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Abstract. The article proposes an amendment to the relativistic continuum

mechanics which introduce the relationship between density tensors and the curvature

of spacetime. The resulting formulation of a symmetric stress-energy tensor for a

system with an electromagnetic field, leads to the solution of Einstein Field Equations

indicating a relationship between the electromagnetic field tensor and the metric tensor.

In this EFE solution, the cosmological constant is related to the invariant of the

electromagnetic field tensor, and an additional gravitational pull appears, dependent

on the velocity of orbiting bodies and the vacuum energy contained in the system. In

flat Minkowski spacetime, the vanishing four-divergence of this stress-energy tensor

expresses relativistic Cauchy’s momentum equation, leading to the emergence of force

densities which can be developed and parameterized to obtain known interactions.

Transformation equations were also obtained between spacetime with fields and forces,

and a curved spacetime reproducing the motion resulting from the fields under

consideration, which allows for the extension of the solution with new fields.
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1. Introduction

Currently, field phenomena in physics is described in many ways, e.g., [1], [2], [3], [4], [5],

[6], but in most field theories [7], the field is still something additional to the spacetime

- not natural consequence of spacetime existence. There are also still some challenges in

describing systems that contain electromagnetic field. Stress-energy tensor for a system

with electromagnetic field [8], derived from the widely accepted Lagrangian density [9],

is not symmetrical [10] and attempts are still being made to link the description of such

a system with the GR, e.g. [11], [12], [13].

Much theoretical work was also done to combine the equations of GR and fluid dy-

namics, e.g. [14], [15], [16], [17], [18], however, so far the general solutions connecting

these two branches of physics are unknown. There are also some unresolved problems,

e.g. with the dependence of four-velocity on four-position. In relativistic electrodynam-

ics, it is assumed that the four-velocity is independent of the four-position, while a large

number of fluid dynamics equations operate on velocity gradients, such as Navier-Stokes

equations [19] and many others.

The motivation of this article was to find a general solution to the Einstein Field Equa-

tions that would explain electrodynamics in curved spacetime, allow for generalization

to other fields and be consistent with the equations of the continuum mechanics. The

article may also be considered as the voice in still present scientific discussion about

foundations of electromagnetism and its relation to spacetime geometry and spacetime

itself, discussed e.g. in [20], [21], [22], [23], [24] and [25].

In the first part of the article, the consequences of Hamiltonian mechanics for elec-

trodynamics were considered. The conclusions were then used to make a minor tweak

to relativistic continuum mechanics equations. Finally, the symmetric stress-energy ten-

sor was proposed for a system containing an electromagnetic field, and then it was used

to analyze the transformation to curvilinear coordinates and its relation to Einstein

Field Equations.

The author uses the Einstein summation convention, metric signature (+,−,−,−) and

some standard definitions: t denotes coordinate time, τ denotes test body proper-time,

m denotes test body rest mass, q denotes test body charge, S denotes Hamilton’s prin-

cipal function (action), L denotes Lagrangian, L denotes Lagrangian density, H denotes

Hamiltonian.

The author also uses some standard four-vector definitions: Uα for four-velocities, Pα

for four-momentums, Fα for four-forces, Fαβ for electromagnetic tensors, Aα for four-

accelerations, Aα ≡
(

ϕ
c
, A⃗

)
for electromagnetic four-potentials, Jα for four-currents,

Hα ≡
(
H
c
, p⃗h

)
for generalized, canonical four-momentums.
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2. From Hamiltonian mechanics to geometry of spacetime

One may start discussion considering Lagrangian and Hamiltonian mechanics [26] in flat

Minkowski spacetime. Using Hamilton–Jacobi equations, one may express generalized

canonical four-momentum Hα as a function of Hamilton’s principal function S [27] as

follows

Hα ≡
(
H

c
, p⃗h

)
= −∂αS (2.1)

For a system containing only electromagnetic field above takes form of

Hα = Pα + qAα (2.2)

where Aα is the electromagnetic four-potential. This equation yields the relativistic

Lagrangian [27] (minimal coupling) for the electromagnetic field

−L =
1

γ
· UαH

α = mc2
1

γ
+ q(ϕ− u⃗A⃗) (2.3)

It is known relativistic version of Lagrangian and Hamiltonian for electromagnetism,

however, there is something that was missed what is oversight of important

consequences. Taking four-gradient on (2.2) for both indexes and subtracting from

each other, one obtains

∂βPα − ∂αP β = q(∂αAβ − ∂βAα) (2.4)

Element related to Hα vanished, since Hα = −∂αS and from calculus rules for any

scalar S there is

∂β∂αS − ∂α∂βS = 0 (2.5)

what is fundamental rule behind gauge fixing [28] for electromagnetic field.

It is important to emphasize that the above reasoning and eq. (2.4) rules out the con-

viction, that four-momentum is independent of four-position. It is worth noting, that

there are many concepts of continuum mechanics that depend on velocity gradients. An

example would be Cauchy stress tensor, deviatoric stress tensor [29] or vorticity [30],

which is a term from dynamical theory of fluids that describes velocity rotation of a

fluid element, usually denoted as ω and defined as

ω⃗ ≡ ∇× u⃗ (2.6)

Velocity gradients and velocity gradient tensors are important concepts of fluid dynam-

ics [31], [32], [33] thus velocity independent of the four-position would create significant

problems for continuum mechanics. It would be also difficult to combine continuum

mechanics with GR, discarding the key elements of continuum mechanics.

Therefore, for further discussion, conclusions from the continuum mechanics will be
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adopted and it will be assumed that four-velocity depends on four-position. As it will

be shown soon, such an assumption (after a minor amendment) does not cause problems

for GR and classical mechanics, and in fact leads to the integration of these branches of

physics.

Analyzing (2.4) from the gauge theory perspective, in considered system (system con-

taining only electromagnetic field), four-momentum Pα is just some chosen gauge for

the electromagnetic four-potential. Electromagnetic filed tensor Fαβ for such system

may then be expressed equivalently as

Fαβ = ∂αAβ − ∂βAα =
1

q

(
∂βPα − ∂αP β

)
(2.7)

what produces the Lorentz force Fα by

Fα = Uβ∂
βPα = qUβ Fαβ (2.8)

since the Minkowski metric property gives

UβP
β = mc2 → Uβ∂

αP β =
1

2
∂α

(
UβP

β
)
= 0 (2.9)

Adding other fields to the system by adding to (2.2) successive four-potentials Aα
i and

related constants qi of i-fields (marked with the i index), would generalize the force

equation (2.8) to the form of

Fα = Uβ∂
βPα =

∑
i

qi Uβ

(
∂αAβ

i − ∂βAα
i

)
(2.10)

As it will be shown in the next chapter, the gravitational force is not subject to the

above description and its origin is different.

The four-current Jα issue remains to be clarified, where

µoJ
α ≡ ∂β Fαβ (2.11)

and where µo represents the permeability of free space. The continuity equation re-

quires that ∂αJ
α = 0. Denoting ρo as rest charge density, it is clear, that the classical

equation Jα = ρoU
α requires vanishing four-divergence of Uα. However, assuming Uα

as dependent on four-position, one may also assume, that four-divergence of Uα does

not vanish and note some inconsistency in the classical calculation of the density flux,

which is clearly visible for volumetric mass density.

Introducing ϱo as volumetric mass density in some volume V for the system at rest

ϱo ≡
m

V
(2.12)

and following the reasoning behind the calculation of the energy density in the stress-

energy tensor [34], it should be noted that both the mass m and the volume V are

subject to Lorentz contraction effects (m → mγ and V → V 1
γ
). In the four-momentum
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Pα mass is increased alone, thus contraction of the volume alone would change the

density as follows

ϱ = ϱoγ (2.13)

For this reason, the total effect due to the increase of the mass (or charge) and volume

contraction leads to four-momentum density of the form ϱUα and the four-current given

by equation

Jα = ρUα = ρoγ U
α (2.14)

Calculating the vanishing four-divergence of above, keeping in mind that γ is a function

of the four-position only (2.10), one obtains

∂αU
α = −dγ

dt
(2.15)

The above amendment is easy to explain by analyzing the integral below

Pα =
1

γ

∫
V

ϱUα dV (2.16)

There is no absolute rest. If it is assumed that V describes volume percieved by observer

at rest, it means that the integrated matter is in motion (γ ̸= 1) and thus ϱ = dmγ
dV

. If it

is assumed that matter is at rest and the integrating observer moves with Uα velocity

in relation to immobile total mass m of this matter density, then the observer should

integrate over contracted volume V 1
γ
, because in this case ϱ = dm

dV 1
γ

. This means that

mγ will also be obtained.

The above reasoning would remain correct for any density in motion, providing a conti-

nuity equation for any density flux in flat Minkowski spacetime. Moreover, this amend-

ment has very favorable ramifications for the merger with the GR.

If one would like to perceive the effects of the existence of a field in flat spacetime, as

some form of spacetime curvature in curvilinear coordinates, then the four-divergence

of Uα should vanish in curved spacetime, where the four-acceleration is replaced by the

curvature of spacetime and geodesics. Therefore,

Uα
;α = 0 → Γα

αβU
β =

dγ

dt
(2.17)

where Γα
αβ represents Christoffel symbols of the second kind. This leads to further

conclusions. In flat Minkowski spacetime, four-divergence of the following tensor does

not vanish

∂α U
αUβ = −dγ

dt
Uβ + Aβ =

(
0 , a⃗γ2

)
(2.18)

where a⃗ ≡ du⃗
dt

is the classic acceleration. Its disappearance in curved spacetime thus

leads immediately to the following conclusion

UαUβ
;α = 0 → Γα

αµU
µUβ + Γβ

αµU
αUµ = −

(
0 , a⃗γ2

)
(2.19)
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what, taking into account (2.17), yields

Γβ
αµU

αUµ = −Aβ (2.20)

This is the expected result, making that intrinsic covariant derivative of four-velocity

vanishes in curved spacetime.

DUβ

D τ
=

dUβ

dτ
+ Γβ

αµU
αUµ = 0 (2.21)

According to above findings, the total force density fβ acting in the system should be

defined as follows

fβ ≡ ϱAβ = ϱoγA
β = ∂α ϱU

αUβ (2.22)

which is in line with the assumption behind the derivation of the Navier–Stokes equa-

tions, making it possible to derive their relativistic counterpart.

Finally, analyzing all above on the transition to curved spacetime for

∂α ϱU
αUβ = fβ → ϱUαUβ

;α = 0 (2.23)

it is clear that this requires a relationship between the density tensors and some tensors

describing the curvature of spacetime with vanishing covariant four-divergence, which

opens the way to linking the continuum mechanics with GR.

Above reasoning opens the possibility of perceiving the presence of a field as some

spacetime curvature and vice versa, where eq. (2.10) opens the way to the inclusion of

other fields.

It is also possible to propose a solution where some interactions are the result of fluid

dynamics, as presented in the next chapter. This will prove crucial for the explanation

of the gravitational interaction described in GR, which cannot be described by an ordi-

nary field four-potential.

3. Results

Returning back to flat Minkowski spacetime, one may analyze the implications of the

previous chapter for the stress-energy tensors.

One could build a stress-energy tensor for a system with an electromagnetic field, based

on the density tensor ϱUαUβ in such a way, that the vanishing four-divergence of the

stress-energy tensor would result from a cancellation of force densities.

The density of force due to electromagnetism fα
EM may be calculated as

fα
EM ≡ JβFαβ = ∂β

(
ηαβ

1

4µo

Fγµ Fγµ −
1

µo

Fα
γ Fβγ

)
(3.1)
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where ηαβ 1
4µo

Fγµ Fγµ − 1
µo
Fα

γ Fβγ is the classic [35] stress–energy tensor for electromag-

netic field and where ηαβ represents Minkowski metric tensor.

For universality, one may introduce a definition of the stress-energy tensor for the electro-

magnetic field, in the form independent of the metric tensor gαβ, which in the Minkowski

spacetime will turn into the above classic one. Such a tensor will be denoted as Υαβ

and defined as follows

Υαβ ≡ Λρ g
αβ − 1

µo

Fαµ gµγ Fβγ (3.2)

where Λρ is a scalar value with the dimension of energy density (subscript ρ), related to

the Lorentz invariant of the electromagnetic field tensor in the metric

Λρ ≡
1

4µo

Fαµ gµγ Fβγgαβ (3.3)

Assuming that the only field in the system is an electromagnetic field and remaining in

the Minkowski spacetime (gαβ → ηαβ), the below equation brings conservation of linear

momentum and energy by electromagnetic interactions

∂β
(
ϱUαUβ −Υαβ

)
= fα − fα

EM (3.4)

so this expression fits well as an expression to describe vanishing four-divergence of the

stress-energy tensor for the whole system.

However, it is known that there are other forces in the system, such as gravity, weak

interactions and strong interactions. One may then propose the following definition of

the stress-energy tensor Tαβ for the whole system, including new force densities that

will provide prototypes for the missing forces and allow for further development and

parameterization

Tαβ ≡ ϱUαUβ −
(
1 +

c2ϱ

Λρ

)
Υαβ (3.5)

As will be shown shortly, this will ensure compliance with the Cauchy momentum equa-

tion [36], what is known issue in EFE [37]. This will also provide the ability to recreate

the description of gravity as described by GR.

Vanishing four-divergence of tensor Tαβ would create two additional density of forces:

∂βT
αβ = 0 → fα − fα

EM − fα
oth − fα

gr = 0 (3.6)

where

fα
oth ≡ c2ϱ

Λρ

fα
EM (3.7)

fα
gr ≡ Υαβ ∂β

c2ϱ

Λρ

(3.8)
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In the above picture, element fα
gr seems to be related to the density of the gravitational

force. It is not defined as interaction between bodies. This contraction of the electro-

magnetic stress–energy tensor expresses the phenomenon of bending the light path by

the gradient of energy density.

The relationship of this force density with the Einstein curvature tensor will be con-

firmed in this and next chapter.

Element fα
oth seems to be related to the force density of other interactions, related

to electromagnetism. It will be discussed in the last chapter.

The proposed stress-energy tensors Tαβ and Υαβ allows the replacement of force densities

in flat Minkowski spacetime with the corresponding metric tensor in curved spacetime.

It requires a metric tensor gαβ defined as

Λρ · gαβ ≡ 1

µo

Fαµ gµγ Fβγ → Υαβ = 0 (3.9)

Such definition eliminates the whole electromagnetic stress-energy tensor Υαβ, but this

tensor is no longer needed. Equation (3.5) in such curved spacetime reduces to the

postulate of General Relativity

Tαβ = ϱUαUβ (3.10)

where the stress-energy tensor Tαβ determines the curvature of spacetime, the relation

between the metric tensor and electromagnetic field tensor is given by eq. (3.9) and

instead of field and forces one obtains curved spacetime. The vanishing covariant four-

divergence of (3.9) ensures that there is no force density (acceleration) resulting from

the electromagnetic field and all movement takes place according to geodetic.

The question then arises about the relationship of the above equation with the main

GR equation. One may thus express the energy density of the system by the tensor Rαβ

describing perfect fluid, where the difference between pressure p in this fluid and energy

density is equal to 2Λρ

Rαβ ≡ 1

c2
([p− 2Λρ] + p)UαUβ − p gαβ (3.11)

Next, one may define trace of this tensor by scalar R

R ≡ Rαβ g
αβ = −2p− 2Λρ (3.12)

thus

Rαβ −
1

2
Rgαβ − Λρ gαβ =

2

c2
(p− Λρ)UαUβ (3.13)

Both sides of the equation should have a vanishing four-divergence in the considered

metric and left side is apparently proportional to the Einstein tensor. Therefore, one
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may expect that Rαβ is a Ricci tensor with an accuracy of some constant and compar-

ing the above to (3.10), one may expect that both equations are proportional to the

accuracy of some constant.

Introducing Gαβ as Einstein curvature tensor, one may propose the following relation

c4

8πG
Gαβ −

1

2
Λρ gαβ =

1

c2
(p− Λρ)UαUβ = ϱUαUβ (3.14)

In the above solution, cosmological constant Λ is related to the invariant of

electromagnetic field tensor

Λ = −4πG

c4
Λρ (3.15)

and it would mean, that vacuum energy that has been sought for years [38] is related to

the electromagnetic field that fills the entire space. It would also lead to the conclusion,

that cosmological constant Λ should be taken into account in the calculation of the

metric, as they propose, inter alia, authors in [39].

It can also be seen, that in above picture the energy density, which is measured as

ϱc2 = p − Λρ, is only the surplus of the pressure over the vacuum energy density. The

total energy density taking into account the vacuum energy density is present in the

tensor Rαβ in (3.11) and is equal to [ϱc2 − Λρ].

The covariant four-divergence of the tensor Rαβ in curved spacetime is related to fα
gr

- gravitational force density prototype (∂α ϱc2 = ∂α p since Λρ is invariant) derived in

(3.8) and is reset by the four-divergence of component related to the trace 1
2
Rgαβ in

Einstein tensor. Therefore, Einstein tensor has vanishing covariant four-divergence and

is indeed related to the, vanishing in curved spacetime, force density fα
gr and correspond-

ing metric tensor.

It is worth noting, that in curved spacetime, Einstein tensor may also be interpreted as

stress-energy tensor describing perfect fluid, however this time, vacuum energy density

acts as pressure

c4

4πG
Gαβ =

1

c2
([
ϱc2 + p

]
− Λρ

)
UαUβ + Λρ gαβ (3.16)

By analyzing above and equations (3.12) and (3.14) one may notice, that

Gαβ = 0 → p = −Λρ → R = 0 → Rαβ = 0 (3.17)

thus this way one obtains Schwarzschild and Kerr vacuum solutions [40]. However, since

these metrics are actually calculated for ϱc2 = −2Λρ the interpretation of these metrics

will change, as will be discussed in the next chapter.
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In flat Minkowski spacetime (gαβ → ηαβ), one may now simplify eq. (3.5) to the

following form:

Tαβ = ϱUαUβ − p · Υ
αβ

Λρ

(3.18)

Vanishing four-divergence of the above, expresses the four-dimensional relativistic

Cauchy momentum equation (convective form). To see it, one may introduce tensor

Παβ defined as

Παβ ≡ c2ϱ
Fα

γ Fγβ

µoΛρ

(3.19)

Density of electromagnetic force may be expressed as

fα
EM = ∂β Λρ

Fα
γ Fγβ

µoΛρ

(3.20)

and taking four-divergence on (3.18), after easy rearrangement of elements, one obtains

fα = ∂αp+ fα
EM + ∂βΠ

αβ (3.21)

This equation expresses convective form of the relativistic Cauchy momentum equation,

where Παβ acts as a four-dimensional deviatoric stress tensor in the mentioned fluid.

According to present knowledge in the subject, deviatoric stress tensor depends only on

velocity gradients [41], and indeed, in the relativistic version thanks to (2.7), it may be

expressed as

Παβ = c2ϱ ·
Zα

γ Zγβ

1
4
Zµν Zµν

where Zµν ≡ ∂µUν − ∂νUµ (3.22)

since all constants from (2.7) cancel out.

In the presented solution, electromagnetic interaction is described by the four-potential,

while prototypes of gravity and other interactions are consequences of fluid dynamics.

The above also explains the origin of the metric tensor (3.9) for curvilinear coordi-

nates. Adopting the metric tensor in such a way, to eliminate deviatoric stress one

indeed makes mentioned fluid perfect and all forces disappear, what should be kept

when introducing other, additional fields to the above solution.

Finally, to express Υαβ

Λρ
in terms of the metric alone, and to ensure that always

Υαβgαβ = 0 one may propose following conclusion

Υαβ

Λρ

= gαβ − ξ hαβ where
1

ξ
=

1

4
gµν h

µν (3.23)

and where hαβ is the metric tensor of the spacetime in which all motion occurs along

geodesics.
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4. Conclusions

Summarizing, in curved spacetime, the main equation of the proposed solution (3.14)

expresses the Einstein Field Equations with cosmological constant Λ dependent on

invariant of electromagnetic field tensor Fαγ

Λ = − πG

c4µo

· Fαγ Fαγ = −4πG

c4
Λρ (4.1)

where Λρ is auxiliary constant describing vacuum energy density in considered volume.

These EFE drive to classic Schwarzschild and Kerr vacuum solutions, as shown in (3.16).

Derived stress-energy tensor Tαβ in a given spacetime, described by the metric ten-

sor gαβ is equal to

Tαβ = ϱUαUβ −
(
c2ϱ+ Λρ

) (
gαβ − ξ hαβ

)
(4.2)

where c2ϱ is energy density, 1
ξ
= 1

4
gµν h

µν and where hαβ is the metric tensor of the

spacetime in which all motion occurs along geodesics. This metric tensor appears to be

equal to

ξ hαβ =
1

Λρµo

Fα
γ Fβγ (4.3)

In flat Minkowski spacetime (gαβ → ηαβ) according to (3.21) vanishing four-divergence

of the proposed stress-energy tensor (∂βT
αβ = 0) turns out to be relativistic Cauchy

momentum equation which is the expected relationship.

Covariant four-divergence of the (c2ϱ+ Λρ)
(
gαβ − ξ hαβ

)
is unknown, however, one may

notice that assuming this value as[(
c2ϱ+ Λρ

) (
gαβ − ξ hαβ

)]
;β
= −

(
c2ϱ+ Λρ

)
hαβ ∂β ξ (4.4)

(where Christoffel symbols for hαβ spacetime are used) one obtains geometric description

of the transformation between considered spacetimes

gαβ ∂β φ+ gαβ ;β = ξ hαβ ∂β φ where φ ≡ ln

(
1 +

c2ϱ

Λρ

)
(4.5)

which leads to the correct description of gravity. Expressing (3.6) with help of (4.5),

the following force densities then appear in flat Minkowski spacetime

fα =



fα
EM ≡ −Λρ ∂βξ h

αβ (electromagnetic)

+

fα
gr ≡ −

(
ϱc2 + Λρ

)
· gαβ ;β (gravitational)

+

fα
oth ≡ −ϱc2 ∂βξ h

αβ (other)

(4.6)

Gravitational four-acceleration Aα
gr measured in the spacetime gαβ is thus equal to

Aα
gr ≡ −c2gαβ ;β (4.7)
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where Christoffel symbols for hαβ spacetime are used.

First component of this gravitational force density fα
gr is Newtonian-like, what will

be shown later in this chapter. Second component is related to the vacuum energy

in considered volume and at long distances it will have a repulsive effect, which may

help to explain the phenomenon described today as Dark Energy [42], [43]. This ad-

ditional component appeared thanks to taking into account Λρ in considered Einstein

Field Equations, which also changes the interpretation of the Schwarzschild and Kerr

solutions.

For demonstration of the use of the above general description, the following example

may be considered. Taking Schwarzschild metric tensor as hαβ

hαβ ≡


1− ro

r
0 0 0

0 − 1
1− ro

r
0 0

0 0 −r2 0

0 0 0 −r2sin2(θ)

 (4.8)

and taking Minkowski metric tensor in polar coordinates as gαβ

gαβ ≡


1 0 0 0

0 −1 0 0

0 0 −r2 0

0 0 0 −r2sin2(θ)

 (4.9)

one may calculate gravitational four-acceleration Aα
gr as

Aα
gr =

c2ro
r2

· 1

1− ro
r

·
(
0 ,

[
1− ro

r
− 1

2

r2o
r2

]
, 0 , 0

)
(4.10)

For this reason, to obtain the limit of Newtonian acceleration one should assume the

relationship between the mass of the gravitational source M and ro as

ro =
GM

c2
(4.11)

The above difference in the interpretation of the Schwarzschild metric (and also, by

analogy, the Kerr metric) is a simple consequence of taking into account the cosmolog-

ical constant in the calculation of the metric. At the specified vacuum limit (3.17), the

density of energy of the gravitational source equals to −2Λρ, thus the metric calculated

by Schwarzschild, in the light of this solution, was in fact a metric for 2Mc2 equal to a

doubled vacuum energy in the volume.

By transforming fα
gr from continuum description (energy density in the considered vol-

ume) to discrete description, one obtains the exact value of the gravitational four-force

Fα
gr resulting from the Schwarzschild metric as it is measured in flat Minkowski space-

time.

Fα
gr ≡

1

γ

∫
V

fα
gr dV (4.12)
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where V denotes volume and where 1/γ in above expressions is the result of the

amendment to the continuum mechanics introduced in equations (2.14) and (2.22) what

was shown as actually expected to keep the continuum mechanics consistent with the

Lorentz transformation. Considering ϱ = ϱoγ as volumetric mass density in the first

component of Fα
gr, one obtains mass dependent force.

1

γ

∫
V

ϱAα
gr dV =

mGM

r2
· 1

1− ro
r

·
(
0 ,

[
1− ro

r
− 1

2

r2o
r2

]
, 0 , 0

)
(4.13)

Since

−Λρ = − 1

4µo

Fαγ Fαγ =
1

2µo

(
E2

c2
−B2

)
(4.14)

so, the result of the integral of the above is unknown. It is possible, however, to introduce

a parameter LΛ (with the dimension of angular momentum), probably constant (may

be determined by observation) defined as

1

γ

cLΛ

r
≡ 1

γ

∫
V

−Λρ dV (4.15)

Now, one may group attracting (index gra) and repulsive (index grr) components of the

gravitational four-force Fα
gr

Fα
gr =


Fα
gra ≡

1

1− ro
r

(
0 ,

mGM

r2
+

1

γ

cr2oLΛ

r4

[
1 +

1

2

ro
r

]
, 0 , 0

)
+

Fα
grr ≡ − 1

1− ro
r

(
0 ,

1

γ

croLΛ

r3
+

mGMro
r3

[
1 +

1

2

ro
r

]
, 0 , 0

)(4.16)

Above force Fα
gr results from the Schwarzschild metric applied to presented EFE solu-

tion. By properly setting the parameter LΛ, for almost the entire range of distances, the

equations of motion based on this Fα
gr force turn out to be a very good approximation

of the currently used equations of gravitational motion resulting from the Schwarzschild

metric (as it is interpreted today).

The first component Fα
gra turns out to be Newtonian-like force with the expected cor-

rection. The significant differences in this force concern mainly distances close to the

Schwarzschild radius. Perhaps this could allow to describe unexplained phenomena re-

lated to very massive objects that elude the currently used description of gravity [44],

[45], [46], [47].

The second component Fα
grr describes the repulsion and replaces the classical, Newto-

nian centrifugal force. This is surprising, but has profound justification, as the vanishing

four-divergence of the stress-energy tensor Tαβ takes into account all the forces acting

on the body. It should also be noted that the obtained four-force Fα
gr acting in flat

spacetime is the equivalent of geodetic motion in curved spacetime. This necessitates

the emergence of both attractive and repulsive forces. This also means that the solution
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proposed here, relates the vacuum energy to total angular momentum (orbital + spin)

and may bring e.g. a non-zero LΛ even for bodies that do not have the orbital angular

momentum. It could prove very beneficial to quantum mechanics equations, since LΛ

should account also for the spin.

Since LΛ-dependent forces are moderated by 1/γ it would also explain why only some

fast-orbiting bodies (high γ) in selected galaxies feel less repulsive force [48], [49] since

in above solution high γ alters the balance of the forces. Describing gravity as it is now

computed according to present best knowledge, this changed balance of forces would

be currently interpreted as changed test body rest mass, angular momentum or (more

likely) as change in spacetime curvature due to additional mass in the system. Therefore

it could be easily mistaken for the appearance of Dark Matter [50], [51] in the system.

The repulsive force Fα
grr could also help to explain why repulsion of bodies moving

away from each other and accelerating (increasing γ) at different parts of the universe

and at different times in the life of the universe may have a different values (different

values of the measurement of the Hubble constant), as pointed, inter alia, by the authors

in the [52], [53], [54].

The above equations can also be further developed by extending the proposed stress-

energy tensor and additional parametrization.

5. Discussion

The presented solution creates a coherent picture in which spacetime is in fact a way of

perceiving the electromagnetic field (what also explains equation (2.7)). This solution

allows for further development, introducing additional fields, different parameterization

and simple transformation between Minkowski spacetime and curvilinear reference sys-

tems. It should be noted that the proposed solution does not question the correctness of

the currently existing, well-established physical theories, but rather leads to their inte-

gration, opening up a new field for further research, experimental verification and tuning.

The resulting description of the gravitational interaction, presented in previous chapters,

is a solution of the Einstein Field Equations, reproduces the current GR equations with

great accuracy, complies with the equations of continuum mechanics and adds compo-

nents that may help explain phenomena that cannot be described with GR today. This

description of gravity is also open for parameterization, development and further study

of this approach in search of quantum gravity, search for an explanation for the Dark

Matter and Dark Energy phenomenon [55] and other cosmological issues. The author

intentionally does not perform the parameterization on his own, because his intention

is not to create a theory explaining all the contemporary challenges of physics, but only
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to add his own brick to the whole knowledge by creating coherent framework that will

allow the broad scientific community for further theoretical and experimental research.

It is also necessary to discuss the force density fα
oth that occurs naturally in the equation

(3.7). This force density, interpreted here as ”other interactions”, seems to be related

to strong interactions, or sum of strong and weak interactions, what would link both

phenomena with additional electromagnetic force density moderated by the density of

energy. This is supported by the observation that on small scales with high energy

density, the density of this force will be extremely great - one may recognize it as a

strong interaction property. On larger scales with small energy density, this force will

be extremely weak - one may recognize it as a weak interaction property. It is also

known that both of these interactions on quantum level are to some extent related to

electromagnetism (charged quarks or bosons). Also the relation between strong forces

and gravity has already been noted by the double copy theory [56], [57], [58] which can

be thought of as an effect of the equation (4.5).

Due to the lack of equations describing the weak and strong fields in classical field

theory, confirmation of the proposed relationship of these fields with force density fα
oth

must take place on the basis of quantum theories, where equation (3.7) is a quantitative

prediction that can be verified or expanded with additional components in the proposed

stress-energy tensor. It also creates a new area of research to confirm the above ap-

proach or for further analysis of weak and strong interactions based on classical field

theory by developing the proposed solution.

Finally, it is worth noting, that cosmological constant Λ in above solution is certainly

not “Einstein’s greatest mistake”, but appears to be a measure for the value of invariant

of the electromagnetic field tensor. Since electromagnetic field fills each considered vol-

ume regardless of its selection (from the scale of the atom to the entire space), it turns

out to be a surprisingly natural explanation to the vacuum energy problem. It also may

be further parameterized and extended with invariants of other fields introduced to the

above solution.
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