what is also known issue in EFE [37]. Therefore to ensure this
compliance and also to ensure compliance with General Relativity, one may introduce
pressure p in the system defined in the following way

p=cfo+A, (3.8)
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and define the stress-energy tensor 7% for the whole system as

he?
T = oUUP — p (gaﬂ — —> (3.9)

1
£

Vanishing four-divergence of tensor 7% in flat Minkowski spacetime would now create
two additional density of forces

057" =0 —  f*— fon = fan— fon =0 (3.10)
where
o _ 0.,
oth = A_prM (3.11)
o Taﬁ 2

In the above picture, element f7 seems to be related to the density of the gravitational
force. It is not defined as interaction between bodies. This contraction of the electro-
magnetic stress—energy tensor expresses the phenomenon of bending the light path by
the gradient of energy density.

Element f{, seems to be related to the force density of other interactions, related
to electromagnetism. It will be discussed in the last chapter.

The relationship of these force densities with the Einstein curvature tensor will be con-
firmed later in this chapter.

Now, vanishing four-divergence of tensor 7% in flat Minkowski spacetime, expresses
the four-dimensional relativistic Cauchy momentum equation (convective form). To see
it, one may introduce tensor I1* defined as

I = —¢? e (3.13)
=-—Cco .
° %h/“’nw,
Density of electromagnetic force may be expressed as
i = =05 (8, ) (314
Em = —0p » 3.14
7

thus vanishing four-divergence of 7%, after easy rearrangement of elements, yields

f* =0+ feag + 05117 (3.15)

This equation expresses convective form of the relativistic Cauchy momentum equation,
where II*? acts as a four-dimensional deviatoric stress tensor in the mentioned fluid.
According to present knowledge in the subject, deviatoric stress tensor depends only on
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velocity gradients [38], and indeed, in the relativistic version thanks to (3.3) and (2.6),
it may be expressed as

N =c?o- ——— where 7' =0'U" — 9"U* 3.16

o 12T where (3.16)

since all constants from (2.6) cancel out.

It means, that in the presented solution, electromagnetic interaction is described by
the four-potential, while force densities f7 and f7;, are consequences of fluid dynamics.

To show compliance of above with General Relativity, one may introduce three aux-
iliary tensors, defined for any considered metric ¢g®®. At first it will be introduced
tensor R*? as

R =2p0U°UP — p g** (3.17)
Next, one may define trace of this tensor by scalar R

R=R" gus = —2p—2A, (3.18)
and next, one may introduce tensor G*? as

2R
G = R — _—_pob (3.19)
h Gy
It is easy to calculate that
he8
Gab’ — A aB .2 af _ ) = QTO‘fB 3.20
P9 =0\ 9 T (3.20)

In flat Minkowski spacetime (g = n®?) one obtains
05 G = fo+ fon (3.21)

thus in curved spacetime covariant four-divergence of G*# should vanish and this ten-
sor should be related to the curvature of spacetime corresponding to the forces fg.+ fi,-

The problem of spacetime curvature may now be analyzed.

For this purpose, one may consider conditions where the stress—energy tensor for elec-
tromagnetic field disappears (Y% = 0), which may occur in two cases:

(i) lack of electromagnetic field
(i) g*7 = ho?

First case is trivial, thus one may concentrate on the second case in which the curved
spacetime is described by the metric tensor h®?.

There may be doubts as to whether A*® may be actually a metric tensor. There-
fore, it should be noted that by definition (3.5) h*® is symmetrical and property
hoP b bt = h*P heg = 4 is satisfied. It remains to check whether it meets the Bianchi
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identities.

To prove it, one may notice that vanishing T reduces equation (3.9) in curved space-
time to the postulate of General Relativity

TP = oUU" — T453=0 (3.22)

where the stress-energy tensor 7% determines the curvature of spacetime. Since con-
tracted Bianchi identities are equivalent to conservation of energy and momentum
(vanishing covariant four-divergence of the stress-energy tensor 7°°) therefore h®® in-
deed must be the metric tensor for curved spacetime in which all motion occurs along
geodesics.

It should be noted that such a metric tensor h*? should actually exist, assuming there
is spacetime in which all the forces are replaced by the curvature of spacetime. There-
fore, for such spacetime the metric tensor will be denoted by A% and in this spacetime
instead of field and forces one obtains corresponding curvature.

However, taking above perspective, one may conclude, that the value of h*? is fixed
and should not depend on the metric ¢®# under consideration, because selecting the
next ¢*? metrics closer and closer to h®?, one simply reduces the tensor Y%, bending
spacetime more and more and reducing the forces and fields acting in the system in
favor of increasing curvature of spacetime.

In this perspective, flat Minkowski spacetime with Y% tensor and curved spacetime
with Y% = 0 are two different methods of describing the same phenomenon. Therefore
one may calculate value of h®® using the electromagnetic field tensor, present in the
Minkowski flat spacetime

Fe F5

h? =2
\/ﬂw7 F& F./ F,

(3.23)

and use it to change description of the system to curved spacetime with help of the
obtained value of the tensor h®.

The question then arises about the relationship of the equation (3.22) with the main
GR equation.

It should be then noted, that in curved spacetime with the metric tensor ¢®% = h®8
tensor Rap (3.17) describes perfect fluid, where the difference between pressure p in this
fluid and energy density is equal to 2A,

1
Rag = g ([p - ZAP] +p) UaUg —phag (324)
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the value of tensor G,s (3.19) becomes

1

Gag = Ra,g — §R haﬁ (325)
and (3.20) reduces to

Gop — Ny hap =2T4p (3.26)
Therefore, in presented solution, R,z acts as Ricci tensor and G, acts as Einstein
curvature tensor, both with an accuracy of 42—40 constant, and cosmological constant
A is related to the invariant of electromagnetic field tensor, calculated for this metric
(g°7 = hoP)

A7 G

It would mean, that in presented solution, vacuum energy that has been sought for
years [39] is related to the electromagnetic field that fills the entire space. It would also
lead to the conclusion, that cosmological constant A should be taken into account in
the calculation of the metric, as they propose, inter alia, authors in [40].

It is worth noting, that in curved spacetime, Einstein tensor may also be interpreted as
stress-energy tensor describing perfect fluid, however this time, vacuum energy density
acts as pressure

1
Ga[j = g ([QC2 —1—p} — Ap) UaUﬂ + Ap hag (328)
By analyzing above and equations (3.25) and (3.26) one may notice, that
Gop=0 — p=-A, — R=0 — Rp=0 (3.29)

thus this way one obtains Schwarzschild and Kerr vacuum solutions [41].

The above conclusions on perfect fluids and origin of the metric tensor h** can also be
understood in the context of Cauchy momentum equation presented in (3.15). Adopt-
ing the metric tensor in such a way, to eliminate deviatoric stress one indeed makes
mentioned fluid perfect and all forces disappear, what should be kept when introducing
other, additional fields to the above solution.

4. Conclusions

Summarizing, in curved spacetime (gos = hag) the main equation of the proposed
4rG
o

solution (3.26) expresses the Einstein Field Equations with an accuracy of constant

and with cosmological constant A dependent on invariant of electromagnetic field tensor
Fey

G irG
T R By T Dy = ——

A=—
Ay A

A, (4.1)

where h,z is the metric tensor of the spacetime in which all motion occurs along geodesics
and where A, describes vacuum energy density. These EFE drive to classic Schwarzschild
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and Kerr vacuum solutions, as shown in (3.29).

Stress-energy tensor T for the system in a given spacetime described by some metric
tensor ¢°? is equal to

T = oUUP — (Po+ A,) (¢°° — EnP) (4.2)
where c?p is energy density and where

1 1
- = s 4.3
g a4 (4.3)
A — 1 o By

= 4“015‘ Gy F77 gap (4.4)

Fad Fﬂv

hed =2 L (4.5)

\/Faé 9o~ FAy 9us ]Fom g77§ Fﬂg

In flat Minkowski spacetime (¢®° = 7*’) according to (3.15) vanishing four-divergence
of the proposed stress-energy tensor (957" = 0) turns out to be relativistic Cauchy
momentum equation which is the expected relationship.

To reproduce movement in curved spacetime, it will be more convenient to define flat
Minkowski spacetime using the metric tensor given in polar coordinates

1 0 0 0

0 -1 0 0
Wl = 4.6
g B 0 O —T2 0 ( )

0 0 0 —r’sin?0)
Total force density f® acting in the system calculated from 9z T’ = 0 is equal to
(fe,, = —A, 056 h*  (electromagnetic)
+
fe=3 fo=c (9°7 — £h*P) Bg0  (gravitational) (4.7)
+
| foun = —0c® 036 WP (other)

One may also transform force densities from continuum description (density in the
considered volume) to discrete description (point-like masses, charges, etc.)

/ [ dv (4.8)

where V' denotes volume and where 1/ in above expressions is the result of the amend-
ment to the continuum mechanics introduced in equations (2.12) and (2.20) what was
shown as actually expected to keep the continuum mechanics consistent with the Lorentz
transformation.
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Considering p as volumetric mass density one obtains mass dependent forces where
thanks to (2.11) it may be substituted

J 0= 00s1n(7) (4.9)
Since
1 (B2,
el (B w) a

the result of the integral of the above is unknown. One may therefore introduce a
parameter £, with the dimension of energy

1 1
—E\ = —/ —A,dV (4.11)
v T Jv
Total force acting on the test body in the system may be now expressed as
( 1
Fgy = —Ex 0560 (electromagnetic)
8
+
Fo =9 Py = me® (g*° — £h*) 91n(v)  (gravitational) (412)
_|_

| FS, = —mc® 0s€ R (other)

and, according to previous section, it reproduces motion in curved spacetime given by
metric tensor h*® with presence of vacuum energy (non-zero cosmological constant).

The above equations may be tested with various spacetimes described by different metric
tensors h*” and can also be further developed by extending the proposed stress-energy
tensor and additional parametrization.

5. Discussion

The presented solution creates a coherent picture in which spacetime is in fact a way of
perceiving the electromagnetic field (what also explains equation (2.6)). This solution
allows for further development, introducing additional fields, different parameterization
and simple transformation between Minkowski spacetime and curvilinear reference sys-
tems. It should be noted that the proposed solution does not question the correctness of
the currently existing, well-established physical theories, but rather leads to their inte-
gration, opening up a new field for further research, experimental verification and tuning.

The resulting description of the gravitational interaction is a solution of the Einstein
Field Equations, reproduces GR with cosmological constant A, complies with equations
of continuum mechanics and adds components that may help explain phenomena that
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cannot be described with GR today. This description of gravity is also open for param-
eterization, development and further study of this approach in search of explanation of
cosmological issues. Perhaps description of forces present in the article and the pos-
sibility of the dual description of the movement (curved spacetime vs. flat spacetime
with fields and forces) may help to explain the phenomenon described today as Dark
Energy [42], [43] or explain why some fast-orbiting bodies in selected galaxies may feel
less repulsive force [44], [45] reducing, at least in part, the need to use Dark Matter
[46], [47], [48] in the system description. It may also help with unexplained phenomena
related to very massive objects that elude the currently used description of gravity [49],
[50], [51], [52] or help with explanation of Hubble tension problem [53], [54], [55].

The author intentionally does not perform the parameterization on his own, because
his intention is not to create a theory explaining all the contemporary challenges of
physics, but only to add his own brick to the whole knowledge by creating coherent
framework that will allow the broad scientific community for further theoretical and
experimental research.

It is also necessary to discuss the force density f,; that occurs naturally in the equation
(3.11). This force density, interpreted here as ”other interactions”, seems to be related
to strong interactions, or sum of strong and weak interactions, what would link both
phenomena with additional electromagnetic force density moderated by the density of
energy. This is supported by the observation that on small scales with high energy
density, the density of this force will be extremely great - one may recognize it as a
strong interaction property. On larger scales with small energy density, this force will
be extremely weak - one may recognize it as a weak interaction property. It is also
known that both of these interactions on quantum level are to some extent related to
electromagnetism (charged quarks or bosons). Also the relation between strong forces
and gravity has already been noted by the double copy theory [56], [57], [58], which may
be seen as a consequence of the equation (3.21) vanishing in curved spacetime.

Due to the lack of equations describing the weak and strong fields in classical field
theory, confirmation of the proposed relationship of these fields with force density f3,
must take place on the basis of quantum theories, where equation (3.11) is a quantitative
prediction that can be verified or expanded with additional components in the proposed
stress-energy tensor. It also creates a new area of research to confirm the above ap-
proach or for further analysis of weak and strong interactions based on classical field
theory by developing the proposed solution.

Finally, it is worth noting, that cosmological constant A in above solution is certainly
not “Einstein’s greatest mistake”, but appears to be a measure for the value of invariant
of the electromagnetic field tensor. Since electromagnetic field fills each considered vol-
ume regardless of its selection (from the scale of the atom to the entire space), it turns
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out to be a surprisingly natural explanation to the vacuum energy problem. It also may
be further parameterized and extended with invariants of other fields introduced to the
above solution.

6. Statements

Data sharing is not applicable to this article, as no datasets were generated or analyzed
during the current study.

The author did not receive support from any organization for the submitted work.

The author has no relevant financial or non financial interests to disclose.
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