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Abstract: Ankylosing spondylitis (AS) is a chronic inflammatory disorder with unknown etiology
and hard to early diagnose. It's imperative to investigate the changes in AS patients’ peripheral
blood, which may contribute to the diagnosis and further understanding of AS. Common differen-
tial expressed genes between normal and AS patients in GSE73754 and GSE25101 were screened by
machine learning algorithms. IL2RB and ZDHHC18 were hubgenes screened and a diagnostic
model was established. C-indexes and calibration analyses suggested high prediction accuracy of
the model in training and validation cohorts. The AUC values of the model in GSE73754, GSE25101,
GSE18781 and GSE11886 were 0.86, 0.84, 0.85 and 0.89 respectively. Decision curve analyses sug-
gested high net benefit by the model. Functional analysis of the differential expressed genes indi-
cated that they were mainly clustered in processes related to immune response. Immune microen-
vironment analysis revealed that neutrophils were expanded and activated in AS, while some T
cells were decreased. IL2RB and ZDHHC18 were potential blood biomarkers for AS and might be
used for early diagnosis and a supplementary diagnostic tool to the existing methods. Our study
deepened the insight into the pathogenesis of AS.

Keywords: machine learning; ankylosing spondylitis; diagnostic model; immune microenviron-
ment; informatics.

1. Introduction

Ankylosing spondylitis (AS), also known as radiographic axial spondyloarthritis, is
one of the two types of axial spondyloarthritis[1-4]. It's a chronic inflammatory disorder
mainly affecting the axial joints and entheses, usually characterized by typical features:
like inflammatory back pain, limitation of the motion of the lumbar spine, restricted chest
expansion and advanced sacroiliitis on plain radiographs. Some AS patients are also ac-
companied by peripheral spondyloarthritis symptoms, like dactylitis, achilles tendinitis
and extra-articular manifestations, like uveitis, psoriasis, inflammatory bowel disease and
etc. at the same time or in some period of the disease. The diagnosis of AS is based on the
Modified New York criteria: advanced sacroiliitis on plain radiographs with any one of
three typical features mentioned above[5]. Patients don’t meet the criteria of advanced
sacroiliitis on plain radiographs, but with sacroiliitis on MRI or HLA-B27 positivity plus
the clinical criteria are classified into non-radiographic axial spondyloarthritis[6,7].

The prevalence of AS reported is varied with geography, ranged from 0.02-0.35%,
while the prevalence of axial spondyloarthritis is estimated to be 0.20-1.61%, much higher
than AS, which indicates a high ratio of non-radiographic axial spondyloarthritis pa-
tients[8-10]. Especially, with the development of diagnostic tools and further understand-
ing of axial spondyloarthritis, patients without advanced sacroiliitis on plain radiographs
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raise more attention and more non-radiographic axial spondyloarthritises are detected to-
gether with its definition updating[3,11]. However, even with modern diagnostic meth-
ods, the diagnostic sensitivity and specificity for axial spondyloarthritis is not higher than
about 80%[2]. This means that a significant number of patients are still excluded from the
current criteria and there is still a lot of room for improvement in our diagnostic methods.
More importantly, it's reported that about 10-20% non-radiographic axial spondyloarthri-
tis patients will progress to AS in one year after first diagnosis and 20.3% in two to six
years[2]. Therefore, it's necessary to identify pre-AS and save time for clinical interven-
tions.

At present, our measures to identify axial spondyloarthritis are still limited beyond
clinical features. Imaging (radiograph, CT, MRI), HLA-B27 and C reactive protein features
are the main indices for clinical diagnosis of axial spondyloarthritis[2,11,12]. More meth-
ods with high sensitivity and specificity are eagerly expected. Although with the rapid
development of genomics technology, many biomarkers were identified for AS, but still
lack of reliable indices for clinical practice besides HLA-B27. Therefore, it’s not only of
realistic needs and great practical value to explore gene biomarkers of AS in peripheral
blood, but also can deepen our knowledge in the pathophysiology changes of AS, even
do some help to understand its etiology.

Thereby, in this study we intend to screen potential gene biomarkers in peripheral
blood by machine learning algorithms and build a diagnostic model. Then, preliminarily
explore the immune microenvironment of AS aiming to find some differences in immune
cell proportion and potential explanation for our hubgenes. To date, this work has not
been done and reported, it’s valuable and imperative to bridge the gap in this area.

2. Materials and Methods

2.1 Data collection.

We searched Gene Expression Omnibus (GEO) dataset
(https://www.ncbi.nlm.nih.gov/geo/) for datasets containing whole-blood RNA expres-
sion data of normal and AS patients with at least 15 samples in each group. Only
GSE73754, GES25101 and GSE18781 were qualified and their expression and phenotype
data were downloaded for next study. GES73754 and GSE18781 contained whole-blood
RNA expression data of 20 normal and 52 AS patients, 25 normal and 18 AS patients re-
spectively, together with their corresponding basic information like gender and age. Ex-
pression data of GSE73754 were detected by Illumina HumanHT-12 V4.0 expression bead-
chip, University of Toronto, Canada, submitted on Oct 06, 2015. Expression data of
GSE18781 were detected by Affymetrix Human Genome U133 Plus 2.0 Array, Oregon
Health & Science University, USA, submitted on Oct 28, 2009. GSE25101 contained whole-
blood RNA expression data of 16 normal and 16 AS patients, which were detected by
[Iumina HumanHT-12 V3.0 expression beadchip, University of Queensland Diamantina
Institute, Australia, submitted on Nov 03, 2010. However, the basic information of the
subjects from GSE25101 was unavailable, so it's only used as one of the validation sets.
GSE11886 referred to RNA expression data of in vitro cultured macrophages, which were
obtained from 9 normal and 8 AS patients’ peripheral blood. They were detected by Affy-
metrix Human Genome U133 Plus 2.0 Array, Cincinnati Childrens Hospital Medical Cen-
ter, USA, submitted on Jun 25, 2008. Although RNA expression data of each set were nor-
malized data, while in the quality control process, we found samples of GSE18781 came
from two batches, so we used removebatcheffect function of limma package to recalculate
the expression data[13].

2.2 Identify common differentially expressed genes.

Differentially expressed genes (DEGs) in GSE73754 and GSE25101 between normal
and AS patients were identified by limma package[13] (cutoff value: the absolute value of
log2foldchange > 0.3 and p-value < 0.05). Then, common DEGs in GSE73754 and GSE25101
were selected as candidates for next screening.

2.3 Screen genes for diagnostic model by machine learning algorithms.
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Set GSE73754 as training set. Common DEGs were firstly screened by univariate lo-
gistic regression in training set. Genes with p value < 0.05 were retained. Then, three ma-
chine learning algorithms: the least absolute shrinkage and selection operator (LASSO)
logistic regression[14], a support vector machine recursive feature elimination (SVM-
RFE)[15] and random forests (RF)[16] were adopted to screen hubgenes. Common hub-
genes were selected as final genes for a diagnostic model.

2.4 Establish a diagnostic model and evaluate it in training and a related validation set.

A diagnostic model was established by common hubgenes and visualized by nomo-
grams. Then, the prediction accuracy and discriminatory capacities were first assessed in
GSE73754 and GSE25101 by C-indeX, calibration analysis, receiver operating characteristic
(ROC) curves and decision curve analysis (DCA).

2.5 Validate the model in validation sets.

GSE18781 was set as an in vivo external validation set and GSE11886 was set as an
in vitro external validation set. The prediction accuracy and discriminatory capacities of
the model were also assessed in the two cohorts above by C-index, calibration analysis,
ROC analysis and DCA.

2.6 Functional analysis of the DEGs between normal and AS groups.

GO and KEGG clustering, gene set enrichment analysis (GSEA) were used to explore
the potential functions of the DEGs, which might indicate the causes for the difference
between normal and AS patients. With the same consideration, protein protein interact
(PPI) network analysis was also adopted to investigate the interaction among proteins
encoded by the DEGs.

2.7 Immune microenvironment analysis.

CIBERSORT package was employed to investigate the immune microenvironment
(IME) of the samples. Meanwhile, the correlation between different types of immune cells
and the hubgenes were also explored.

2.8 Statistical analysis

In this study, R software v3.63 was used to process data and generate charts. PPI
network analyses were explored on STRING website (https://cn.string-db.org/) and visu-
alized by Cytoscape software v3.7.1. Flexible statistical methods were adopted for the sta-
tistical analysis.

3. Results

3.1 Clinical characteristics of the enrolled AS patients.

The basic information of samples from GSE73754 and GSE18781 were shown in table
1. The clinical characteristics like age and gender of the two sets were similar (p value <
0.05).

Table 1. Clinical characteristics in training and validation sets

Characteristics  level GSE18781 GSE73754 Pvalue test
sample size (n) 43 72
gender Female 25 (58.1) 35 (48.6) 0.342 fisher.test

Male 18 (41.9) 37 (51.4)

age, median

(interquartile 45.0 41.5
range) [32.5,58.5] [28.8,51.2] 0.324 kruskal.test
group Normal 25 (58.1) 20 (27.8)

AS 18 (41.9) 52 (72.2)

3.2 Identification of hubgenes.

64 down-regulated and 132 up-regulated DEGs were identified by limma in
GSE73754 (Figure 1A). And 278 down-regulated and 345 up-regulated DEGs were identi-
fied in GSE25101 (Figure 1B). Then, common up-regulated and down-regulated genes
were chosen. And there were 3 common down-regulated: IL2RB, GZMM, CXXC5 (Figure
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1C) and 4 common up-regulated: S100A12, ANXA3, PROS1, ZDHHCI18 (Figure 1D)
genes.

Took GSE73754 as training set, in univariate logistic regression, the p value of the 7
genes were all lower than 0.05, which meant that all the 7 genes were qualified for the next
screening. Then, they were screened by three machine learning algorithms, respectively.
IL2RB, GZMM, S100A12, ZDHHC18 were screened as hubgenes by LASSO (A=
lambda.min) (Figure 1E-F). IL2RB, ZDHHC18 were filtered by SVM-RFE (Figure 1G).
ZDHHC18, CXXC5, PROS1, IL2RB were screened by RF with MeanDecreaseAccuracy >3
and MeanDecreaseGini > 2 (mtry = 3, ntree = 200) (Figure 1H-I). Obviously, IL2RB and
ZDHHCI18 were the common hubgenes screened by the three algorithms and they were
selected as the final hubgenes for a diagnostic model in AS.
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Figure 1. Screening hubgenes from DEGs between normal and AS patients. Volcano plot for DEGs

in GSE73754 (A) and GSE25101 (B): x-axis was logz(Fold change) of gene expressions in AS patients
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compared with normal controls, y-axis was -logio(P Value) of gene expressions between AS pa-
tients and normal controls. (C) Venn plot for down regulated DEGs in GSE73754 and GSE25101.
(D) Venn plot for up regulated DEGs in GSE73754 and GSE25101. (E) The LASSO coefficient pro-
files for the 7 common DEGs in the 10-fold cross-validations. (F) Partial likelihood deviance with
changing of log (A) plotted by LASSO regression in 10-fold cross-validations. (G) Filtering charac-
teristic genes by SVM-RFE algorithm: accuracy for models with different number of variables: x-
axis was the number of variables involved in the models, y-axis was the corresponding accuracy
of cross-validation of the models. (H) Relationship between the number of decision trees and the

error rate of the model in RF. (I) Selecting hubgenes by variable importance measures for RF.

3.3 Evaluation of the diagnostic model in training set (GSE73754) and GSE25101.

A diagnostic model was established by IL2RB and ZDHHC18, then visualized by a
nomogram in GSE73754 (Figure 2A) and GSE25101 (Figure 2B) respectively. Here, their
nomograms suggested that the higher the expression level of ZDHHC18, the higher the
risk of AS, while the reverse was true for IL2RB. C-index of the diagnostic model in
GSE73754 was 0.86 (95%Cl: 0.76-0.96), and 0.84 (95%CI: 0.71-0.97) in GSE25101. Calibra-
tion analysis showed that the predicted probability was in high agreement with the ob-
served probability, which suggested high accuracy of the model both in training and an
external cohort (Figure 2C-D).

ROC analysis in GSE73754 showed that the area under curves (AUCs) for nomogram,
IL2RB and ZDHHC18 were 0.86, 0.83, 0.83 respectively (Figure 2E). The optimal trunca-
tion value of Y was 0.713, and the corresponding specificity and sensitivity were 0.85 and
0.827, respectively (Formula : y = 2.9111*EXPZDHHC18 — 2.3256*EXPIL2RB — 2.2376,
EXPZDHHC18 referred to the expression value of ZDHHC18, EXPIL2RB referred to the
expression value of IL2RB). In this model, value of Y >= 0.713 was predicted to be AS,
otherwise normal. The actual prediction accuracy of the model in GSE73754 was 0.82.
While in GSE25101 the AUCs for nomogram, IL2RB and ZDHHC18 were 0.84, 0.79, 0.76
respectively (Formula : y = 2.320052*EXPZDHHC18 — 1.728388*EXPIL2RB — 6.902309)
(Figure 2F). There were three optimal truncation value for Y: 0.589 with corresponding
specificity 0.875, sensitivity 0.688, 0.521 with corresponding specificity 0.75, sensitivity
0.812, 0.452 with corresponding specificity 0.688, sensitivity 0.875. The actual prediction
accuracy of the model in GSE25101 was 0.72. DCA for nomogram and models involved
only one of these genes indicated that the nomogram got higher net benefit than other
models (Figure 2G-H).
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Figure 2. Evaluating the diagnostic model in training and a related validation set. Nomograms for

the diagnostic model in GSE73754 (A) and GSE25101 (B). Calibration plots for the diagnostic model
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in GSE73754 (C) and GSE25101 (D): x-axis referred to the predicted probability of AS by the model,
y-axis referred to the observed probability of AS, the diagonal (dashed line) referred to the ideal
status that the predicted probability equaled to the observed probability, the solid and dotted lines
referred to the apparent and bias-corrected statuses of the predicted and observed probabilities
respectively. ROC plots for the diagnostic model in GSE73754 (E) and GSE25101 (F): x-axis was 1 -
specificity of the model, y-axis was the sensitivity of the model. DCA in GSE73754 (G) and
GSE25101 (H): x-axis referred to threshold probability for treatment or intervention, y-axis referred

to the net benefit.

3.4 Validating the model in an independent cohort and in vitro.

The model was validated in an independent cohort: GSE18781 and an in vitro cohort:
GSE11886. Nomogram for GSE18781 supported the conclusion reached in training set that
AS patients got higher expression of ZDHHC18 and lower expression of IL2RB (Figure
3A). The function of IL2RB in GSE11886 was in accordance with that in the other sets, but
the function of ZDHHC18 in vitro was opposite to that in vivo, while this might be due to
the lack of the in vivo microenvironment (Figure 3B). According to the coverage of points
in the nomogram, IL2RB showed higher weight in the validation sets and the alteration
between the nomograms also indicated that it’s a more robust indicator than ZDHHC18.
C-index of the diagnostic model in GSE18781 was 0.85 (95%CI:0.73-0.96), and 0.89 (95%Cl:
0.73-1.05) in GSE11886. Calibration analysis showed that the prediction accuracy of the
model was lower than that in GSE73754 and GSE25101, but still with acceptable accuracy
(Figure 3C-D).

ROC analysis in GSE18781 showed that the area under curves (AUCs) for nomogram,
IL2RB and ZDHHC18 were 0.85, 0.79, 0.67 respectively (Figure 3E). The optimal trunca-
tion value of Y was 0.305, and the corresponding specificity and sensitivity were 0.72 and
0.994, respectively (Formula : y = 1.29499*EXPZDHHC18 — 2.582298*EXPIL2RB +
20.055204). The actual prediction accuracy of the model in GSE18781 was 0.72. While in
GSE11886 the AUCs for nomogram, IL2RB and ZDHHC18 were 0.89, 0.89, 0.65 respec-
tively (Formula : y =—6.49159*EXPZDHHC18 —6.13506*EXPIL2RB —0.01334) (Figure 3F).
The optimal truncation value of Y was 0.395, and the corresponding specificity and sensi-
tivity were 0.778 and 1. The actual prediction accuracy of the model in GSE11886 was 0.76.
DCA showed that patients could get high net benefit from nomogram (Figure 3G-H). Be-
sides, the model established only by IL2RB also exhibited high net benefit for patients
with AS in this set.
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Figure 3. Validating the diagnostic model in validation sets. Nomograms for the diagnostic model

in GSE18781 (A) and GSE11886 (B). Calibration plots for the diagnostic model in GSE18781 (C) and
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GSE11886 (D): x-axis referred to the predicted probability of AS by the model, y-axis referred to
the observed probability of AS, the diagonal (dashed line) referred to the ideal status that the pre-
dicted probability equaled to the observed probability, the solid and dotted lines referred to the
apparent and bias-corrected statuses of the predicted and observed probabilities respectively. ROC
plots for the diagnostic model in GSE18781 (E) and GSE11886 (F): x-axis was 1 - specificity of the
model, y-axis was the sensitivity of the model. DCA in GSE18781 (G) and GSE11886 (H): x-axis

referred to threshold probability for treatment or intervention, y-axis referred to the net benefit.

3.5 Results for functional analysis of the DEGs between normal and AS groups.

There were a total of 196 DEGs between normal and AS patients in GSE73754. Bio-
logical processes (BP) clustering of the DEGs showed that they were mainly clustered in
neutrophil activation, degranulation, immune response and migration (Figure 4A). Mye-
loid cell differentiation, leukocyte and granulocyte migration was also clustered BPs.
Gene clustering of cellular components (CC) were mostly in the area of membranes, like
endocytic vesicle, secretory granule membrane, membrane microdomain, cytoplasmic
vesicle lumen and etc. (Figure 4A). Molecular functions (MF) of the DEGs were mostly
clustered in serine type peptidase activity, serine hydrolase activity, serine type endopep-
tidase activity, MHC protein complex binding (Figure 4A). In KEGG clustering of the
DEGs, hematopoietic cell lineage, human T-cell leukemia virus 1 infection, Thl and Th2
cell differentiation and Th17 cell differentiation were the top clustered pathways (Figure
4B). Circle plot for BP clustering showed that neutrophil activation, degranulation, im-
mune response and migration were up regulated in AS (Figure 4C). By GSEA, antigen
processing and presentation, natural killer cell mediated cytotoxicity, graft-versus-host
disease, Epstein-Barr virus infection, rheumatoid arthritis were top enriched gene sets,
which were all down regulated in AS patients (Figure 4D). While the top 3 up regulated
pathways enriched with core enrichment genes > 3 were neutrophil extracellular trap for-
mation, complement and coagulation cascades and rapl signaling pathway. GO chord
plot showed that DYSF, DMTN, ITGA2B, MAGT1, SPI1, CXCLS8, ID2, CD81, IKZF1 and
etc., were involved in the top 7 GO terms (Figure 4E). KEGG chord plot showed that
ITGA2B, SPI1, ANPEP, BCL2L1, STAT5B, IL2RB, GZMB, HLA-DQA2, CXCL8 and etc.,
were involved in the top 7 KEGG terms (Figure 4F).

PPI network of the proteins encoded by DEGs showed that MMP1, 1D2, MBD4,
GNLY, EOMES, PUF60 and APOBEC3G were seed proteins in the network by MCODE
application in cytoscape (Figure 4G). The cyan nodes were also pivotal nodes in the net,
such as IL2RB, GZMA, SPI1 and etc. Then, GZMA, IL2RB, CD247, KLRB1, GZMH, GZMB,
GZMK, KLRD1, NKG7, GNLY were the top 10 hub proteins screened by Cytohubba.


https://doi.org/10.20944/preprints202206.0176.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted

neutrophil activation
neutrophil degranulation
neutrophil activation
involved in immune response
neutrophil mediated immunity 3
myeloid cell differentiation . Count
granulocyte migration . o
neutrophil migration
P g . . 10
endocytic vesicle ® [ RE
secretory granule membrane ' . 2
phagocytic vesicle &
specific granule @ 8
: pvalue
» ter.tlary granule @ oson
immunological synapse @
MHC class Il protein complex- @ 9,008
) . » 0.004
serine-type peptidase activity @
serine hydrolase activity [ ] 0002
serine-type endopeptidase ®
) activity
MHC protein complex binding{ @ =
MHC class |l receptor activity { @
cytidine deaminase activity {®
GTPase inhibitor activity 1 ®
0.03 0.06 0.09 0.12
GeneRatio
D Description
GO:0042119 neutrophil activation
o 8 cooosssrz neutrophil degranulation
| 8 G0:0002283 neutrophil activation involved in immune
E GO:0002446 neutrophil mediated immunity
' 8 600097530 granulocyte migration
GO:1990266 neutrophil migration
c? G0:0030099 myeloid cell differentiation
$ G0:0071621 granulocyte chemotaxis
é\' GO:0050900 leukocyte migration
b GO:0097529 myeloid leukocyte migration

2-score

increasing

logFC
® downregulated @ upregulated
decreasing

GO Terms n u 2
u u ]

FCER1,
KIRzDL3

coLaLd

[ ™

I uman T-cell etamin veus 1 fcton

m

no

e —

B

Human T-cell leukemia virus

: 13 June 2022

Hematopoietic cell lineage

do0i:10.20944/preprints202206.0176.v1

1 infection Count
Th1 and Th2 cell ® b
differentiation [
[
Th17 cell differentiation o @
Transcriptional . . 8
misregulation in cancer . 9
Graft-versus—host disease @
p.adjust
Rheumatoid arthritis [ ] 0.020
0.015
Asthma+® 0.010
0.005
Allograft rejection ®

G

Node Fill Color

Running Enrichment Score

Ranked List Metric

Type | diabetes mellitus { ®

0.06

0.08
GeneRatio

0.10

Antigen processing and presentation

Epstein-Barr virus infecti

Graft-versus-host disea:

Natural killer cell medi

Rheumatoid arthritis

50 100 150
Rank in Ordered Dataset

Size  MCODE_Node_Status

400 clustered
500 seed
waoisr
30.0 unclustered / \\\
s
aii:
/ AR

Figure 4. Functional analysis of the DEGs between normal and AS patients. Dot plots for GO (A)
and KEGG (B) analysis of DEGs. (C) Circle plot for BP clustering of the DEGs. (D) GSEA analysis
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for the DEGs. (E) Chord plot for top 7 clustered GO terms. (F) Chord plot for top 7 clustered KEGG
pathways. (G) PPI network analysis for DEGs.

3.6 Results for IME analysis.

IME analyses were performed in GSE73754, GSE25101 and GSE18781 by CIBER-
SORT. The proportion of the 22 immune cells for samples were shown in Figure 5A-C. In
all the three sets, neutrophils and monocytes accounted for the top 2 highest proportion
and together made up the majority of the immune cells, while other granulocytes, B cells,
dendritic cells and macrophages each made up a very small proportion of the immune
cells. The relative quantity of different immune cells in normal and AS patients were
shown in Figure 5D-F. In GSE73754, compared to normal subjects, there were more neu-
trophils and T CD4 naive cells detected in AS patients’ blood, while less NK resting, T
CD8 and T gamma delta cells (Figure 5D). In GSE25101, monocytes were found to be
higher in AS patients’ blood, while T regulatory cells (Tregs) were lower. In this set, rela-
tive quantity of neutrophils was also found to be higher in AS group, but with no statisti-
cal significance (Figure 5E). In GSE1878]1, the result was similar to that in GSE73754, the
relative quantity of neutrophils was increased, while T CD8 and T gamma delta cells were
decreased in AS patients (Figure 5F).
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The correlation between our hubgenes (IL2RB and ZDHHC18) and immune cells

were also explored. In GSE73754, the expression of IL2RB was positively correlated with
the relative quantities of NK resting, T CD8 and T gamma delta cells (Figure 6A-C), while
negatively correlated with the relative quantities of neutrophils, T CD4 naive cells and
monocytes (Figure 6D-E). Meanwhile, the expression of ZDHHC18 was positively corre-
lated with the relative quantity of neutrophils (Figure 6F), but negatively correlated with
the relative quantities of T CD8 and NK resting cells (Figure 6G-H). In GSE25101, the ex-
pression of IL2RB was positively correlated with the relative quantities of NK resting and
T CD4 memory activated cells (Figure 61-]), while negatively correlated with the relative
quantity of monocytes (Figure 6K). Besides, the expression of ZDHHC18 was positively
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correlated with the relative quantity of neutrophils (Figure 6L), but negatively correlated
with the relative quantity of activated NK cells (Figure 6M). There was no significant cor-
relation between Tregs and the hubgenes. Lastly, in GSE18781, the expression of IL2RB
was positively correlated with the relative quantities of NK resting and T CD8 cells (Fig-
ure 6N-O), while negatively correlated with the relative quantity of neutrophils (Figure
6P). Moreover, the expression of ZDHHC18 was positively correlated with the relative
quantity of neutrophils (Figure 6Q), but negatively correlated with the relative quantities
of T CD8, T gamma delta and T CD4 memory activated cells (Figure 6R-T).
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Figure 6. The correlation between hubgenes and IME cells. The correlation between the expression

of IL2RB and the estimated proportion of NK resting cells (A), T CD8 cells (B), T gamma delta cells
(C), neutrophils (D), T CD4 naive cells (E) by CIBERSORT in GSE73754. The correlation between
the expression of ZDHHC18 and the estimated proportion of neutrophils (F), T CD8 cells (G), NK
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resting cells (H) by CIBERSORT in GSE73754. The correlation between the expression of IL2RB and
the estimated proportion of NK resting cells (I), T CD4 memory activated cells (J), monocytes (K)
by CIBERSORT in GSE25101. The correlation between the expression of ZDHHC18 and the esti-
mated proportion of neutrophils (L), activated NK cells (M) by CIBERSORT in GSE25101. The cor-
relation between the expression of IL2RB and the estimated proportion of NK resting cells (N), T
CD8 cells (O), neutrophils (P) by CIBERSORT in GSE18781. The correlation between the expression
of ZDHHC18 and the estimated proportion of neutrophils (Q), T CD8 cells (R), T gamma delta cells
(S), T CD4 memory activated cells (T) by CIBERSORT in GSE18781.

4. Discussion

It's known that AS is an inflammatory disease mainly involve axial skeleton joints
and entheses. The essential change of AS is the dysregulation of inflammation by innate
and adaptive immune responses[17]. Although AS is primarily associated with axial skel-
eton, but recent researches indicate that it may initiate in the gut[18]. Besides, the periph-
eral and the extra-articular manifestations of AS also suggest that it’s a systemic disorder.
Therefore, DEGs in peripheral blood of AS patients can also reflect some features of AS.
While as to RNAs extracted from peripheral blood, they are mostly from the nucleated
cells in the blood, like leukocytes and immature red blood cells, so it’s rational to explore
the immune microenvironment of AS patients’ blood. More importantly, compared with
the focal tissue, peripheral blood is easier to obtain and a more commonly used clinical
detection material, which is also conducive to the transition from experimental results to
applications.

To date, HLA-B27 was still considered as the most important factor in the pathogen-
esis of AS29-33. Firstly, many evidences supported that alternation of amino acid se-
quence in antigenic peptide-binding groove of HLA-B27 might induce changes of the
binding specificity for peptides and result in CD8+ T cell mediated immune cross-reactiv-
ity in AS focus34,35. Secondly, endoplasmic reticulum stress induced by the accumulation
of misfolded HLA-B27 which leaded to an unfolded protein response (UPR) and autoph-
agy36. Thirdly, HLA-B27 homodimer hypothesis, which suggested HLA-B27 homodimer
could activate CD8+ T cells and NK cells by the specific receptors on their surface, then
activate of IL-23/IL-17 axis37. Certainly, there were also many other hypotheses, including
non-MHC hypothesis. While the common thing was that all the hypotheses are focused
on the antigen presenting process and the failure or dysfunction of it mostly would result
in activation of TNF signaling pathway and IL23/IL17 axis, and eventually leaded to the
phenotypes of AS.

Here, in order to enhance the reliability and stability of the results, only common
genes screened by the three machine learning algorithms were selected as hubgenes for a
diagnostic model. Results of C-index, calibration analysis, ROC analysis and DCA in train-
ing and validation sets suggested excellent prediction accuracy and discriminatory capac-
ities of the linear model. Meanwhile, the performance of the model in 3 different valida-
tion datasets: one related dataset, one independent dataset and one dataset of in vitro
samples hinted it's a model with good applicability.

Functional analyses of DEGs and IME analyses indicated that neutrophils activation,
migration and degranulation were activated in AS patients. Meanwhile, the relative quan-
tity or proportion of neutrophils was significantly higher in AS patients. And this was also
confirmed by other researchers, who even suggested neutrophil to lymphocyte ratio to be
used as an indicator for AS activity[19-21]. Besides, neutrophil extracellular trap for-
mation and complement and coagulation cascades were up regulated in AS, which might
induce autoimmune response and was in agreement with the IME analysis result and our
current knowledge of AS[22,23]. Moreover, in GSE25101, monocytes were also found to
be higher in AS patients and myeloid cell differentiation and leukocyte migration were
also clustered in GO clustering. It’s known that monocytes shared some similar functions
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with neutrophil in immune response and there were also reports that monocytes to lym-
phocytes ratio increased in AS patients[24-26]. If the increasement of lymphocytes and
monocytes were two different subtypes of AS remained unknown. Finally, how these dif-
ferences in immune cells correlated with AS? A potential explanation was that the in-
creased neutrophils might release excessive IL-17A which was the key cytokine in the
pathogenesis of AS. Although mature neutrophils lack the transcriptional machinery to
produce IL-17A, but IL-17A was detected in neutrophils, because they could produce and
store IL-17A before mature and accumulate it from the extracellular environment[27,28].

Lastly, IL2RB was a hubgene both in GO/KEGG clustering and PPI network anal-
ysis. The expression of it was positively correlated with the relative quantities/proportion
of NK resting cells and negatively correlated with the relative quantities/proportion of
neutrophils and monocytes in our study, which was in coincidence with the data from the
Human Protein Atlas (HPA) website[29] (Figure 7A: available from v21.1.proteinatlas.org,
https://www.proteinatlas.org/ENSG00000100385-IL2RB/single+cell+type). While
ZDHHCI18 was observed to positively correlated with the relative quantities/proportion
of neutrophils in all the three sets, though it didn’t seem to be highly expressed in granu-
locytes based on the data from HPA website[29] (Figure 7B: available from v21.1.protein-
atlas.org, https://www.proteinatlas.org/ENSG00000100385-IL2RB/single+cell+type).
Above all, our results suggested that IL2RB might correlated with AS by suppressing the
function of NK resting cells and ZDHHC18 might correlated with AS through the function
of neutrophils, but the detailed underlying mechanism of that still needed further study.
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In this study, IL2RB and ZDHHC18 were the two final screened hubgenes. The
former had already been reported by other researchers to be one of the hubgenes in

AS[30,31], while the latter was first reported here by us.
First of all, IL2RB, interleukin 2 receptor subunit beta, encoded beta subunit of a het-

Figure 7. The expression of hubgenes in different single cell types of normal subjects from the HPA
atlas.org: https://www.proteinatlas.org/ENSG00000100385-IL2RB/single+cell+type). (B) The ex-
pression of ZDHHCI18 in different single cell types (available from v21.1.proteinatlas.org:
erodimer or heterotrimer receptor involved in T cell-mediated immune responses and

website29. (A) The expression of IL2RB in different single cell types (available from v21.1.protein-
https://www.proteinatlas.org/ENSG00000204160-ZDHHC18/single+cell+type).

probably involved in the stimulation of neutrophil phagocytosis by IL15[32,33]. This pro-
tein was a type I membrane protein primarily expressed in NK, T and dendritic cells. Ac-

cording to KEGG database (https://www kegg.jp/), ILZRB was involved in many path-
ways, like Endocytosis, PI3K-Akt signaling pathway, JAK-STAT signaling pathway, Thl

and Th2 cell differentiation, Th17 cell differentiation, and etc. Obviously, Th1 and Th2 cell
naling could inhibit the differentiation of Th17 by the inhibition of transcription factor

RORY1[34-38]. Therefore, with the down regulation of IL2RB in this study, Th17 was an-
ticipated to be expanded. However, Th1 and Th2 cell differentiation and Th17 cell differ-

entiation were observed to be down regulated in GSEA (Figure 6D). It's contradictory to
our knowledge of AS. Then, something should be noticed. For one thing, the pathogenesis

differentiation and Th17 cell differentiation seemed to be most related to AS, that IL2 sig-
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changes of AS mainly involved in the focus of AS, not in circulation system, and our
knowledge was largely based on that, so it's common if there were some differences be-
tween the two sites. For another thing, the role of IL2 signaling in the differentiation of
Th17 still hadn’t been fully clarified[39]. The question was what’s the minimum IL2 signal
required to maintain the Tregs numbers. Isabel Z Fernandez, et al, reported a hypo-
morphic mutation of IL2RB in two infant siblings which resulted in an anticipated reduc-
tion in Tregs and an expansion of immature NK cells[40]. Here, in two of the 3 sets, the
relative quantities of T CD8 and T gamma delta were decreased, while Tregs was not sig-
nificantly reduced, which might indicate that the reduced IL2 signal was still adequate for
the proliferation of Tregs and the suppression of effector T cell expansion (Figure 5D, F).
Besides, by blockade of IL-2 in vitro and in vivo, Kenjiro Fujimura, et al. found that the
numbers of Th17 was not significantly increased, while the proportion of Th17 cells did,
which suggested that it might increase the proportion of Th17 by suppressing the total
number of immune cells [41]. Here in our study, some kinds of T cells, like T CD8 cells, T
gamma delta cells and Tregs were observed to be decreased in AS patients and this might
overwhelm the effect of the down regulating of Th17 cell differentiation. However, which
type of immune cells was decreased and if it would affect the synthesizing of IL17 by Th17
cells in AS patients, still needed further research. In the end, the potential function of
IL2RB in AS remained unclear, it might contribute to AS by reducing Tregs and relatively
increasing the proportion of Th17 and thereby activating IL17 signaling to form pheno-
types of AS.

Secondly, ZDHHC18, Zinc Finger DHHC-Type Palmitoyltransferase 18, encoded a
palmitoyltransferase, which involved in peptidyl-L-cysteine S-palmitoylation[42]. Re-
searches on ZDHHC18 were rare and insufficient. Currently, it’s reported to be associated
with innate immunity[43], glioma[44], ovarian cancer[45], schizophrenia[46]. The com-
mon palmitoylation substrates of ZDHHC18 was HRAS and LCK[47-49]. Palmitoylated
HRAS could be translocated and stable anchored to the plasma membrane[50], while pal-
mitoylation-defective HRAS was trapped in Golgi and unable to traffic to plasma mem-
brane. Meanwhile, ZDHHC18 could activate rapl signaling pathway by the pal-
mitoylation of Ras and promote the proliferation of cells, which was consistent with our
GSEA result. Besides, Racl, which was also involve in rapl signaling pathway mainly
regulating cell adhesion, migration, polarity, could also be palmitoylated by ZDHHC fam-
ily[50]. Though we currently didn’t know the exact role of ZDHHC18 played in this pro-
cess, but it’s essential for neutrophil motility as well as directional sensing during migra-
tion, which was clustered by GO clustering in our study. In addition, palmitoylation of
LCK could promote the T cell receptor signaling to activate T cells, while this was not seen
in our study, which meant that it’s not important in the pathogenesis of AS. Furthermore,
ZDHHC18 could negatively regulate CGAS-STING signaling mediated antiviral innate
immunity by palmitoylation of cGAS, which meant that the antiviral immunity in AS pa-
tient's might be impaired by high expression of ZDHHC18[43]. In our study, KEGG and
GSEA also indicated dysregulation in some antiviral immune pathways.

Generally speaking, our study indicated that IL2RB might involve in the pathogene-
sis of AS through IL2 signaling pathway and ZDHHC18 through rap1 signaling pathway.
Both of they could be used as potential biomarkers in AS. Meanwhile, it also should be
noticed that we only explored some changes of RNA expression in the peripheral blood
of AS patients, it’s just only a tip of the iceberg. More researches still needed to further
elucidate the pathogenesis of AS.

5. Conclusions

IL2RB and ZDHHC18 were potential blood biomarkers for AS and might be used for
early diagnosis and a supplementary diagnostic tool to the existing methods. Our study
deepened our insight into the pathogenesis of AS.
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