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Abstract: One of the most broadly used models for membrane fouling is the Hermia model, which 
separates this phenomenon into four blocking mechanisms, each with an associated parameter 𝑛. 
These mechanisms are complete blocking (𝑛 = 2), intermediate blocking (𝑛 = 1), standard blocking 
(𝑛 = 3/2) and cake formation (𝑛 = 0). The original model, which was obtained through experi-
mental data, is given by an Ordinary Differential Equation (ODE) dependent on 𝑛. At the time, this 
ODE was only solved for these four values of 𝑛, which limits the effectiveness of the model when 
adjusted to experimental data. The aim of this paper is to not only mathematically prove the original 
Hermia model, but also to broaden the scope of this model for any real number 𝑛 by using the 
original ODE, the equations of fluid mechanics and the properties of single and multivariable cal-
culus. The final generalized Hermia model is given by a power-law for any 𝑛 ≠ 2 and is given by 
an exponential function at 𝑛 = 2 and can be fitted to ultrafiltration, microfiltration, nanofiltration 
and reverse osmosis data with acceptable values of R2 (>0.93). Here it is also shown that the accu-
mulated volume as a function of time follows the same type of ODE. The values of 𝑛 between the 
four original discreate values could be physically interpreted as the existence of new blocking mech-
anisms. 

Keywords: Membrane fouling, Hermia model, Fouling model, Pore blocking, Blocking mechanism. 
 

1. Introduction 
One of the most widely used models to predict membrane fouling is the Hermia 

model [1]. In the 1982 paper, Hermia was able to frame mathematically the relationship 
between the accumulated volume and time from experimental data, arriving at the differ-
ential equation presented in Section 2.3. Since this model was derived for non-newtonian 
fluids, the parameters 𝑛 and 𝑘 help to adjust the model for different types of fluids and 
blocking mechanisms. The original ordinary differential equation (ODE) was solved for 
four different discrete values of 𝑛, each value with its own blocking mechanism, as shown 
in Figure 1 and in Equations 1-4. 

Where 𝑡 is the time measured from the beginning of the filtration experiment, 𝑗 is 
the permeate flux at time 𝑡, 𝑗଴ is the permeate flux at time 𝑡 = 0 and 𝑘 is a real constant 
determined experimentally. The simplicity and effectiveness of this model made its way 
into the application of membrane filtration, such as the ultrafiltration of polyethylene gly-
col [2], cross flow ultrafiltration of waste water [3], nanofiltration of polycyclic aromatic 
hydrocarbons [4], particle fouling during microfiltration [5] and natural organic matter 
fouling [6]. Although the Hermia model works well for the original four values of 𝑛, there 
are applications where the permeate flux is discontinuous, such as the removal of glycerol 
from biodiesel [7,8] or in high-pressure nanofiltration [9], in which these values cannot 
accommodate experimental data. 
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Figure 1. Blocking mechanisms by Hermia (1982): (I) complete blocking; (II) intermediate blocking; 
(III) standard blocking; (IV) cake formation. 

 

 
 
 
 
 
 
 
 
 
 

 
Therefore, this model has been modified to better accommodate experimental results 

by increasing its complexity, either by keeping the same blocking mechanisms but chang-
ing the equations, such as in glycerin-water solutions [10], or by using the concept of flow 
resistance, as in oil-water emulsions [11], still both these modifications use the original 
Hermia model as the base. Similar approaches have been used to model fouling in micro- 
and ultrafiltration membranes for treating limed and partially clarified sugar cane juice 
[12], such as the use of pore narrowing models and the combination of external and pro-
gressive internal fouling. 

Since Equations 1-4 were obtained only for four discrete values of 𝑛, the original 
model is limited to these values. Therefore, this work aims not only to prove the original 
Hermia model from the experimental ODE, but also to broaden its use by proving a gen-
eral solution for any real number 𝑛 through the equations of fluid mechanics and the 
properties of single and multivariable calculus. 

2. Materials and Methods 
2.1. Control Volume and Model Setup 

Inside of a module (Figure 2) of constant cross-sectional area 𝐴 with a constant mass 
flux 𝑁଴, some mass from this flux will be retained by the membrane making it harder for 
more mass to pass through the membrane as permeate. As a consequence, over time, the 
exit mass flux 𝑁(𝑡) should decrease. In this model, the mass accumulated is modeled by 
a porous solid with a constant base area 𝐴 and thickness 𝛿(𝑡). After an infinitesimal time 
Δ𝑡, the mass accumulated makes 𝛿 to increase. Therefore, it is possible to take this solid 
as the control volume (CV) and apply conservation laws to it. 

Complete blocking 
(𝑛 = 2) 

ln 𝑗 = ln 𝑗଴ − 𝑘 ∙ 𝑡 (1) 

Intermediate blocking 
(𝑛 = 1) 

1/𝑗 = (1/𝑗଴) − 𝑘 ∙ 𝑡  (2) 

Standard blocking 
(𝑛 = 3/2) 

1/√𝑗 = (1/√𝑗଴) − 𝑘 ∙ 𝑡 (3) 

Cake formation 
(𝑛 = 0) 

1/𝑗ଶ  = (1/𝑗଴
ଶ) − 𝑘 ∙ 𝑡 (4) 
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Figure 2. The control volume is a solid with a constant cross-sectional area 𝐴 and density 𝜌௦, such 
that the entering stream of fluid has a constant mass flux 𝑁଴, a constant permeate flux 𝑗଴ and den-
sity 𝜌௘௡௧ . The exiting stream of fluid has a mass flux 𝑁(𝑡), a permeate flux 𝑗(𝑡) and density 𝜌௘௫௜௧ . 
The length 𝛿(𝑡) increases over time as more mass is accumulated on the membrane (shown as 
shaded section). 

2.2. Continuity Equation 
The continuity equation (Eq. 5), also known as the general conservation of mass equa-

tion [13] or as the mass balance equation [14], is the mathematical formula that keeps track 
of how much mass is inside of a given control volume. It does so by computing how much 
the control volume itself changes over time, which is given by the volume integral, and 
by calculating how much mass leaves or enters the CV, which is given by the surface in-
tegral. 

𝜕

𝜕𝑡
ම 𝜌𝑑∀

஼௏

+ ඵ 𝜌(𝚥 ∙ 𝑛ሬ⃗ )𝑑𝐴

஼ௌ

= 0 
(5) 

 Where 𝜌 is the density function, 𝑑∀ is the volume differential of the CV, 𝚥 is the 
velocity vector, 𝑛ሬ⃗  is the vector perpendicular to the surface of the CV and 𝑑𝐴 is the dif-
ferential surface area of the CV.  

2.3. Hermia’s Experimental Model 
The differential equation (Eq. 6) is an experimental result obtained by Hermia [1], 

which correlates the second derivative of time (𝑡) with respect to the accumulated volume 
(𝑉) with the first derivative of 𝑡 with respect to 𝑉. 

𝑑ଶ𝑡

𝑑𝑉ଶ
= 𝑘 ൬

𝑑𝑡

𝑑𝑉
൰

௡

 
(6) 

 Here, the coefficients 𝑘 and 𝑛 are two real numbers that can be changed to better 
adjust the model for different situations. As discussed in Section 1, the model was origi-
nally solved for 𝑛 = 2, 1,3/2, 0. These solutions resulted in Equations 1-4, respectively. 

2.4. Derivatives of Inverse Functions 
 For a given function 𝑦(𝑥) and its inverse function given by 𝑥(𝑦), the relationship 

between 𝑑𝑦/𝑑𝑥 and 𝑑𝑥/𝑑𝑦, if 𝑦(𝑎) = 𝑏, is given by [15]: 

൬
𝑑𝑦

𝑑𝑥
൰

௫ୀ௔

∙ ൬
𝑑𝑥

𝑑𝑦
൰

௬ୀ௕

= 1 (7) 

 As for the second derivatives of these functions: 

ቆ
𝑑ଶ𝑦

𝑑𝑥ଶ
ቇ

௫ୀ௔

= − ቆ
𝑑ଶ𝑥

𝑑𝑦ଶ
ቇ

௬ୀ௕

∙ ൤൬
𝑑𝑦

𝑑𝑥
൰

௫ୀ௔

൨

ଷ

 (8) 
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 For the sake of brevity, the proof does not use the full subscript (e.g., 𝑥 = 𝑎). It only 
discloses the direct values of the independent variables. As an example, (𝑑𝑦/𝑑𝑥)௫ୀ௔   
would be written as (𝑑𝑦/𝑑𝑥)௔   

2.5. Flux Definition 
 One of the definitions of mass flux of a given stream 𝑖 is given by the product be-

tween its mass concentration/total density (𝜌௜) and its velocity (𝑗௜) [13, 14], as stated in 
Equation 9. 

𝑁௜ = 𝜌௜𝑗௜ (9) 

2.6. Accumulated Volume and Flux 
 As presented in Equation 10, the accumulated volume 𝑉(𝑡) for a mass flux 𝑁(𝑡) can 

be calculated by integrating 𝑁(𝑡) from t = 0 to t = 𝑡, which will give the total mass per 
unit of cross-sectional area. Therefore, multiplying by the area and dividing by its density 
will yield the accumulated volume, 𝑉(𝑡). 

𝑉(𝑡) =
𝐴

𝜌௘௫௜௧
න 𝑁(𝑡)𝑑𝑡

௧

଴

 (10) 

2.7. Integral Properties 
 A reduced form of the Leibnitz formula with constant integration limits 𝑎 and 𝑏 for 

a given function 𝑦(𝑥) yields Equation 11 [16].  

න ቈ
𝑑𝑦(𝑥)

𝑑𝑥
቉ 𝑑𝑥

௕

௔

= 𝑦(𝑏) − 𝑦(𝑎) 
(11) 

3. Results 

3.1. Model Proof 
Taking all of the equations presented in Section 2, it is possible to take the control 

volume from Section 2.1 and apply the continuity equation (Section 2.2). By making the 
assumption that the system has uniform entrances and exits, the surface integral can be 
reduced to: 

ඵ 𝜌𝚥 ∙ 𝑑𝐴

஼ௌ

= ෍ 𝜌௜𝑗௜𝐴௜

஼ௌ

 
(12) 

For the present system, there are two sources of flux, the entrance and the exit. As a 
result, this sum is given by: 

෍ 𝜌௜𝑗௜𝐴௜

஼ௌ

= 𝜌௘௫௜௧𝑗(𝑡)𝐴௘௫௜௧ − 𝜌௘௡௧𝑗଴𝐴௘௡௧ (13) 

By the definition of flux given on Section 2.5, 𝑁଴ = 𝜌௜௡𝑗଴ and 𝑁(𝑡) = 𝜌௢௨௧𝑗(𝑡). Since 
the control volume has a constant area, 𝐴௘௫௜௧ = 𝐴௘௡௧ = 𝐴. Therefore: 

෍ 𝜌௜𝑗௜𝐴௜

஼ௌ

= 𝐴 ∙ (𝑁(𝑡) − 𝑁଴) (14) 

 Thus, the surface integral of the Continuity Equation is simplified to: 

ඵ 𝜌𝚥 ∙ 𝑑𝐴

஼ௌ

= 𝐴 ∙ (𝑁(𝑡) − 𝑁଴) 
(15) 
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 As for the volume integral, since the control volume itself is a porous solid with a 
constant density 𝜌௦, a base area 𝐴 and length 𝛿(𝑡): 

ම 𝜌𝑑∀

஼௏

= 𝜌௦∀= 𝜌௦ ∙ 𝐴 ∙ 𝛿(𝑡) 
(16) 

 So: 

𝜕

𝜕𝑡
ම 𝜌𝑑∀

஼௏

= 𝜌௦ ∙ 𝐴 ∙
𝑑𝛿(𝑡)

𝑑𝑡
 

(17) 

 Going back to the Continuity Equation: 

𝜌௦ ∙ 𝐴 ∙
𝑑𝛿(𝑡)

𝑑𝑡
+ 𝐴 ∙ (𝑁(𝑡) − 𝑁଴) = 0 

If 𝑘ଵ = 𝜌௦, then: 

𝑁(𝑡) = 𝑁଴ − 𝑘ଵ ∙
𝑑𝛿(𝑡)

𝑑𝑡
 (18) 

According to [1], for a real constant 𝑘ଶ: 
𝑑ଶ𝑡

𝑑𝑉ଶ
= 𝑘ଶ ൬

𝑑𝑡

𝑑𝑉
൰

௡

  (19) 

 Using the first property presented on Section 2.4, it is possible to write 𝑑𝑡/𝑑𝑉 in 
terms of 𝑑𝑉/𝑑𝑡. Therefore: 

൬
𝑑𝑡

𝑑𝑉
൰

௏∗
= ൤൬

𝑑𝑉

𝑑𝑡
൰

௧∗
൨

ିଵ

 (20) 

 For 𝑉(𝑡∗) = 𝑉∗. Now using the second property from the same Section, it is possible 
to write 𝑑ଶ𝑡/𝑑𝑉ଶ in terms of 𝑑𝑉ଶ/𝑑𝑡ଶ. Thus, Eq. 19 can be rewritten as: 

ቆ
𝑑ଶ𝑡

𝑑𝑉ଶቇ
௏∗

= − ቆ
𝑑ଶ𝑉

𝑑𝑡ଶ ቇ
௧∗

∙ ൤൬
𝑑𝑡

𝑑𝑉
൰

௏∗
൨

ଷ

 

Using Eq. 20: 

ቆ
𝑑ଶ𝑡

𝑑𝑉ଶ
ቇ

௏∗

= − ቆ
𝑑ଶ𝑉

𝑑𝑡ଶ
ቇ

௧∗

∙ ൤൬
𝑑𝑉

𝑑𝑡
൰

௧∗
൨

ିଷ

 (21) 

Applying Eq. 20 and 21 into the Hermia model: 

ቈ− ቆ
𝑑ଶ𝑉

𝑑𝑡ଶ
ቇ

௧∗

∙ ൤൬
𝑑𝑉

𝑑𝑡
൰

௧∗
൨

ିଷ

቉ = 𝑘ଶ ∙ ቊ൤൬
𝑑𝑉

𝑑𝑡
൰

௧∗
൨

ିଵ

ቋ

௡

 

ቆ
𝑑ଶ𝑉

𝑑𝑡ଶ
ቇ

௧∗

= 𝑘ଷ ൤൬
𝑑𝑉

𝑑𝑡
൰

௧∗
൨

ଷି௡

 

 If 𝑚 = 3 − 𝑛 and 𝑘ଷ is another real constant, then: 

ቆ
𝑑ଶ𝑉

𝑑𝑡ଶ ቇ
௧∗

= 𝑘ଷ ൤൬
𝑑𝑉

𝑑𝑡
൰

௧∗
൨

௠

 

Since both of these derivatives have the same domain of 𝑡, then for any 𝑡∗, this ODE 
is valid, therefore it is possible to remove the subscript. 

𝑑ଶ𝑉

𝑑𝑡ଶ
= 𝑘ଷ ൤൬

𝑑𝑉

𝑑𝑡
൰൨

௠

 (22) 

 It is important to note that both Equations 6 and 22 are analogous, which means that 
both functions 𝑡(𝑉) and 𝑉(𝑡) are solutions of the same family of differential equations. 
By the definition of accumulated volume presented in Section 2.6, it is possible to use the 
Equation 18, such that; 
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𝑉(𝑡) =
𝐴

𝜌௘௫௜௧
න ቈ𝑁଴ − 𝑘ଵ

𝑑𝛿(𝑡)

𝑑𝑡
቉ 𝑑𝑡

௧

଴

 

 By the integral property presented in Section 2.6: 

න ቈ
𝑑𝛿(𝑡)

𝑑𝑡
቉ 𝑑𝑡

௧

଴

= 𝛿(𝑡) − 𝛿(0) 

 Since there is no mass accumulated in the control volume at 𝑡 = 0, then 𝛿(0) = 0. 
As a result: 

𝑉(𝑡) =
𝐴

𝜌௘௫௜௧

[𝑁଴ ∙ 𝑡 − 𝑘ଵ𝛿(𝑡)] (23) 

Differentiating 𝑉(𝑡) twice: 
𝑑𝑉

𝑑𝑡
=

𝐴

𝜌௘௫௜௧

ቈ𝑁଴ − 𝑘ଵ

𝑑𝛿(𝑡)

𝑑𝑡
቉ (24) 

𝑑ଶ𝑉

𝑑𝑡ଶ
= −𝑘ଵ

𝐴

𝜌௘௫௜௧

∙
𝑑ଶ𝛿(𝑡)

𝑑𝑡ଶ
 (25) 

 With these derivatives, it is possible to rewrite Equation 22, such that: 

−𝑘ଵ

𝐴

𝜌௟

∙
𝑑ଶ𝛿(𝑡)

𝑑𝑡ଶ
= 𝑘ଷ ൥

𝐴

𝜌௘௫௜௧

ቈ𝑁଴ − 𝑘ଵ

𝑑𝛿(𝑡)

𝑑𝑡
቉൩

௠

 

For another real constant 𝑘ସ: 
𝑑ଶ𝛿(𝑡)

𝑑𝑡ଶ
= 𝑘ସ ቈ𝑁଴ − 𝑘ଵ

𝑑𝛿(𝑡)

𝑑𝑡
቉

௠

 (26) 

Reducing Eq. 26 further with Eq. 18: 

𝑑ଶ𝛿(𝑡)

𝑑𝑡ଶ
= 𝑘ସ[𝑁(𝑡)]௠ (27) 

 By differentiating Eq. 18: 
𝑑𝑁(𝑡)

𝑑𝑡
= −𝑘ଵ

𝑑ଶ𝛿(𝑡)

𝑑𝑡ଶ
  

(28) 

Therefore, Eq. 27 can be simplified further to: 
𝑑𝑁(𝑡)

𝑑𝑡
= 𝑘ହ[𝑁(𝑡)]௠ 

(29) 

 Such that 𝑘ହ is another real constant. Now, by applying the separation of variables 
method [17]: 

[𝑁(𝑡)]ି௠𝑑𝑁(𝑡) = 𝑘ହ𝑑𝑡 

 As a result, for 𝑚 ≠ 1: 

න [𝑁(𝑡)]ି௠𝑑𝑁(𝑡)
ே(௧)

ே(଴)

= න 𝑘ହ𝑑𝑡
௧

଴

 

ቈ
[𝑁(𝑡)](ଵି௠)

(1 − 𝑚)
቉

𝑁(𝑡)

𝑁(0)
= [𝑘ହ𝑡]

𝑡

0
 

1

(1 − 𝑚)
{[𝑁(𝑡)]ଵି௠ − [𝑁(0)]ଵି௠} = 𝑘ହ𝑡 

[𝑁(𝑡)]ଵି௠ = [𝑁(0)]ଵି௠ + (1 − 𝑚)𝑘ହ𝑡 

If 𝑃 = 1 − 𝑚: 

[𝑁(𝑡)]௉ = [𝑁(0)]௉ + 𝑃 ∙ 𝑘ହ ∙ 𝑡 

And 𝑃𝑘ହ = −𝑘଺: 

[𝑁(𝑡)]௉ = [𝑁(0)]௉ − 𝑘଺ ∙ 𝑡 
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Since there is no mass accumulated at the beginning of the filtration experiment 
(𝛿(0) = 0), both 𝑁଴ and 𝑁(0) are equal. Therefore: 

[𝑁(𝑡)]௉ = [𝑁଴]௉ − 𝑘଺ ∙ 𝑡 (30) 

It is important to notice that Eq. 30 is similar to the original equations used in the 
Hermia model. It is also important to highlight that both 𝑃 and 𝑘଺ can assume any real 
values, as long as 𝑃 ≠ 0. By using the flux definition presented in Section 2.4 

[𝜌௘௫௜௧𝑗(𝑡)]௉ = [𝜌௘௡௧𝑗଴]௉ − 𝑘଺ ∙ 𝑡 

Thus, if 𝑘଻ is another real constant: 

[𝑗(𝑡)]௉ = ൤
𝜌௘௡௧

𝜌௘௫௜௧

൨
௉

∙ 𝑗଴
௉ − 𝑘଻ ∙ 𝑡 (31) 

 As a result, Eq. 31 closely resembles the power law used in the Hermia fouling model. 
However, the additional term [𝜌௘௡௧/𝜌௘௫௜௧]௉  correctly scales up 𝑗଴  such that the right-
hand side of Eq. 31 agrees with the Continuity Equation. In special cases where the density 
of the permeate is close to the original density ( 𝜌௘௫௜௧ → 𝜌௘௡௧ ), the correction term 
[𝜌௘௡௧/𝜌௘௫௜௧]௉ → 1. If that is the case, [𝑗(𝑡)]௉ can be approximated by: 

[𝑗(𝑡)]௉ ≈ 𝑗଴
௉ − 𝑘଻ ∙ 𝑡 (32) 

 Taking a closer look into Eq. 31 and 32, it is interesting to point out that as 𝑃 → ∞, 
all terms with the exponent 𝑃 become larger than 𝑘଻ ∙ 𝑡. Hence in both cases 𝑗(𝑡) will 
end up as a constant value. For the special case when 𝑚 = 1: 

න
1

𝑁(𝑡)
𝑑𝑁(𝑡)

ே(௧)

ேబ

= න 𝑘ହ𝑑𝑡
௧

଴

 

ln ቈ
𝑁(𝑡)

𝑁଴

቉ = 𝑘ହ𝑡 

𝑁(𝑡) = 𝑁଴ exp(𝑘ହ𝑡) 

If 𝑘ଽ = −𝑘ହ, then: 

𝑁(𝑡) = 𝑁଴ exp(−𝑘ଽ𝑡) (33) 

 Since Equation 33 has an exponential function multiplying 𝑁଴, and 𝑘ଽ can assume 
positive values (or 𝑘ହ < 0), when 𝑚 = 1, the system can behave with a classical drop for 
𝑁(𝑡). Applying again the flux definition presented in Section 2.5: 

𝜌௘௫௜௧𝑗(𝑡) = 𝜌௘௡௧𝑗଴ 𝑒𝑥𝑝(−𝑘ଽ𝑡) 

𝑗(𝑡) = 𝑗଴ ൤
𝜌௘௡௧

𝜌௘௫௜௧
൨ 𝑒𝑥𝑝(−𝑘ଽ𝑡) (34) 

 For the same reasons as before, if 𝜌௘௫௜௧ → 𝜌௘௡௧, [𝜌௘௡௧/𝜌௘௫௜௧] → 1 and 𝑗(𝑡) can be ap-
proximated by: 

𝑗(𝑡) ≈ 𝑗଴ 𝑒𝑥𝑝(−𝑘ଽ𝑡) (35) 

 Since 𝑚 = 3 − 𝑛 and 𝑃 = 1 − 𝑚, it is possible to conclude that 𝑃 = 2 − 𝑛. By using 
the four original discreate values of 𝑛 = 2, 1,3/2 ,0, 𝑃 = 0, −1, −1/2, −2, which are exactly 
the respective exponents of 𝑗 in Eq. 1-4. Thus, through Eq. 32 and 35, it is possible to re-
produce the entire Hermia model. Since Eq. 32 was obtained for any real 𝑛 different than 
2 and Eq. 35 was obtained for 𝑛 = 2, these equations form a model that can be used for 
any real 𝑛 , which widens the usefulness of the Hermia model considerably. Conse-
quently, there are also values of 𝑛 between the four original discrete values, which can 
be physically interpreted as the existence of new types of fouling mechanisms in mem-
branes. Using Eq. 18, 31 and 34, it is possible to deduce how the fouling profile should 
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change with 𝑃, given by the function 𝛿(𝑡). Through Eq. 9 and 18, it is possible to show 
that: 

ቈ
𝑗(𝑡)

𝑗଴

቉ = ൤
𝜌௘௡௧

𝜌௘௫௜௧

൨ − 𝑘ଵ଴

𝑑𝛿(𝑡)

𝑑𝑡
 (36) 

 For another real constant 𝑘ଵ଴. For the case of 𝑃 ≠ 0, the profile of 𝑗(𝑡) is given by 
Eq. 31. Taking this equation and dividing both sides by 𝑗଴

௉: 

ቈ
𝑗(𝑡)

𝑗଴

቉

௉

= ൤
𝜌௘௡௧

𝜌௘௫௜௧

൨
௉

− 𝑘଻𝑡 (37) 

 Since 𝑘଻/𝑗଴
௉  is still a constant in Eq. 37, the same constant will be used. Therefore, by 

substituting Eq. 36 into Eq. 37: 

൥൤
𝜌௘௡௧

𝜌௘௫௜௧

൨ − 𝑘ଵ଴

𝑑𝛿(𝑡)

𝑑𝑡
൩

௉

= ൤
𝜌௘௡௧

𝜌௘௫௜௧

൨
௉

− 𝑘଻𝑡 

൤
𝜌௘௡௧

𝜌௘௫௜௧
൨ − 𝑘ଵ଴

𝑑𝛿(𝑡)

𝑑𝑡
= ቆ൤

𝜌௘௡௧

𝜌௘௫௜௧
൨

௉

− 𝑘଻𝑡ቇ

ଵ/௉

 

−𝑘ଵ଴

𝑑𝛿(𝑡)

𝑑𝑡
= ቆ൤

𝜌௘௡௧

𝜌௘௫௜௧

൨
௉

− 𝑘଻𝑡ቇ

ଵ
௉

− ൤
𝜌௘௡௧

𝜌௘௫௜௧

൨ 

 If 𝑘ଵଵ and 𝑘ଵଶ are other real constants, then: 

𝑑𝛿(𝑡)

𝑑𝑡
= 𝑘ଵଵ ቆ൤

𝜌௘௡௧

𝜌௘௫௜௧
൨

௉

− 𝑘଻𝑡ቇ

ଵ
௉

+ 𝑘ଵଶ 

𝑑𝛿(𝑡)

𝑑𝑡
= ቆ𝑘ଵଵ

௉ ൤
𝜌௘௡௧

𝜌௘௫௜௧

൨
௉

− 𝑘ଵଵ
௉ 𝑘଻𝑡ቇ

ଵ
௉

+ 𝑘ଵଶ 

 Thus, if 𝑘ଵଷ = 𝑘ଵଵ
௉ [𝜌௘௡௧/𝜌௘௫௜௧]௉ and 𝑘ଵସ = −𝑘ଵଵ

௉ 𝑘଻: 
𝑑𝛿(𝑡)

𝑑𝑡
= (𝑘ଵଷ + 𝑘ଵସ𝑡)

ଵ
௉ + 𝑘ଵଶ (38) 

Now, by applying the separation of variables method in Eq. 38 [17]: 

න 𝑑𝛿(𝑡)
ఋ(௧)

ఋ(଴)

= න [(𝑘ଵଷ + 𝑘ଵସ𝑡)
ଵ
௉ + 𝑘ଵଶ]𝑑𝑡

௧

଴

 

Since: 

න 𝑑𝛿(𝑡)
ఋ(௧)

ఋ(଴)

= 𝛿(𝑡) − 𝛿(0) 

And 𝛿(0) = 0, then: 

𝛿(𝑡) = න [(𝑘ଵଷ + 𝑘ଵସ𝑡)
ଵ
௉ + 𝑘ଵଶ]𝑑𝑡

௧

଴

 (39) 

By integrating Eq. 39 with respect to 𝑡: 

𝛿(𝑡) = ቎
1

𝑘ଵସ

(𝑘ଵଷ + 𝑘ଵସ𝑡)
ଵ
௉

ାଵ

ቀ
1
𝑃

+ 1ቁ
+ 𝑘ଵଶ𝑡቏

𝑡

0
 

𝛿(𝑡) =
1

𝑘ଵସ
൦
(𝑘ଵଷ + 𝑘ଵସ𝑡)

ଵ
௉

ାଵ − 𝑘ଵଷ

ଵ
௉

ାଵ

ቀ
1
𝑃

+ 1ቁ
൪ + 𝑘ଵଶ𝑡 
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It is possible to further reduce this equation by distributing the terms 1/𝑘ଵସ  and 
(1/𝑃 + 1). By doing that, it should be possible to regroup the constants inside the brackets 
of  (𝑘ଵଷ + 𝑘ଵସ𝑡)

భ

ು
ାଵ. If: 

𝑘ଵହ =
𝑘ଵଷ

ቆ𝑘ଵସ ∙ ቀ
1
𝑃

+ 1ቁቇ

௉
௉ାଵ

 

𝑘ଵ଺ =
𝑘ଵସ

ቆ𝑘ଵସ ∙ ቀ
1
𝑃

+ 1ቁቇ

௉
௉ାଵ

 

𝑘ଵ଻ =
−𝑘ଵଷ

ଵ
௉

ାଵ

𝑘ଵସ ∙ ቀ
1
𝑃

+ 1ቁ
 

Then: 

𝛿(𝑡) = (𝑘ଵହ + 𝑘ଵ଺𝑡)
ଵ
௉

ାଵ + 𝑘ଵ଻ + 𝑘ଵଶ𝑡 
(40) 

 

By applying 𝛿(0) = 0 in Eq. 40, it can be found that: 

𝑘ଵ଻ = −𝑘ଵହ

ଵ
௉

ାଵ
 

As a result, Eq. 40 can be further reduced to: 

𝛿(𝑡) = (𝑘ଵହ + 𝑘ଵ଺𝑡)
ଵ
௉

ାଵ − 𝑘ଵହ

ଵ
௉

ାଵ
+ 𝑘ଵଶ𝑡 

(41) 

 

For the case of 𝑃 = 0, through Eq. 34 and 36, it is possible to show that: 

൤
𝜌௘௡௧

𝜌௘௫௜௧
൨ 𝑒𝑥𝑝(−𝑘ଽ𝑡) = ൤

𝜌௘௡௧

𝜌௘௫௜௧
൨ − 𝑘ଵ଴

𝑑𝛿(𝑡)

𝑑𝑡
 

Dividing both sides by [𝜌௘௡௧/𝜌௘௫௜௧]: 

𝑒𝑥𝑝(−𝑘ଽ𝑡) = 1 − 𝑘ଵ଴ ൤
𝜌௘௫௜௧

𝜌௘௡௧

൨
𝑑𝛿(𝑡)

𝑑𝑡
 

If 1/𝑘ଵ଼ = −𝑘ଵ଴[𝜌௘௫௜௧/𝜌௘௡௧], then: 

𝑒𝑥𝑝(−𝑘ଽ𝑡) = 1 +
1

𝑘ଵ଼

𝑑𝛿(𝑡)

𝑑𝑡
 

Therefore: 
𝑑𝛿(𝑡)

𝑑𝑡
= 𝑘ଵ଼[𝑒𝑥𝑝(−𝑘ଽ𝑡) − 1] (42) 

Now, by applying the separation of variables method in Eq. 42 [16] 

න 𝑑𝛿(𝑡)
ఋ(௧)

ఋ(଴)

= 𝑘ଵ଼ න [𝑒𝑥𝑝(−𝑘ଽ𝑡) − 1]
௧

଴

𝑑𝑡 

𝛿(𝑡) = 𝑘ଵ଼ ൤
1

−𝑘ଽ

𝑒𝑥𝑝(−𝑘ଽ𝑡) − 𝑡൨
𝑡

0
 

𝛿(𝑡) = −
𝑘ଵ଼

𝑘ଽ

[𝑒𝑥𝑝(−𝑘ଽ𝑡) − 1] − 𝑘ଵ଼𝑡 

If 𝑘ଵଽ = −𝑘ଵ଼/𝑘ଽ and 𝑘ଶ଴ = −𝑘ଵ଼, then: 

𝛿(𝑡) = 𝑘ଵଽ[𝑒𝑥𝑝(−𝑘ଽ𝑡) − 1] + 𝑘ଶ଴𝑡 (43) 
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As a result, with Eq. 41 and 43, it is possible to construct a fouling model for every 
real value of 𝑃, such that: 

 
 

 
 
 
 

It is important to notice that the different fouling profiles 𝛿 are given by the expo-
nent 1/𝑃 + 1. Therefore, by analyzing this exponent, it is possible to draw conclusions 
about the fouling profiles as well. By taking the limit as 𝑃 → ∞, 1/𝑃 → 0: 

𝛿(𝑡) = (𝑘ଵହ + 𝑘ଵ଺𝑡)଴ାଵ − 𝑘ଵହ
଴ାଵ + 𝑘ଵଶ𝑡 

𝛿(𝑡) = (𝑘ଵ଺ + 𝑘ଵଶ)𝑡 

Now, by taking the limit as 𝑃 → −∞, 1/𝑃 → 0: 

𝛿(, 𝑡) = (𝑘ଵହ + 𝑘ଵ଺𝑡)଴ାଵ − 𝑘ଵହ
଴ାଵ + 𝑘ଵଶ𝑡 

𝛿(𝑡) = (𝑘ଵ଺ + 𝑘ଵଶ)𝑡 

Therefore, for both 𝑃 → ∞ and 𝑃 → −∞, the result is a linear curve. The same be-
havior can be seen when 𝑃 = −1, since: 

𝛿(𝑡) = (𝑘ଵହ + 𝑘ଵ଺𝑡)ଵିଵ − 𝑘ଵହ
ଵିଵ + 𝑘ଵଶ𝑡 

𝛿(𝑡) = 𝑘ଵଶ𝑡 

For positive values of 𝑃, the exponent 1/𝑃 + 1 is always larger than 1, in contrast 
for negative values of 𝑃, 1/𝑃 + 1 is always smaller than 1. Consequently, there is one and 
only one unique fouling profile 𝛿(𝑡) for every real value 𝑃.  

3.2. Application of the Generalized Hermia Model 
 To better illustrate how the Generalized Hermia model can be used, this model has 

been fitted to already published data ([17], [18], [19], [20], [21], [22], [23]). The model fitting 
was done in terms of the specific membrane flux, given by 𝑗/𝑗଴. Assuming that both the 
entrance and exit densities are approximately the same, it is possible to use Equation 32, 
such that: 

ቈ
𝑗(𝑡)

𝑗଴
቉

௉

≈ 1 −
𝑘଻

𝑗଴
௉ ∙ 𝑡  

 If 𝑘଻/𝑗଴
௉ is another real constant 𝑘, then: 

ቈ
𝑗(𝑡)

𝑗଴

቉

௉

≈ 1 − 𝑘 ∙ 𝑡 (45) 

 Thus, by using Equation 45, the values presented in Tables 1-7. 

3.2.1. Applications in Ultrafiltration 
From the fitting data presented in Table 1 and in Figures 3, 4 and 5, it is possible to 

point out that different filtration conditions, such as different cross flow rates (CFRs) and 
different trans-membrane pressures (TMPs) amount to different coefficients 𝑘  and 𝑃 . 
Based on the data used for the model fitting, if CFR in maintained constant, an increase in 
TMP does not seem to cause any significant changes to either 𝑘 or 𝑃, apart from the last 
fit presented in Table 1. On the contrary, by keeping the TMP constant, an increase in CFR 
amounts to a slight increase in 𝑘, which implies that, in the present case, 𝑗(𝑡) decreases 
more rapidly as a result. An increase on CFR while keeping the TMP constant does not 
seem to affect 𝑃. 

 

𝛿(𝑡) = ൞
(𝑘ଵହ + 𝑘ଵ଺𝑡)

ଵ
௉

ାଵ − 𝑘
ଵହ

ଵ
௉

ାଵ
+ 𝑘ଵଶ𝑡, 𝑃 ≠ 0

 
𝑘ଵଽ[exp(−𝑘ଽ𝑡) − 1] + 𝑘ଶ଴𝑡, 𝑃 = 0

 
(44) 
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Table 1. Model fitting for different filtration conditions in oily effluent treatment [17] 

Filtration mechanism CFR (L/h)  
TMP 

(kPa) 
k  

(min-1) P 

Ultrafiltration 14  21 -0.38355 -1.565 
Ultrafiltration 14 35 -0.37436 -1.494 
Ultrafiltration 14 104 -0.37012 -1.468 
Ultrafiltration 28 21 -0.36630 -1.428 
Ultrafiltration 28 35 -0.38615 -1.498 
Ultrafiltration 28 104 -0.38687 -1.488 
Ultrafiltration 40 21 -0.39749 -1.515 
Ultrafiltration 40 35 -0.39230 -1.499 
Ultrafiltration 40 104 -0.4489 -1.578 

 

 
Figure 3. Model fitting for different filtration conditions in oily effluent treatment at CFR of 14 L/h [17]. 

 

 
Figure 4. Model fitting for different filtration conditions in oily effluent treatment at CFR of 28 L/h [17]. 
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Figure 5. Model fitting for different filtration conditions in oily effluent treatment at CFR of 40 L/h [17]. 

 As for the model fitting presented in Table 2 and in Figures 6 and 7, it is clear that 
different membrane types influence the coefficients, given the considerable gap between 
the both 𝑘 and 𝑃 when comparing membranes with hydrophilic (HPI) matter against 
membranes with hydrophobic (HPO) matter. According to the data used, the application 
of coagulating agents (Coag.) and of additives such as MIEX® also influence the coeffi-
cients, since both cause a sharp decline in 𝑘 on all tests presented in Table 2. In both HPI 
and HPO membranes, the addition of the coagulating agent caused an increase in 𝑃, while 
the opposite happened with the addition of MIEX®. 

 

Table 2. Model fitting for different filtration conditions in desalination and water treatment [18] 

Filtration mechanism Experimental Conditions 
k  

(h-1) P R2 

Ultrafiltration HPI UF only -11.69 -2.855 0.9989 
Ultrafiltration Coag. 140mg/L+HPI UF -9.558 -4.432 0.9959 
Ultrafiltration MIEX 12mL/L+UF -9.328 -2.882 0.9984 
Ultrafiltration MIEX 12mL/L+Coag. 40mg/L+HPI UF -2.407 -3.084 0.9971 
Ultrafiltration HPO UF -99.2 -2.228 0.995 
Ultrafiltration Coag. 140mg/L+HPO UF -26.12 -3.063 0.9964 
Ultrafiltration MIEX 12mL/L+HPO UF -25.94 -1.845 0.9978 
Ultrafiltration MIEX 12mL/L+Coag. 40mg/L+HPO UF -17.49 -2.965 0.9964 
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Figure 6. Model fitting for different hydrophilic filtration conditions in desalination and water treatment [18] 

 
Figure 7. Model fitting for different hydrophobic filtration conditions in desalination and water treatment [18] 

The fitting presented in Table 3 and in Figures 8 and 9 indicates how fouling accu-
mulates over many cycles of operation. The original work proposed in [19] aimed to re-
duce fouling by coating the membrane PolySBMA. As shown in Table 3, both coated and 
uncoated membranes showed an increase in 𝑘 on later cycles, as well as different values 
of 𝑃. This increase in 𝑘 indicates that 𝑗(𝑡) decreases more rapidly in later cycles. It is also 
evident that coating the membrane is advantageous since 𝑘 is much smaller in later cy-
cles. 
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Table 3. Model fitting for different filtration conditions of bovine serum albumin solutions [19] 

Filtration mechanism Coated or Uncoated Cycles 
k  

(h-1) P R2 

Ultrafiltration Uncoated 1st -5.580 -1.536 0.9866 
Ultrafiltration Uncoated 2nd -25.850 -1.878 0.9947 
Ultrafiltration Uncoated 3rd -38825 -4.921 0.9889 
Ultrafiltration Coated 1st -4.189 -1.715 0.9882 
Ultrafiltration Coated 2nd -35.017 -2.474 0.9332 
Ultrafiltration Coated 3rd -102.485 -4.205 0.9782 

 

 
Figure 8. Model fitting for filtration conditions of bovine serum albumin solutions in uncoated membranes [19] 

 
Figure 9. Model fitting for filtration conditions of bovine serum albumin solutions in coated membranes [19] 
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As for the fitting data presented in Table 4 and in Figures 10 and 11, the influence of 
the TMP and the concentration of nanoparticles (NPs) (given in mg of nanoparticles per 
liter or mg NPs/L) are evaluated. For both TMPs presented in Table 4, the increase in con-
centration of nanoparticles caused an increase in 𝑘, while 𝑃 has both increased and de-
creased with nanoparticle concentration. 

Table 4. Model fitting for different filtration conditions of nanoparticles in polishing wastewater [20] 

Filtration mechanism mg NPs/L TMP (bar) 
k  

(s-1) P R2 

Ultrafiltration 97 0.4 -0.02613 -3.602 0.9866 
Ultrafiltration 251 0.4 -0.01384 -2.064 0.9947 
Ultrafiltration 657 0.4 -0.18643 -2.797 0.9889 
Ultrafiltration 332 0.3 -0.06550 -7.686 0.9882 
Ultrafiltration 572 0.3 -4.55004 -12.37 0.9332 
Ultrafiltration 2600 0.3 -7.88155 -9.01 0.9782 

 

 
Figure 10. Model fitting for different filtration conditions of nanoparticles in polishing wastewater at 0.4 bar [20] 
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Figure 11. Model fitting for different filtration conditions of nanoparticles in polishing wastewater at 0.3 bar [20] 

3.2.2. Applications in Microfiltration 
Table 5 displays the fitting data for three different ceramic membranes CM01, CM05 

and CM08 used in corn syrup clarification [21]. For the same TMP, the three membranes 
have different values for 𝑘 and 𝑃. According to [21], the membranes CM01, CM05 and 
CM08 have hydraulic permeabilities equal to 9.84, 46.63 and 273.45 L/(h.m2.kPa), respec-
tively. At constant TMP, as the hydraulic permeability increases, 𝑘 initially decreases and 
increases afterwards. The opposite seems to happen to 𝑃, as it initially increases and de-
creases afterwards. As for the use of CM05 at different TMPs, an increase in pressure 
causes a decrease in 𝑘 and an increase in 𝑃. Therefore, for this membrane in the present 
case, higher TMPs seem to slow the fouling process. All of the fitting curves can be found 
in Figures 12 and 13. 

Table 5. Model fitting for different filtration conditions of corn syrup clarification [21] 

Filtration mechanism Membrane  TMP (kPa) 
k  

(h-1) P R2 

Microfiltration CM08 50 -6.67255 -1.485 0.9837 
Microfiltration CM05 50 -2.48053 -1.251 0.9882 
Microfiltration CM01 50 -11.188 -2.666 0.9621 
Microfiltration CM05 103.42 -3.09844 -1.213 0.9868 
Microfiltration CM05 51.71 -4.47374 -1.614 0.9818 
Microfiltration CM05 37.9 -5.40957 -1.694 0.9936 
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Figure 12. Model fitting for different ceramic membranes in corn syrup clarification [21] 

 
Figure 13. Model fitting for the ceramic membrane CM05 in corn syrup clarification [21] 
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Table 6. Model fitting for different filtration conditions of humic acid in ionic aqueous solutions [22] 

Filtration mechanism Membrane Ion 
k  

(min-1) 
P R2 

Nanofiltration NE90 Na+ -0.00981 -3.736 0.9987 
Nanofiltration NE40 Na+ -0.01342 -2.441 0.9971 

Reverse Osmosis RE-SHF Na+ -8.56E-7 -0.0088 0.9838 
Reverse Osmosis SW30 Na+ -1.03E-6 -0.0068 0.9633 

Nanofiltration NE90 Ca2+ -0.01656 -2.875 0.9966 
Nanofiltration NE40 Ca2+ -0.02032 -2.494 0.984 

Reverse Osmosis RE-SHF Ca2+ -0.04657 -7.294 0.988 
Reverse Osmosis SW30 Ca2+ -0.02677 -4.439 0.9677 

 

 
Figure 14. Model fitting for different filtration conditions of humic acid in ionic solutions with Na+ ions [22] 

 
Figure 15. Model fitting for different filtration conditions of humic acid in ionic solutions with Ca2+ ions [22] 
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Table 7 and Figure 16 present how a membrane’s composition can influence 𝑘 and 
𝑃. [23] originally aimed to study the effects of different percentages of fumarate alumox-
ane (Fum-A) in the composition could impact fouling. As shown in Table 7, for weight 
percentages above 1%, both 𝑃 and 𝑘 change greatly. For an increase in Fum-A, 𝑘 tends 
to increase as the opposite happens to 𝑃. Therefore, for greater concentrations of Fum-A, 
the fouling effect becomes more pronounced. 

Table 7. Model fitting for different filtration conditions of whey solutions [23] 

Filtration mechanism Membrane  
Fum-A  

(% w/w) 
k  

(min-1) P R2 

Nanofiltration Fum-A/PES 0 -13.08 -4.971 0.9822 
Nanofiltration Fum-A/PES 0.5 -13.05 -4.97 0.9822 
Nanofiltration Fum-A/PES 1 -13.09 -4.971 0.9822 
Nanofiltration Fum-A/PES 2 -1199 -10.23 0.9759 
Nanofiltration Fum-A/PES 3 -1355 -10.23 0.9759 

 

 
Figure 16. Model fitting for membranes with different Fum-A concentrations and their impact in the filtration of whey solutions 

[23] 

4. Discussion 
Taking into account the data in the literature [17], [18], [19], [20], [21], [22] and [23], 

as well as the model fitting presented in Tables 1-7, it is possible to infer that the effects of 
variables such as TMP, CFR, filtration mechanism, membrane composition and solution 
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shown in Tables 2 and 3, methods that try to dimmish fouling tend to decrease the value 
of 𝒌. These methods change the membrane composition or the nature of the solution in 
some way. As demonstrated in Tables 2, 3, 6 and 7, the membrane composition can either 
increase or decrease 𝒌, which depends on the interactions between the solution being fil-
tered and the membrane itself. In general, the effects that TMP, CFR, filtration mechanism, 
membrane composition and solution nature have on 𝑷  and 𝒌  are situation-specific. 
Therefore, to determine these effects, each situation needs to be thoroughly investigated 
in its own right. 

 

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

Re
du

ce
d 

pe
rm

ea
te

 fl
ux

Time [min]

0% of Fum-A (w/w)
Model fit - 0% Fum-A (w/w)
0.5% of Fum-A (w/w)
Model fit - 0.5% Fum-A (w/w)
1% of Fum-A (w/w)
Model fit - 1% Fum-A (w/w)
3% of Fum-A (w/w)
Model fit - 3% Fum-A (w/w)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 June 2022                   doi:10.20944/preprints202206.0187.v1

https://doi.org/10.20944/preprints202206.0187.v1


 20 of 21 
 

 

5. Conclusions 
 The Hermia model can be used for any real values of 𝑛 and 𝑘 for equal or ap-

proximate entrance and exit densities; 
 The permeate flux 𝑗 is given by a power law dependent on the value of 𝑛 for any 

real 𝑛 ≠ 2; 
 The permeate flux 𝑗 is given by an exponential function when 𝑛 = 2; 
 The accumulated volume as a function of time follows the same type of ODE ex-

pressed by time as a function of the accumulated volume; 
 The mass flux 𝑁(𝑡) behaves similarly to the permeate flux 𝑗; 
 There is a correction term for the difference of the entrance and exit densities that 

scales up 𝑗଴ such that the continuity equation is obeyed; 
 For 𝑛 ≠ 2, 𝑗 will become a constant value if 𝑃 tends to infinity; 
 𝑃 is related to 𝑛, since 𝑃 = 𝑛 − 2; 
 Since 𝑛 is a continuous quantity, there are solutions between the four original 

discreate values, which can be physically interpreted as the existence of new types 
of blocking mechanisms; 

 The fouling curve 𝛿(𝑡) is also given by a power law dependent on 𝑃 for any real 
𝑃 ≠ 0, 

 The fouling curve 𝛿(𝑡) is also given by an exponential function when 𝑃 = 0, 
 When 𝑃 → ∞, 𝑃 → −∞ or 𝑃 = −1, the fouling curves given by 𝛿(𝑡) behave lin-

early; 
 There is one and only one unique fouling profile 𝛿(𝑡) for every real value 𝑃; 
 Ultrafiltration, microfiltration, nanofiltration and reverse osmosis can be mod-

elled; 
 The effects of membrane composition and solution nature impact greatly the val-

ues of 𝑃 and 𝑘; 
 The fouling behavior is situation-specific and 𝑃 and 𝑘  may vary differently with 

the same variable in different cases.  
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