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Abstract: Ankylosing spondylitis (AS) is a chronic inflammatory disorder with unknown etiology 

and hard to early diagnose. It’s imperative to investigate the changes in AS patients’ peripheral 

blood, which may contribute to the diagnosis and further understanding of AS. Common differen-

tial expressed genes between normal and AS patients in GSE73754 and GSE25101 were screened by 

machine learning algorithms. IL2RB and ZDHHC18 were hubgenes screened and a diagnostic 

model was established. C-indexes and calibration analyses suggested high prediction accuracy of 

the model in training and validation cohorts. The AUC values of the model in GSE73754, GSE25101, 

GSE18781 and GSE11886 were 0.86, 0.84, 0.85 and 0.89 respectively. Decision curve analyses sug-

gested high net benefit by the model. Functional analysis of the differential expressed genes indi-

cated that they were mainly clustered in processes related to immune response. Immune microen-

vironment analysis revealed that neutrophils were expanded and activated in AS, while some T 

cells were decreased. IL2RB and ZDHHC18 were potential blood biomarkers for AS and might be 

used for early diagnosis and a supplementary diagnostic tool to the existing methods. Our study 

deepened the insight into the pathogenesis of AS. 

Keywords: machine learning; ankylosing spondylitis; diagnostic model; immune microenviron-

ment; informatics. 

 

1. Introduction 

Ankylosing spondylitis (AS), also known as radiographic axial spondyloarthritis, is 

one of the two types of axial spondyloarthritis[1-4]. It’s a chronic inflammatory disorder 

mainly affecting the axial joints and entheses, usually characterized by typical features: 

like inflammatory back pain, limitation of the motion of the lumbar spine, restricted chest 

expansion and advanced sacroiliitis on plain radiographs. Some AS patients are also ac-

companied by peripheral spondyloarthritis symptoms, like dactylitis, achilles tendinitis 

and extra-articular manifestations, like uveitis, psoriasis, inflammatory bowel disease and 

etc. at the same time or in some period of the disease. The diagnosis of AS is based on the 

Modified New York criteria: advanced sacroiliitis on plain radiographs with any one of 

three typical features mentioned above[5]. Patients don’t meet the criteria of advanced 

sacroiliitis on plain radiographs, but with sacroiliitis on MRI or HLA-B27 positivity plus 

the clinical criteria are classified into non-radiographic axial spondyloarthritis[6,7].  

The prevalence of AS reported is varied with geography, ranged from 0.02-0.35%, 

while the prevalence of axial spondyloarthritis is estimated to be 0.20-1.61%, much higher 

than AS, which indicates a high ratio of non-radiographic axial spondyloarthritis pa-

tients[8-10]. Especially, with the development of diagnostic tools and further understand-

ing of axial spondyloarthritis, patients without advanced sacroiliitis on plain radiographs 
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raise more attention and more non-radiographic axial spondyloarthritises are detected to-

gether with its definition updating[3,11]. However, even with modern diagnostic meth-

ods, the diagnostic sensitivity and specificity for axial spondyloarthritis is not higher than 

about 80%[2]. This means that a significant number of patients are still excluded from the 

current criteria and there is still a lot of room for improvement in our diagnostic methods. 

More importantly, it’s reported that about 10-20% non-radiographic axial spondyloarthri-

tis patients will progress to AS in one year after first diagnosis and 20.3% in two to six 

years[2]. Therefore, it’s necessary to identify pre-AS and save time for clinical interven-

tions. 

 At present, our measures to identify axial spondyloarthritis are still limited beyond 

clinical features. Imaging (radiograph, CT, MRI), HLA-B27 and C reactive protein features 

are the main indices for clinical diagnosis of axial spondyloarthritis[2,11,12]. More meth-

ods with high sensitivity and specificity are eagerly expected. Although with the rapid 

development of genomics technology, many biomarkers were identified for AS, but still 

lack of reliable indices for clinical practice besides HLA-B27. Therefore, it’s not only of 

realistic needs and great practical value to explore gene biomarkers of AS in peripheral 

blood, but also can deepen our knowledge in the pathophysiology changes of AS, even 

do some help to understand its etiology. 

Thereby, in this study we intend to screen potential gene biomarkers in peripheral 

blood by machine learning algorithms and build a diagnostic model. Then, preliminarily 

explore the immune microenvironment of AS aiming to find some differences in immune 

cell proportion and potential explanation for our hubgenes. To date, this work has not 

been done and reported, it’s valuable and imperative to bridge the gap in this area. 

2. Materials and Methods 

2.1 Data collection. 

We searched Gene Expression Omnibus (GEO) dataset 

(https://www.ncbi.nlm.nih.gov/geo/) for datasets containing whole-blood RNA expres-

sion data of normal and AS patients with at least 15 samples in each group. Only 

GSE73754, GES25101 and GSE18781 were qualified and their expression and phenotype 

data were downloaded for next study. GES73754 and GSE18781 contained whole-blood 

RNA expression data of 20 normal and 52 AS patients, 25 normal and 18 AS patients re-

spectively, together with their corresponding basic information like gender and age. Ex-

pression data of GSE73754 were detected by Illumina HumanHT-12 V4.0 expression bead-

chip, University of Toronto, Canada, submitted on Oct 06, 2015. Expression data of 

GSE18781 were detected by Affymetrix Human Genome U133 Plus 2.0 Array, Oregon 

Health & Science University, USA, submitted on Oct 28, 2009. GSE25101 contained whole-

blood RNA expression data of 16 normal and 16 AS patients, which were detected by 

Illumina HumanHT-12 V3.0 expression beadchip, University of Queensland Diamantina 

Institute, Australia, submitted on Nov 03, 2010. However, the basic information of the 

subjects from GSE25101 was unavailable, so it’s only used as one of the validation sets. 

GSE11886 referred to RNA expression data of in vitro cultured macrophages, which were 

obtained from 9 normal and 8 AS patients’ peripheral blood. They were detected by Affy-

metrix Human Genome U133 Plus 2.0 Array, Cincinnati Childrens Hospital Medical Cen-

ter, USA, submitted on Jun 25, 2008. Although RNA expression data of each set were nor-

malized data, while in the quality control process, we found samples of GSE18781 came 

from two batches, so we used removebatcheffect function of limma package to recalculate 

the expression data[13]. 

2.2 Identify common differentially expressed genes. 

Differentially expressed genes (DEGs) in GSE73754 and GSE25101 between normal 

and AS patients were identified by limma package[13] (cutoff value: the absolute value of 

log2foldchange > 0.3 and p-value < 0.05). Then, common DEGs in GSE73754 and GSE25101 

were selected as candidates for next screening.  

2.3 Screen genes for diagnostic model by machine learning algorithms. 
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Set GSE73754 as training set. Common DEGs were firstly screened by univariate lo-

gistic regression in training set. Genes with p value < 0.05 were retained. Then, three ma-

chine learning algorithms: the least absolute shrinkage and selection operator (LASSO) 

logistic regression[14], a support vector machine recursive feature elimination (SVM-

RFE)[15] and random forests (RF)[16] were adopted to screen hubgenes. Common hub-

genes were selected as final genes for a diagnostic model. 

2.4 Establish a diagnostic model and evaluate it in training and a related validation set. 

A diagnostic model was established by common hubgenes and visualized by nomo-

grams. Then, the prediction accuracy and discriminatory capacities were first assessed in 

GSE73754 and GSE25101 by C-index, calibration analysis, receiver operating characteristic 

(ROC) curves and decision curve analysis (DCA). 

2.5 Validate the model in validation sets. 

 GSE18781 was set as an in vivo external validation set and GSE11886 was set as an 

in vitro external validation set. The prediction accuracy and discriminatory capacities of 

the model were also assessed in the two cohorts above by C-index, calibration analysis, 

ROC analysis and DCA. 

2.6 Functional analysis of the DEGs between normal and AS groups. 

GO and KEGG clustering, gene set enrichment analysis (GSEA) were used to explore 

the potential functions of the DEGs, which might indicate the causes for the difference 

between normal and AS patients. With the same consideration, protein protein interact 

(PPI) network analysis was also adopted to investigate the interaction among proteins 

encoded by the DEGs. 

2.7 Immune microenvironment analysis. 

 CIBERSORT package was employed to investigate the immune microenvironment 

(IME) of the samples. Meanwhile, the correlation between different types of immune cells 

and the hubgenes were also explored. 

2.8 Statistical analysis 

In this study, R software v3.63 was used to process data and generate charts. PPI 

network analyses were explored on STRING website (https://cn.string-db.org/) and visu-

alized by Cytoscape software v3.7.1. Flexible statistical methods were adopted for the sta-

tistical analysis.   

3. Results 

3.1 Clinical characteristics of the enrolled AS patients. 

The basic information of samples from GSE73754 and GSE18781 were shown in table 

1. The clinical characteristics like age and gender of the two sets were similar (p value < 

0.05).  

 
Table 1. Clinical characteristics in training and validation sets 

Characteristics level GSE18781 GSE73754 P value test 

sample size (n)  43 72   

gender Female 25 (58.1) 35 (48.6) 0.342 fisher.test 

 Male 18 (41.9) 37 (51.4)   

age, median  

(interquartile 

range)  

45.0  

[32.5, 58.5] 

41.5  

[28.8, 51.2] 0.324 kruskal.test 

group Normal 25 (58.1) 20 (27.8)   

 AS 18 (41.9) 52 (72.2)   

3.2 Identification of hubgenes. 

 64 down-regulated and 132 up-regulated DEGs were identified by limma in 

GSE73754 (Figure 1A). And 278 down-regulated and 345 up-regulated DEGs were identi-

fied in GSE25101 (Figure 1B). Then, common up-regulated and down-regulated genes 

were chosen. And there were 3 common down-regulated: IL2RB, GZMM, CXXC5 (Figure 
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1C) and 4 common up-regulated: S100A12, ANXA3, PROS1, ZDHHC18 (Figure 1D) 

genes. 

Took GSE73754 as training set, in univariate logistic regression, the p value of the 7 

genes were all lower than 0.05, which meant that all the 7 genes were qualified for the next 

screening. Then, they were screened by three machine learning algorithms, respectively. 

IL2RB, GZMM, S100A12, ZDHHC18 were screened as hubgenes by LASSO (λ= 

lambda.min) (Figure 1E-F). IL2RB, ZDHHC18 were filtered by SVM-RFE (Figure 1G). 

ZDHHC18, CXXC5, PROS1, IL2RB were screened by RF with MeanDecreaseAccuracy > 3 

and MeanDecreaseGini > 2 (mtry = 3, ntree = 200) (Figure 1H-I). Obviously, IL2RB and 

ZDHHC18 were the common hubgenes screened by the three algorithms and they were 

selected as the final hubgenes for a diagnostic model in AS.  
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Figure 1. Screening hubgenes from DEGs between normal and AS patients. Volcano plot for DEGs 

in GSE73754 (A) and GSE25101 (B): x-axis was log2(Fold change) of gene expressions in AS patients 
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compared with normal controls, y-axis was -log10(P Value) of gene expressions between AS pa-

tients and normal controls. (C) Venn plot for down regulated DEGs in GSE73754 and GSE25101. 

(D) Venn plot for up regulated DEGs in GSE73754 and GSE25101. (E) The LASSO coefficient pro-

files for the 7 common DEGs in the 10-fold cross-validations. (F) Partial likelihood deviance with 

changing of log (λ) plotted by LASSO regression in 10-fold cross-validations. (G) Filtering charac-

teristic genes by SVM-RFE algorithm: accuracy for models with different number of variables: x-

axis was the number of variables involved in the models, y-axis was the corresponding accuracy 

of cross-validation of the models. (H) Relationship between the number of decision trees and the 

error rate of the model in RF. (I) Selecting hubgenes by variable importance measures for RF. 

 

3.3 Evaluation of the diagnostic model in training set (GSE73754) and GSE25101. 

A diagnostic model was established by IL2RB and ZDHHC18, then visualized by a 

nomogram in GSE73754 (Figure 2A) and GSE25101 (Figure 2B) respectively. Here, their 

nomograms suggested that the higher the expression level of ZDHHC18, the higher the 

risk of AS, while the reverse was true for IL2RB. C-index of the diagnostic model in 

GSE73754 was 0.86 (95%CI: 0.76-0.96), and 0.84 (95%CI: 0.71-0.97) in GSE25101. Calibra-

tion analysis showed that the predicted probability was in high agreement with the ob-

served probability, which suggested high accuracy of the model both in training and an 

external cohort (Figure 2C-D).  

ROC analysis in GSE73754 showed that the area under curves (AUCs) for nomogram, 

IL2RB and ZDHHC18 were 0.86, 0.83, 0.83 respectively (Figure 2E). The optimal trunca-

tion value of Y was 0.713, and the corresponding specificity and sensitivity were 0.85 and 

0.827, respectively (Formula : y = 2.9111*EXPZDHHC18－2.3256*EXPIL2RB－2.2376, 

EXPZDHHC18 referred to the expression value of ZDHHC18, EXPIL2RB referred to the 

expression value of IL2RB). In this model, value of Y >= 0.713 was predicted to be AS, 

otherwise normal. The actual prediction accuracy of the model in GSE73754 was 0.82. 

While in GSE25101 the AUCs for nomogram, IL2RB and ZDHHC18 were 0.84, 0.79, 0.76 

respectively (Formula : y = 2.320052*EXPZDHHC18－1.728388*EXPIL2RB－6.902309) 

(Figure 2F). There were three optimal truncation value for Y: 0.589 with corresponding 

specificity 0.875, sensitivity 0.688, 0.521 with corresponding specificity 0.75, sensitivity 

0.812, 0.452 with corresponding specificity 0.688, sensitivity 0.875. The actual prediction 

accuracy of the model in GSE25101 was 0.72. DCA for nomogram and models involved 

only one of these genes indicated that the nomogram got higher net benefit than other 

models (Figure 2G-H).  
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Figure 2. Evaluating the diagnostic model in training and a related validation set. Nomograms for 

the diagnostic model in GSE73754 (A) and GSE25101 (B). Calibration plots for the diagnostic model 
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in GSE73754 (C) and GSE25101 (D): x-axis referred to the predicted probability of AS by the model, 

y-axis referred to the observed probability of AS, the diagonal (dashed line) referred to the ideal 

status that the predicted probability equaled to the observed probability, the solid and dotted lines 

referred to the apparent and bias-corrected statuses of the predicted and observed probabilities 

respectively. ROC plots for the diagnostic model in GSE73754 (E) and GSE25101 (F): x-axis was 1 - 

specificity of the model, y-axis was the sensitivity of the model. DCA in GSE73754 (G) and 

GSE25101 (H): x-axis referred to threshold probability for treatment or intervention, y-axis referred 

to the net benefit.  

 

3.4 Validating the model in an independent cohort and in vitro. 

The model was validated in an independent cohort: GSE18781 and an in vitro cohort: 

GSE11886. Nomogram for GSE18781 supported the conclusion reached in training set that 

AS patients got higher expression of ZDHHC18 and lower expression of IL2RB (Figure 

3A). The function of IL2RB in GSE11886 was in accordance with that in the other sets, but 

the function of ZDHHC18 in vitro was opposite to that in vivo, while this might be due to 

the lack of the in vivo microenvironment (Figure 3B). According to the coverage of points 

in the nomogram, IL2RB showed higher weight in the validation sets and the alteration 

between the nomograms also indicated that it’s a more robust indicator than ZDHHC18. 

C-index of the diagnostic model in GSE18781 was 0.85 (95%CI:0.73-0.96), and 0.89 (95%CI: 

0.73-1.05) in GSE11886. Calibration analysis showed that the prediction accuracy of the 

model was lower than that in GSE73754 and GSE25101, but still with acceptable accuracy 

(Figure 3C-D). 

ROC analysis in GSE18781 showed that the area under curves (AUCs) for nomogram, 

IL2RB and ZDHHC18 were 0.85, 0.79, 0.67 respectively (Figure 3E). The optimal trunca-

tion value of Y was 0.305, and the corresponding specificity and sensitivity were 0.72 and 

0.994, respectively (Formula : y = 1.29499*EXPZDHHC18 － 2.582298*EXPIL2RB ＋

20.055204). The actual prediction accuracy of the model in GSE18781 was 0.72. While in 

GSE11886 the AUCs for nomogram, IL2RB and ZDHHC18 were 0.89, 0.89, 0.65 respec-

tively (Formula : y =－6.49159*EXPZDHHC18－6.13506*EXPIL2RB－0.01334) (Figure 3F). 

The optimal truncation value of Y was 0.395, and the corresponding specificity and sensi-

tivity were 0.778 and 1. The actual prediction accuracy of the model in GSE11886 was 0.76. 

DCA showed that patients could get high net benefit from nomogram (Figure 3G-H). Be-

sides, the model established only by IL2RB also exhibited high net benefit for patients 

with AS in this set. 
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Figure 3. Validating the diagnostic model in validation sets. Nomograms for the diagnostic model 

in GSE18781 (A) and GSE11886 (B). Calibration plots for the diagnostic model in GSE18781 (C) and 
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GSE11886 (D): x-axis referred to the predicted probability of AS by the model, y-axis referred to 

the observed probability of AS, the diagonal (dashed line) referred to the ideal status that the pre-

dicted probability equaled to the observed probability, the solid and dotted lines referred to the 

apparent and bias-corrected statuses of the predicted and observed probabilities respectively. ROC 

plots for the diagnostic model in GSE18781 (E) and GSE11886 (F): x-axis was 1 - specificity of the 

model, y-axis was the sensitivity of the model. DCA in GSE18781 (G) and GSE11886 (H): x-axis 

referred to threshold probability for treatment or intervention, y-axis referred to the net benefit. 

 

3.5 Results for functional analysis of the DEGs between normal and AS groups. 

There were a total of 196 DEGs between normal and AS patients in GSE73754. Bio-

logical processes (BP) clustering of the DEGs showed that they were mainly clustered in 

neutrophil activation, degranulation, immune response and migration (Figure 4A). Mye-

loid cell differentiation, leukocyte and granulocyte migration was also clustered BPs. 

Gene clustering of cellular components (CC) were mostly in the area of membranes, like 

endocytic vesicle, secretory granule membrane, membrane microdomain, cytoplasmic 

vesicle lumen and etc. (Figure 4A). Molecular functions (MF) of the DEGs were mostly 

clustered in serine type peptidase activity, serine hydrolase activity, serine type endopep-

tidase activity, MHC protein complex binding (Figure 4A). In KEGG clustering of the 

DEGs, hematopoietic cell lineage, human T-cell leukemia virus 1 infection, Th1 and Th2 

cell differentiation and Th17 cell differentiation were the top clustered pathways (Figure 

4B). Circle plot for BP clustering showed that neutrophil activation, degranulation, im-

mune response and migration were up regulated in AS (Figure 4C). By GSEA, antigen 

processing and presentation, natural killer cell mediated cytotoxicity, graft-versus-host 

disease, Epstein-Barr virus infection, rheumatoid arthritis were top enriched gene sets, 

which were all down regulated in AS patients (Figure 4D). While the top 3 up regulated 

pathways enriched with core enrichment genes > 3 were neutrophil extracellular trap for-

mation, complement and coagulation cascades and rap1 signaling pathway. GO chord 

plot showed that DYSF, DMTN, ITGA2B, MAGT1, SPI1, CXCL8, ID2, CD81, IKZF1 and 

etc., were involved in the top 7 GO terms (Figure 4E). KEGG chord plot showed that 

ITGA2B, SPI1, ANPEP, BCL2L1, STAT5B, IL2RB, GZMB, HLA-DQA2, CXCL8 and etc., 

were involved in the top 7 KEGG terms (Figure 4F).  

PPI network of the proteins encoded by DEGs showed that MMP1, ID2, MBD4, 

GNLY, EOMES, PUF60 and APOBEC3G were seed proteins in the network by MCODE 

application in cytoscape (Figure 4G). The cyan nodes were also pivotal nodes in the net, 

such as IL2RB, GZMA, SPI1 and etc. Then, GZMA, IL2RB, CD247, KLRB1, GZMH, GZMB, 

GZMK, KLRD1, NKG7, GNLY were the top 10 hub proteins screened by Cytohubba.  
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Figure 4. Functional analysis of the DEGs between normal and AS patients. Dot plots for GO (A) 

and KEGG (B) analysis of DEGs. (C) Circle plot for BP clustering of the DEGs. (D) GSEA analysis 
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for the DEGs. (E) Chord plot for top 7 clustered GO terms. (F) Chord plot for top 7 clustered KEGG 

pathways. (G) PPI network analysis for DEGs. 

 

3.6 Results for IME analysis. 

IME analyses were performed in GSE73754, GSE25101 and GSE18781 by CIBER-

SORT. The proportion of the 22 immune cells for samples were shown in Figure 5A-C. In 

all the three sets, neutrophils and monocytes accounted for the top 2 highest proportion 

and together made up the majority of the immune cells, while other granulocytes, B cells, 

dendritic cells and macrophages each made up a very small proportion of the immune 

cells. The relative quantity of different immune cells in normal and AS patients were 

shown in Figure 5D-F. In GSE73754, compared to normal subjects, there were more neu-

trophils and T CD4 naive cells detected in AS patients’ blood, while less NK resting, T 

CD8 and T gamma delta cells (Figure 5D). In GSE25101, monocytes were found to be 

higher in AS patients’ blood, while T regulatory cells (Tregs) were lower. In this set, rela-

tive quantity of neutrophils was also found to be higher in AS group, but with no statisti-

cal significance (Figure 5E). In GSE18781, the result was similar to that in GSE73754, the 

relative quantity of neutrophils was increased, while T CD8 and T gamma delta cells were 

decreased in AS patients (Figure 5F).  
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Figure 5. IME analysis of the sets by CIBERSORT. The proportion of the 22 immune cells for sam-

ples in GSE73754 (A), GSE25101 (B) and GSE18781 (C). Boxplots for the 22 immune cells between 

normal and AS patients in GSE73754 (D), GSE25101 (E) and GSE18781 (F). (p significance level: no 

significance (ns), p≥0.05; *, p< 0.05; **, p<0.01; ***, p<0.001, ****, p<0.0001.) 

 

The correlation between our hubgenes (IL2RB and ZDHHC18) and immune cells 

were also explored. In GSE73754, the expression of IL2RB was positively correlated with 

the relative quantities of NK resting, T CD8 and T gamma delta cells (Figure 6A-C), while 

negatively correlated with the relative quantities of neutrophils, T CD4 naive cells and 

monocytes (Figure 6D-E). Meanwhile, the expression of ZDHHC18 was positively corre-

lated with the relative quantity of neutrophils (Figure 6F), but negatively correlated with 

the relative quantities of T CD8 and NK resting cells (Figure 6G-H). In GSE25101, the ex-

pression of IL2RB was positively correlated with the relative quantities of NK resting and 

T CD4 memory activated cells (Figure 6I-J), while negatively correlated with the relative 

quantity of monocytes (Figure 6K). Besides, the expression of ZDHHC18 was positively 
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correlated with the relative quantity of neutrophils (Figure 6L), but negatively correlated 

with the relative quantity of activated NK cells (Figure 6M). There was no significant cor-

relation between Tregs and the hubgenes. Lastly, in GSE18781, the expression of IL2RB 

was positively correlated with the relative quantities of NK resting and T CD8 cells (Fig-

ure 6N-O), while negatively correlated with the relative quantity of neutrophils (Figure 

6P). Moreover, the expression of ZDHHC18 was positively correlated with the relative 

quantity of neutrophils (Figure 6Q), but negatively correlated with the relative quantities 

of T CD8, T gamma delta and T CD4 memory activated cells (Figure 6R-T). 
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Figure 6. The correlation between hubgenes and IME cells. The correlation between the expression 

of IL2RB and the estimated proportion of NK resting cells (A), T CD8 cells (B), T gamma delta cells 

(C), neutrophils (D), T CD4 naive cells (E) by CIBERSORT in GSE73754. The correlation between 

the expression of ZDHHC18 and the estimated proportion of neutrophils (F), T CD8 cells (G), NK 
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resting cells (H) by CIBERSORT in GSE73754. The correlation between the expression of IL2RB and 

the estimated proportion of NK resting cells (I), T CD4 memory activated cells (J), monocytes (K) 

by CIBERSORT in GSE25101. The correlation between the expression of ZDHHC18 and the esti-

mated proportion of neutrophils (L), activated NK cells (M) by CIBERSORT in GSE25101. The cor-

relation between the expression of IL2RB and the estimated proportion of NK resting cells (N), T 

CD8 cells (O), neutrophils (P) by CIBERSORT in GSE18781. The correlation between the expression 

of ZDHHC18 and the estimated proportion of neutrophils (Q), T CD8 cells (R), T gamma delta cells 

(S), T CD4 memory activated cells (T) by CIBERSORT in GSE18781. 

4. Discussion 

It’s known that AS is an inflammatory disease mainly involve axial skeleton joints 

and entheses. The essential change of AS is the dysregulation of inflammation by innate 

and adaptive immune responses[17]. Although AS is primarily associated with axial skel-

eton, but recent researches indicate that it may initiate in the gut[18]. Besides, the periph-

eral and the extra-articular manifestations of AS also suggest that it’s a systemic disorder. 

Therefore, DEGs in peripheral blood of AS patients can also reflect some features of AS. 

While as to RNAs extracted from peripheral blood, they are mostly from the nucleated 

cells in the blood, like leukocytes and immature red blood cells, so it’s rational to explore 

the immune microenvironment of AS patients’ blood. More importantly, compared with 

the focal tissue, peripheral blood is easier to obtain and a more commonly used clinical 

detection material, which is also conducive to the transition from experimental results to 

applications. 

To date, HLA-B27 was still considered as the most important factor in the pathogen-

esis of AS29-33. Firstly, many evidences supported that alternation of amino acid se-

quence in antigenic peptide-binding groove of HLA-B27 might induce changes of the 

binding specificity for peptides and result in CD8+ T cell mediated immune cross-reactiv-

ity in AS focus34,35. Secondly, endoplasmic reticulum stress induced by the accumulation 

of misfolded HLA-B27 which leaded to an unfolded protein response (UPR) and autoph-

agy36. Thirdly, HLA-B27 homodimer hypothesis, which suggested HLA-B27 homodimer 

could activate CD8+ T cells and NK cells by the specific receptors on their surface, then 

activate of IL-23/IL-17 axis37. Certainly, there were also many other hypotheses, including 

non-MHC hypothesis. While the common thing was that all the hypotheses are focused 

on the antigen presenting process and the failure or dysfunction of it mostly would result 

in activation of TNF signaling pathway and IL23/IL17 axis, and eventually leaded to the 

phenotypes of AS. 

Here, in order to enhance the reliability and stability of the results, only common 

genes screened by the three machine learning algorithms were selected as hubgenes for a 

diagnostic model. Results of C-index, calibration analysis, ROC analysis and DCA in train-

ing and validation sets suggested excellent prediction accuracy and discriminatory capac-

ities of the linear model. Meanwhile, the performance of the model in 3 different valida-

tion datasets: one related dataset, one independent dataset and one dataset of in vitro 

samples hinted it’s a model with good applicability. 

Functional analyses of DEGs and IME analyses indicated that neutrophils activation, 

migration and degranulation were activated in AS patients. Meanwhile, the relative quan-

tity or proportion of neutrophils was significantly higher in AS patients. And this was also 

confirmed by other researchers, who even suggested neutrophil to lymphocyte ratio to be 

used as an indicator for AS activity[19-21]. Besides, neutrophil extracellular trap for-

mation and complement and coagulation cascades were up regulated in AS, which might 

induce autoimmune response and was in agreement with the IME analysis result and our 

current knowledge of AS[22,23]. Moreover, in GSE25101, monocytes were also found to 

be higher in AS patients and myeloid cell differentiation and leukocyte migration were 

also clustered in GO clustering. It’s known that monocytes shared some similar functions 
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with neutrophil in immune response and there were also reports that monocytes to lym-

phocytes ratio increased in AS patients[24-26]. If the increasement of lymphocytes and 

monocytes were two different subtypes of AS remained unknown. Finally, how these dif-

ferences in immune cells correlated with AS? A potential explanation was that the in-

creased neutrophils might release excessive IL-17A which was the key cytokine in the 

pathogenesis of AS. Although mature neutrophils lack the transcriptional machinery to 

produce IL-17A, but IL-17A was detected in neutrophils, because they could produce and 

store IL-17A before mature and accumulate it from the extracellular environment[27,28].  

  Lastly, IL2RB was a hubgene both in GO/KEGG clustering and PPI network anal-

ysis. The expression of it was positively correlated with the relative quantities/proportion 

of NK resting cells and negatively correlated with the relative quantities/proportion of 

neutrophils and monocytes in our study, which was in coincidence with the data from the 

Human Protein Atlas (HPA) website[29] (Figure 7A: available from v21.1.proteinatlas.org, 

https://www.proteinatlas.org/ENSG00000100385-IL2RB/single+cell+type). While 

ZDHHC18 was observed to positively correlated with the relative quantities/proportion 

of neutrophils in all the three sets, though it didn’t seem to be highly expressed in granu-

locytes based on the data from HPA website[29] (Figure 7B: available from v21.1.protein-

atlas.org, https://www.proteinatlas.org/ENSG00000100385-IL2RB/single+cell+type). 

Above all, our results suggested that IL2RB might correlated with AS by suppressing the 

function of NK resting cells and ZDHHC18 might correlated with AS through the function 

of neutrophils, but the detailed underlying mechanism of that still needed further study.  
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Figure 7. The expression of hubgenes in different single cell types of normal subjects from the HPA 

website29. (A) The expression of IL2RB in different single cell types (available from v21.1.protein-

atlas.org: https://www.proteinatlas.org/ENSG00000100385-IL2RB/single+cell+type). (B) The ex-

pression of ZDHHC18 in different single cell types (available from v21.1.proteinatlas.org: 

https://www.proteinatlas.org/ENSG00000204160-ZDHHC18/single+cell+type). 

                         

  In this study, IL2RB and ZDHHC18 were the two final screened hubgenes. The 

former had already been reported by other researchers to be one of the hubgenes in 

AS[30,31], while the latter was first reported here by us.  

First of all, IL2RB, interleukin 2 receptor subunit beta, encoded beta subunit of a het-

erodimer or heterotrimer receptor involved in T cell-mediated immune responses and 

probably involved in the stimulation of neutrophil phagocytosis by IL15[32,33]. This pro-

tein was a type I membrane protein primarily expressed in NK, T and dendritic cells. Ac-

cording to KEGG database (https://www.kegg.jp/), IL2RB was involved in many path-

ways, like Endocytosis, PI3K-Akt signaling pathway, JAK-STAT signaling pathway, Th1 

and Th2 cell differentiation, Th17 cell differentiation, and etc. Obviously, Th1 and Th2 cell 

differentiation and Th17 cell differentiation seemed to be most related to AS, that IL2 sig-

naling could inhibit the differentiation of Th17 by the inhibition of transcription factor 

RORγt[34-38]. Therefore, with the down regulation of IL2RB in this study, Th17 was an-

ticipated to be expanded. However, Th1 and Th2 cell differentiation and Th17 cell differ-

entiation were observed to be down regulated in GSEA (Figure 6D). It’s contradictory to 

our knowledge of AS. Then, something should be noticed. For one thing, the pathogenesis 
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changes of AS mainly involved in the focus of AS, not in circulation system, and our 

knowledge was largely based on that, so it’s common if there were some differences be-

tween the two sites. For another thing, the role of IL2 signaling in the differentiation of 

Th17 still hadn’t been fully clarified[39]. The question was what’s the minimum IL2 signal 

required to maintain the Tregs numbers. Isabel Z Fernandez, et al, reported a hypo-

morphic mutation of IL2RB in two infant siblings which resulted in an anticipated reduc-

tion in Tregs and an expansion of immature NK cells[40]. Here, in two of the 3 sets, the 

relative quantities of T CD8 and T gamma delta were decreased, while Tregs was not sig-

nificantly reduced, which might indicate that the reduced IL2 signal was still adequate for 

the proliferation of Tregs and the suppression of effector T cell expansion (Figure 5D, F). 

Besides, by blockade of IL-2 in vitro and in vivo, Kenjiro Fujimura, et al. found that the 

numbers of Th17 was not significantly increased, while the proportion of Th17 cells did, 

which suggested that it might increase the proportion of Th17 by suppressing the total 

number of immune cells [41]. Here in our study, some kinds of T cells, like T CD8 cells, T 

gamma delta cells and Tregs were observed to be decreased in AS patients and this might 

overwhelm the effect of the down regulating of Th17 cell differentiation. However, which 

type of immune cells was decreased and if it would affect the synthesizing of IL17 by Th17 

cells in AS patients, still needed further research. In the end, the potential function of 

IL2RB in AS remained unclear, it might contribute to AS by reducing Tregs and relatively 

increasing the proportion of Th17 and thereby activating IL17 signaling to form pheno-

types of AS.  

Secondly, ZDHHC18, Zinc Finger DHHC-Type Palmitoyltransferase 18, encoded a 

palmitoyltransferase, which involved in peptidyl-L-cysteine S-palmitoylation[42]. Re-

searches on ZDHHC18 were rare and insufficient. Currently, it’s reported to be associated 

with innate immunity[43], glioma[44], ovarian cancer[45], schizophrenia[46]. The com-

mon palmitoylation substrates of ZDHHC18 was HRAS and LCK[47-49]. Palmitoylated 

HRAS could be translocated and stable anchored to the plasma membrane[50], while pal-

mitoylation-defective HRAS was trapped in Golgi and unable to traffic to plasma mem-

brane. Meanwhile, ZDHHC18 could activate rap1 signaling pathway by the pal-

mitoylation of Ras and promote the proliferation of cells, which was consistent with our 

GSEA result. Besides, Rac1, which was also involve in rap1 signaling pathway mainly 

regulating cell adhesion, migration, polarity, could also be palmitoylated by ZDHHC fam-

ily[50]. Though we currently didn’t know the exact role of ZDHHC18 played in this pro-

cess, but it’s essential for neutrophil motility as well as directional sensing during migra-

tion, which was clustered by GO clustering in our study. In addition, palmitoylation of 

LCK could promote the T cell receptor signaling to activate T cells, while this was not seen 

in our study, which meant that it’s not important in the pathogenesis of AS. Furthermore, 

ZDHHC18 could negatively regulate CGAS-STING signaling mediated antiviral innate 

immunity by palmitoylation of cGAS, which meant that the antiviral immunity in AS pa-

tient's might be impaired by high expression of ZDHHC18[43]. In our study, KEGG and 

GSEA also indicated dysregulation in some antiviral immune pathways.  

Generally speaking, our study indicated that IL2RB might involve in the pathogene-

sis of AS through IL2 signaling pathway and ZDHHC18 through rap1 signaling pathway. 

Both of they could be used as potential biomarkers in AS. Meanwhile, it also should be 

noticed that we only explored some changes of RNA expression in the peripheral blood 

of AS patients, it’s just only a tip of the iceberg. More researches still needed to further 

elucidate the pathogenesis of AS. 

5. Conclusions 

IL2RB and ZDHHC18 were potential blood biomarkers for AS and might be used for 

early diagnosis and a supplementary diagnostic tool to the existing methods. Our study 

deepened our insight into the pathogenesis of AS. 

Supplementary Materials: The following supporting information can be downloaded at: 

www.mdpi.com/xxx/s1, Figure S1: title; Table S1: title; Video S1: title. 
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