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Abstract: One of the most broadly used models for membrane fouling is the Hermia model, which
separates this phenomenon into four blocking mechanisms, each with an associated parameter n.
These mechanisms are complete blocking (n = 2), intermediate blocking (n = 1), standard blocking
(n = 3/2) and cake formation (n = 0). The original model, which was obtained through experi-
mental data, is given by an Ordinary Differential Equation (ODE) dependent on n. At the time, this
ODE was only solved for these four values of n, which limits the effectiveness of the model when
adjusted to experimental data. The aim of this paper is to not only mathematically prove the original
Hermia model, but also to broaden the scope of this model for any real number n by using the
original ODE, the equations of fluid mechanics and the properties of single and multivariable cal-
culus. The final generalized Hermia model is given by a power-law for any n # 2 and is given by
an exponential function at n = 2 and can be fitted to ultrafiltration, microfiltration, nanofiltration
and reverse osmosis data with acceptable values of R? (>0.93). Here it is also shown that the accu-
mulated volume as a function of time follows the same type of ODE. The values of n between the
four original discreate values could be physically interpreted as the existence of new blocking mech-
anisms.

Keywords: Membrane fouling, Hermia model, Fouling model, Pore blocking, Blocking mechanism.

1. Introduction

One of the most widely used models to predict membrane fouling is the Hermia
model [1]. In the 1982 paper, Hermia was able to frame mathematically the relationship
between the accumulated volume and time from experimental data, arriving at the differ-
ential equation presented in Section 2.3. Since this model was derived for non-newtonian
fluids, the parameters n and k help to adjust the model for different types of fluids and
blocking mechanisms. The original ordinary differential equation (ODE) was solved for
four different discrete values of n, each value with its own blocking mechanism, as shown
in Figure 1 and in Equations 1-4.

Where t is the time measured from the beginning of the filtration experiment, j is
the permeate flux at time t, j, is the permeate flux at time ¢t = 0 and k is a real constant
determined experimentally. The simplicity and effectiveness of this model made its way
into the application of membrane filtration, such as the ultrafiltration of polyethylene gly-
col [2], cross flow ultrafiltration of waste water [3], nanofiltration of polycyclic aromatic
hydrocarbons [4], particle fouling during microfiltration [5] and natural organic matter
fouling [6]. Although the Hermia model works well for the original four values of n, there
are applications where the permeate flux is discontinuous, such as the removal of glycerol
from biodiesel [7,8] or in high-pressure nanofiltration [9], in which these values cannot
accommodate experimental data.
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Figure 1. Blocking mechanisms by Hermia (1982): (I) complete blocking; (II) intermediate blocking;
(II) standard blocking; (IV) cake formation.

Complete blocking Inj=Inj,—k-t @
(n=2)
Intermediate blocking 1/j = /jo) — k-t )
(n=1)
Standard blocking 1Nj =QQNjo)—k-t  (3)
(n=3/2)
Cake formation 1/j2 =/j5) k-t @)
(n=0)

Therefore, this model has been modified to better accommodate experimental results
by increasing its complexity, either by keeping the same blocking mechanisms but chang-
ing the equations, such as in glycerin-water solutions [10], or by using the concept of flow
resistance, as in oil-water emulsions [11], still both these modifications use the original
Hermia model as the base. Similar approaches have been used to model fouling in micro-
and ultrafiltration membranes for treating limed and partially clarified sugar cane juice
[12], such as the use of pore narrowing models and the combination of external and pro-
gressive internal fouling.

Since Equations 1-4 were obtained only for four discrete values of n, the original
model is limited to these values. Therefore, this work aims not only to prove the original
Hermia model from the experimental ODE, but also to broaden its use by proving a gen-
eral solution for any real number n through the equations of fluid mechanics and the
properties of single and multivariable calculus.

2. Materials and Methods
2.1. Control Volume and Model Setup

Inside of a module (Figure 2) of constant cross-sectional area A with a constant mass
flux Ny, some mass from this flux will be retained by the membrane making it harder for
more mass to pass through the membrane as permeate. As a consequence, over time, the
exit mass flux N(t) should decrease. In this model, the mass accumulated is modeled by
a porous solid with a constant base area A and thickness §(t). After an infinitesimal time
At, the mass accumulated makes § to increase. Therefore, it is possible to take this solid
as the control volume (CV) and apply conservation laws to it.
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Figure 2. The control volume is a solid with a constant cross-sectional area A and density ps, such
that the entering stream of fluid has a constant mass flux Ny, a constant permeate flux j, and den-
ity pent. The exiting stream of fluid has a mass flux N(t), a permeate flux j(t) and density peyi.
The length §(t) increases over time as more mass is accumulated on the membrane (shown as
shaded section).

2.2. Continuity Equation

The continuity equation (Eq. 5), also known as the general conservation of mass equa-
tion [13] or as the mass balance equation [14], is the mathematical formula that keeps track
of how much mass is inside of a given control volume. It does so by computing how much
the control volume itself changes over time, which is given by the volume integral, and
by calculating how much mass leaves or enters the CV, which is given by the surface in-

tegral.
0 .
a-ﬂ pdv+ffp(] ‘n)dA =0
cv Cs

Where p is the density function, dV is the volume differential of the CV, j is the
velocity vector, 7 is the vector perpendicular to the surface of the CV and d4 is the dif-
ferential surface area of the CV.

©)

2.3. Hermia’s Experimental Model

The differential equation (Eq. 6) is an experimental result obtained by Hermia [1],
which correlates the second derivative of time (t) with respect to the accumulated volume
(V) with the first derivative of t with respect to V.

2 n
at (E) ©)
dv? dv
Here, the coefficients k and n are two real numbers that can be changed to better
adjust the model for different situations. As discussed in Section 1, the model was origi-
nally solved for n = 2,1,3/2,0. These solutions resulted in Equations 1-4, respectively.

2.4. Derivatives of Inverse Functions

For a given function y(x) and its inverse function given by x(y), the relationship
between dy/dx and dx/dy, if y(a) = b, is given by [15]:

d d
<_y) : <_x> -1 %)
dx/,—, \dy y=b
As for the second derivatives of these functions:

(@), @) @)


https://doi.org/10.20944/preprints202206.0187.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2022 d0i:10.20944/preprints202206.0187.v1

4 of 21

For the sake of brevity, the proof does not use the full subscript (e.g., x = a). It only
discloses the direct values of the independent variables. As an example, (dy/dx),—,
would be written as (dy/dx),

2.5. Flux Definition

One of the definitions of mass flux of a given stream i is given by the product be-
tween its mass concentration/total density (p;) and its velocity (j;) [13, 14], as stated in
Equation 9.

N; = pij; )

2.6. Accumulated Volume and Flux

As presented in Equation 10, the accumulated volume V(t) foramassflux N(t) can
be calculated by integrating N(t) from t =0 to t = t, which will give the total mass per
unit of cross-sectional area. Therefore, multiplying by the area and dividing by its density
will yield the accumulated volume, V(t).

f N(t)dt (10)

V(t) =
Pexit
2.7. Integral Properties

A reduced form of the Leibnitz formula with constant integration limits a and b for
a given function y(x) yields Equation 11 [16].

’ an
d
| [ fii")] dx = y(b) - y(@)

3. Results

3.1. Model Proof

Taking all of the equations presented in Section 2, it is possible to take the control
volume from Section 2.1 and apply the continuity equation (Section 2.2). By making the
assumption that the system has uniform entrances and exits, the surface integral can be

reduced to:
ff pj-dA = ZpijiAi

cS cS

(12)

For the present system, there are two sources of flux, the entrance and the exit. As a
result, this sum is given by:

Z PiJiAi = Pexit] ) Aexit — PentjoAent (13)
CS

By the definition of flux given on Section 2.5, Ny = p;,jo and N(t) = p,y.j(t). Since
the control volume has a constant area, Ay = Aens = A. Therefore:

> puidi = A~ (N(E) = No) (14)
cs

Thus, the surface integral of the Continuity Equation is simplified to:

(15)
|| - =a- iy - no
CcS
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So:

As for the volume integral, since the control volume itself is a porous solid with a
constant density ps, a base area A and length §(t):

(16)
[[] pav = pov=p-2-600
cv
) as(t) (7)
il pv =peca- e
cv
Going back to the Continuity Equation:
dé(t)
ps A==+ A (N(®) = No) = 0
If k, = pg, then:
N(t) = Ny — ks - di(tt) (18)
According to [1], for a real constant k:
d’t de\" (19)
=" ()

Using the first property presented on Section 2.4, it is possible to write dt/dV in
terms of dV /dt. Therefore:

[ R R

For V(t*) = V*. Now using the second property from the same Section, it is possible
to write d?t/dV? in terms of dV?/dt?. Thus, Eq. 19 can be rewritten as:

() =& (@),]

Using Eq. 20:

(), (@), @,

Applying Eq. 20 and 21 into the Hermia model:

)1 =
() sl

If m =3 —n and k5 is another real constant, then:

(), = l@),]

Since both of these derivatives have the same domain of ¢, then for any t*, this ODE
is valid, therefore it is possible to remove the subscript.
2 m
el @
dt? dt
It is important to note that both Equations 6 and 22 are analogous, which means that
both functions t(V) and V(t) are solutions of the same family of differential equations.
By the definition of accumulated volume presented in Section 2.6, it is possible to use the
Equation 18, such that;
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v = A ft [N . da(t)] it
Pexit 0 0 ! dt
By the integral property presented in Section 2.6:
ft o) dt =6(t) —8(0
e | =0w -5
Since there is no mass accumulated in the control volume at t = 0, then §(0) = 0.
As a result:
V() = ——[No -t = ks 5(0)] @3)
exit
Differentiating V(t) twice:
av A dé(t
LA L0 (24)
dt Pexit dt
dv _ A d?5(b) (25)
dt? B ! Pexit dt?
With these derivatives, it is possible to rewrite Equation 22, such that:
A d25(t) A as@]]"
K 2 K3 No = kg ——
P dat Pexit dt
For another real constant k,:
dzs(t) as™ 2%
W="4[N0"‘1 at 29
Reducing Eq. 26 further with Eq. 18:
d*5(t) 27)
iz " ke [NOI™
By differentiating Eq. 18:
an@) _ ., d*s(0) (28)
dt bode?
Therefore, Eq. 27 can be simplified further to:
dN(t) m (29)
— = = ksIN ()]
Such that ks is another real constant. Now, by applying the separation of variables

method [17]:
[N@®)] ™dN(t) = ksdt

As aresult, for m # 1:

N(t) t
f [N()] ™dN(t) =fk5dt

N(O)
[IN@®O]™IN(t) t
[(1—m) N0y = rstly

1
Ty VT = INOF™) = kst

[INOI'™™ = [NO]'"™ + (1 — m)kst
IfP=1-m:
[N(®)]" =[N + P -ks-t
And Pks = —kg:
[N = [N(0)]" — ke - t
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Since there is no mass accumulated at the beginning of the filtration experiment
(6(0) = 0), both N, and N(0) are equal. Therefore:
NI = [No]” — ke -t (30)

It is important to notice that Eq. 30 is similar to the original equations used in the
Hermia model. It is also important to highlight that both P and ks can assume any real
values, as long as P # 0. By using the flux definition presented in Section 2.4

[pexitj(t)]P = [penth]P —ke-t

Thus, if k, is another real constant:

O = pent] .p

Jo — kst
As aresult, Eq. 31 closely resembles the power law used in the Hermia fouling model.
However, the additional term [pens/pexic]” correctly scales up j, such that the right-
hand side of Eq. 31 agrees with the Continuity Equation. In special cases where the density
of the permeate is close to the original density (pexit = Pent ), the correction term
[Pene/Pexic]l” — 1.1f that is the case, [j(t)]® can be approximated by:

O ~jo — kst (32)

Taking a closer look into Eq. 31 and 32, it is interesting to point out that as P — oo,
all terms with the exponent P become larger than k-, - t. Hence in both cases j(t) will
end up as a constant value. For the special case when m = 1:

fNN(t)mdN(t) f ksdt

N()

(1)

exit

= kst

N(t) = Ny exp(kst)
If kg = —ks, then:
N(t) = Ny exp(—kot) (33)

Since Equation 33 has an exponential function multiplying Ny, and k¢ can assume
positive values (or ks < 0), when m = 1, the system can behave with a classical drop for
N(t). Applying again the flux definition presented in Section 2.5:

pexitj(t) = Pentjo exp(—kot)

(6 = o |[2] exp—kst) 34
Pexit
For the same reasons as before, if poyxit = Pents [Pent/Pexic] = 1 and j(t) can be ap-
proximated by:
J(@) = jo exp(—kqt) (35)

Since m =3 —n and P = 1 —m, it is possible to conclude that P = 2 — n. By using
the four original discreate valuesof n = 2,1,3/2,0, P = 0,—1,—1/2,—2, which are exactly
the respective exponents of j in Eq. 1-4. Thus, through Eq. 32 and 35, it is possible to re-
produce the entire Hermia model. Since Eq. 32 was obtained for any real n different than
2 and Eq. 35 was obtained for n = 2, these equations form a model that can be used for
any real n, which widens the usefulness of the Hermia model considerably. Conse-
quently, there are also values of n between the four original discrete values, which can
be physically interpreted as the existence of new types of fouling mechanisms in mem-
branes. Using Eq. 18, 31 and 34, it is possible to deduce how the fouling profile should
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change with P, given by the function §(t). Through Eq. 9 and 18, it is possible to show
that:

[J (t)] [pent d6 (t) (36)
pexlt
For another real constant k1o- For the case of P # 0, the profile of j(t) is given by
Eq. 31. Taking this equation and dividing both sides by j¢:
[ j®o1 pent]f’ kot (37)
]0 Pexit
Since k,/j§ is still a constant in Eq. 37, the same constant will be used. Therefore, by
substituting Eq. 36 into Eq. 37:

P
p. ds(t) Pent ]’
[ ent] ko _ ent] — ket

Pexit Pexit

1/pP
pent] kg as() _ ( pent]P B k7t> /

Pexit dt Pexit
1
dé(t P P
o ® _ ( pent] _k7t> B pent]
dt Pexit Pexit

If ki, and k,, are other real constants, then:

ds(t) ( Pent 1¥ )TJ
g ] “kt) +k
dt 1 Pexit 7 12

[

as(t P P
%=(kﬁ — —kf1k7f) +hig

Pexit
Thus, if ki3 = kfl[pent/pexit]P and k4 = _kf1k75

as () 1 38
ar (k13 + kqat)P + kyp %)

Now, by applying the separation of variables method in Eq. 38 [17]:

8 ¢ 1
f ds(t) = f [Clys + kyg0F + kyy)de
8(0) 0
Since:

8(t)

f ds(t) = 8(t) — 5(0)

5(0)

And 6(0) = 0, then:

t 1
5(t) = f (s + kg f)F + ko ]dt (39)
0

By integrating Eq. 39 with respect to t:

+1
5(t) = kiu(km(—ll— ’j—v;f))” + ket (t)
P
1| Ckis + kyy )P — k%: !
6(t) = + kiat

E Y
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It is possible to further reduce this equation by distributing the terms 1/k;, and
(1/P + 1). By doing that, it should be possible to regroup the constants inside the brackets

of (k13 + k14t)%+1. If:

k15 — k13 L
<k14 : (% + 1)) "
kg = ks &
<k14 . (% N 1)>P+1
A
T e (3+1)

Then:

1 40
8(8) = (kys + kygt) P + kyy + kot (40)

By applying §(0) = 0 in Eq. 40, it can be found that:

1

ki7 = —kis

As a result, Eq. 40 can be further reduced to:

1 1 41
8(t) = (kys + kygt)P™* — kaH + kypt (41)

For the case of P = 0, through Eq. 34 and 36, it is possible to show that:

dé(t

exit exit

Dividing both sides by [pent/Pexit]:
_ Pexit d6(t)

exp( kgt) =1 klO Domt dt

If 1/kig = —kyolpexit/Pent], then:
kot) =1+ 1 d8(®)
exp( 9 ) - k18 dt

Therefore:

dé(t) 42

- kiglexp(—kot) — 1] (42)

Now, by applying the separation of variables method in Eq. 42 [16]

5 ¢
dS(t) = kyg f [exp(—kot) — 1] dt
5(0) 0

1 t
5(6) = kyg [_—kgexp(—kgt) - t] .

T
6(t) = —k—[exp(—kgt) — 1] — kqgt
9
If k19 = —kqg/ky and k,y = —k,g, then:
8(t) = kyolexp(—kot) — 1] + kyot (43)
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As a result, with Eq. 41 and 43, it is possible to construct a fouling model for every
real value of P, such that:

1 1
N (e krgt)P = KPS 4 kypt, P # 0 (44)

klg[exp(_kgt) - 1] + kzot,P =0

It is important to notice that the different fouling profiles § are given by the expo-
nent 1/P + 1. Therefore, by analyzing this exponent, it is possible to draw conclusions
about the fouling profiles as well. By taking the limitas P — o, 1/P - 0:

8(t) = (kys + k16t)0+1 - kggl + kqpt
8(t) = (kyg + k1)t
Now, by taking the limitas P — —o, 1/P - 0:
8(t) = (kys + kyt)*™ — k2T + kypt
8(t) = (ki + ki)t

Therefore, for both P - o and P — —oo, the result is a linear curve. The same be-

havior can be seen when P = —1, since:
8(t) = (ks + kyot)' ™ — kis' + kypt
6(t) = kqpt

For positive values of P, the exponent 1/P + 1 is always larger than 1, in contrast
for negative valuesof P, 1/P + 1 is always smaller than 1. Consequently, there is one and
only one unique fouling profile §(t) for every real value P.

3.2. Application of the Generalized Hermia Model

To better illustrate how the Generalized Hermia model can be used, this model has
been fitted to already published data ([17], [18], [19], [20], [21], [22], [23]). The model fitting
was done in terms of the specific membrane flux, given by j/j,. Assuming that both the
entrance and exit densities are approximately the same, it is possible to use Equation 32,

such that:
[ S
Jo Jo
If k,/jf is another real constant k, then:
i®]
[__ 1kt (45)
Jo

Thus, by using Equation 45, the values presented in Tables 1-7.

3.2.1. Applications in Ultrafiltration

From the fitting data presented in Table 1 and in Figures 3, 4 and 5, it is possible to
point out that different filtration conditions, such as different cross flow rates (CFRs) and
different trans-membrane pressures (TMPs) amount to different coefficients k and P.
Based on the data used for the model fitting, if CFR in maintained constant, an increase in
TMP does not seem to cause any significant changes to either k or P, apart from the last
fit presented in Table 1. On the contrary, by keeping the TMP constant, an increase in CFR
amounts to a slight increase in k, which implies that, in the present case, j(t) decreases
more rapidly as a result. An increase on CFR while keeping the TMP constant does not
seem to affect P.
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Table 1. Model fitting for different filtration conditions in oily effluent treatment [17]

TMP k

Filtration mechanism CFR (L/h) (kPa) (min) P
Ultrafiltration 14 21 -0.38355 -1.565
Ultrafiltration 14 35 -0.37436 -1.494
Ultrafiltration 14 104 -0.37012 -1.468
Ultrafiltration 28 21 -0.36630 -1.428
Ultrafiltration 28 35 -0.38615 -1.498
Ultrafiltration 28 104 -0.38687 -1.488
Ultrafiltration 40 21 -0.39749 -1.515
Ultrafiltration 40 35 -0.39230 -1.499
Ultrafiltration 40 104 -0.4489 -1.578

180

_ 160 o

£ 140
g

< 120
=

%< 100
=

=80
L

S 60

E) 40

20

0

0 10 20 30 40 50 60 70 80 90 100
Time [min]
Q@ 21kPa O 35kPa @ 104 kPa
Model fit - 21kPa Model fit - 35 kPa Model fit - 104 kPa

Figure 3. Model fitting for different filtration conditions in oily effluent treatment at CFR of 14 L/h [17].
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Figure 4. Model fitting for different filtration conditions in oily effluent treatment at CFR of 28 L/h [17].


https://doi.org/10.20944/preprints202206.0187.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2022 d0i:10.20944/preprints202206.0187.v1

12 of 21

200
180
160
140
120
100

Permeate flux [L/(m2h)]
85838

o

10 20 30 40 50 60 70 80 90 100
Time [min]
O 21kPa O 35kPa © 104 kPa
Model fit - 21kPa Model fit - 35 kPa Model fit - 104 kPa

Figure 5. Model fitting for different filtration conditions in oily effluent treatment at CFR of 40 L/h [17].

As for the model fitting presented in Table 2 and in Figures 6 and 7, it is clear that
different membrane types influence the coefficients, given the considerable gap between
the both k and P when comparing membranes with hydrophilic (HPI) matter against
membranes with hydrophobic (HPO) matter. According to the data used, the application
of coagulating agents (Coag.) and of additives such as MIEX® also influence the coeffi-
cients, since both cause a sharp decline in k on all tests presented in Table 2. In both HPI
and HPO membranes, the addition of the coagulating agent caused an increase in P, while
the opposite happened with the addition of MIEX®.

Table 2. Model fitting for different filtration conditions in desalination and water treatment [18]

Filtration mechanism Experimental Conditions (1:(_ 1) P R?
Ultrafiltration HPI UF only -11.69 -2.855 0.9989
Ultrafiltration Coag. 140mg/L+HPI UF -9.558 -4.432 0.9959
Ultrafiltration MIEX 12mL/L+UF -9.328 -2.882 0.9984
Ultrafiltration MIEX 12mL/L+Coag. 40mg/L+HPI UF -2.407 -3.084 0.9971
Ultrafiltration HPO UF -99.2 -2.228 0.995
Ultrafiltration Coag. 140mg/L+HPO UF -26.12 -3.063 0.9964
Ultrafiltration MIEX 12mL/L+HPO UF -25.94 -1.845 0.9978
Ultrafiltration MIEX 12mL/L+Coag. 40mg/L+HPO UF -17.49 -2.965 0.9964
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Figure 6. Model fitting for different hydrophilic filtration conditions in desalination and water treatment [18]
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Figure 7. Model fitting for different hydrophobic filtration conditions in desalination and water treatment [18]

The fitting presented in Table 3 and in Figures 8 and 9 indicates how fouling accu-
mulates over many cycles of operation. The original work proposed in [19] aimed to re-
duce fouling by coating the membrane PolySBMA. As shown in Table 3, both coated and
uncoated membranes showed an increase in k on later cycles, as well as different values
of P.Thisincreasein k indicatesthat j(t) decreases more rapidly inlater cycles. Itis also

evident that coating the membrane is advantageous since k is much smaller in later cy-
cles.
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Table 3. Model fitting for different filtration conditions of bovine serum albumin solutions [19]

k

Filtration mechanism  Coated or Uncoated Cycles (h1) P R?
Ultrafiltration Uncoated Ist -5.580 -1.536 0.9866
Ultrafiltration Uncoated 2nd -25.850 -1.878 0.9947
Ultrafiltration Uncoated 3rd -38825 -4.921 0.9889
Ultrafiltration Coated Ist -4.189 -1.715 0.9882
Ultrafiltration Coated 2nd -35.017 -2.474 0.9332
Ultrafiltration Coated 3rd -102.485 -4.205 0.9782
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Figure 8. Model fitting for filtration conditions of bovine serum albumin solutions in uncoated membranes [19]
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Figure 9. Model fitting for filtration conditions of bovine serum albumin solutions in coated membranes [19]
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As for the fitting data presented in Table 4 and in Figures 10 and 11, the influence of
the TMP and the concentration of nanoparticles (NPs) (given in mg of nanoparticles per
liter or mg NPs/L) are evaluated. For both TMPs presented in Table 4, the increase in con-
centration of nanoparticles caused an increase in k, while P has both increased and de-
creased with nanoparticle concentration.

Table 4. Model fitting for different filtration conditions of nanoparticles in polishing wastewater [20]

k
Filtration mechanism mg NPs/L TMP (bar) (s) P R?
Ultrafiltration 97 0.4 -0.02613 -3.602 0.9866
Ultrafiltration 251 0.4 -0.01384 -2.064 0.9947
Ultrafiltration 657 0.4 -0.18643 -2.797 0.9889
Ultrafiltration 332 0.3 -0.06550 -7.686 0.9882
Ultrafiltration 572 0.3 -4.55004 -12.37 0.9332
Ultrafiltration 2600 0.3 -7.88155 -9.01 0.9782
500
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B 250
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£ 200
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0
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Figure 10. Model fitting for different filtration conditions of nanoparticles in polishing wastewater at 0.4 bar [20]
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Figure 11. Model fitting for different filtration conditions of nanoparticles in polishing wastewater at 0.3 bar [20]

3.2.2. Applications in Microfiltration

Table 5 displays the fitting data for three different ceramic membranes CM01, CM05
and CMO08 used in corn syrup clarification [21]. For the same TMP, the three membranes
have different values for k and P. According to [21], the membranes CM01, CM05 and
CMO08 have hydraulic permeabilities equal to 9.84, 46.63 and 273.45 L/(h.m2kPa), respec-
tively. At constant TMP, as the hydraulic permeability increases, k initially decreases and
increases afterwards. The opposite seems to happen to P, as it initially increases and de-
creases afterwards. As for the use of CMO05 at different TMPs, an increase in pressure
causes a decrease in k and an increase in P. Therefore, for this membrane in the present
case, higher TMPs seem to slow the fouling process. All of the fitting curves can be found
in Figures 12 and 13.

Table 5. Model fitting for different filtration conditions of corn syrup clarification [21]

Filtration mechanism Membrane TMP (kPa) (li(' 1) P R?
Microfiltration CMO08 50 -6.67255 -1.485 0.9837
Microfiltration CMO5 50 -2.48053 -1.251 0.9882
Microfiltration CMO01 50 -11.188 -2.666 0.9621
Microfiltration CMO5 103.42 -3.09844 -1.213 0.9868
Microfiltration CMO05 51.71 -4.47374 -1.614 0.9818
Microfiltration CMO05 37.9 -5.40957 -1.694 0.9936
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Figure 12. Model fitting for different ceramic membranes in corn syrup clarification [21]
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Figure 13. Model fitting for the ceramic membrane CMO05 in corn syrup clarification [21]

3.2.3. Applications in Nanofiltration and Reverse Osmosis

According to the data shown in Table 6 and the curves presented in Figures 14 and
15, it is possible to see a correlation between the ionic strength of the solution and k. For
both nanofiltration and reverse osmosis, the solution with calcium ions causes an increase
in k when compared to the solution with sodium. This increase in k indicates that j(t)
decreases more rapidly with a more positively charged solution. For nanofiltration, the
values of P do not change drastically with the presence of calcium ions. In contrast, P
changes greatly for reverse osmosis.
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Table 6. Model fitting for different filtration conditions of humic acid in ionic aqueous solutions [22]
Filtration mechanism Membrane Ion k P R2
(min-1)

Nanofiltration NE90 Na* -0.00981 -3.736 0.9987

Nanofiltration NE40 Na* -0.01342 -2.441 0.9971
Reverse Osmosis RE-SHF Nat -8.56E-7 -0.0088 0.9838
Reverse Osmosis SW30 Nat -1.03E-6 -0.0068 0.9633

Nanofiltration NE90 Ca? -0.01656 -2.875 0.9966

Nanofiltration NE40 Ca2* -0.02032 -2.494 0.984
Reverse Osmosis RE-SHF Ca2* -0.04657 -7.294 0.988
Reverse Osmosis SW30 Ca2* -0.02677 -4.439 0.9677
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Figure 14. Model fitting for different filtration conditions of humic acid in ionic solutions with Na* ions [22]
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Figure 15. Model fitting for different filtration conditions of humic acid in ionic solutions with Ca?* ions [22]
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Table 7 and Figure 16 present how a membrane’s composition can influence k and
P. [23] originally aimed to study the effects of different percentages of fumarate alumox-
ane (Fum-A) in the composition could impact fouling. As shown in Table 7, for weight
percentages above 1%, both P and k change greatly. For an increase in Fum-A, k tends
to increase as the opposite happens to P. Therefore, for greater concentrations of Fum-A,
the fouling effect becomes more pronounced.

Table 7. Model fitting for different filtration conditions of whey solutions [23]

Filtration mechanism Membrane (};:3/-3) ( m:(n-l) P R2
Nanofiltration Fum-A/PES 0 -13.08 -4.971 0.9822
Nanofiltration Fum-A/PES 0.5 -13.05 -4.97 0.9822
Nanofiltration Fum-A/PES 1 -13.09 -4.971 0.9822
Nanofiltration Fum-A/PES 2 -1199 -10.23 0.9759
Nanofiltration Fum-A/PES 3 -1355 -10.23 0.9759
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Figure 16. Model fitting for membranes with different Fum-A concentrations and their impact in the filtration of whey solutions
[23]

4. Discussion

Taking into account the data in the literature [17], [18], [19], [20], [21], [22] and [23],
as well as the model fitting presented in Tables 1-7, it is possible to infer that the effects of
variables such as TMP, CFR, filtration mechanism, membrane composition and solution
nature vary greatly. The variables that have the biggest impact on the coefficients P and
k are the membrane composition, the solution nature and the filtration mechanism. As
shown in Tables 2 and 3, methods that try to dimmish fouling tend to decrease the value
of k. These methods change the membrane composition or the nature of the solution in
some way. As demonstrated in Tables 2, 3, 6 and 7, the membrane composition can either
increase or decrease k, which depends on the interactions between the solution being fil-
tered and the membrane itself. In general, the effects that TMP, CFR, filtration mechanism,
membrane composition and solution nature have on P and k are situation-specific.
Therefore, to determine these effects, each situation needs to be thoroughly investigated
in its own right.
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5. Conclusions

e The Hermia model can be used for any real values of n and k for equal or ap-
proximate entrance and exit densities;

o The permeate flux j is given by a power law dependent on the value of n for any
real n # 2;

o The permeate flux j is given by an exponential function when n = 2;

e The accumulated volume as a function of time follows the same type of ODE ex-
pressed by time as a function of the accumulated volume;

e The mass flux N(t) behaves similarly to the permeate flux j;

e There is a correction term for the difference of the entrance and exit densities that
scales up j, such that the continuity equation is obeyed;

e For n # 2, j will become a constant value if P tends to infinity;

e P isrelated to n,since P =n—2;

e Since n is a continuous quantity, there are solutions between the four original
discreate values, which can be physically interpreted as the existence of new types
of blocking mechanisms;

o The fouling curve §(t) is also given by a power law dependenton P for any real
P#0,

e The fouling curve §(t) is also given by an exponential function when P = 0,

e When P - o, P —» —o or P = —1, the fouling curves given by 6(t) behave lin-
early;

e There is one and only one unique fouling profile §(t) for every real value P;

e Ultrafiltration, microfiltration, nanofiltration and reverse osmosis can be mod-
elled;

o The effects of membrane composition and solution nature impact greatly the val-
ues of P and k;

o The fouling behavior is situation-specificand P and k may vary differently with
the same variable in different cases.
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