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Abstract: Decades of research identified numerous gene biomarkers of cardiac diseases whose re-

stored sequence or/and expression level was hoped to recover the normal cardiac function. How-

ever, each human has unique and dynamic pathophysiological characteristics resulting from the 

unrepeatable combination of favoring factors such are: race, sex, age, medical history, diet, stress, 

exposure to toxins, habits etc. As such, no treatment fits everybody and finding personalized solu-

tions is a top priority for medicine of 21st century. The Genomic Fabric Paradigm (GFP) provides 

the most theoretically possible comprehensive characterization of the transcriptome, its alterations 

in disease and recovery following a treatment. By attaching to each gene the independent average 

expression level, expression variation and expression coordination with each other gene, GFP de-

livers thousands times more information than the traditional analysis. This report presents the the-

oretical bases of the GFP and some applications to our microarray data from mouse models of post 

ischemic, and constant and intermittent hypoxia-induced heart failure. The GFP analyses revealed 

novel transcriptomic aspects of the gene expression control and networking under ischemic condi-

tions. Through all-inclusive characterization of the transcriptome and the unrepeatable gene hierar-

chy in each condition, GFP is an essential avenue towards development of a truly personalized car-

diogenomic therapy. 
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1. Introduction 

Personalized or precision medicine has become a focal area of interests and develop-

ment in medicine of 21st century. This is because the individual variances of biological 

response to environmental factors and drug therapies may substantially alter the out-

comes of disease progression and therapeutic success. Understanding the genomic and 

epigenetic mechanisms regulating these variabilities due to the factors, such as race, sex, 

age, medical history, diet, stress, exposure to toxins, and individual habits, etc., could be 

critical for designing clinical strategy tailored for each patient. For example, 70 mi-

croRNAs identified in whole blood samples via next generation sequencing were linked 

to the risk of recurrent myocardial infarction and future stent thrombosis, as compared to 

coronary artery disease (CAD) patients without the subsequent events [1]. The miRNA 

profiling may be used to identify individuals at high risk for proper treatment or inter-

vention. A recent review elegantly summarized advances that unravel the genetic archi-

tecture of CAD with approximately 60 genetic loci to CAD risk [2]. These authors sug-

gested that genetic testing could enable precision medicine approaches by identifying 

subgroups of patients at increased risk of CAD or with a specific driving pathophysiology 

that can be targeted precisely [2]. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 June 2022                   doi:10.20944/preprints202206.0214.v1

©  2022 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202206.0214.v1
http://creativecommons.org/licenses/by/4.0/


 

 

A very rich literature brings rationale and experimental evidence for several molec-

ular mechanisms that might be responsible for a spectrum of cardiomyopathies. Gene  

expression profiling is now considered a very important tool to individualize the patho-

physiological characteristics and tailor the appropriate therapy for each individual (e.g.: 

[3-5]) but do we utilize the expression data at their full potential? As we will prove in this 

report, traditional quantification of the transcriptomic alteration, limited to determining 

the percentages of up/down-regulated and turned on/off genes, neglects over 99% of the 

information provided by any high-throughput gene expression platforms. Therefore, we 

use the revolutionary Genomic Fabric Paradigm (GFP) [6] that, in addition to the average 

expression level (AVE) across biological replicas, characterizes each individual gene by 

the relative expression variability (REV) and the expression correlation (COR) with each-

other gene.  

REV is an indirect measure of the strength of the homeostatic mechanisms that keep 

the random fluctuations of the gene expression within a narrow interval. COR, accounting 

for the “Principle of Transcriptomic Stoichiometry” (PTS) [7], determines whether and 

how strongly the genes are networked in functional pathways. PTS, a generalization of 

Dalton’s laws from chemistry, requires the coordinated expression of genes whose en-

coded products are participating to a functional pathway. GFP considers the transcrip-

tome as a multi-dimensional mathematical object subjected to dynamic sets of homeostatic 

controlling mechanisms and expression correlations of the individual genes. Thus, GFP 

gives the most theoretically possible comprehensive characterization of the transcriptome 

topology, increasing the workable information by 4 orders of magnitude. 

In previous publications, we have shown that the transcriptome topology is strongly 

dependent on race/strain [8], sex [9], age [10] and region of the profiled tissue [6]. In addi-

tion to these general factors, the transcriptome topology is also very sensitive to the indi-

vidual’s own characteristics like: medical history [11], diet [12], treatment [13], local stim-

uli [14] and a wide diversity of habits and exposure to stress [15] and infections [16, 17]. 

As subjected to unrepeatable combinations of influential factors, some of them changing 

in time, each human is a dynamic unique and therefore the medial treatment should be 

tailored to the today’s characteristics of the patient. This report presents the theoretical 

bases of the (cardio) genomic fabric approach, an important step towards development of 

the personalized cardiology.  

2. Materials and Methods 

2.1. Experimental data 

The (cardio)genomic fabric approach is illustrated here by using publicly available 

microarray data from a mouse model of post-ischemic heart failure (PIHF) [18, 19] and 

from mice subjected to chronic constant (CCH) or intermittent (CIH) hypoxia during their 

first 1, 2 or 4 weeks of life [20]. In all these experiments, the gene expression was profiled 

in the left ventricle of each of the four mice in every experimental group using 32k mouse 

oligonucleotide microarrays printed by the Albert Einstein College of Medicine, Bronx, 

NY, U.S.A.  

As described previously in [11], 8 – 10 weeks old (20.5 – 25.5 g) male and female 

C57BL/6 mice, anesthetized with intraperitoneal injection of ketamine (40 mg/kg) and 

xylazine (80 mg/kg), were forced into myocardial infarction by permanently ligating the 

descending branch of the left coronary artery. Following development into PIHF, the mice 

were then injected into 3 regions at the borders of the cardiac scar with 10 µl Matrigel (BD 

Biosciences) with or without 1.5x106 bone marrow mononuclear stem cells. Cells were 

suspended in Dulbecco’s modified Eagle’s medium (DMEM; Gibco, Grand Island, New 

York, USA) supplemented with 10% Fetal Bovine Serum, 100 U/ml penicillin and 100 

mg/ml streptomycin [11]. The transcriptomes were profiled 59 days after induction of my-

ocardial infarction induction and 49 days after cell therapy of the infarcted hearts. Total 

12 mice (n = 4 per group) were used in this experiment and divided into: normal untreated 

(“NN”), infarcted untreated (“IN”) and infarcted treated (“IT”).  
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In the hypoxia study, neonatal CD1 mice were placed with their mothers in Bio-

spherix hypoxia chambers in the second day of their life and kept there for the entire post-

natal period of 1, 2 or 4 weeks. Three groups of 4 mice each, denoted by “N1”, “N2”, “N4”, 

were kept under normal atmospheric conditions (FiO2 = 21%). For three groups of 4 mice 

each under chronic intermittent hypoxia (CIH), denoted by “I1”, “I2”, “I4”, the fraction of 

inspired oxygen, FiO2 was alternated between 21% for 4 min and 11% for another 4 min, 

24h/day. Finally, for other three groups of 4 mice each under chronic constant hypoxia 

(CCH), denoted by “C1”, “C2”, “C4”, FiO2 was kept constant at 11% for the entire period 

[13]. CIH experiment was intended to model the episodic oxygen deprivation occurred in 

sleep apnea, while CCH experiment modeled the living at high altitude.  

Although the datasets from both experiments were presented in previous publica-

tions [11, 13, 15, 21-23], the (cardio) genomic fabric approach was never used at its full 

potential and is able to reveal substantial novel and unpublished features for which the 

traditional analysis was incapable to delineate. 

2.2. Filtration and normalization 

All non-control spots with corrupted or saturated pixels, or with the median back-

ground fluorescence more than half of the median foreground signal in one array were 

eliminated from the analysis. The background subtracted foreground signal of each valid 

spot in one condition was normalized to the median of the background subtracted fore-

ground signals of all valid spots in that condition.  

2.3. Characteristics of the (cardio) genomic fabric  

We define the (cardio) genomic fabric of a functional pathway in a particular region 

of myocardium as the transcriptome associated to the most interconnected and stably ex-

pressed gene network responsible for that pathway in that heart region.  

Because the Agilent microarrays were printed with non-uniform numbers of spots 

probing redundantly the same gene, the independent characteristics AVE, REV, COR of 

individual genes probed by valid spots in each above defined condition were computing 

using the relations: 

 

4
( ) ( ) ( )

, , ,
1 1 1

1 1 1
, :

4

" "," "," "," "," 1"," 2"," 4"," 1"," 2"," 4"," 1"," 2"," 4"

 number of spots probing redundant

i iR R
condition condition condition

i i k i k j
k k ji i

i

AVE a where
R R

condition NN IN NT IT N N N I I I C C C

R


  

 
    

 





  

( )
, ,

ly gene "i",

normalized expression level of gene " " probed by spot " " 

                on biological replica " " in "condition"

condition
i k ja i k

j



   (1) 

 

Our normalization procedure returns the AVE values in terms of the median gene 

expression level in that condition. For instance, AVE = 4.31 for prolactin receptor, (Prlr) in 

N1 means that the average expression of this gene is 4.31x larger than that of the median 

gene in N1 (like Slc44a2 - Solute carrier family 44, member 2 whose AVE = 1.0005). 
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REV can be used to determine the Relative Expression Control (REC) of individual 

genes and the Pathway Relative Expression Control (PREC) of the (cardio) genomic fabric 

of a particular pathway: 
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Higher positive REC values indicate genes whose random fluctuations of the expres-

sion level are strongly limited by the cellular homeostatic mechanisms within narrow in-

tervals, most likely critical for the cell survival, phenotypic expression or/and integration 

in the multicellular structure of the myocardium. By contrast, lower negative RECs are 

associated with less controlled genes that can be vectors of cell adaptation to the slight 

fluctuations of the environmental conditions, as seen across biological replicas. Thus, REC 

indicates the non-uniform priorities of the cell in regulating the transcription machinery. 

Similarly, high positive PRECs are associated with critically important pathways to for 

the preservation of the phenotypic expression against environment changes and low 

PRECs with adapting pathways. One may observe that REC = 0 set the baseline for genes 

and PREC = 0 the baseline for the pathways. As presented in the Results section below, 

REC and PREC are sensitive to the external factors like ischemia and oxygen deprivation. 

COR analysis is based on the Pearson product-moment correlation coefficient be-

tween the (log2) expressions of each gene i across biological replicas with each other gene 

g in the same group of replicas. 
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Using COR analysis one can identify the (p < 0.05) significantly synergistically, an-

tagonistically and independently expressed gene pairs. Two genes are synergistically ex-

pressed when their fluctuations across biological replicas go the same way and antagonis-

tically expressed when their fluctuations go opposite ways. This analysis cannot deter-

mine which of the two genes is the master and which one is the slave. However, it says 

that when the master is up-regulated it forces the up-regulation of its synergistically ex-

pressed slaves and the down-regulation to the antagonistically expressed ones. Based on 

the “Principle of Transcriptomic Stoichiometry”, COR determines the statistically signifi-

cant parts of the gene networks in each condition separately, refining the gene “wiring” 

in functional pathways constructed by the dedicated software: Ingenuity Pathway Anal-

ysis [24], DAVID [25], KEGG [26] etc. Without COR analysis, the traditional pathways are 

the same regardless of race/strain, sex, age, heart region, and other factors known to in-

fluence the incidence of the disease, and the response to a treatment. Thus, GFP identifies 

for each patient in each condition the most stably expressed and interconnected gene net-

work responsible for that particular biological process. 

Moreover, GFP establishes the gene hierarchy in each condition using the Gene Com-

manding Height (GCH) scoring system that combines the expression control and expres-

sion coordination with each other gene.   
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The top of the hierarchy (highest GCH, termed Gene Master Regulator, GMR) is the 

gene whose strongly protected expression level is the most influential on the expression 

of other genes. By stably transfecting two human thyroid cancer cell lines with four genes, 

we proved that expression manipulation of a gene has transcriptomic consequences pro-

portional to the GCH of that gene [27]. Because each cell phenotype has distinct gene hi-

erarchy, smart manipulation of the GMR expression can be used to selectively kill, or by 

contrary, stimulate the proliferation of the desired cell type from a tissue. 

2.4. Comparing conditions of the (cardio) genomic fabric 

2.4.1. Cut-off criteria 

When comparing two conditions (for instance “IN” with “NN” in the infarct experi-

ment), traditional transcriptomic analysis uses uniform, arbitrary introduced cut-off for 

the absolute fold-change (1.5x or 2.0x) w/o requiring a less than 0.05 p-vale of the hetero-

scedastic t-test of the two means equality. However, such absolute fold-change cut-off 

might be too stringent for very stably expressed genes across biological replicas and low 

local technical noise while for other genes it might be too relaxed. Therefore, we determine 

the cut-off separately for each quantified gene so that the absolute fold-change criterion 

becomes: 
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In addition to the absolute fold-change, our analysis maintains the p-value < 0.05 

condition for the heteroscedastic t-test of the two means equality.  

2.4.2. Uniform, weighted and all-inclusive contributions of individual genes to the tran-

scriptome alteration 

Traditional analysis measures the overall transcriptomic alteration by the percent-

ages of the genes that were significantly up-/down-regulated or turned on/off. Such meas-

ure is limited to only the significantly regulated genes. Moreover, the regulated genes are 

considered as equal contributors to the transcriptome alteration, regardless of the how 

large is their departure from the normal expression level and what is the statistical confi-

dence in their regulation.  

A more informative measure is the Weighted Individual (gene) Regulation (WIR) 

[28] that takes into account the absolute departure from the normal expression level and 

the statistical confidence in the expression regulation: 
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Like the expression ratio “x”, WIR takes also positive values for up-regulated genes 

and negative values for the down-regulated ones. 
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However, the best all-inclusive characterization of one gene contribution to the over-

all transcriptomic alteration is the “Individual (gene) Transcriptomic Distance” (ITD). ITD 

is the magnitude of the 3D vector whose orthogonal components reflect the relative 

changes in the average expression level, expression variability (among biological replicas), 

and expression correlations (averaged over all other expressed genes) [29]: 
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Both WIR and ITD can be further averaged for a given functional pathway “Γ” as the 

Weighted Pathway Regulation (WPR) and Pathway Transcriptomic Trajectory (PTT), 

much more accurate in ranking the pathways according their alteration than the percent-

age of regulated genes: 
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2.5. Transcriptomic effect of a treatment 

One can determine the transcriptomic effect of a treatment by comparing the altera-

tions before and after that treatment. The comparison may encompass all genes or re-

stricted to a particular functional pathway “Γ”. Traditionally, such comparison is done by 

comparing the numbers of regulated genes with and without the treatment (when each 

gene is considered as a uniform contributor). In previous papers [13, 30, 31], we used the 

Gene Expression Recovery (GER). For instance, in the case of post-ischemic heart failure 

treated with bone marrow mononuclear cells (T), the genomic effects computed as GER 

takes into account not only the numbers of up- and down-regulated genes in IN whose 

normal expression was fully recovered in IT (i.e. {DX} and {UX}) but also the genes whose 

regulation status was not changed (i.e. {DD} and {UU}) and those whose regulation type 

was switched in IT (i.e. {DU} and (UD}). 
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A better measure of the transcriptomic restoration compares the WPR scores, as the 

Pathway Restoration Efficiency (PRE) [31]: 
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Now, we add the Comprehensive Pathway Restoration (CPR) representing the per-

cent reduction of the Transcriptomic Distance in response to the treatment.  
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3. Results 

3.1. Overview of the microarray data  

The PIHF experiment quantified the expression levels of 10,408 unigenes in all 12 

samples from the groups “NN”, “IN”, “IT”, n = 4/group), from which GFP extracted in 

each condition 10,408 AVEs + 10,408 REVs + 54,158,028 CORs = 54,178,844 values. Thus, 

GFP increased the size of the workable data in each condition by 5,206 times. With respect 

to NN, 579 genes (i.e. 5.56%) were significantly (according to our composite criterion) up-

regulated and 1,222 (11.74%) were down-regulated in IN. The treatment with bone mar-

row mononuclear stem cells recoversed partially the normal expression levels of the 

genes, leaving 256 (2.46%) up-regulated and 667 (6.41%) down-regulated in the IT group 

as compared with the NN controls. Interestingly, the treatment went even further by flip-

ping the significant down-regulation of 19 genes and the significant up-regulation of 15 

genes to their opposites.   

In the hypoxia experiment, 9,716 unigenes were adequately quantified in all 36 sam-

ples from the groups “N1”, “I1”, “C1”, “N2”, “I2”, “C2”, “N4”, “I4”, “C4” (n = 4/group), 

from which GFP extracted in each condition 47,214,902 values. This is an increase by 4,860 

times of the information used in the traditional analysis limited to the AVEs. According 

to our criterion, with respect to the control group “N1”, 9.43% of the genes were up- and 

11.72% were down-regulated in the group “I1”, and 6.13% were up- and 4.30% down-

regulated in “C1”. With respect to “N2”, 10.48% of the genes were up- and 18.94% were 

down-regulated in “I2”, and 22.02% up- and 18.92% down-regulated in “C2”. Finally, with 

respect to “N4”, 4.08% were up- and 2.14% down in “I4”, while in “C4”, 6.01% were up- 

and 6.71% down-regulated. 

3.2. AVE, REV and COR are independent features 

Figure 1 illustrates the evident independence of the AVE, REV and COR with Ank2 

(ankyrin 2) for 34 genes involved in the inflammatory response in the left ventricle of the 

mice subjected for the first week of their life to normal atmospheric conditions (“N1”), or 

intermittent hypoxia (“I1”) and constant hypoxia (“C1”). Supplementary Tables S1, S2, S3 

presents the AVEs, REVs and CORs with Ank2 of the same genes for the 2 and 4 weeks of 

hypoxia exposures. The value 1 for the expression correlation of Ank2 with itself is the 

validation of the correctness of the COR analysis. Although Figure 1 is restricted to this 
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subset of genes, any other subset of genes in any other condition would prove the inde-

pendence, including the ion channels and transporters in each of the four heart chambers 

of the adult mouse [6]. 

 

Figure 1. Illustration of the independence of the three types of characteristics of individual genes in 

the left ventricle of mice subjected in the first week of their life to normal atmospheric conditions 

(“N1”), chronic intermittent hypoxia (“I1”), or chronic constant hypoxia (“C1”). (a) Average expres-

sion level (AVE), in levels of the median gene in that condition. (b) Percentage of the Relative Ex-

pression Variability (REV); (c) Expression correlation with Ank2. 

For reference, we added Table S1 presenting the genes with the largest expression 

level in each condition. For the 1-week exposure, the genes with the largest expression 

level were: Hspb6 (Heat shock protein, alpha-crystallin-related, B6; AVE = 14.19 in “N1” 
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and 9.64 in “C1”) and Nr1i3 (Nuclear receptor subfamily 1, group I, member 3; AVE = 

15.05 in “I1”). 

Likewise, in Table S2 we added the genes with the strongest expression control (i.e. 

lowest REV) in their respective treatment conditions. For the 1-week exposure, the most 

stably expressed genes were: Lias (Lipoic acid synthetase, REV = 1.4 in “N1”), Cadm4 (cell 

adhesion molecule 4, REV = 0.2 in “I1”) and Numa1 (Nuclear mitotic apparatus protein 1, 

REV = 1.3 in “C1”). Of note is the diversity of the most controlled genes and how the left 

ventricle prioritized different genes in each of the distinct conditions. 

Fig. 1 and Tables S1 – S3 also showed that chronic hypoxia not only changed the 

average expression level, but also the homeostatic control of the expression fluctuations 

and hence the expression variability across biological replicas. On top of this, hypoxia 

changed the expression coordination with other genes, illustrated here with Ank2, encod-

ing Ankyrin-B one major player in cardiac physiology [32]). Coordination changes indi-

cate remodeling of the gene networks. Through the analyses of expression variability and 

expression coordination, the GFP brings a treasure of previously neglected information 

about how the cardiac transcriptome is controlled and organized in partially overlapping 

networks. 

3.3. Gene hierarchy 

GCH analysis was used to establish the hierarchies of the genes in the conditions 

“NN”, “IN” and “IT”. Figure 2 presents the top 20 genes in each condition. Of note is the 

lack of overlap among the three sets of top 20 genes, indicating distinct transcriptomic 

topologies. Remarkably, the top genes in one condition have low GCH scores in the other 

two. This finding can be used to selectively target the cells commanded by the GMRs in a 

mixture of cells like a tumor harboring cancer nodules within a mass of normal cells (e.g.: 

[21]). For these conditions, the GMRs are: Transmembrane protein 186 (Tmem186, with 

GCH = 53.21 in “NN”, 1.03 in “IN” and 2.57 in “IT”), CD164 antigen (Cd164, with GCH = 

1.54 in “NN”, 46.37 in “IN” and 2.08 in “IT”), and ATPase type 13A2 (Atp13a2, with GCH 

= 1.88 in “NN”, 0.99 in “IN” and 32.43 in “IT”).  

 

Figure 2. Top 20 genes in the conditions: normal untreated (“NN”), infarcted untreated (“IN”) and 

infarcted treated (“IT”) normal untreated (“NN”), infarcted untreated (“IN”) and infarcted treated 

(“IT”). Note there is no overlap of the three gene sets and that the top genes in one condition have 

low GCH scores in the other two conditions. 

Some of the top hits in GCH analysis among the three conditions may represent some 

potentially new gene targets to protect heart against ischemic injury. For example, under 

IN condition, several genes that regulate cellular metabolism were among the top hits, 

suggesting adaptive responses to myocardial infarction. Most notably, the No. 2 gene hit 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 June 2022                   doi:10.20944/preprints202206.0214.v1

https://doi.org/10.20944/preprints202206.0214.v1


 

 

- Cox6b1 (cytochrome c oxidase, subunit 6B1) was shown to protect cardiomyocytes from 

hypoxia/reoxygenation injury by reducing ROS production and cell apoptosis [33]. The 

4th gene hit - Pcsk7 (proprotein convertase subtilisin/kexin type 7) was also associated with 

cardiovascular disease phenotypes [34]. On the other hand, under IT condition, the 6th top 

hit gene - Tuba1c (tubulin, alpha 1C) was previously identified to predict the outcome of 

a linear combination of circadian rhythm pathway genes [35]. The 8th top gene was 

Fam171a2 (family with sequence similarity 171, member A2) and its transcript abundance 

in the heart was recently correlated with PR interval of electrocardiogram, suggesting a 

role for cardiac conduction system [36]. 

3.4. Measures of expression regulation 

Figure 3 illustrates for 40 genes involved in the adrenergic signaling in cardiomyo-

cyte [37] the four ways to report their transcriptomic alteration in infarcted untreated 

(“IN”) and treated (“IT”) heart with respect to normal condition.  

 

Figure 3. Four ways to report the altered expression of 40 individual genes involved in the adrener-

gic signaling in cardiomyocytes in untreated (“IN”) and treated (“IT”) post ischemic infarcted 

mouse heart with respect to healthy counterparts. (a) Uniform +1/-1 contribution of significantly up-

/down-regulated genes. (b) Expression ratios of all genes. (c) Weighted Individual (gene) Regulation 

(WIR). (d) Individual (gene) Transcriptomic Distance (ITD). 

In the traditional analysis of the percentages of significantly up-/down-regulated 

genes, each affected gene is considered as a uniform +1 or -1 contributor to the overall 

transcriptomic regulation. Moreover, this measure is limited to the significantly regulated 

genes according to the criterion established by the investigator, frequently an arbitrary 

absolute fold-change cut-off. In our study, the absolute fold-change cut-off is determined 

separately for each expressed gene pending on its expression variability across biological 

replicas and the technical noise of the probing spot(s) in the microarray [14].  

A better way to quantify the contributions of the individual genes to the overall tran-

scriptomic alteration is to use the WIR score. Although still limited to the change in the 
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expression level, WIR not only considers all genes but weights their contribution accord-

ing to the total absolute change of their expression level and the statistical confidence in 

their regulation. This measure was previously used to quantify the transcriptomic altera-

tions in the left ventricle of a mouse model of Chagasic cardiomyopathy [28], in the corti-

cal oligodendrocytes and microglia of a rabbit model of intra-ventricular hemorrhage [37], 

and in the hypothalamic arcuate node of a rat model of infantile spasms [31].  

Nevertheless, the most comprehensive measure is the TD that takes into account the 

alterations of all independent characteristics of the individual genes. The new measures 

reveal that genes neglected because their expression ratios did not pass the threshold to 

be considered as significantly regulated may have even larger contributions to the tran-

scriptome alteration than the significantly regulated ones. For instance, although the ex-

pression ratio of the significantly up-regulated Tpm1 (Tropomyosin 1, alpha) in “IN” 

(2.18x) is larger than that of the not significantly regulated Tpm4 (Tropomyosin 4, 1.31x), 

both WIR and ITD scores are larger for Tpm4 (WIR = 0.68, ITD = 1.89) than for Tpm1 (WIR 

= 0.55, ITD = 0.30) in “IN”. Such findings imposes reconsideration of what really matters 

in the transcriptome changes. Interestingly, while Tpm1 is one of the main hypertrophic 

cardiomyopathy genes [38], Tpm4 is known for its inhibitory effect on actin polymeriza-

tion [39]. 

Both “WIR” and “ITD” analyses revealed that for this pathway, the regulation of the 

Gnas gene, encoding the stimulatory alpha subunit, of the protein complex guanine nu-

cleotide-binding protein (G protein), had the largest contribution to the transcriptomic 

alteration in “IN” (WIR = - 27.98, ITD = 4.47). Although, no longer significantly regulated 

in “IT” (x = - 1.12), Gnas still contributes to the transcriptomic differences with respect to 

the control “NN” (WIR = -1.67, ITD = 2.86). It was recently reported that a somatic muta-

tion of Gnas is associated with focal, idiopathic right ventricular outflow tract (RVOT) 

tachycardia [40]. 

3.5. Regulation of the adrenergic signaling in the left ventricle of mice with post-ischemic heart 

failure  

Figure 4 presents the significant regulation of the genes involved in the adrenergic 

signaling in cardiomyocyte [41] as indicated by the microarray data in the left ventricle of 

mice with post-ischemic heart failure (condition “IN” with respect to “NN”). The pathway 

was designed by the Kanehisa Laboratories who developed the Kyoto Encyclopedia of 

Genes and Genomes (KEGG, [42]).  

One may note that Adra1b (Adrenergic receptor, alpha 1b), involved in the positive 

regulation of the blood pressure [43], was significantly down-regulated (x = -1.81, WIR = - 

1.72, ITD = 1.50) in the infarcted heart. Although the other two subtypes of the alpha ad-

renergic receptors [44] were also down-regulated (Adra1a: x = -1.19, CUT = 1.65; Adra1d: 

x = -1.44, CUT = 1.73), their regulations were not statistically significant. However, because 

of larger differences in REVs and CORs, both genes had higher contributions to the overall 

alteration of the transcriptome than Adra1b, with ITD = 1.62 (Adra1a) and ITD = 

1.67(Adra1d). It was reported that stimulation of these alpha adrenergic receptors can 

protect cardiomyocytes against ischemia by regulating the influx of glucose [45]. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 June 2022                   doi:10.20944/preprints202206.0214.v1

https://doi.org/10.20944/preprints202206.0214.v1


 

 

  

Figure 4. Statistically significant regulation of genes involved in the KEGG-built adrenergic signal-

ing in the left ventricle cardiomyocytes of untreated mice with post-ischemic heart failure. INaK 

and PP2A are blocks of quantified genes, while NCX and PI3K are blocks of not quantified genes. 

Regulated genes: Adra1b (Adrenergic receptor, alpha 1b), Atf2 (Activating transcription factor 2), 

Atp1b2 (ATPase, Na+/K+ transporting, beta 2 polypeptide), Bcl2 (B-cell leukemia/lymphoma 2), 

Cacnb2 (Calcium channel, voltage-dependent, beta 2 subunit), Calm2 (Calmodulin 2), Fxyd2 (FXYD 

domain-containing ion transport regulator 2), Gnas (guanine nucleotide binding protein, alpha stim-

ulating) complex locus), Kcne1 (Potassium voltage-gated channel, Isk-related subfamily, member 1), 

Ppp1cc (Protein phosphatase 1, catalytic subunit, gamma isoform), Ppp2r2d (Protein phosphatase 2, 

regulatory subunit B, delta isoform), Rapgef4 (Rap guanine nucleotide exchange factor (GEF) 4), 

Scn7a (Sodium channel, voltage-gated, type VII, alpha), and Tpm1 (Tropomyosin 1, alpha). 

3.6. Recovery of the adrenergic signaling in the left ventricle of mice with post-ischemic heart 

failure following treatment with bone marrow mononuclear stem cells 

Figure 5 presents the regulation of the adrenergic signaling in cardiomyocyte path-

ways after the stem cell treatment (condition “IT” with respect to “NN”). Of note is the 

recovery of the normal expression for: Adra1b, Atp1b2, Bcl2, Cacnb2, Calm2, Fxyd2, Gnas, 

Ppp1cc, Ppp2r2d, Rapgef4, Scn7a, and Tpm1. For this pathway, {DX} = 7, {UX} = 5, {XD} = 2, 

{XU} = 0, {DD} =1, {UU} = 0, {UD} = 0, {DU} = 0, so that GER(IN→IT;NN) = 66.67%. WPR(NN → IN) 

= 36.10 and WPR(NN → IT) = 13.63, making WPR(IN→IT;NN) = 62.24%. The transcriptomic dis-

tance analysis returned: PTD(NN → IN) = 37.11, PTD(NN → IT) = 11.29, resulting CPR(IN→IT;NN) = 

69.59%. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 June 2022                   doi:10.20944/preprints202206.0214.v1

https://doi.org/10.20944/preprints202206.0214.v1


 

 

 

Figure 5. Statistically significant regulation of genes involved in the KEGG-built adrenergic signal-

ing in the left ventricle cardiomyocytes of stem cell treated mice with post-ischemic heart failure. 

INaK and PP2A are blocks of quantified genes, while NCX and PI3K are blocks of not quantified 

genes. Regulated genes: Cacna2d1 (Calcium channel, voltage-dependent, alpha2/delta subunit 1), 

Kcne1 (Potassium voltage-gated channel, Isk-related subfamily, member 1), Ppp2r5e (Protein phos-

phatase 2, regulatory subunit B (B56), epsilon isoform). 

3.7. Reconfiguration of the gene networks by the post-ischemic heart failure and recovery 

following treatment with bone marrow mononuclear stem cells 

Figure 6 illustrates the reconfiguration of the gene networks by the disease and fol-

lowing a treatment by showing how the infarct and the treatment affects the expression 

correlations of Adra1b with the other genes from the adrenergic signaling in cardiomyo-

cytes. Adra1b, one of the six subtypes of the adrenergic receptors that control the heart 

contractility (inotropism) and rate (chronotropism), mediates its action by association 

with G proteins that activate a phosphatidylinositol-calcium second messenger system. In 

mouse, the alpha1-adrenergic receptors play adaptive roles in the heart and protect 

against the development of heart failure [46]. Figures 6abc present only the genes of the 

pathway that are statistically (p < 0.05) significant synergistically or antagonistically ex-

pressed with Adra1b in at least one of the three conditions. However, the percentages of 

the synergistically, antagonistically and independently expressed partners were com-

puted for the entire pathway. Figure 6d lists the genes that are independently expressed 

with Adra1b in each condition. 

Interestingly, as shown in panel (b), the infarct increased the synergistic partnership 

of Adra1b in this pathway from 13.9% to 24.1% and that of the antagonistic partnership 

from 1.3% to 8.9%. This very substantial strengthen of the Adra1b inter-coordination with 

many other genes of the pathway makes Adra1b a very important target to recover the 

altered heart functions. The treatment (panel (c)), reduced back the expression coordina-

tion to 11.4% synergism and 1.3% antagonism, and further decoupled numerous other 

genes from their correlation with Adra1b (panel (d): Akt1, Atf2, Atf4, Atp1a3, Cacnb2, 
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Camk2a, Ppp2r2d, Ppp2r5d). However, the treatment antagonistically coupled the inde-

pendently expressed Atf6b and Adra1b under ischemic conditions. 

 

Figure 6. Remodeling of the Adra1b networking with genes from the functional pathway Adrenergic 

signaling in cardiomyocytes caused by the post ischemic heart failure with and without stem cell 

treatment. (a) Significantly synergistically and antagonistically expressed partners of Adra1b in 

“NN” hearts. (b) Significantly synergistically and antagonistically expressed partners of Adra1b in 

“IN” hearts. (c) Significantly synergistically and antagonistically expressed partners of Adra1b in 

“IT” hearts. (d) Independently expressed genes with Adra1b. 

4. Discussion 

The present study provides the theoretical bases of the (cardio)genomic fabric ap-

proach in identifying key gene regulatory factors. The theory is applied to expression data 

from the hearts of mouse models of common myocardial pathologies such as hypoxia and 

myocardial infarction with or without treatment with bone marrow mononuclear stem 

cells. Nevertheless, in a really personalized application, the biological replicas of diseased 

and normal cells should come from the same individual. Such procedure has been already 

used to compare samples collected from each cancer nodule and surrounding normal tis-

sue from surgically removed tumors of thyroid [27, 47], kidney [29] and prostate [48, 49]. 

For cardiac diseases, one can collect samples from localized heart myocardium using per-

cutaneus endomyocardial biopsy [50]. 

Through considering three independent groups of characteristics for each individual 

gene in each condition (illustrated in Fig. 1), GFP run through the full potential of profiling 

tens of thousands of transcripts at a time on several biological replicas. The independence 
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and complementarity of the 3 types of characteristics was proved previously for genes 

within mTOR signaling pathway and evading apoptosis in human prostate [45, 46], apop-

tosis in human thyroid [27] and chemokine signaling in human kidney [29]. They were 

also proved for chemokine signaling in mouse cortex [48], PI3K–AKT signaling in mouse 

hippocampus [49], and ion channels and transporters in mouse heart myocardia of each 

of the four chambers [6]. Regardless of the used RNA-sequencing or microarrayplatform, 

this strategy increased by 4-5 orders of magnitude the workable information furnished by 

a high throughput transcriptomic study.  

As one may note in Fig.1, the hypoxia not only changed the expression levels of the 

individual genes, but also their expression control and expression coordination in fucn-

tional pathways. Substantial changes in the genes’ expression control and inter-coordina-

tion were constant findings in all previous GFP studies on diseases on samples collected 

from both humans [29, 47-49] and animal models (e.g.: [31, 51-54]). We believe that such 

rich additional information could be instrumental in developing a personalized genomic 

medicine.   

GFP provides essential clues on the priorities of the cellular homeostatic mechanisms 

in controlling the expression of critical genes and especially how the genes are networked 

to optimize the functional pathways. That Lias is the most protected gene in the heart of 

1 week normoxic mice did not come as surprise given the strong antioxidant potency of 

the α-lipoidic acid synthesized by the encoded enzyme [55]. Lias was significantly up-

regulated (x = 1.52) in ischemic heart but its expression was restored to normal by the cell 

treatment. Cadm4, the most protected gene in the heart of mice subjected during their first 

week of life to chronic intermittent hypoxia, is essential for restricting the production of 

cardiac outflow tract progenitor cells in zebrafish [56]. Whether it performs a similar func-

tion for the development of the mouse heart remains to be tested by further experiments. 

Finaly, Numa1, the most protected gene after 1 week chronic constant hypoxia is a marker 

of the myotonic dystrophy type 1 [57]. 

Importantly, GFP can hierarchize the genes according to their Gene Commanding 

Height (GCH, Fig. 2) that accounts for both the strength of the homeostatic controlling 

mechanisms of the expression accuracy and power to regulate expression of other genes. 

With GCH, one can identify the gene master regulator of that condition (GMR) whose 

“smart” manipulation would have the desired effect on the cells it commands but little to 

no consequences on the other cells of the tissue. The monotonic relationship between the 

GCH and the transcriptomic consequences of altering the expression of that gene was 

proved by stable transfection of 4 genes into two standard human thyroid cancer cell lines 

[47, 58].  

Nonetheless, our approach improves quantification of the transcriptome alteration 

with a more accurate absolute fold-change cut-off to decide about the statistical signifi-

cance of the expression regulation (Eq. 7) and especially with more comprehanssive 

measures of individual gene contributions (Eqs. 8, 9). Fig. 3 makes a powerful case of the 

importance of addopting WIR and ITD for a better understanding of the transcriptomic 

consequences of a disease.  

One of our primary focuses was on the key genes regulating myocardial adrenergic 

signaling, such as Adra1b, (Figures 4 to 6), by means of the KEGG-built platform. The 

cardioprotective role of Adra1b has long been established by Woodcock’s group who first 

showed the reduction of reperfusion-induced Ins(1,4,5)P3 generation and arrhythmias in 

mouse hearts expressing constitutively active alpha1B-adrenergic receptors [59]. How-

ever, under pathologic conditions, e.g. pressure overload, overexpressing of alpha1B-ad-

renergic receptors leads to depressed contractile responses to beta- adrenergic receptor 

activation, and predispose hearts to hypertrophy and worsen heart failure [60].  

Our present study further revealed the remodeling of the Adra1b networking follow-

ing myocardial infarction (group IN) and normalization by the post myocardial infarction 

stem cell treatment (group IT) (Figure 6). The coordination analysis provided additional 

insights that would not be available through simple comparison of expression levels of 
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individual genes. For instance, Crem (CAMP responsive element modulator) coordina-

tion with Adra1b was switched from synergistic in “NN” to antagonistic in “IN”, and 

practically independent in “IT”, indicating major change in the interaction of the two 

genes. While the critical role of Crem in β-adrenoreceptor-mediated cardiac dysfunction 

is documented [61], there is not yet any report concerning the interaction between Crem 

and Adra1b and how such interection might impact the heart physiology. Since Crem is a 

transcription factor that mediates high glucose response in cardiomyocytes [62], its rela-

tionship with Adra1b deserves further investigation. 

5. Conclusions 

So far, the GFP power to represent the organization of the transcriptome was suc-

cessfully tested in several other studies on neurological diseases (e.g.: [31, 51-53]), pulmo-

nary hypertension [54] and cancers [27, 29, 47-49]. GFP proved also its ability to charac-

terize the transcriptomic networks linking ionic channels and transporters across the heart 

chambers [6] as well as different cell types in insert systems [63]. The present report pro-

vides evidence of the advantages of using GFP analyses to decode the remodeling of the 

gene networks in the myocardialtissue following myocardial infraction or systemic hy-

poxia. 

Supplementary Materials: Table S1: Average expression (AVE) normalized to the median gene 

expression levels of 34 inflammatory response genes, Ank2 and the genes with the largest expression 

level in the entire transcriptome after 2 and 4 weeks exposure to normal atmospheric conditions 

(N2, N4), chronic intermittent hypoxia (I1, I2) and chronic constant hypoxia (C2, C4); Table S2: Rel-

ative expression variation (REV) of 34 inflammatory response genes, Ank2 and the most stably ex-

pressed genes in the entire transcriptome after 2 and 4 weeks exposure to normal atmospheric con-

ditions (N2, N4), chronic intermittent hypoxia (I1, I2) and chronic constant hypoxia (C2, C4); Table 

S3: Expression correlation with Ank2 of 34 genes after 2 and 4 weeks exposure to normal atmos-

pheric conditions (N2, N4), chronic intermittent hypoxia (I1, I2) and chronic constant hypoxia (C2, 

C4). 
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Table S1: Average expression (AVE) normalized to the median gene expression levels of 34 inflammatory response genes, Ank2 

and the genes with the largest expression level in the entire transcriptome after 2 and 4 weeks exposure to normal atmos-

pheric conditions (N2, N4), chronic intermittent hypoxia (I1, I2) and chronic constant hypoxia (C2, C4). Light gray back-

ground indicates the genes with the largest expression level within the selection while the darker gray indicates the gene with 

the largest expression level in each condition. 

  

Symbol Gene N2 I2 C2 N4 I4 C4

Atrn Attractin 0.27 0.30 0.24 0.31 0.21 0.36

Ccl22 Chemokine (C-C motif) ligand 22 0.29 0.29 0.27 0.28 0.25 0.26

Cx3cl1 Chemokine (C-X3-C motif) ligand 1 0.16 0.15 0.29 0.21 0.24 0.23

Cxcl4 Chemokine (C-X-C motif) ligand 4 0.27 0.12 0.41 0.23 0.33 0.28

Ifnar1 Interferon (alpha and beta) receptor 1 0.27 0.20 0.58 0.24 0.29 0.27

Ifngr2 Interferon gamma receptor 2 1.23 1.07 1.21 1.05 0.94 0.76

Il10ra Interleukin 10 receptor, alpha 0.18 0.14 0.15 0.11 0.13 0.08

Il11ra1 Interleukin 11 receptor, alpha chain 1 3.47 4.94 4.48 6.86 5.94 5.52

Il16 Interleukin 16 0.20 0.17 0.27 0.14 0.12 0.21

Il17b Interleukin 17B 0.50 0.38 0.10 0.49 0.42 0.29

Il1f6 Interleukin 1 family, member 6 5.44 4.18 5.42 7.21 7.19 6.80

Il28ra Interleukin 28 receptor alpha 0.29 0.16 0.18 0.25 0.16 0.15

Il31ra Interleukin 31 receptor A 0.88 0.47 1.78 0.89 0.85 1.32

Il4 Interleukin 4 0.71 0.49 0.30 0.26 0.27 0.25

Il6st Interleukin 6 signal transducer 0.36 0.42 0.34 0.32 0.41 0.51

Il7r Interleukin 7 receptor 2.14 3.01 1.75 3.04 3.27 2.85

Lif Leukemia inhibitory factor 0.49 0.48 0.61 0.35 0.45 0.33

Ly86 Lymphocyte antigen 86 0.21 0.19 0.11 0.16 0.16 0.15

Mif Macrophage migration inhibitory factor 0.85 1.35 2.00 0.82 0.62 0.73

Nfkbiz Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, zeta 1.14 1.29 0.85 1.45 1.66 1.20

Prlpk Prolactin-like protein K 2.06 1.83 0.88 2.78 3.31 2.45

Prlr Prolactin receptor 10.23 11.07 5.99 7.25 7.12 4.05

Ptpn6 Protein tyrosine phosphatase, non-receptor type 6 0.32 0.13 0.48 0.26 0.20 0.36

Reg3g Regenerating islet-derived 3 gamma 0.34 0.33 0.13 0.40 0.43 0.16

Repin1 Replication initiator 1 0.96 0.29 0.70 0.55 0.59 0.51

Rqcd1 Rcd1 (required for cell differentiation) homolog 1 (S. pombe) 0.22 0.15 0.30 0.23 0.19 0.33

Scgb3a1 Secretoglobin, family 3A, member 1 1.90 1.50 1.36 4.03 2.55 4.77

Scye1 Small inducible cytokine subfamily E, member 1 0.24 0.38 0.43 0.18 0.15 0.09

Stab1 Stabilin 1 0.26 0.33 0.21 0.20 0.20 0.10

Tlr4 Toll-like receptor 4 0.14 0.18 0.25 0.18 0.19 0.08

Tlr7 Toll-like receptor 7 3.02 2.71 4.08 4.82 3.49 4.61

Tollip Toll interacting protein 0.24 0.19 0.34 0.17 0.21 0.15

Ttll12 Tubulin tyrosine ligase-like family, member 12 2.96 4.69 3.88 4.57 3.37 4.05

Xcl1 Chemokine (C motif) ligand 1 0.30 0.26 0.23 0.33 0.29 0.40

Ank2 Ankyrin 2, brain 0.26 0.20 0.32 0.22 0.36 0.34

Hspb6 Heat shock protein, alpha-crystallin-related, B6 14.52 16.51 14.12 23.04 14.11 20.58

Nr1i3 Nuclear receptor subfamily 1, group I, member 3 19.61 11.60 5.42 24.96 18.97 21.06
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Table S2: Relative expression variation (REV) of 34 inflammatory response genes, Ank2 and the most stably expressed genes in 

the entire transcriptome after 2 and 4 weeks exposure to normal atmospheric conditions (N2, N4), chronic intermittent hy-

poxia (I1, I2) and chronic constant hypoxia (C2, C4). Light gray background indicates the genes with the largest expression 

control (i.e. lowest REV) level within the selection while the darker gray indicates the gene with the largest control in the entire 

condition. Bold Italics indicate the largest variabilities in the selected gene subset. 

  

Symbol Gene N2 I2 C2 N4 I4 C4

Atrn Attractin 5.6 20.9 13.9 43.1 12.9 42.3

Ccl22 Chemokine (C-C motif) ligand 22 13.0 15.2 31.0 5.2 23.0 27.2

Cx3cl1 Chemokine (C-X3-C motif) ligand 1 29.9 28.7 13.8 30.8 20.0 14.5

Cxcl4 Chemokine (C-X-C motif) ligand 4 30.6 19.5 14.2 33.5 31.9 36.6

Ifnar1 Interferon (alpha and beta) receptor 1 14.7 45.6 16.3 58.7 20.2 16.0

Ifngr2 Interferon gamma receptor 2 14.1 29.3 16.0 40.0 18.2 36.8

Il10ra Interleukin 10 receptor, alpha 21.9 66.2 27.6 34.8 21.4 47.3

Il11ra1 Interleukin 11 receptor, alpha chain 1 18.2 46.2 19.5 49.5 10.3 28.0

Il16 Interleukin 16 13.1 9.1 8.7 16.9 22.8 54.0

Il17b Interleukin 17B 15.3 30.3 35.5 12.0 13.6 24.2

Il1f6 Interleukin 1 family, member 6 16.9 22.9 38.5 26.1 15.5 34.0

Il28ra Interleukin 28 receptor alpha 22.6 15.5 36.1 10.7 33.8 32.0

Il31ra Interleukin 31 receptor A 33.2 62.3 22.1 3.2 22.7 34.1

Il4 Interleukin 4 48.5 15.3 47.4 22.1 18.7 39.4

Il6st Interleukin 6 signal transducer 8.8 32.8 19.8 14.6 27.0 33.8

Il7r Interleukin 7 receptor 12.2 68.2 31.2 75.7 18.1 28.4

Lif Leukemia inhibitory factor 4.0 4.8 20.5 13.3 14.9 19.1

Ly86 Lymphocyte antigen 86 15.7 30.1 29.6 32.2 19.0 50.0

Mif Macrophage migration inhibitory factor 7.4 39.4 14.1 51.2 41.6 41.9

Nfkbiz Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, zeta 10.4 12.3 18.9 12.4 16.3 36.5

Prlpk Prolactin-like protein K 7.9 21.9 16.2 35.4 32.7 25.3

Prlr Prolactin receptor 15.8 12.1 6.3 29.9 51.8 52.7

Ptpn6 Protein tyrosine phosphatase, non-receptor type 6 38.0 40.0 25.3 27.8 34.6 35.8

Reg3g Regenerating islet-derived 3 gamma 19.6 38.5 46.0 38.4 42.7 10.6

Repin1 Replication initiator 1 27.8 29.6 24.0 7.7 38.8 37.8

Rqcd1 Rcd1 (required for cell differentiation) homolog 1 (S. pombe) 22.0 23.4 30.4 24.4 19.9 42.0

Scgb3a1 Secretoglobin, family 3A, member 1 35.3 22.8 16.6 10.5 45.3 8.9

Scye1 Small inducible cytokine subfamily E, member 1 5.6 44.1 30.8 64.7 36.7 41.0

Stab1 Stabilin 1 26.3 20.1 9.5 29.2 18.8 39.6

Tlr4 Toll-like receptor 4 20.1 32.3 14.6 40.5 27.2 8.0

Tlr7 Toll-like receptor 7 10.5 18.7 22.3 16.9 11.8 5.0

Tollip Toll interacting protein 8.9 45.5 24.6 56.9 15.3 22.4

Ttll12 Tubulin tyrosine ligase-like family, member 12 15.0 25.5 32.3 30.8 8.9 46.2

Xcl1 Chemokine (C motif) ligand 1 15.2 10.6 3.4 17.1 18.8 16.3

Ank2 Ankyrin 2, brain 31.5 52.0 17.7 64.6 23.3 21.8

Ankrd15 Ankyrin repeat domain 15 0.5 53.3 18.9 47.0 6.2 16.0

Tubg1 Tubulin, gamma 1 4.7 0.4 10.7 19.4 62.5 19.1

Dmkn Dermokine 16.3 11.6 1.1 11.9 14.3 57.3

Mrpl15 Mitochondrial ribosomal protein L15 12.0 11.8 14.5 1.3 15.3 16.8

Qtrtd1 Queuine tRNA-ribosyltransferase domain containing 1 11.9 14.2 9.7 25.2 1.3 32.1

Arid2 AT rich interactive domain 2 (Arid-rfx like) 20.6 37.4 8.9 37.9 12.0 0.6
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Table S3: Expression coordination of 34 inflammatory response genes with Ank2 after 2 and 4 weeks exposure to normal atmos-

pheric conditions (N2, N4), chronic intermittent hypoxia (I1, I2) and chronic constant hypoxia (C2, C4). Red/blue/yellow 

background indicates statistically (p < 0.05) significant synergistic/antagonistic/independent expression of that gene with Ank2, 

while black background indicates perfect positive correlation (COR =1) of Ank2 with itself. 

Symbol Gene N2 I2 C2 N4 I4 C4

Atrn Attractin -0.567 0.409 -0.944 0.674 0.839 0.160

Ccl22 Chemokine (C-C motif) ligand 22 -0.677 0.837 -0.349 0.001 -0.483 0.620

Cx3cl1 Chemokine (C-X3-C motif) ligand 1 0.937 0.900 0.355 0.962 0.793 -0.541

Cxcl4 Chemokine (C-X-C motif) ligand 4 0.981 -0.416 -0.025 0.909 -0.227 0.783

Ifnar1 Interferon (alpha and beta) receptor 1 0.768 0.920 0.897 0.991 0.776 0.844

Ifngr2 Interferon gamma receptor 2 0.929 0.932 0.725 0.950 0.295 0.959

Il10ra Interleukin 10 receptor, alpha -0.412 -0.828 -0.616 0.529 -0.418 -0.482

Il11ra1 Interleukin 11 receptor, alpha chain 1 0.951 -0.979 -0.885 -0.998 0.212 -0.809

Il16 Interleukin 16 -0.920 0.300 0.508 0.484 0.531 0.809

Il17b Interleukin 17B 0.581 -0.964 0.092 0.144 -0.472 -0.190

Il1f6 Interleukin 1 family, member 6 -0.990 0.779 -0.211 -0.993 -0.598 0.010

Il28ra Interleukin 28 receptor alpha 0.920 -0.866 -0.074 0.802 -0.119 -0.646

Il31ra Interleukin 31 receptor A 0.989 0.972 0.765 0.501 0.635 0.679

Il4 Interleukin 4 -0.910 0.265 0.092 0.009 0.753 -0.037

Il6st Interleukin 6 signal transducer 0.858 0.903 0.994 0.681 0.574 -0.762

Il7r Interleukin 7 receptor -0.925 -0.975 -0.910 -0.969 -0.598 -0.047

Lif Leukemia inhibitory factor 0.764 0.701 0.179 -0.649 0.761 0.118

Ly86 Lymphocyte antigen 86 -0.996 -0.972 -0.117 0.814 0.609 0.402

Mif Macrophage migration inhibitory factor -0.369 -0.885 0.682 0.873 -0.544 0.470

Nfkbiz Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, zeta -0.891 -0.832 -0.413 -0.730 -0.042 -0.946

Prlpk Prolactin-like protein K -0.313 -0.780 -0.955 0.707 0.059 -0.781

Prlr Prolactin receptor -0.988 0.543 -0.550 0.370 -0.127 -0.990

Ptpn6 Protein tyrosine phosphatase, non-receptor type 6 -0.940 -0.679 -0.519 0.530 -0.323 0.111

Reg3g Regenerating islet-derived 3 gamma 0.923 -0.943 -0.017 -0.975 -0.239 -0.296

Repin1 Replication initiator 1 -0.942 0.683 -0.856 0.676 -0.357 0.688

Rqcd1 Rcd1 (required for cell differentiation) homolog 1 (S. pombe) 0.820 0.828 -0.217 0.814 0.034 0.687

Scgb3a1 Secretoglobin, family 3A, member 1 -0.944 -0.774 -0.951 -0.471 -0.108 -0.287

Scye1 Small inducible cytokine subfamily E, member 1 0.213 0.684 0.776 0.920 -0.580 -0.052

Stab1 Stabilin 1 -0.724 -0.639 0.341 0.913 -0.860 -0.229

Tlr4 Toll-like receptor 4 0.789 0.948 -0.831 -0.980 -0.172 -0.595

Tlr7 Toll-like receptor 7 -0.927 0.607 -0.476 0.022 -0.446 0.304

Tollip Toll interacting protein -0.026 0.997 0.931 0.983 0.950 0.980

Ttll12 Tubulin tyrosine ligase-like family, member 12 -0.887 -0.919 -0.183 0.524 -0.183 -0.638

Xcl1 Chemokine (C motif) ligand 1 0.757 -0.852 -0.825 0.184 0.342 0.252

Ank2 Ankyrin 2, brain 1.000 1.000 1.000 1.000 1.000 1.000
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