

Article

Recombinant BoHV-5 glycoprotein elicits long-lasting protective immunity in cattle

Itauá L. Araujo ^{1,*}, Renan E. A. Piraine ¹, Geferson Fischer ² and Fábio P. L. Leite ^{1,2}

¹ Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Brazil; renanbiotec@gmail.com; fleivasleite@gmail.com

² Laboratory of Virology and Immunology, Federal University of Federal de Pelotas, Pelotas, RS, Brazil; geferson.fischer@gmail.com

* itaualeston@gmail.com; itaua.araujo@ioc.fiocruz.br Tel.: +55 53 997058599

Abstract: Bovine herpesvirus (BoHV)-5 is a worldwide distributed pathogen usually associated with a lethal neurological disease (meningoencephalitis) in dairy and beef cattle resulting in important economic losses due to the cattle industry. Using recombinant glycoprotein D of BoHV-5 (rgD5), we evaluated the long-duration humoral immunity of the recombinant vaccines in a cattle model. Here we report that two doses of intramuscular immunization, particularly with the rgD5ISA vaccine, are superior to iBoHV-5ISA immunization in the induction of long-lasting antibody responses. Recombinant gD5 antigen elicited tightly mRNA transcription of the *Bcl6* and the chemokine receptor CXCR5 which mediate memory B cells and long-lived plasma cells in germinal centers (GCs). In addition, using an in-house Enzyme-Linked Immunosorbent Assay (ELISA) we observed higher and earlier responses of rgD5-specific IgG antibody and the upregulation of mRNA transcription of *IL2*, *IL4*, *IL10*, *IL15* and *IFN-γ* cytokines in rgD5 vaccinated cattle, indicating a mixed immune response. We further show that rgD5 immunization provides protection against both BoHV -1 and -5. Our findings indicate that the rgD5-based vaccine represents an effective vaccine strategy to induce an efficient control of alpha-herpesviruses.

Keywords: Germinal Center; Herpesvirus; Recombinant protein; rgD5; Vaccine; Long-Lasting

1. Introduction

Bovine Herpesvirus 5 (BoHV-5) is a highly contagious disease known to be responsible to cause the meningoencephalitis [1–3]. The infection is distributed worldwide but particularly in South America, been associated with significant economic losses [4–6]. To date, the disease is controlled by killed, conventional modified-live vaccines and subunit vaccines. However, the killed and live vaccines have several disadvantages regarding safety and efficacy, make unsuitable for vaccination of some targets [7]. Advances in molecular biotechnology have led to efforts to overcome the safety problems of vaccines generated from live viruses by protein-based subunit vaccines development, including the vaccines generated from viral envelop glycoprotein subunits. One of them is the glycoprotein D (gD), an immunodominant protein that is essential for viral penetration into host permissive cells [8,9]. The anti- and immunogenic properties of rgD5, as well as its ability to produce neutralizing antibodies (nAbs) in mice and cattle, provide the adaptive immune system's first line of defense. [9–11].

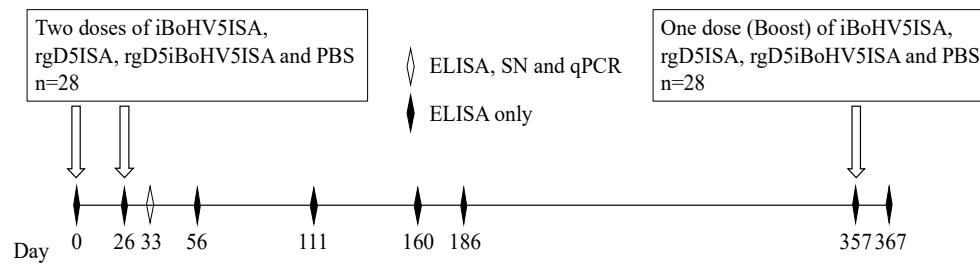
The production of long-lived antibody responses to protect against future infection is one of the criteria for effective vaccinations, which is dependent on a robust germinal center (GC) response [12]. Follicular helper T (T_{FH}) cells have recently been highlighted for their essential role in the formation of GCs and selection of mutated GC B cells [13,14]. T_{FH} cells are $CD4^+$ T cells marked by high levels of CXCR5, PD-1, and *Bcl6* expression and are specialized to support B-cell response in GCs that are essential for somatic hypermutation, and class switching for the generation of high-affinity antibody-producing plasma cells

and memory B cells and long-lasting humoral immunity [13–15]. The expression of the transcription factor B cell lymphoma-6 (Bcl6), which is the master regulator of T_{FH} cell differentiation, drives the upregulation of CXCR5, the receptor of CXCL13 and canonical feature of T_{FH} cells, on the cell surface of pre- T_{FH} cells that are now allowed to migrate to the border between the B- and T-cell area [15]. In the site, CXCR5 drives T_{FH} cell migration into B cell follicles culminating in antibody production and the formation of GCs [14,16].

Most antigens require T-cell help to induce B-cell responses, and understanding the mechanisms involved in their recognition by which memory T and B cells are generated and maintained is important for understanding the generation of long-term immunity, as well as how their swift activation is executed is of fundamental importance for vaccine development [14,17]. Here, we explored the potential of taking rgD5-based vaccines regarding the long-term immune response and other points that can be limited to their commercial application. In the present study, we investigated the effect of Bcl6 and CXCR5 in regulating B cell activation in the setting of GC reactions, IgG class switching, long-lived humoral immunity, and immunological memory in the context of an experimental vaccine using the rgD5 antigen in cattle vaccinated against BoHV-5.

2. Materials and Methods

2.1. Expression of recombinant glycoprotein D from BoHV-5


A previously reported *P. pastoris* strain KM71H Mut^s [18], in which the recombinant gD5 was cloned and expressed by methanol induction in an orbital shaker was used in this study. After the induction phase, the culture supernatant was directly concentrated and used for vaccine formulation, whereas the purified recombinant gD5 was employed in the indirect ELISA.

2.2. Cells and viruses

The BoHV-1 (Los Angeles strain) and -5 (Riopel – RP strain) were propagated in Madin Darby Bovine Kidney cells (MDBK, ATCC CCL22) as previously described by Araujo et al. [9]. The Virology and Immunology Laboratory of the Federal University of Pelotas (UFPel) – Brazil, provided the virus strains. Prior serum neutralization test, the virus stock was tittered and stored at -70 °C.

2.3. Study vaccine

The immunobiologics were prepared using inactivated BoHV-5 (iBoHV-5) harvested at a concentration of $1 \times 10^{5.5}$ TCID50/mL and inactivated with 20 mM bromoetilamina (BEI) ($C_2H_7Br_2N$ – Merck) and recombinant gD5 (100 mg/dose). The formulations were adjuvanted with 50% (v/v) Montanide ISA 50 V2 (90% Marcol 52 e 10% Montanide 888, Seppic Adjuvants, France). The rgD5iBoHV5ISA formulation was prepared using 100 mg rgD5, 1.5 mL of iBoHV-5 at concentration of $1 \times 10^{5.5}$ TCID50/mL and ISA 50 V2 (per dose). The control group (sentinel) received Phosphate Buffered Saline (PBS) only. The vaccines were prepared under aseptic conditions and stored at 4 °C during the experimental period. Twenty-eight 8-12-month-old calves were kindly provided by a producer from a local farm located in the south of Brazil (31°51'51"S-52°49'24"W) and were not submitted to food or water restrictions. The animals serologically negative to BoHV-1 and -5 confirming the negative history of IBR were randomly allotted into 4 groups of 8 animals (control group = 4 animals). The animals received a dose of 3 ml of the corresponding immunobiological preparations three times: 0, 26, and 357 days from *primo* vaccination (Figure 1). Importantly, unvaccinated animals were kept for the control purpose of antibodies that were generated only as the result of vaccinations [9]. Whole blood for serum assessment was collected on days 0, 26, 33, 56, 111, 160, 186, 357, and 367 through jugular vein puncture (Figure 1). All procedures were performed following the Brazilian National Council for Animal Experimentation Control (COBEA) guidelines and approved by the UFPel Ethics Committee for animal research (CEEA No. 002129).

Figure 1. A schematic presentation of the study design. The study included 28 healthy calves aged 8-12-months old. The animals received vaccinations on days 0, 26, and 357, and follow-up samples were collected on days 0, 26, 33, 56, 111, 160, 186, 357, and 367 (one year). The black dots indicate ELISA testing only, and the white dots indicate Virus Neutralization (VN), ELISA, and qPCR testing.

2.4. Total IgG kinetics anti-rgD5

In-house ELISA was performed as described by Dummer et al. [19]. Briefly, 96-well microtiter plates were covered overnight at 4 °C with 50 ng/well of purified rgD5 and blocked by blocking solution (5% skim powdered milk + 3% casein in PBS-T) at 37 °C for 1 h; individual serum samples were diluted 1:400 were added in triplicate and incubated at 37 °C for 1 h and HRP-conjugated rabbit anti-bovine IgG (Sigma-Aldrich) diluted 1:5.00 was incubated at 37 °C for 1.5 h. Plates were washed three times between each step with PBS containing 0.5 percent Tween® 20. The reaction products are visualized through o-Phenylenediamine dihydrochloride (OPD) (Sigma-Aldrich). Plates were incubated for 15 min in the dark and the reaction stopped with 2 N H₂SO₄. The absorbances were determined on an ELISA TP-Reader plate spectrophotometer (Thermo Plate) at 492 nm.

2.5. IgG isotyping anti-rgD5

The IgG isotype levels were evaluated by ELISA using individual sera in triplicate from samples collected on days 26 and 33 of the experiment. Serum was diluted with PBS-T, starting at 1:100 and continuing in 2-fold dilutions [9] and IgG was used at 1:5.000 according to the instructions for isotyping for IgG1 (Abcam, ab112754) and the IgG2 (Abcam, ab112620) detection. The reciprocal of the highest dilution that had two times the absorbance of the control group was taken as a positive rgD5-specific antibody titer.

2.6. Virus Neutralization test (VNT) anti-BoHV-1 and -5

Serum samples were titrated in quadruplicate in 2-fold serial dilutions (starting dilution 1:2 until 1:256 in MEM). Subsequently, a 96-well tissue culture microtiter plate (TPP, Switzerland) with BoHV-5 virus suspension containing 100 CCID₅₀% was added following incubation at 37 °C and 5% CO₂. After 1 h of incubation, approximately 3x10⁴ MDBK cells/well were added and the microplates were incubated under the same conditions until the time of the 100 TCID₅₀ expressions. The microplates were observed by light microscope for the absence of cytopathic effect (CPE). The highest serum dilution inhibiting at least 90% of the CPE was indicated as the neutralization titer, while its presence resulted from the absence of neutralizing antibodies. The neutralizing antibody titer was calculated by the Behrends and Kärber method [20] and expressed as the reciprocal of the highest dilution.

2.7. Collection, preparation, and culture of PBMCs

Blood samples were collected in heparinized tubes on the 33rd day of the follow-up study. Peripheral blood mononuclear cells (PBMCs) were isolated by density gradient centrifugation using Ficoll Histopaque (1.083 density, Sigma-Aldrich). Approximately 1 X 10⁷ pooled cells were cultured in 24-well plates (Kasvi, China) containing 1 mL of RPMI

1640 medium (Gibco, USA) with 10% fetal bovine serum (FBS; Gibco), 10,000 IU/ml penicillin, 10 mg/ml streptomycin, and 25 mg/ml amphotericin B (Gibco) for 24 h at 37 °C in a 5% CO₂ atmosphere. After a change of the medium, PBMCs were restimulated with 10 µg/mL of rgD5, and 5 µg of concanavalin A (ConA) (Sigma-Aldrich) as a positive control, whereas RPMI 1640 was a negative control. The plates were incubated for 12 h under the same conditions. Cells were then harvested with TRIzol Reagent (Life Technologies, SP, Brazil) according to the manufacturer's instructions for total RNA isolation and pooled lysates were frozen at -80 °C until further processing.

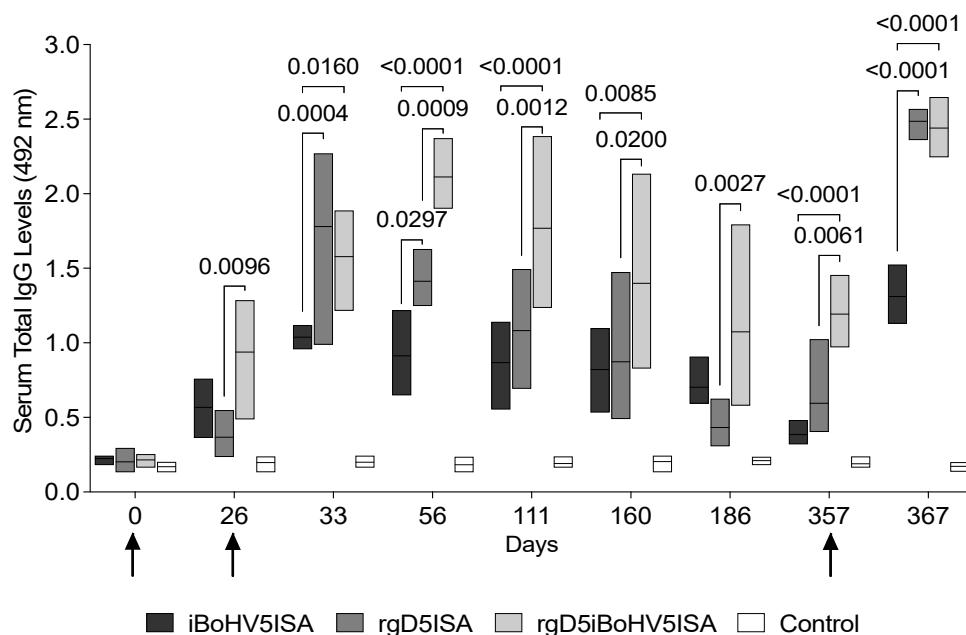
2.8. Real-time PCR

Reverse transcription was carried out using a High-Capacity cDNA Reverse Transcription Kit (Life Technologies, SP, Brazil) using approximately 1 µg of RNA. Quantitative real-time PCR was performed using the Stratagene Mx3005P qPCR system (Agilent Technologies, Santa Clara, USA) to quantify gene expressions. The primers used in the PCR were synthesized by GenOne Biotech (Brazil) and approximately 500 ng of the resulting cDNA was subjected to qPCR to analyze of transcription of the following five cytokines: *IL2*, *IL4*, *IL10*, *IL15*, and *INF-γ*; the chemokine receptor CXCR5 and the transcription factor Bcl6 (Table 1). Pooled samples were analyzed in triplicate using the comparative threshold cycle ($ΔΔC_t$) method to determine the relative mRNA expression compared to *GAPDH* was used as endogenous reference genes and animals in pre-immune conditions were used as calibrators.

Table 1. Target genes, primers sequences, product size, melt temperature (MT), and efficiency used for real-time quantitative PCR.

Gene	Forward (5'-3')	Reverse (5'-3')	Product Size	MT	Efficiency
				R ²	E
GAPDH	GCATCGTGGAGGGACTTATGA	GGGCCATCCACAGTCTTCTG	67 pb	60 °C	0,98 1,93
IL2	CCTCGACTCCTGCCACAATG	CCGTAGAGCTTGAAGTAGGTGC	89 pb	60 °C	0,99 2,00
IL4	GCCACACGTGCTTGAACAAA	TCTTGCTTGCCAAGCTGTTG	66 pb	60 °C	0,99 1,97
IL10	GTCTGACAGCAGCTGTATCCACTTG	AACCCTGGATTGGATTTCAGAGGTC	551 pb	60 °C	0,99 1,89
IL15	CATATTGAGAAGTACTTCCATCCAG	GAAGTGTGATGAACATTGAC	468 pb	60 °C	0,98 1,93
IFN-γ	CAGAAAGCGGAAGAGAAGTCAGA	CAGGCAGGAGGACCATTACG	70 pb	60 °C	0,96 2,05
CXCR5	TACCCCTCTCACTCTGGACATGG	CTCCGTACTGTCATTGTAGCTCC	87 pb	60 °C	0,99 2,15
BCL6	GTATCCAGTTCACCCGCCAT	ACATCAGTCAAGATGTCACGGC	80 pb	60 °C	1,00 2,07

Primers were designed by Dr. Alceu Gonçalves dos Santos Junior in the Microbiology Laboratory – CDTec – UFPel, Brazil.


2.9. Statistical analysis

Differences in individual serum ELISA antibody titers presented in Figures 1 and 2 were performed on log₂-transformed titer data, whereas serum neutralizing antibodies analysis presented in Figure 3 was performed on log₁₀-transformed. ELISA and VNT results were analyzed by two-way ANOVA followed by Tukey's Multiple Comparisons Test. Expression levels of all target genes were calculated relative to the housekeeping gene (GAPDH). Two-way ANOVA followed by Dunnett's Multiple Comparisons test was used to analyze relative gene expression presented in Figures 4 and 5. All statistical analysis was performed in GraphPad Prism version 9.1.1 for macOS (GraphPad Software, USA) and a *p*-value of ≤ 0.05 was considered statistically significant. Error bars represent mean value ± standard error.

3. Results

3.1. A long-term follow-up study of anti-rgD5 IgG

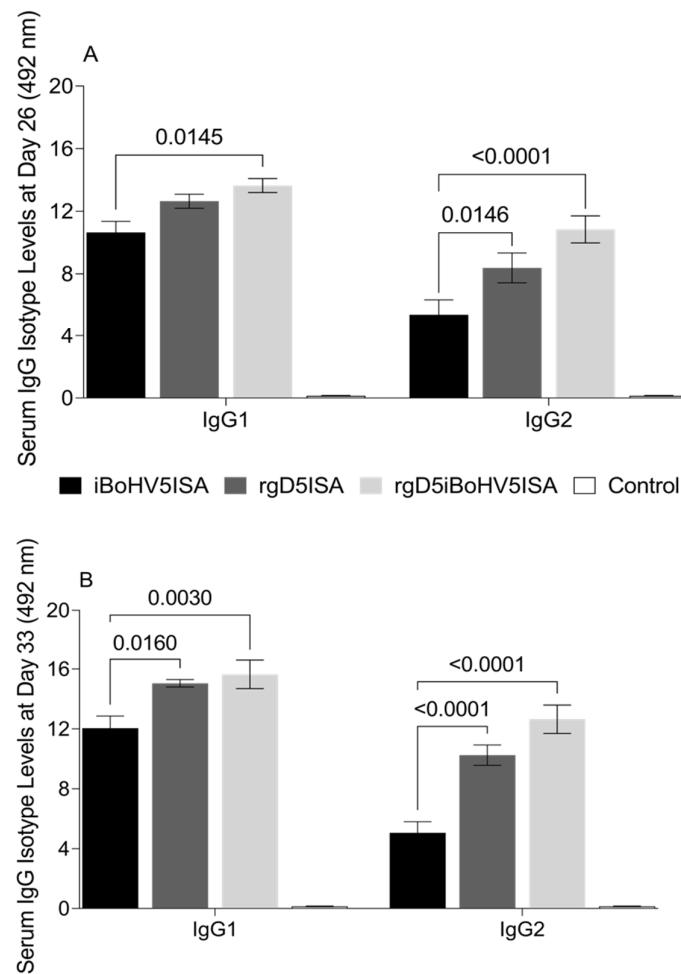

The titers were first detected 26 days after the first dose of the vaccine and then increased up to day 33 (Figure 2). After the second dose, titers reached a maximum level at days 7–357, and antibodies against the rgD5 were measured by ELISA, with all groups responding to the vaccines compared with the control group. Seven days after the boost the group vaccinated with both antigens had significantly higher IgG titers (1.5-fold increase) compared with the iBoHV5ISA-vaccinated group (Figure 2). On the 56th day of the experiment, both groups containing the recombinant antigen had significantly ($p<0.05$) IgG titers than the iBoHV5ISA group (Figure 2). In addition, on the same 56th day, the mixed antigen formulation vaccine presented significantly higher IgG titers (1.5-fold increase) than the rgD5ISA group. Titers levels gradually declined on day 56 but remained higher than after the first dose of the vaccine. After the third vaccine shot (day 357), all groups responded to the vaccines (day 367). The control group did not increase the antibody levels during the experimental period, which was like the levels observed before the *primo* vaccination, on day 0 (Figure 2).

Figure 2. A long-term follow-up study to evaluate the immunogenicity of the rgD5 in cattle vaccinated with subunit vaccine against BoHV-5. Total serum anti-rgD5 IgG levels from day zero to day 367 of the experiment. The curves represent the average values of the measured optical density (OD) at 492 nm over time. Statistical analysis by ordinary two-way ANOVA with a *post hoc* Turkey Test. p -values less than 0.05 were not included in the figure. n=8 animals/group (control=4 animals). Arrows indicate vaccination and the solid line represents the mean titer of each group. Significant differences compared with the control group are not shown.

3.2. Mixed IgG isotype response in vaccinated animals

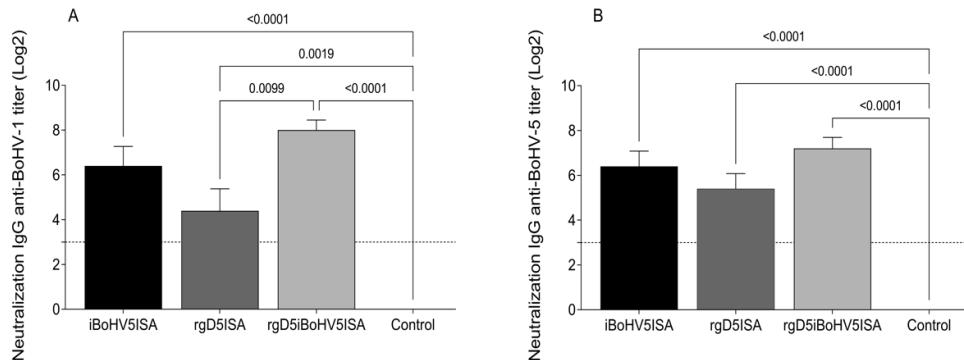

The IgG subclasses were detected 26 days after the first dose of the vaccine and then increased up to day 33, seven days after the second dose (Figure 3). Our results showed that the immune response elicited a mixed Th1/Th2 profile, with higher titers of anti-rgD5 IgG1 antibodies after the first and second doses of the vaccine.

Figure 3. Mixed Th1/Th2 profile as measured by IgG subclasses. **(A-B)** At 26 days post-first vaccination and 7 days post-second vaccination the levels of IgG1 and IgG2 were measured by ELISA. Statistical analysis by ordinary two-way ANOVA with a *post hoc* Turkey Test. *p*-values less than 0.05 were not included in the figure. *n*=8 animals/group.

3.3. Neutralizing antibody responses against BoHV-1 and -5

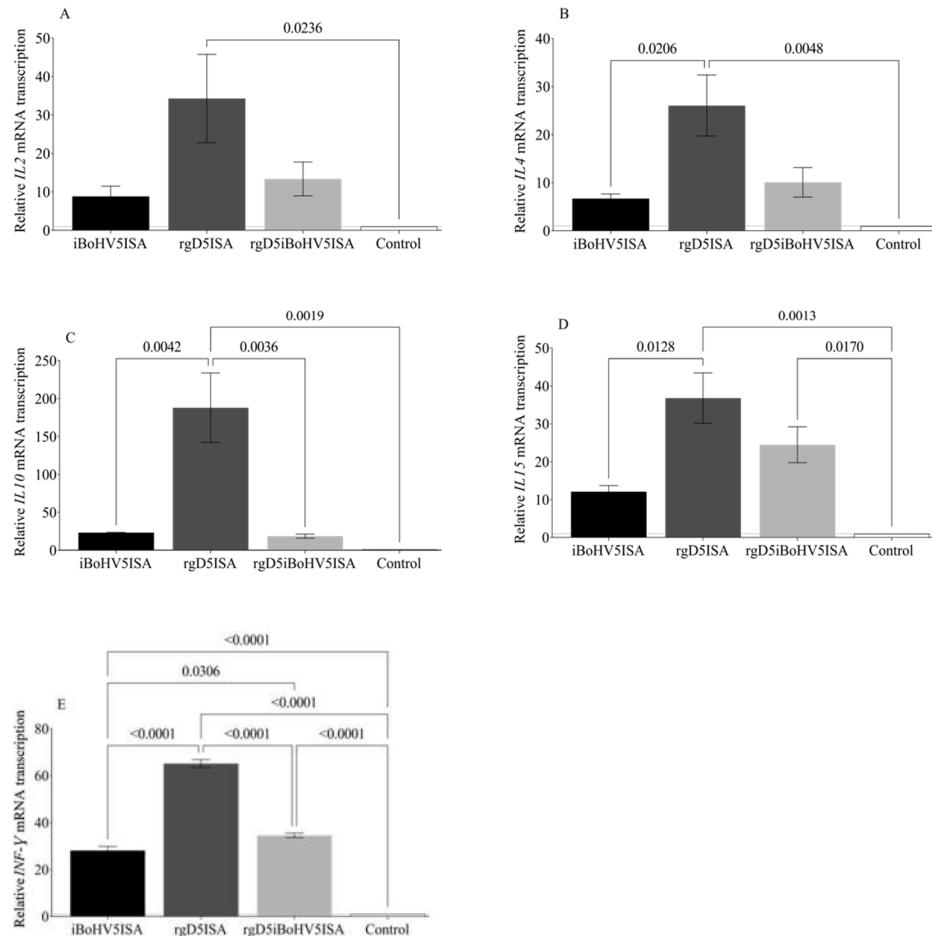

Neutralizing antibody (nAb) levels were investigated 33 days after the first vaccination and all groups already had titers of nAb against BoHV-1 and -5 with a significant ($p < 0.05$) increase compared with the control group as shown in Figure 4. No significant differences in cross-neutralizing serum titers were present between both alpha-herpesviruses tested. Furthermore, all vaccine groups showed nAb titer above $3\log_2$ (1:8, indicated by the dashed lines), levels considered as protected a herd [21]. The rgD5iBoHV5ISA formulation (light grey bars) had elevated but not significantly nAb response against both viruses when compared with the other groups (Figure 4).

Figure 4. Recombinant gD5-specific neutralizing antibody titers in vaccinated cattle. Individuals nAb responses to BoHV-1 (**A**) and BoHV-5 (**B**) in serum of vaccinated cattle 7 days post-second vaccination. Data are mean \pm SEM of log₂ transformed and expressed as the reciprocal of the highest dilution that completely inhibited virus-induced CPE. Statistical analysis by ordinary two-way ANOVA with a *post hoc* Turkey Test. *p*-values less than 0.05 were not included in the figure. n=8 animals/group. Dashed lines mean neutralizing titer 3log₂ (1:8).

3.4. Th1, Th2, and Treg cytokine transcription

Polled PBMCs restimulated with 10 μ g of rgD5 from all groups (Figure 5) upregulated the mRNA transcription of *IL2*, *IL4*, *IL10*, *IL15*, and *IFN- γ* when compared with the control group (white columns). The association of inactivated BoHV-5 and recombinant gD5 antigens (light grey columns) downregulated the mRNA transcription of *IL2*, *IL4*, *IL10*, *IL15*, and *IFN- γ* , compared with the group that received rgD5 alone (dark grey columns). However, the antigens association (light grey columns) upregulated the mRNA transcription levels of *IL2*, *IL4*, *IL15*, and *IFN- γ* , while downregulated the *IL10*, relative to the inactivated BoHV-5 antigen alone (black columns). Finally, the inactivated BoHV-5 antigen (dark columns) downregulated the mRNA transcription of *IL2*, *IL4*, *IL10*, *IL15*, and *IFN- γ* , compared with the recombinant gD5 antigen (dark grey columns). Table 2 show the data of all vaccine group comparison, including fold change statistics from the panel of cytokines.

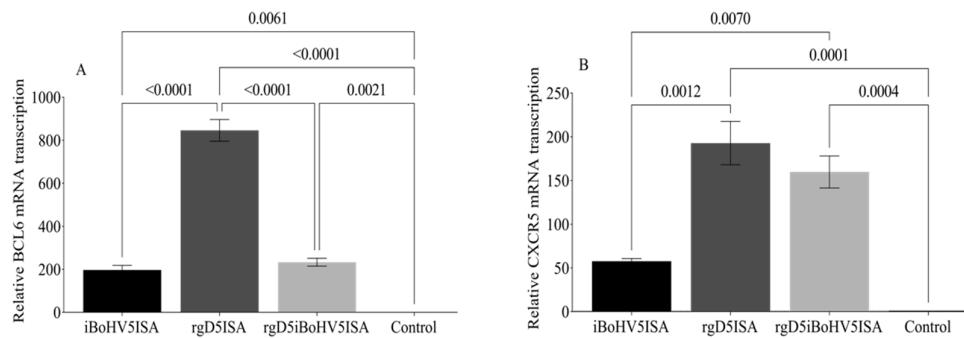


Figure 5. Th1, Th2, and Treg cytokine transcription. Seven days after the second vaccination, PBMCs were restimulated *in vitro* with 10 µg of rgD5 for 18 h. Total mRNA was extracted, and the corresponding cDNA was subjected to quantitative PCR. The fold changes for *IL2* (A); *IL4* (B); *IL10* (C); *IL15* (D) and *IFN-γ* (E) transcription were calculated from the threshold cycle (Ct) values normalized to Ct values obtained from PBMCs of non-vaccinated animals. Data are generated from PBMCs pooled (n=8/group) collected on day 33 of the experiment. Statistical analysis by ordinary two-way ANOVA with a *post hoc* Dunnett's test. *p*-values less than 0.05 were not included in the figure. n=8 animals/group (control=4 animals).

3.5. *Bcl6* and *CXCR5* transcription underlie the germinal center formation

Polled PBMCs restimulated with 10 µg of rgD5 from all groups (Figure 6) were upregulated the mRNA transcription of *Bcl6* and *CXCR5* when compared with the control group (white columns). The group iBoHV5ISA (black columns) upregulated the mRNA transcription of *Bcl6* and *CXCR5*. The rgD5ISA (dark grey columns) upregulated the mRNA transcription of *Bcl6* and *CXCR5*. The group rgD5iBoHV5ISA (light grey columns) upregulated the mRNA transcription of *Bcl6* and *CXCR5*. The association of inactivated BoHV-5 and recombinant gD5 antigens (light grey columns) downregulated the mRNA transcription of *Bcl6* and *CXCR5*, compared with the rgD5 alone (dark grey columns). However, this antigen association (light grey columns) upregulated the mRNA transcription levels of *Bcl6* and *CXCR5*, relative to the inactivated BoHV-5 alone (black columns). Finally, the inactivated BoHV-5 antigen (dark columns) downregulated the mRNA transcription of *Bcl6* and *CXCR5*, compared with the recombinant gD5 antigen (dark grey

columns). Table 3 show the data of all vaccine group comparison, including fold change statistics from the Bcl6 and CXCR5.

Figure 6. Bcl6 and CXCR5 mRNA transcription underlie germinal center formation. Seven days after the second vaccination, PBMCs were stimulated *in vitro* with 10 µg of rgD5 for 18 h. Total RNA was extracted, and the corresponding cDNA was subjected to quantitative PCR. The fold changes for Bcl6 (A) and CXCR5 (B) transcription were calculated from the threshold cycle (Ct) values normalized to Ct values obtained from PBMCs of non-vaccinated animals. Data are generated from PBMCs pooled (n=8/group) collected on day 33 of the experiment. Statistical analysis by ordinary two-way ANOVA with a *post hoc* Dunnett's test. *p*-values less than 0.05 were not included in the figure. n=8 animals/group (control=4 animals).

4. Discussion

The induction of long-lasting immune response, mixed Th1/Th2 response, and cytotoxic T lymphocytes are essential in the most effective vaccines that are in use today. The identification and selection of antigens and their adjuvant association in a vaccine should achieve the necessary modulation of the immune response to improve the type of immunity necessary to protect the host. Subunit vaccine candidates against alpha-herpesviruses have been based on the viral major envelope glycoproteins as they act in the initial attachment and virus penetration to the host cell surface receptors as well as mediate the immune responses of the host to the infection [22–27]. Although immunization with purified protein antigens normally induces a small antibody response with little T cell response, several immunizations may be necessary to elicit adequate antibody responses. [28]. Nevertheless, the glycosylation technology plays an important role to overcome the lower antigenicity generated by ultra-purified recombinant antigens. For instance, Dummer et al. 2009 [18] demonstrated firstly that the rgD5 expressed in *Pichia pastoris* has been capacity to conduct post-transcriptional modifications that are important for antigenicity. Thus, this truncated form of rgD5 generated has antigenic and immunogenic characteristics similar to the corresponding native glycoprotein that allow its recognition and ability to induce cellular and humoral immune responses in mice and cattle [9,10,18,25]. The B cell help provided by T_{FH} cells represents a key aspect of adaptive immunity to many pathogens and vaccines. T_{FH} and B cells provide signals by expressing co-stimulatory molecules and secreting cytokines, which are essential for GC B cells to undergo class switch recombination, somatic hyper-mutation, affinity maturation, and differentiation of plasma cells and memory B cells in GCs [13,14,16,29]. The expression of master regulator Bcl6 and the chemokine receptor CXCR5 by the T_{FH} cells are essential for the T cell's migration into the B cell follicle in lymphoid organs [30–32]. In this study, both Bcl6 and CXCR5 transcription was tightly upregulated in PBMCs re-stimulated *in vitro* with rgD5 at 7 days after the 2nd vaccination. We found a 4.3 and 3.34 -fold increase of CXCR5 and Bcl6, respectively, in the vaccine that received only the recombinant antigen (Figure 6A-B, dark grey columns) compared with the group that received only the inactivated BoHV-5 antigen (Figure 6A-

B, black columns). In parallel, we observed one week after the boost at day 367 from *primo vaccination* the highest levels of total anti-rgD5 IgG were generated by the groups that received the rgD5 in their vaccine formulation (Figure 2, dark and light grey columns) [9]. These findings suggest that the presence of rgD5 provides a critical early signal to induce Bcl6 and CXCR5, contributing to the generation of memory B cells by GCs.

Furthermore, Bcl6 is regulated by a complex signaling circuitry in T_{FH} differentiation, which may exert anti- or pro-inflammatory activities depending on cell types and/or stimuli [33–35]. Accordingly, with the high levels of IFN- γ , notably by the rgD5ISA group (Figure 5E, dark grey column), the Bcl6 transcription was substantially elevated (Figure 6A, dark grey column), indicating that IFN- γ is required for Bcl6 upregulation and subsequent Bcl6 control of the T_{FH} differentiation program. Besides IFN- γ , IL-2 is an additional cytokine produced by Th1 cells, which stimulates both Th1 cells and cytotoxic T lymphocytes. IFN- γ induces expression of the IL2 (Figure 5A, dark grey column) that does not directly inhibit GC formation, but instead suppressed the differentiation of T_{FH} cells [36]. The formation of T_{FH} cells since IL2 signaling induces STAT-5 phosphorylation and expression of BLIMP-1, a mutual repressor of Bcl6 and CXCR5 [37,38]. Nonetheless, after cell restimulation, we observed an upregulation of both IFN- γ and IL2 cytokine levels by the g rgD5ISA vaccine group, compared to controls (Figure 5A and 5E, dark grey columns). However, we found high levels of CXCR5 mRNA transcription in the same rgD5ISA group (Figure 6B, dark grey column). Under the CXCR5 signaling circuitry in T_{FH} differentiation, beyond the high levels of CXCR5, we found the IL4 mRNA transcription upregulated (Figure 5B, dark grey column), suggesting that the rgD5ISA vaccine by a complicated signaling circuitry allows T_{FH} cells migration into the GCs [39]. The induced-up modulation of IL2 by rgD5 stimulation suggests an enhanced T-cell response to rgD5 (Figure 5A) and is important for the generation of fully functional memory CD8⁺ T cells [40,41]. However, upregulation levels observed for IL4 and IL10 (Figure 5B-C, light grey columns) may have played a role in the downmodulation of IgG2 (Figure 3, light grey column), since these cytokines have an antagonist effect on IFN- γ [42]. Noteworthy, IFN- γ induction always precedes IL10 secretion, even in high IL2 conditions. IL2 and IL15 have several similar functions with both cytokines stimulating the proliferation of T cells; inducing the generation of cytotoxic T lymphocytes and facilitating the proliferation of B cells [43,44]. Here, we found a similar mRNA transcript level of IL15 (Figure 4D). In addition, IL15 also supported robust CD8⁺ T cell-mediated long-term immunity [45,46]. These data suggest that the IL2 signalization during CD4⁺ and CD8⁺ T cell activation/expansion as well as the role of IL15 in the generation and maintenance of memory T cells is necessary to induce long-lasting cellular immunity [45,47].

As suggested in Figure 3, the bias of the immune response showed after the first vaccine administration is Th2 [9,10], however, after subsequent vaccination, an increase in the levels of IgG2 indicated a trend toward a mixed Th1/Th2 immune response. However, in our previous study, we do not observe upregulation of the IL4 in *female* outbred Swiss albino mice splenocytes stimulated for 18 h with 10 μ g of rgD5 [10]. Nevertheless, a similar effect toward a Th1 response using an oil-based adjuvant was reported [48,49], when a TLR ligand agonist was used. Except for TLR-9, significant upregulation of all TLRs has been detected following primary infection of neural tissues by both BoHV-1 and -5 herpesviruses, but the role of gD in this mechanism is not totally known [50]. Here, we showed that the IgG kinetics for the rgD5ISA and rgD5iBoHV5ISA groups were similar, with the last group responding with higher IgG levels after the first vaccine boost and keeping superior to the other groups until the end of the experiment on day 367 (Figure 2, dark and light grey bars).

Cytokines like IL4 and IFN- γ have been shown to regulate Ig class switching in cattle by positively or negatively regulating germline transcription via various modes of B cell activation and cytokine combinations. The IgG antibody subclass distribution elicited after vaccination is also indicative of the type of immune response, as the IgG1 subclass is believed to signal a Th2 response whilst the IgG2 subclass indicates more of a Th1 profile [51,52]. We found a significant increase in IFN- γ mRNA transcription in cattle vaccinated

only with the rgD5 antigen (Figure 5E, dark grey column), characterizing a Th1-type cell response, more favorable for viral infection control with the IgG2 participating in opsonization of the pathogen to facilitate phagocytosis [53]. The presence of IL4 facilitates antigen presentation through increased expression of major histocompatibility complex (MHC) II molecules and proliferation of T lymphocytes, in addition to inducing exchange of the IgG isotype to IgG1 [54,55]. The crosstalk between B cells and T_{FH} cells leads to class switch recombination and affinity maturation in GC B cells with underlying potent nAb formation in persistent viral infection [13,56]. The virus neutralization results are quite significant since vaccine protection can be evaluated by the nAbs induced against the BoHV-1 and -5 (Figure 4A-B) but, the precise level of antibody required has been difficult to establish. Consistently studies found nAbs titers in the range of 1:4 to 1:8 to be associated with protection. However, titers of vaccine-induced neutralizing antibodies associated with protection have varied widely [21,57]. Here, 100% of animals vaccinated with rgD5 had nAbs significantly higher ($p < 0.05$) than 1:8 for BoHV-1 and -5 on the 33rd day of the experiment, suggesting that a vaccine for BoHV-5 might protect against both alphaherpesviruses (Figure 4A-B). These findings are quite interesting, even with a similarity of ~80% of identity between BoHV-1 and -5 genomes and similar biological properties between the two gD glycoproteins [58,59] the anti-rgD5 antibodies were able to recognize and neutralize the BoHV-1. Interestingly, nAbs, IgG2 isotype, and high levels of *IFN-γ* were found in mice vaccinated with recombinant vaccine formulated with rgD5 [10], demonstrating the immunogenicity and protective capacity of this recombinant vaccine. The application of Montanide ISA adjuvant, a W:O emulsion adjuvant carrier, associated with the rgD5 (rgD5ISA) increased the mRNA transcription of *IFN-γ* in cells stimulated by rgD5 (Figure 5E, dark grey column). Indeed, the Montanide ISA 50 V2 adjuvant has an immune stimulatory effect and enhances antigen-specific antibody titers and cytotoxic T lymphocyte responses [9,48,60]. The present study complements previous reports from our laboratory and from others, which have investigated immune responses at the onset of subunit vaccines on the family Alphaherpesviridae infection. During the past decade, a series of elegant studies have investigated the contribution of rgD5 as an interesting vaccine antigen and diagnostic tool [8–10,18,19,25,61–63]. We are continuing our efforts for this decade, expanding our strategies to increase the knowledge about vaccines and their potential application for the development of vaccine candidates and diagnostic techniques based on the conserved epitopes on gD or in combination with those of other herpesvirus glycoproteins, including test new adjuvants, combined or not with immunostimulators molecules, capable of improving the vaccine response effect.

Supplementary Materials: The following supporting information can be downloaded at: www.mdpi.com/xxx/s1, Table S1: Th1, Th2, and Treg cytokine transcription; Table S2: Bcl6 and CXCR5 transcription underlie the germinal center formation.

Author Contributions: Conceptualization, L.A.I.; Formal analysis, L.A.I.; Funding acquisition, P.L.L.F.; Investigation, L.A.I.; Methodology, L.A.I. and E.A.P.R.; Project administration, L.A.I.; Supervision, P.L.L.F.; Validation, P.L.L.F.; Writing—original draft, L.A.I.; Writing—review & editing, P.L.L.F. and F.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by The Brazilian federal agency CAPES (Coordination for the Improvement of Higher Education Personnel)-Finance Code 001 supported this work. The content is solely the responsibility of the authors and does not necessarily represent the official views of the CAPES.

Acknowledgments: We thank Dr. Paulo Ricardo C. Rodrigues of Virology and Immunology Laboratory, Federal University of Pelotas, RS-Brazil for the BoHV-5 virus neutralization; Dr. Luiz Fernando Magalhães, and Dr. Luiz Felipe Gastal for providing and taking care of the animals used in the experiment.

Conflicts of Interest: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] Davison AJ, Eberle R, Ehlers B, Hayward GS, McGeoch DJ, Minson AC, et al. The order Herpesvirales. *Arch Virol* 2009;154:171–7. doi:10.1007/s00705-008-0278-4.

[2] Rissi DR, Rech RR, Flores EF, Kimmers GD, Barros CSL. Meningoencefalite por herpesvírus bovino-5. *Pesqui Veterinária Bras* 2007;27:251–60. doi:10.1590/S0100-736X2007000700001.

[3] Vogel FSF, Caron L, Flores EF, Weiblen R, Winkelmann ER, Mayer SV, et al. Distribution of bovine herpesvirus type 5 DNA in the central nervous systems of latently, experimentally infected calves. *J Clin Microbiol* 2003;41:4512–20. doi:10.1128/jcm.41.10.4512-4520.2003.

[4] Weiblen R, de Barros CS, Canabarro TF, Flores IE. Bovine meningoencephalitis from IBR virus. *Vet Rec* 1989;124:666–7. doi:10.1136/vr.124.25.666-b.

[5] Perez SE, Bretschneider G, Leunda MR, Osorio EA, Flores EF, Odeón AC. Primary infection, latency, and reactivation of bovine herpesvirus type 5 in the bovine nervous system. *Vet Pathol* 2002;39:437–44. doi:10.1354/vp.39-4-437.

[6] Wronski JG, Cecco BS, Henker LC, Lorenzett MP, Roehe PM, Finoketti F, et al. Outbreak of Bovine Herpetic Meningoencephalomyelitis in Southern Brazil. *Acta Sci Vet* 2018;46:6. doi:10.22456/1679-9216.89403.

[7] van Drunen Littel-van den Hurk S. Cell-mediated immune responses induced by BHV-1: rational vaccine design. *Expert Rev Vaccines* 2007;6:369–80. doi:10.1586/14760584.6.3.369.

[8] Alves Dummer L, Pereira Leivas Leite F, van Drunen Littel-van den Hurk S. Bovine herpesvirus glycoprotein D: a review of its structural characteristics and applications in vaccinology. *Vet Res* 2014;45:111. doi:10.1186/s13567-014-0111-x.

[9] Araujo IL, Dummer LA, Rodrigues PRC, dos Santos AG, Fischer G, Cunha RC, et al. Immune responses in bovines to recombinant glycoprotein D of bovine herpesvirus type 5 as vaccine antigen. *Vaccine* 2018;36. doi:10.1016/j.vaccine.2018.10.080.

[10] Dummer LA, Araujo IL, Finger PF, dos Santos AG, da Rosa MC, Conceição FR, et al. Immune responses of mice against recombinant bovine herpesvirus 5 glycoprotein D. *Vaccine* 2014;32. doi:10.1016/j.vaccine.2014.03.011.

[11] Kalia V, Sarkar S, Gourley TS, Rouse BT, Ahmed R. Differentiation of memory B and T cells. *Curr Opin Immunol* 2006;18:255–64. doi:10.1016/j.coim.2006.03.020.

[12] Linterman MA, Hill DL. Can follicular helper T cells be targeted to improve vaccine efficacy? *F1000Research* 2016;5:88. doi:10.12688/f1000research.7388.1.

[13] Park H-J, Kim D-H, Lim S-H, Kim W-J, Youn J, Choi Y-S, et al. Insights into the Role of Follicular Helper T Cells in Autoimmunity. *Immune Netw* 2014;14:21. doi:10.4110/in.2014.14.1.21.

[14] Choi J, Crotty S. Bcl6-Mediated Transcriptional Regulation of Follicular Helper T cells (TFH). *Trends Immunol* 2021;42:336–49. doi:10.1016/j.it.2021.02.002.

[15] Choi YS, Kageyama R, Eto D, Escobar TC, Johnston RJ, Monticelli L, et al. ICOS Receptor Instructs T Follicular

Helper Cell versus Effector Cell Differentiation via Induction of the Transcriptional Repressor Bcl6. *Immunity* 2011;34:932–46. doi:10.1016/j.jimmuni.2011.03.023.

- [16] Leong YA, Chen Y, Ong HS, Wu D, Man K, Deleage C, et al. CXCR5⁺ follicular cytotoxic T cells control viral infection in B cell follicles. *Nat Immunol* 2016;17:1187–96. doi:10.1038/ni.3543.
- [17] Ise W, Inoue T, McLachlan JB, Kometani K, Kubo M, Okada T, et al. Memory B cells contribute to rapid Bcl6 expression by memory follicular helper T cells. *Proc Natl Acad Sci* 2014;111:11792–7. doi:10.1073/pnas.1404671111.
- [18] Dummer LA, Conceição FR, Nizoli LQ, de Moraes CM, Rocha AR, de Souza LL, et al. Cloning and expression of a truncated form of envelope glycoprotein D of Bovine herpesvirus type 5 in methylotrophic yeast *Pichia pastoris*. *J Virol Methods* 2009;161:84–90. doi:10.1016/j.jviromet.2009.05.022.
- [19] Dummer LA, Araujo IL, Campos FS, Da Rosa MC, Finger PF, De Oliveira PD, et al. Development of an indirect ELISA for serological diagnosis of Bovine herpesvirus 5. *PLoS One* 2016;11. doi:10.1371/journal.pone.0149134.
- [20] Mayr A, Bachmann P, Bibrack B, Withmann G. Virologische arbeitsmethoden. Band IV - Sicherheit bei virologischen arbeiten. *Biometrische Methoden*, Gustav Fischer Verlag, Stuttgart 1982.
- [21] De Brun L, Leites M, Furtado A, Campos F, Roehe P, Puentes R. Field Evaluation of Commercial Vaccines against Infectious Bovine Rhinotracheitis (Ibr) Virus Using Different Immunization Protocols. *Vaccines* 2021;9:408. doi:10.3390/vaccines9040408.
- [22] Ioannou XP, Griebel P, Hecker R, Babiuk LA, van Drunen Littel-van den Hurk S. The Immunogenicity and Protective Efficacy of Bovine Herpesvirus 1 Glycoprotein D plus Emulsigen Are Increased by Formulation with CpG Oligodeoxynucleotides. *J Virol* 2002;76:9002–10. doi:10.1128/JVI.76.18.9002-9010.2002.
- [23] Zhu X, Wu S, Letchworth GJ. A chimeric protein comprised of bovine herpesvirus type 1 glycoprotein D and bovine interleukin-6 is secreted by yeast and possesses biological activities of both molecules. *Vaccine* 1999;17:269–82. doi:10.1016/S0264-410X(98)00127-3.
- [24] Zhang T, Liu Y, Chen Y, Wang A, Feng H, Wei Q, et al. A single dose glycoprotein D-based subunit vaccine against pseudorabies virus infection. *Vaccine* 2020;38:6153–61. doi:10.1016/j.vaccine.2020.07.025.
- [25] Maubrigades LR, Santos FDS, Gonçalves VS, Rodrigues PRC, Leite FPL. Association of *Bacillus toyonensis* spores with alum improves bovine herpesvirus 5 subunit vaccine immune response in mice. *Vaccine* 2020;38:8216–23. doi:10.1016/j.vaccine.2020.10.066.
- [26] Donofrio G, Cavarani S, Vanderplasschen A, Gillet L, Flammini CF. Recombinant Bovine Herpesvirus 4 (BoHV-4) Expressing Glycoprotein D of BoHV-1 Is Immunogenic and Elicits Serum-Neutralizing Antibodies against BoHV-1 in a Rabbit Model. *Clin Vaccine Immunol* 2006;13:1246–54. doi:10.1128/CVI.00200-06.
- [27] Siedler BS, Roloff BC, de Sá GL, Neis A, Conceição FR, Hartwig DD, et al. Secretory expression of bovine herpesvirus type 1/5 glycoprotein E in *Pichia pastoris* for the differential diagnosis of vaccinated or infected cattle. *Protein Expr Purif* 2017;130:21–7. doi:10.1016/j.pep.2016.09.018.

[28] Reed SG, Orr MT, Fox CB. Key roles of adjuvants in modern vaccines. *Nat Med* 2013;19:1597–608. doi:10.1038/nm.3409.

[29] Shlomchik MJ, Luo W, Weisel F. Linking signaling and selection in the germinal center. *Immunol Rev* 2019;288:49–63. doi:10.1111/imr.12744.

[30] Robinson MJ, Ding Z, Pitt C, Brodie EJ, Quast I, Tarlinton DM, et al. The Amount of BCL6 in B Cells Shortly after Antigen Engagement Determines Their Representation in Subsequent Germinal Centers. *Cell Rep* 2020;30:1530–1541.e4. doi:10.1016/j.celrep.2020.01.009.

[31] Choi YS, Yang JA, Crotty S. Dynamic regulation of Bcl6 in follicular helper CD4 T (Tfh) cells. *Curr Opin Immunol* 2013;25:366–72. doi:10.1016/j.co.2013.04.003.

[32] Ma CS, Suryani S, Avery DT, Chan A, Nanan R, Santner-Nanan B, et al. Early commitment of naïve human CD4 + T cells to the T follicular helper (T FH) cell lineage is induced by IL-12. *Immunol Cell Biol* 2009;87:590–600. doi:10.1038/icb.2009.64.

[33] Wollenberg I, Agua-Doce A, Hernández A, Almeida C, Oliveira VG, Faro J, et al. Regulation of the Germinal Center Reaction by Foxp3 + Follicular Regulatory T Cells. *J Immunol* 2011;187:4553–60. doi:10.4049/jimmunol.1101328.

[34] Lin C-T, Hsieh Y-T, Yang Y-J, Chen S-H, Wu C-H, Hwang L-H. B-Cell Lymphoma 6 (BCL6) Is a Host Restriction Factor That Can Suppress HBV Gene Expression and Modulate Immune Responses. *Front Microbiol* 2019;9. doi:10.3389/fmicb.2018.03253.

[35] Yu D, Rao S, Tsai LM, Lee SK, He Y, Sutcliffe EL, et al. The Transcriptional Repressor Bcl-6 Directs T Follicular Helper Cell Lineage Commitment. *Immunity* 2009;31:457–68. doi:10.1016/j.jimmuni.2009.07.002.

[36] Ballesteros-Tato A, León B, Graf BA, Moquin A, Adams PS, Lund FE, et al. Interleukin-2 Inhibits Germinal Center Formation by Limiting T Follicular Helper Cell Differentiation. *Immunity* 2012;36:847–56. doi:10.1016/j.jimmuni.2012.02.012.

[37] Johnston RJ, Choi YS, Diamond JA, Yang JA, Crotty S. STAT5 is a potent negative regulator of TFH cell differentiation. *J Exp Med* 2012;209:243–50. doi:10.1084/jem.20111174.

[38] Oestreich KJ, Mohn SE, Weinmann AS. Molecular mechanisms that control the expression and activity of Bcl-6 in TH1 cells to regulate flexibility with a TFH-like gene profile. *Nat Immunol* 2012;13:405–11. doi:10.1038/ni.2242.

[39] Yusuf I, Kageyama R, Monticelli L, Johnston RJ, DiToro D, Hansen K, et al. Germinal Center T Follicular Helper Cell IL-4 Production Is Dependent on Signaling Lymphocytic Activation Molecule Receptor (CD150). *J Immunol* 2010;185:190–202. doi:10.4049/jimmunol.0903505.

[40] Cheng LE, Greenberg PD. Selective Delivery of Augmented IL-2 Receptor Signals to Responding CD8 + T Cells Increases the Size of the Acute Antiviral Response and of the Resulting Memory T Cell Pool. *J Immunol* 2002;169:4990–7. doi:10.4049/jimmunol.169.9.4990.

[41] Kalia V, Sarkar S. Regulation of Effector and Memory CD8 T Cell Differentiation by IL-2—A Balancing Act. *Front Immunol* 2018;9. doi:10.3389/fimmu.2018.02987.

[42] Paul WE, Zhu J. How are TH2-type immune responses initiated and amplified? *Nat Rev Immunol* 2010;10:225–35. doi:10.1038/nri2735.

[43] Waldmann TA. The Shared and Contrasting Roles of IL2 and IL15 in the Life and Death of Normal and Neoplastic Lymphocytes: Implications for Cancer Therapy. *Cancer Immunol Res* 2015;3:219–27. doi:10.1158/2326-6066.CIR-15-0009.

[44] Waldmann TA. The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. *Nat Rev Immunol* 2006;6:595–601. doi:10.1038/nri1901.

[45] Oh S, Berzofsky JA, Burke DS, Waldmann TA, Perera LP. Coadministration of HIV vaccine vectors with vaccinia viruses expressing IL-15 but not IL-2 induces long-lasting cellular immunity. *Proc Natl Acad Sci* 2003;100:3392–7. doi:10.1073/pnas.0630592100.

[46] Cooley ID, Read KA, Oestreich KJ. Trans-presentation of IL-15 modulates STAT5 activation and Bcl-6 expression in TH1 cells. *Sci Rep* 2015;5:15722. doi:10.1038/srep15722.

[47] Oh S, Perera LP, Burke DS, Waldmann TA, Berzofsky JA. IL-15/IL-15R -mediated avidity maturation of memory CD8+ T cells. *Proc Natl Acad Sci* 2004;101:15154–9. doi:10.1073/pnas.0406649101.

[48] Orr MT, Fox CB, Baldwin SL, Sivananthan SJ, Lucas E, Lin S, et al. Adjuvant formulation structure and composition are critical for the development of an effective vaccine against tuberculosis. *J Control Release* 2013;172:190–200. doi:10.1016/j.jconrel.2013.07.030.

[49] Pinheiro AF, Roloff BC, da Silveira Moreira A, Berne MEA, Silva RA, Leite FPL. Identification of suitable adjuvant for vaccine formulation with the *Neospora caninum* antigen NcSRS2. *Vaccine* 2018;36:1154–9. doi:10.1016/j.vaccine.2018.01.051.

[50] Rensetti D, Marin M, Quintana S, Morán P, Verna A, Odeón A, et al. Involvement of toll-like receptors 3 and 7/8 in the neuropathogenesis of bovine herpesvirus types 1 and 5. *Res Vet Sci* 2016;107:1–7. doi:10.1016/j.rvsc.2016.04.009.

[51] Smith KM, Pottage L, Thomas ER, Leishman AJ, Doig TN, Xu D, et al. Th1 and Th2 CD4 + T Cells Provide Help for B Cell Clonal Expansion and Antibody Synthesis in a Similar Manner In Vivo. *J Immunol* 2000;165:3136–44. doi:10.4049/jimmunol.165.6.3136.

[52] Hauge S, Madhun AS, Cox RJ, Brokstad KA, Haaheim LR. A Comparison of the Humoral and Cellular Immune Responses at Different Immunological Sites after Split Influenza Virus Vaccination of Mice. *Scand J Immunol* 2007;65:14–21. doi:10.1111/j.1365-3083.2006.01862.x.

[53] Hu X-D, Chen S-T, Li J-Y, Yu D-H, Yi-zhang, Cai H. An IL-15 adjuvant enhances the efficacy of a combined DNA vaccine against *Brucella* by increasing the CD8+ cytotoxic T cell response. *Vaccine* 2010;28:2408–15. doi:10.1016/j.vaccine.2009.12.076.

[54] Finkelman FD, Holmes J, Katona IM, Urban JF, Beckmann MP, Park LS, et al. Lymphokine Control of In Vivo Immunoglobulin Isotype Selection. *Annu Rev Immunol* 1990;8:303–33. doi:10.1146/annurev.iy.08.040190.001511.

[55] Wells JW, Darling D, Farzaneh F, Galea-Lauri J. Influence of Interleukin-4 on the Phenotype and Function of Bone Marrow-Derived Murine Dendritic Cells Generated Under Serum-Free Conditions. *Scand J Immunol* 2005;61:251–9. doi:10.1111/j.1365-3083.2005.01556.x.

[56] Fallet B, Hao Y, Florova M, Cornille K, de los Aires AV, Girelli Zubani G, et al. Chronic Viral Infection Promotes Efficient Germinal Center B Cell Responses. *Cell Rep* 2020;30:1013–1026.e7. doi:10.1016/j.celrep.2019.12.023.

[57] Anziliero D, Martins M, Weiss M, Monteiro FL, Ataide CF, Weiblen R, et al. Resposta sorológica aos herpesvírus bovino tipos 1 e 5 e vírus da diarreia viral bovina induzida por vacinas comerciais. *Ciência Rural* 2015;45:58–63. doi:10.1590/0103-8478cr20130167.

[58] Delhon G, Moraes MP, Lu Z, Afonso CL, Flores EF, Weiblen R, et al. Genome of bovine herpesvirus 5. *J Virol* 2003;77:10339–47. doi:10.1128/jvi.77.19.10339-10347.2003.

[59] Gabev E, Tobler K, Abril C, Hilbe M, Senn C, Franchini M, et al. Glycoprotein D of Bovine Herpesvirus 5 (BoHV-5) Confers an Extended Host Range to BoHV-1 but Does Not Contribute to Invasion of the Brain. *J Virol* 2010;84:5583–93. doi:10.1128/JVI.00228-10.

[60] Yamshchikov G V, Barnd DL, Eastham S, Galavotti H, Patterson JW, Deacon DH, et al. Evaluation of peptide vaccine immunogenicity in draining lymph nodes and peripheral blood of melanoma patients. *Int J Cancer* 2001;92:703–11. doi:10.1002/1097-0215(20010601)92:5<703::AID-IJC1250>3.0.CO;2-5.

[61] Santos FDS, Maubrigades LR, Gonçalves VS, Franz HC, Rodrigues PRC, Cunha RC, et al. Bacillus Toyonensis BCT-7112T Spores as Parenteral Adjuvant of BoHV-5 Vaccine in a Murine Model. *Probiotics Antimicrob Proteins* 2021;13:655–63. doi:10.1007/s12602-021-09753-z.

[62] Santos FDS, Menegon YA, Piraine REA, Rodrigues PRC, Cunha RC, Leite FPL. *Bacillus toyonensis* improves immune response in the mice vaccinated with recombinant antigen of bovine herpesvirus type 5. *Benef Microbes* 2018;9:133–42. doi:10.3920/BM2017.0021.

[63] Roos TB, de Moraes CM, Sturbelle RT, Dummer LA, Fischer G, Leite FPL. Probiotics *Bacillus toyonensis* and *Saccharomyces boulardii* improve the vaccine immune response to Bovine herpesvirus type 5 in sheep. *Res Vet Sci* 2018;117:260–5. doi:10.1016/j.rvsc.2017.12.022.