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Abstract: Deep learning has shown remarkable results in every field, especially in the biomedical
field, due to its ability to exploit large-scale datasets. A convolutional neural network (CNN) is a
widely used deep learning approach to solve medical imaging problems. Over the past few years,
many studies have focused on CNN-based techniques for brain tumor diagnosis. There are, how-
ever, still some critical challenges that CNNs face towards clinic application. This study presents a
comprehensive review of current literature that involves CNN architectures for brain tumor classi-
fication. We compare the key achievements in the performance evaluation metrics of the applied
classification algorithms. In addition, this review assesses the clinical effectiveness of the included
studies to elaborate on the limitations and directions of this area for future work. No review focusing
on the clinical effectiveness of previous works in this field has been published. We believe that this
study has the potential to elevate the application of CNN-based deep learning methods in clinical
practice and also can be a quick reference for biomedical researchers who are interested in this field.

Keywords: deep learning; convolutional neural network; brain tumor classification; clinical appli-
cation

1. Introduction

Brain tumors are a heterogenous group of common intracranial tumors causing sig-
nificant mortality and morbidity [1,2]. Malignant brain tumors are among the most ag-
gressive and deadly neoplasms in people of all ages, with mortality rates of 5.4/100,000
men and 3.6/100,000 women per year between 2014 and 2018 [3]. According to the 2021
World Health Organization (WHO) Classification of Tumors of the Central Nervous Sys-
tem, brain tumors are classified into 4 grades (1 to 4) of increasingly aggressive malig-
nancy and worsening prognosis. Indeed, in clinical practice, tumor type and grade influ-
ence treatment choice. Within WHO Grade 4 tumors, glioblastoma is the most aggressive
primary brain tumor, with median survival after diagnosis of just 12-15 months [4].

Pathological assessment of tissue samples is the reference standard for tumor diag-
nosis and grading. However, a non-invasive tool capable of accurately classifying tumor
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type and inferring grade would be highly desirable [5]. Although there are several non-
invasive imaging modalities that can visualize brain tumors, i.e., Computed Tomography
(CT), Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI), the
last of them remains the standard of care in clinical practice [6]. MRI conveys information
on the lesion location, size, extent, features, relationship with the surrounding structures,
and associated mass effect [6]. Beyond structural information, MRI can also assess micro-
structural features, such as lesion cellularity [7], microvascular architecture [8], and per-
fusion [9]. Advanced imaging techniques may demonstrate many aspects of tumor heter-
ogeneity related to type, aggressiveness, and grade; however, they are limited in assessing
mesoscopic changes that predate macroscopic ones [10]. Many molecular imaging tech-
niques have recently been developed to better reveal and quantify heterogeneity, permit-
ting a more accurate characterization of brain tumors. However, applying this wealth of
new information may benefit from more sophisticated and potentially partially auto-
mated tools for image analysis [10].

Computer-aided detection and diagnosis (CADe and CADx, respectively), which re-
fer to software that combines artificial intelligence and computer vision to analyze radio-
logical and pathology images, have been developed to help radiologists diagnose human
disease in several body districts, such as applications including colorectal polyp detection
and segmentation [11,12] and lung cancer classification [13,14].

Machine learning has vigorously accelerated the development of CAD systems [15].
One of the most recent applications of machine learning in CAD is classifying objects of
interest, such as lesions, into specific classes based on input features [16-19]. In machine
learning, various image analysis tasks can be performed by finding or learning informa-
tive features that successfully describe the regularities or patterns in data. However, con-
ventionally, meaningful or task-relevant features are mainly designed by human experts
based on their knowledge of the target domain, making it challenging for those without
domain expertise to leverage machine learning techniques. Furthermore, traditional ma-
chine learning methods can only detect superficial linear relationships, while the biology
underpinning living organisms is several orders of magnitude more complex [20].

Deep learning [21], inspired by an understanding of neural networks within the hu-
man brain, has achieved unprecedented success in facing the challenges mentioned above
by incorporating the feature extraction and selection step into the training process. Gener-
ically, deep learning models are represented by a series of layers, each formed by a
weighted sum of elements in the previous layer, the first represents the data and the last
the output or solution. Multiple layers enable complicated mapping functions to be repro-
duced, allowing deep learning models to solve very challenging problems while typically
needing less human intervention than traditional machine learning. Deep learning cur-
rently outperforms alternative machine learning approaches [22] and, for the past few
years, has been widely used for a variety of tasks in medical image analysis [23].

A convolutional neural network (CNN) is a deep learning approach that has fre-
quently been applied to medical imaging problems. It overcomes the limitations of previ-
ous deep learning approaches because its architecture allows it to automatically learn fea-
tures important for the problem given a training corpus of sufficient variety and quality
[24]. Recently, CNNs have gained popularity for brain tumor classification due to their
outstanding performance with very high accuracy in a research context [25-29].

Despite the growing interest in CNN-based CADx within the research community,
translation into daily clinical practice has yet to be achieved due to obstacles such as the
lack of an adequate amount of reliable data for training algorithms and imbalances within
datasets used for multi-class classification [30,31], among others. Several reviews [31-33]
have been published in this regard, summarizing the classification methods and key
achievements and pointing out some limitations in previous studies, but as yet, none of
them have focused on deficiencies regarding clinical adoption or attempted to determine
future research directions required to promote the application of deep learning models in
clinical practice. For these reasons, the current review considers the key limitations and
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obstacles regarding the clinical applicability of studies in brain tumor classification by
CNN algorithms and how to translate CNN-based CADx technology into better clinical
decision-making.

In this review, we explore current evidence on using CNN-based deep learning for
brain tumor classification published between 2015 and 2021. The objectives of the review
were three-fold: to (1) review and analyze article characteristics and the impact of CNN
methods applied to MRI for glioma classification, (2) explore the limitations of current
research and the gaps in the bench-to-bedside translation, and (3) find directions for fu-
ture research in this field. This review was designed to answer the following research
questions: How has deep learning been applied to process MR images for glioma classifi-
cation? What level of impact have papers in this field achieved? How can the translational
gap be bridged to deploy deep learning algorithms in clinical practice?

The review is organized as follows. Section 2 introduces the methods used to search
and select literature related to the focus of the review. Section 3 presents the general steps
of CNN-based deep learning methods for brain tumor classification, and Section 4 intro-
duces relevant primary studies, with an overview of their datasets, preprocessing tech-
niques, and computational methods for brain tumor classification, and presents a quanti-
tative analysis of the covered studies. Furthermore, we introduce the factors that may di-
rectly or indirectly degrade the performance and the clinical applicability of CNN-based
CADx systems and give an overview of included studies with reference to the degrading
factors. Section 5 presents the comparison between studies, and finally, Section 6 summa-
rizes limitations and research trends and suggests directions for further improvements.

2. Materials and Methods
2.1. Article Identification

In this review, we identified preliminary sources using two online databases, Pub-
Med and Scopus. The search queries used for interrogating each database are described
in Table_1. The filter option for the publication year (2015-2021) was selected so that only
papers in the chosen period are fed into the screening process. Searches were conducted
on 04/02/2022. PubMed generated 158 results, and Scopus yielded 265 results.

Table 1. The search queries used for interrogating PubMed and Scopus databases.

(deep learning OR deep model OR artificial intelligence OR artificial neural net-
work OR autoencoder OR generative adversarial network) OR convolutional OR

(neural network) OR neural network OR deep model OR convolutional) AND
PubMed (brain tumor OR ghorr'la OR brain 'Cancer OR glioblastoma OR astrocytoma OR AND
/Scopus oligodendroglioma OR ependymoma)
AND
(classification OR grading OR classify) N
IN

(MRI OR Magnetic Resonance OR MR images OR radiographic OR radiology)
Title/Abstract

2.2. Article Selection

Articles were selected for final review using a three-stage screening process based on
a series of inclusion and exclusion criteria. After removing duplicate records generated
using two databases, articles were first screened based on the title alone. The abstract was
then assessed, and finally, the full articles were checked to confirm eligibility. The entire
screening process was conducted by one author (Y.T.X). In cases of doubt, records were
reviewed by other authors (D.N.M, C.T), and the decision regarding inclusion was arrived
at by consensus.

Inclusion criteria were:
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e  original research articles published in a peer-reviewed journal with full-text access
offered by the University of Bologna;

e involved the use of any kind of MR images;

e  published in English;

e and concerned with the application of CNN deep learning techniques for brain tumor
classification.

Included articles were limited to those published from 2015 to 2021 to focus on deep
learning methodologies. A study was defined here as one that employed a CNN-based
deep learning algorithm to classify brain tumors and involved the use of one or more of
the following performance metrics: accuracy, the area under the receiver operating char-
acteristics curve, sensitivity, specificity, F1 score.

Exclusion criteria were:

) review article;

e  book or book chapter;

e  conference paper or abstract;

e  short communications or case reports;
e unclear description of data;

e no validation performed.

If a study involved the use of a CNN model for feature extraction but traditional
machine learning techniques for the classification task, it was excluded. Studies that used
other deep learning networks, for example, artificial neural networks (ANNSs), generative
adversarial networks (GANSs), or autoencoders (AEs), instead of CNN models were ex-
cluded. Studies using multiple deep learning techniques, including CNNs, were included
in this study, while only the performance of CNNs will be reviewed.

—_—

423 candidate articles identified in:

PubMed: (n = 158), and Seopus: (n = 265)

l

230 articles removed after title/abstract

screening (n = 168) and duplication removal

11 Becords excluded:
Noo full text access through institutional

. credential (n=7)

Studies included in review
(n=61)

0 Not in English language (n=4
Records screened o uage ]
— (n=182)
121 Records excluded:
— [ »
= Machine leaming for classification, instead of
% deep learning (n=232)
B Arlicles assessed for eligibilily Not CNN-based Deep Learning method for
=] n=61) classification (n = 58)
_
No validation performed (n = 29)
Unelear description of data (n=2)
=
o
i
—

Figure 1. The PRISMA flowchart of this review.

Figure 1 reports the numbers of articles screened after exclusion at each stage follow-
ing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines [34]. A review of 61 selected papers is presented in this paper. All articles cover
the aspect of classification of brain tumors using CNN-based deep learning.

3. Literature Review

This section presents a detailed overview of the research papers dealing with brain
tumor classification using CNN-based deep learning techniques published during the pe-
riod from 2015 to 2021. This section is formulated as follows: Section 3.1 presents a brief
overview of the general methodology adopted in the majority of the papers for the classi-
fication of brain MRI images using CNN algorithms. Section 3.2 presents a description of
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the popular publicly available datasets that have been used in the research papers re-
viewed in the form of a Table. Section 3.3 introduces the commonly applied preprocessing
methods used in the reviewed studies. Finally, Section 3.4 gives a brief overview of the
performance metrics that provide evidence about the credibility of a specific classification
algorithm model.

3.1. Basic Architecture of CNN-Based Methods

Recently, deep learning has shown outstanding performance in medical image anal-
ysis, especially in brain tumor classification. Deep learning networks have achieved
higher accuracy than classical machine learning approaches [22]. In Deep Learning, CNN
has achieved significant recognition for its capacity to automatically extract deep features
by adapting to small changes in the images [24]. Deep features are those derived from
other features that are relevant to the final model output.

The architecture of a typical deep CNN-based brain tumor classification frame is de-
scribed in Figure 2. To train a CNN-based deep learning model with tens of thousands of
parameters, a general rule of thumb is to have at least about 10 times the number of sam-
ples as parameters in the network for effective generalization of the problem [35]. Over-
fitting may occur during the training process if the training dataset is not sufficiently large
[36]. Therefore, many studies [37-41] use 2D brain image slices extracted from 3D brain
MRI volumes to solve this problem, which increases the number of examples within the
initial dataset and mitigates the class imbalance problem. In addition, it has the advantage
of reducing the input data dimension and reducing the computational burden of training
the network.

Data augmentation is another effective technique for increasing both the amount and
the diversity of the training data by adding modified copies of existing data with com-
monly used morphological techniques, such as rotation, reflection (also referred to as flip-
ping or mirroring), scaling, translation, and cropping [41,42]. Such strategies are based on
the assumption that the size and orientation of image patches do not yield robust features
for tumor classification.

Preprocessing CNN-based Classification Performance

y o L

Input Image

I Data augmentation
I

| e 1 MNormalization 1y ___TTTTTTTTTTTT 1 TAccuracy |
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Figure 2. The basic workflow of a typical CNN-based brain tumor classification study with four
high-level steps. Step 1. Input Image: 2D or 3D Brain MR samples are fed into the classification
model; Step 2. Preprocessing: several preprocessing techniques are used to remove the skull, nor-
malize images, resize images, and augment the number of training examples; Step 3. CNN Classifi-
cation: The preprocessed dataset is propagated into the CNN model, involving training, validation,
and testing process; Step 4. Performance evaluation: Evaluation of the classification performance of
a CNN algorithm with accuracy, specificity, F1 score, area under the curve, and sensitivity metrics.

In deep learning, overfitting is also a common problem when the learning capacity is
so large that the network will learn spurious features instead of meaningful patterns [36].
A validation set can be used in the training process to avoid overfitting and obtain a stable
performance of the brain tumor classification system on future unseen data in clinical
practice. The validation set provides an unbiased evaluation of a classification model on
the training data set while tuning the model's hyperparameters during the training pro-
cess [43]. In addition, validation datasets can be used for regularization by early stopping
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when the error on the validation data set increases, which is a sign of overfitting to the
training data [36,44]. Therefore, in the article selection process, we excluded the articles
that omitted validation during the training process.

Evaluation of the classification performance of a CNN algorithm is an essential part
of a research study. Accuracy, specificity, F1 score (also known as the Dice similarity coef-
ficient) [45], the area under the curve, and sensitivity are important metrics to assess the
classification model's performance and compare with similar works in the field.

3.2. Datasets

A large training dataset is required to create an accurate and trustworthy deep learn-
ing-based classification system for brain tumor classification. In the current instance, this
usually comprises a set of MR image volumes, and for each, a classification label is gener-
ated by a domain expert such as a neuroradiologist. In the literature reviewed, several
datasets have been used for brain tumor classification, targeting both binary tasks
[25,37,38,42] and multiclass classification tasks [22,29,46-48]. Table 2 briefly lists some of
the publicly accessible databases that have been used by the research work reviewed in
this paper, including the MRI sequences included, the size, the classes, the unbiased Gini
Coefficient, and the web address of the online repository of the specific dataset.

The Gini coefficient (G) [49] is a property of a distribution that measures its difference
from uniformity. It can be applied to categorical data in which classes are sorted by prev-
alence. Its minimum value is zero if all classes are equally represented, and its maximum
varies between 0.5 for a two-class distribution to an asymptote of 1 for many classes. The
unbiased Gini coefficient divides G by the maximum value for the number of classes pre-
sent and takes values in the range 0-1. The maximum value for a distribution with n clas-
ses is (n-1)/n. Values of the unbiased Gini coefficient were calculated using R package
DescTools [49]. Table 2 allows to appreciate the characteristic of public datasets in terms
of balance of samples for the available classes of tumors (unbiased Gini coefficient), alt-
hough taking under control the total number of samples in the datasets (Column “Size”)

Table 2. An overview of publicly available datasets.

Unbiased Gini

Datasets Name Available Sequences Size Classes .. Source
Coefficient
TCGA-GBM Tiw, ceTiw, Tow, FLAIR 199 patients N/D N/D [50]
TCGA-LGG Tiw, ceTice, Tow, FLAIR 299 patients N/D N/D [51]
Brain tumor dataset from 233 patients (82 MEN, 89 Glioma, 62 Patients (82 MEN, 89 0.116 (patients)
Figshare (Cheng et al,, ceTiw PT), 3064 images (708 MEN, 1426 Glioma, 62 PT), images (708 2, ?a en S)’ [52]
2017) Glioma, 930 PT) MEN, 1426 Glioma, 930 PT) =~~~ (1083
Kaggle (h;?)\lzg?eel etal, No information given 253 images (98 normal, 155 tumorous) 98 normal, 155 tumorous 0.225 [53]
112 patients (30 AST-II, 17 AST-II, 14 30 AST-II, 17 AST-II, 14
REMBRANDT Tiw, Tow, FLAIR, DWI OLLI, 7 OLI-III, 44 GBM) OLII, 7 OLI-II, 44 GBM 0402 (54]
2019: 335 patients (259 HGG, 76 LGG);  2019: 259 HGG, 76 LGG; ~ 0.546 (2019);
2018: 284 patients (209 HGG, 75 LGG);  2018: 209 HGG, 75 LGG;  0.472 (2018);
BraTS Tiw, ceTiw, Tow, FLAIR 17, 285 patients (210 HGG, 75 LGG);  2017: 210 HGG, 75 LGG; 0474 2017); 1)
2015: 274 patients (220 HGG, 54 LGG)  2015: 220 HGG, 54 LGG 0.606 (2015)
Chmcalzla;f;’)v (Livet .\, ceTiw, Taw, FLAIR 113 patients (52 LGG, 61 HGG) 52 LGG, 61 HGG 0.080 [56]
CPM-RadPath 2019 Tiw, ceTiw, Tow, FLAIR 329 patients N/D N/D [57]
IXI dataset Tiw, Taw, DWI 600 normal images N/D N/D [58]
RIDER Tw, TZW%&CI};'MRL 19 GBM patients (70220 images) 70,220 images N/D [59]
Harvard Medical School Tow 42 patients (2 normal, 40 tumor), 540 t’lljljlti:;ig ?:::1: éO7 0.905 (patients), (60]
Data ? images (27 normal, 513 tumorous) . & 0.900 (images)

normal, 513 tumorous)

Among the public datasets, the dataset from Figshare provided by Cheng [52] is the
most popular dataset that has been widely used for brain tumor classification. BraTs,
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referring to the Multimodal Brain Tumor Segmentation Challenge (a well-known chal-
lenge that has taken place every year since 2012), is another often-used source of datasets
for testing brain tumor classification methods. The provided data are pre-processed, co-
registered to the same anatomical template, interpolated to the exact resolution (1 mm?3),
and skull stripped [52].

Most MR techniques can generate high-resolution images, while different imaging
techniques show distinct contrast, are sensitive to specific tissues or fluid regions and
highlight relevant metabolic or biophysical properties of brain tumors [61]. The datasets
listed in Table 2 collect one or more MRI sequences, such as Tl-weighted (T1w), T2-
weighted (T2w), contrast-enhanced T1-weighted (ceT1w), fluid-attenuated inversion re-
covery (FLAIR), diffusion-weighted imaging (DWI), and dynamic contrast-enhanced
magnetic resonance imaging (DCE-MRI). Among these, T1w, T2w, ceT1w, and FLAIR se-
quences are widely used both in research and clinical practice for brain tumor classifica-
tion. Each sequence is distinguished by a particular series of radiofrequency pulses and
magnetic field gradients, resulting in images with a characteristic appearance [61]. Table
3 lists the imaging configurations and the main clinical distinctions of Tiw, Taw, ceTiw,
and FLAIR with information retrieved from [61-64].

Table 3. The imaging configurations and main clinical distinctions of Tiw, Tow, ceTiw, and FLAIR.

Sequence Sequence Characteristics Main clinical distinctions Example’

® Lower signal for more water content [63]
such as in edema, tumor, inflammation, infec-
Tw Uses short TR and TE [61] tion, or chronic hemorrhage [63]
® Higher signal for fat [63]
® Higher signal for subacute hemorrhage [63]

® Higher signal for more water content, as in
edema, tumor, infarction, inflammation, in-
Tow Uses long TR and TE [61] fection, subdural collection [63]
® Lower signal for fat [63]
® Lower signal for fibrous tissue [63]

Uses the same TR and TE ® Higher signal for areas of breakdown in the
ceTrw  as Tiw, employs contrast blood-brain barrier that indicate induced in-
agents [61] flammation [62]

1 TR, TE and
Uses Yery o.ng . an ® Highest signal for abnormalities [62]
the inversion time that

FLAIR ® Highest signal for gray matter [64]

1Is the signal f fluid
nutis emgfgj] romtwd - o Lower signal for cerebrospinal fluid [64]

“Pictures from [65]. TR, repetition time. TE, echo time.

3.3. Preprocessing
3.3.1. Normalization

The dataset fed into the CNN models may be collected with different clinical proto-
cols and various scanners from multiple institutions. The dataset may consist of MR im-
ages of different intensities because the MR image intensities are not consistent across
different MR scanners [66]. In addition, the intensity values of MR images are sensitive to
the acquisition condition [67]. Therefore, input data should be normalized to minimize
the influence of differences between scanners and scanning parameters. Otherwise, any
CNN network created will be ill-conditioned.
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3.3.2. Skull Stripping

MRI images of the brain normally also contain non-brain regions such as the dura
mater, skull, meninges, and scalp. Including these parts in the model typically deteriorates
its performance on classification tasks. Therefore, in the studies on brain MRI datasets that
retain regions of the skull and vertebral column, skull stripping is widely applied as a
preprocessing step in brain tumor classification problems to improve performance
[22,68,69].

3.3.3. Resizing

Since deep neural networks require inputs of a fixed size, all images need to be
resized before feeding them into the CNN classification models [70]. Images larger than
the required size can be resized downwards by either cropping background pixels or scal-
ing down using interpolation [70,71].

3.3.4. Image Registration

Image registration is defined as a process that spatially transforms different images
into one coordinate system. In brain tumor classification, it is often necessary to analyze
multiple images of a patient to improve the treatment plan, while the images may be ac-
quired from different scanners, at different times, and with different viewpoints [72]. Reg-
istration is necessary to be able to integrate the data obtained from these different meas-
urements.

3.3.5. Bias Field Correction

The bias field in medical images is an undesirable artifact caused by factors such as
the scan position and instrument used and other unknown issues [73]. This artifact is char-
acterized by differences in brightness across the image and can significantly degrade the
performance of many medical image analysis techniques. Therefore, a preprocessing step
is needed to correct the bias field signal before submitting corrupted MR images to a CNN
classification model.

3.3.6. Data Augmentation

CNN-based classification requires a large amount of data. A general rule of thumb is
to have at least about 10 times the number of samples as parameters in the network for
effective generalization of the problem [35]. If the database is significantly smaller, over-
fitting might occur. Data augmentation is one of the foremost preprocessing techniques to
subside the imbalance distribution and data scarcity problems. It has been used in many
studies that worked on brain tumor classification [22,42,46,47], involving geometrical
transformation operations, such as rotation, reflection (also referred to as flipping or mir-
roring), scaling, translation, and cropping.

Recently, well-established data augmentation techniques are being supplemented by
automatic methods using deep learning approaches. For example, the authors in [41] pro-
posed a progressively growing generative adversarial network (PGGAN) augmentation
model to help overcome the shortage of images needed for the CNN classification model.
However, such methods are rare in the literature reviewed.

3.4. Performance Measures

Evaluation of the classification performance of a CNN algorithm is an essential part
of a research study. Here we outline the evaluation metrics most commonly encountered
in the brain tumor classification literature, namely accuracy, precision, sensitivity, F1
score, and the area under the curve.

In a classification task, true positive (TP) represents an image that is correctly classi-
fied into the positive class according to the ground truth. Similarly, a true negative is an
outcome where the model correctly classifies the negative class. On the other hand, false
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positive (FP) is an outcome where the model incorrectly classifies an image into the posi-
tive class while the ground truth is negative. False negative (FN) is an outcome where the
model incorrectly classifies the image of a positive class.

3.4.1. Accuracy

Accuracy (ACC) is a metric that measures the performance of a model correctly clas-
sifying the classes in a given dataset, given as the percentage of total correct classifications
divided by the total number of images.

ACC TP+TN

“TP+TN +FP+FN

M

3.4.2. Specificity

Specificity (SPE) represents the proportion of correctly classified negative samples to
all negatives identified in the data.

TN
SPE=— " _ )
TN + FP
3.4.3. Precision
Precision (PRE) represents the ratio of true positives to all identified positives.
TP
PRE=— ©3)
TP+FP

3.4.4. Sensitivity

Sensitivity (SEN) measures the ability of the classification models to identify positive
samples. It represents the ratio of true positives to total (actual) positives in the data.

SEN ™

= 4
TP+ FN @

3.4.5. F1 Score

F1 score [45] is one of the most popular metrics considering both precision and recall.
It can be used to assess the performance of classification models with class imbalance
problems [74], which considers the number of prediction errors that the model makes and
looks at the type of errors that are made. It is higher if there is a balance between PRE and
SEN.

*
Flscore:ZJEBE——gghL (5)
PRE + SEN

3.4.6. Area Under the Curve

The area under the curve (AUC) measures the entire two-dimensional area under-
neath the ROC curve from (0, 0) to (1, 1). It is the measure of the ability of a classifier to
distinguish between classes.

4. Results

This section gives an overview of the research papers working on brain tumor clas-
sification using CNN techniques. Section 4.1 presents a quantitative analysis of the num-
ber of articles published from 2015 to 2021 on deep learning and CNN in brain tumor
classification, and the usage of different CNN Algorithms applied in the studies covered.
Then, Section 4.2 introduces the factors that may directly or indirectly degrade the perfor-
mance and the clinical applicability of CNN-based CADx systems. Finally, in Section 4.3,
an overview of the included studies will be given with reference to the degrading factors
introduced in Section 4.2.
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4.1. Quantitative Analysis

As mentioned in the introduction, many CNN models have been used to classify the
MR images of brain tumor patients. They overcome the limitations of earlier deep learning
approaches and have gained popularity among researchers in brain tumor classification.
Figure 3 shows the number of research articles published on PubMed and Scopus in the
years from 2015 to 2021 on brain tumor classification by deep learning methods and break-
ing out CNN-based deep learning techniques; the number of papers related to brain tumor
classification using CNN techniques grows rapidly from 2019 and accounts for the major-
ity of the total number in 2020 and 2021. This is because of the high generalizability, sta-
bility, and accuracy rate of CNN algorithms.

60

50

40
CNN
30 = DL
20 {I
10
-'_--l

2015 2016 2017 2018 2019 2020 2021

Number of Publications

Publication Year

Figure 3. Numbers of articles published from 2015 to 2021.
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Figure 4. Usage of preprocessing techniques from 2017 to 2021.

Figure 4 shows the usage of most-commonly preprocessing techniques used to ad-
dress the problems in brain tumor classification, including data augmentation, normali-
zation, resizing, skull stripping, bias field correction, and registration. In this figure, only
data from 2017 to 2021 is visualized as there was no article published in 2015 and 2016
that used the preprocessing methods mentioned. Since 2020, data augmentation has been
used in the majority of the studies to ease the data scarcity and overfitting problems. How-
ever, the bias field problem has not yet been taken seriously, and few studies have in-
cluded bias field correction in the preprocessing process.

Figure 5 breaks down the usage of publicly available CNN architectures used in the
articles included, including custom CNN models, VGG, AlexNet, ResNet, GoogLeNet,
DenseNet, and EfficientNet.
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Figure 5. Usage of state-of-the-art CNN models from 2015 and 2021.

AlexNet [75] came out in 2012 and was a revolutionary advancement in deep learn-
ing; it improved on traditional CNNs by introducing the composition of consecutively
stacked convolutional layers and became one of the best models for image classification.
VGG, referring to Visual Geometry Group, was a breakthrough in the world of Convolu-
tional Neural Networks after AlexNet. It is a type of deep CNN architecture with multiple
layers proposed by K. Simonyan and A. Zisserman in [76] and was developed to improve
model performance by increasing the depth of such CNNss.

GoogLeNet is a deep convolutional neural network with 22 layers based on the In-
ception architecture; it was developed by researchers at Google [77]. The GoogLeNet ad-
dresses most of the problems that large networks face, such as computational expense and
overfitting, by employing the Inception module. This module can use max pooling and
three varied sizes of filters (1x1, 3x3, 5x5) for convolution in a single image block; such
blocks are then concatenated and passed onto the next layer. An extra 1x1 convolution
before the 3x3 and 5x5 layers can be added to the neural network to make the process even
less computationally expensive [77]. ResNet stands for Deep Residual Network. It is an
innovative convolutional neural network proposed in [78]. ResNet makes use of residual
blocks to improve the accuracy of the models. A Residual block is a skip-connection block
typically with double- or triple-layer skips that contain nonlinearities (ReLU) and batch
normalization in between; it can help reduce the problem of vanishing gradients or to
mitigate the accuracy saturation problem [78]. DenseNet, which stands for Dense Convo-
lutional Network, is a type of convolutional neural network that utilizes dense connec-
tions between layers. DenseNet was developed mainly to improve the declined accuracy
caused by the vanishing gradient in neural networks [79]. Additionally, those CNNs take
in images of 224x224 pixels. Therefore, for brain tumor classification, the authors need to
center crop a 224x224 patch in each image to keep the input image size consistent.

Convolutional Neural Networks are commonly built at a fixed resource budget.
When more resources are available, the depth, width, and resolution of the model need to
be scaled up for better accuracy and efficiency [80]. Unlike previous CNNs, EfficientNet
is a novel baseline network that uses a different model scaling technique based on a com-
pound coefficient and neural architecture search methods that can carefully balance net-
work depth, width, and resolution [80].

4.2. Clinical Applicability Degrading Factors

This section introduces the factors that hinder the adoption and development of
CNN-based brain tumor classification CADx systems into clinic practice, including data
quality, data scarcity, data mismatch, data imbalance, classification performance, research
value towards clinic needs, and the Black-Box characteristics of CNN models.

4.2.1. Data Quality
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During the MR image acquisition process, both the scanner and external sources may
produce electrical noise in the receiver coil, generating image artifacts in the brain MR
volumes [66]. In addition, the MR image reconstruction process is sensitive to acquisition
conditions, and further artifacts are introduced if the subject under examination moves
during the acquisition of a single image [66]. These errors are inevitable and reduce the
quality of MR images used to train the networks. As a result, the quality of the training
data highly impacts the performance of the CNN models, thus degrading their applica-
bility in real-world clinic adoption.

4.2.2. Data Scarcity

Big data is also one of the biggest challenges that CNN-based CADx systems face
today. A large amount of high-quality annotated data is required for building high-per-
formance CNN classification models, while it is a challenge to label a large number of
medical images due to the complexity of medical data. When a CNN classification system
lacks a quantity of data, overfitting can occur, affecting the generalization capability of the
network to handle new data [81].

4.2.3. Data Mismatch

Data mismatch refers to a situation in which a model well-trained in a lab environ-
ment may fail to generalize to real-world clinical data. It might be caused by the overfit-
ting of the training set or due to the mismatch between the research images and clinic ones
[74]. Studies are at high risk of generalization failure if they omit a validation step.

4.2.4. Class Imbalance

In brain MRI datasets, such as the BraTS 2019 dataset [82], which consists of 210 HGG
and 75 LGG patients (unbiased Gini coefficient 0.546, as shown in Table 2), HGG is repre-
sented by a much higher percentage of samples than LGG, leading to the so-called class
imbalance problems, where inputting all the data into the CNN classifier to build up the
learning model will usually lead to a learning bias to the majority class [83].

4.2.5. Research Value towards Clinical Needs

Different brain tumor classification tasks have been studied with CNN-based deep
learning techniques during the period from 2015 to 2021, including clinically relevant 2-
class classification (normal vs. tumorous[28,38,84,85], HGG vs. LGG [25,37,42,69], LGG-II
vs. LGG-III [86], etc.), 3-class classification (normal vs. LGG vs. HGG [22], meningioma
(MEN) vs. pituitary tumor (PT) vs. glioma [36,39,46,47], glioblastoma multiforme (GBM)
vs. astrocytoma (AST) vs. oligodendroglioma(OLI) [29], etc.), 4-class classification (LGG
vs. OLI vs. anaplastic glioma (AG) vs. GBM [68], normal vs. AST-II vs. OLI-III vs. GBM-
IV) [22], normal vs. MEN vs. PT vs. glioma [87], etc.), 5-class classification (AST-II vs. AST-
I vs. OLI-II vs. OLI-III vs. GBM-IV [22]), and 6-class classification (normal vs. AST-II vs.
AST-III vs. OLI-II vs. OLI-III vs. GBM-IV [22]).

Different classification tasks have different difficulty levels both in the research com-
munity and clinical practice. The authors in [22] used AlexNet for multi-class classification
tasks, including 2-class classification: normal vs. tumor, 3-class classification: normal vs.
LGG vs. HGG; 4-class classification: normal vs. AST vs. OLI vs. GBM; 5-class classification:
AST-II vs. AST-III vs. OLI-II vs. OLI-III vs. GBM-IV and 6-class classification: normal vs.
AST-II vs. AST-1II vs. OLI-II vs. OLI-III vs. GBM-IV. The results reported 100% accuracy
for the normal vs. tumorous classification. The accuracy for 5-class classification (AST-II
vs. AST-III vs. OLI-II vs. OLI-III vs. GBM-1V) was only 87.14%. Similarly, in a recent pub-
lication [88], the authors utilized the same CNN model for multi-class brain tumor classi-
fication. The overall accuracy obtained for normal vs. tumorous classification reached
100%, compared with the lower accuracy of 90.35% obtained for the 4-class classification
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task (Grade I vs. Grade II vs. Grade III vs. Grade IV) and 86.08% for 5-class classification
between AST-II vs. AST-III vs. OLI-II vs. OLI-III vs. GBM.

The goal of research in the field of CADx is to help address existing unmet clinical
needs and provide assistance methods and tools for the difficult tasks that human profes-
sionals cannot easily handle in clinic practice. It is observed that CNN-based models have
achieved quite a high accuracy for normal/tumorous image classification, while more re-
search is needed to improve the classification performance of more-difficult tasks, espe-
cially between 5-class classification AST-II vs. AST-III vs. OLI-II vs. OLI-III vs. GBM and
4-class classification between Grade I vs. Grade II vs. Grade III vs. Grade IV. Therefore,
research that uses normal vs. tumorous as their target problem has little clinical value.

4.2.6. Classification Performance

Classification performance, indicating the reliability and trustworthiness of the
CADx systems, is one of the most important factors to be considered when translating
research findings into clinical practice. It has been shown that CNN techniques performed
well in most of the brain tumor classification tasks, such as 2-class classification between
normal and tumorous[84,85], HGG and LGG [42][69]) and 3-class classification between
normal vs. LGG vs. HGG [22], MEN vs. PT vs. glioma [46,47]. However, the classification
performance obtained for more difficult classification tasks, such as 5-class classification
between AST-II, AST-1II, OLI-II, OLI-III, and GBM remains poor [22][88] and justifies fur-
ther research.

4.2.7. Black-Box Characteristics of CNN Models

CNN-based deep learning techniques have shown remarkable performance on brain
tumor classification. Still, their clinical application is also limited by another factor, the
‘Black-Box’ problem: even the designers of a CNN model cannot usually explain its inter-
nal workings or why it arrived at a specific decision. The lack of explainability impedes
the adoption and development of deep learning tools into clinical practice [89].

4.3. Overview of Included Studies

Many research papers have emerged following the wave of enthusiasm for CNN-
based deep learning techniques from 2015 to the present time. In this review, 61 research
papers are assessed to summarize the effectiveness of CNN algorithms in brain tumor
classification and to suggest directions for future research in this field.

Among the included articles, 15 articles use normal/tumorous as their classification
target. However, as mentioned in Section_4.2.5, the differentiation between normal and
tumorous images is not a difficult task. It has been well solved both in research and clinic
practice, thus having little value for clinical application. Therefore, studies that use normal
vs. tumorous as their target problem will not be reviewed in the following assessment
steps.

Table 4.1 gives an overview of included studies that focus on CNN-based deep learn-
ing methods for brain tumor classification, except studies working on normal vs. tumor-
ous classification. Datasets, MRI sequences, size of the dataset, and preprocessing meth-
ods are summarized. Table 4.2 summarizes the classification tasks, classification architec-
ture, validation methods, and performance metrics of the reviewed articles.

As introduced in Section 4.2, the major challenge confronting brain tumor classifica-
tion by CNN techniques in MR images lies in the training data, including challenges
caused by the data quality, data scarcity, data mismatch, and data imbalance that hinder
the adoption and development of CNN-based brain tumor classification CADx systems
into clinic practice. Here we assess several newly published literature to provide a con-
venient collection of the state-of-the-art techniques used to address these issues and the
problems that have not been solved in the studies.
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Data augmentation is recognized as the current best solution to the problem caused
by the scarcity of data and has been widely utilized in brain tumor classification studies.

Authors in [90] used different data augmentation methods, including rotation, flip-
ping, Gaussian Blur, sharpening, edges detection, embossing, skewing, and shearing to
increase the size of the dataset. The proposed system aims to classify between Grade I,
Grade II, Grade III, and Grade IV, and the original data consists of 121 images (36 Grade
Iimages, 32 Grade Il images, 25 Grade IIl images, and 28 Grade IV images), and by using
data augmentation techniques, 30 new images are generated from each MR image. The
proposed model is experimentally evaluated on both augmented and original data. The
results show that the overall accuracy after data augmentation reaches 90.67%, greater
than the accuracy of 87.38% obtained without augmentation.

In a recent publication by Allah et al. [41], a novel data augmentation method called
progressive growing generative adversarial network (PGGAN) was proposed and com-
bined with rotation and flipping methods involving an incremental increase of the size of
the model during the training to produce MR images of brain tumors and to help over-
come the shortage of images for deep learning training. The brain tumor images were
classified using a VGG19 features extractor coupled with a CNN classifier. The accuracy
of the combined VGG19 + CNN and PGGAN data augmentation framework achieved an
accuracy of 98.54%.

Another approach that helps overcome the problem of data scarcity and can also re-
duce computational cost and training time is transfer learning. Transfer learning is a hot
research topic in machine learning; previously learned knowledge can be transferred to
the performance of a new task by fine-tuning a previously generated model with a smaller
data set that is more specific to the aim of the study. Transfer learning is usually expressed
by using pre-trained models, such as VGG, GoogLeNet, and AlexNet, that have been
trained on the large benchmark dataset ImageNet [91].
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Table 4.1. Overview of included studies that focus on CNN-based deep learning methods for brain tumor classification, excepting studies work on
normal vs. tumorous classification. Datasets, MRI sequences, size of the dataset, and preprocessing methods are summarized.
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112 (30 AST-1I, 17 AST-1I,
Tandel et al. [22
andel etal. [22] REMBRANDT — Tow 14 OLLIL, 7 OLL-IIL, 44 See 1-5 below X X x
2020
GBM)
1. 2132 (1041 normal, 1091 tumorous)
2.2156 (1041 normal, 484 LGG, 631 HGG)
3. 2156 (1041 normal, 557 AST, 219 OLI, 339 GBM)
4.1115 (356 AST-II, 201 AST-III, 128 OLI-1L, 91 OLI-1II, 339 GBM)
5. 2156 (1041 normal, 356 AST-II, 201 AST-III, 128 OLI-II, 91 OLI-III, 339 GBM)
Ayadi et al. [88] . . . 121 (36 Grade I, 32 Grade II, Gaussian blurring,
2021 1. Radiopaedia  No info shared 25 Grade 111, 28 Grade IV) X X sharpening
2. Figshare
(Cheng et al., ceTiw 233 (as shown in Table 2) 3064 (as shown in Table 2)
2017)
3. 130 (47 AST, 21 OLI, 44 Gaussian blurring,
FLAIR, Tiw, T: 1-5 bel
REMBRANDT P IW W GBM, 18 unknown) See 1-5 below X X sharpening”

1. 2132 (1041 normal, 1091 tumorous)
2. 2156 (1041 normal, 484 LGG, 631 HGG)
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3. 2156 (1041 normal, 557 AST, 219 OLI, 339 GBM)
4.1115 (356 AST-II, 201 AST-III, 128 OLI-II, 91 OLI-III, 339 GBM)
5. 2156 (1041 normal, 356 AST-II, 201 AST-III, 128 OLI-II, 91 OLI-III, 339 GBM)

Notes: 1. Rigid registration unless otherwise notes; 2. Translation also referred to as shifting; 3. Scaling also referred to as zooming; 4. Reflection also referred to as flipping or mirroring.

Table 4.2. Overview of included studies that focus on CNN-based deep learning methods for brain tumor classification, excepting studies work on
normal vs. tumorous classification. Classification tasks, classification architecture, validation methods, and performance metrics are summarized.

Author & Year Classification Tasks Model Architecture Validation Performance ACC%!

2 classes

Ozcan et al. [25] 2021 LGG (grade II) vs. HGG (grade IV) Custom CNN model 5-fold CV SEN =98.0%, SPE = 96.3%, F1 score = 97.0%, 97.1
AUC =0.989

Hao et al. [92] 2021 LGG vs. HGG Transfer learning with AlexNet No info shared AUC = 82.89%

Tripathi et al. [93] 2021 LGG vs. HGG Transfer learning with Resnet18 No info shared 95.87

Ge et al. [37] 2020 LGG vs. HGG Custom CNN model No info shared SEN = 84.35%, SPE = 93.65% 90.7

Mzoughi et al. [27] 2020 LGG vs. HGG Multi-scale 3D CNN No info shared 96.49

Yang et al. [42] 2018 LGG vs. HGG Transfer learning with AlexNet, GoogLeNet 5-fold CV AUC=0.939 86.7

Zhuge et al. [94] 2020 LGG vs. HGG Transfer learning with ResNet50 5-fold CV SEN =93.5%, SPE =97.2% 96.3

3D CNN 5-fold CV SEN =94.7%, SPE = 96.8% 97.1

Decuyper et al. [69] 2021 LGG vs. GBM 3D CNN No info shared SEN = 90.16%, SPE = 89.80%, AUC = 0.9398 90

He et al. [95] 2021 LGG vs. HGG Custom CNN model 5-fold CV TCIA: SEN =97.14%, SPE = 90.48%, AUC = 92.86
0.9349

BraTS 2017: SEN = 95.24%, SPE = 92%, AUC = 94.39

0.952
Hamdaoui et al. [96] 2021 LGG vs. HGG Transfer learning with stacking VGG16, VGG19, MobileNet, 10-fold CV PRE =98.67%, F1 score = 98.62%, SEN = 98.06
InceptionV3, Xception, Inception ResNetV2, DenseNet121 98.33%
Chikhalikar et al. [97] 2021 LGG vs. HGG Custom CNN model No info shared 99.46
Ahmad [98] 2019 LGG vs. HGG Custom CNN model No info shared 88
Naser et al. [86] 2020 LGG (Grade II) vs. LGG (Grade I1I) Transfer learning with VGG16 5-fold CV SEN = 97%, SPE = 98% 95
Kurc et al. [109] 2020 OLI vs. AST 3D CNN 5-fold CV 80

McAvoy et al. [111] 2021 GBM vs. PCNSL Transfer learning with EfficientNetB4 No info shared GBM: AUC =0.94, PCNSL: AUC =0.95
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Kulkarni et al. [113] 2021 Benign vs. Malignant Transfer learning with AlexNet 5-fold CV PRE =93.7%, RE = 100%, F1 score = 96.77%
Transfer learning with VGG16 5-fold CV PRE =55%, RE = 50%, F1 score = 52.38%
Transfer learning with ResNet18 5-fold CV PRE =78.94%, RE = 83.33%, F1 score = 81.07%
Transfer learning with ResNet50 5-fold CV PRE =95%, RE = 55.88%, F1 score = 70.36%
Transfer learning with GoogLeNet 5-fold CV PRE =75%, RE = 100%, F1 score = 85.71%
Table 4.2. (Continued).
Author & Year Classification Tasks Model Architecture Validation Performance ACC%?
Wabhlang et al. [117] 2020 HGG vs. LGG AlexNet No info shared 62
U-Net No info shared 60
Xiao et al. [87] 2021 MT vs. Normal Transfer learning with ResNet50 3-fold, 5-fold, 10-fold CV AUC =0.9530 98.2
Tandel et al. [118] 2021 1. Normal vs. Tumorous DL-MajVot (AlexNet, VGG16, ResNet18, GoogleNet, ResNet50) 5-fold CV SEN =96.76%, SPE = 96.43%, AUC = 0.966 96.51
2. AST-II vs. AST-III DL-MajVot (AlexNet, VGG16, ResNet18, GoogleNet, ResNet50) 5-fold CV SEN = 94.63%, SPE = 99.44%, AUC = 0.9704 97.7
3. OLI-II vs. OLI-III DL-MajVot (AlexNet, VGG16, ResNet18, GoogleNet, ResNet50) 5-fold CV SEN =100%, SPE = 100%, AUC =1 100
4. LGG vs. HGG DL-MajVot (AlexNet, VGG16, ResNet18, GoogleNet, ResNet50) 5-fold CV SEN = 98.33%, SPE = 98.57%, AUC = 0.9845 98.43
Tandel et al. [22] 2020 Normal vs. Tumorous Transfer learning with AlexNet Multiple CV (K2, K5, K10) RE =100%, PRE =100%, F1 score = 100% 100
Ayadi et al. [88] 2021 Normal vs. Tumorous Custom CNN model 5-fold CV 100
3 classes
Allah et al. [41] 2021 MEN vs. Glioma vs. PT PGGAN-augmentation VGG19 No info shared 98.54
Swati et al. [47] 2019 MEN vs. Glioma vs. PT Transfer learning with VGG19 5-fold CV SEN = 94.25%, SPE = 94.69%, PRE = 89.52%, 94.82
F1 score = 91.73%
Guan et al. [40] 2021 MEN vs. Glioma vs. PT EfficientNet 5-fold CV 98.04
Deepak et al. [36] 2019 MEN vs. Glioma vs. PT Transfer learning with GoogleNet 5-fold CV 98
Diaz-Pernas et al. [39] 2021 MEN vs. Glioma vs. PT Multiscale CNN 5-fold CV 97.3
Ismael et al. [46] 2020 MEN vs. Glioma vs. PT Residual networks 5-fold CV PRE =99.0%, RE =99.0%, F1 score = 99.0% 99
Alhassan et al. [99] 2021 MEN vs. Glioma vs. PT Custom CNN model k-fold CV PRE =99.6%, RE = 98.6%, F1 score = 99.0% 98.6
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Bulla et al. [100] 2020 MEN vs. Glioma vs. PT Transfer learning with InceptionV3 CNN model holdout validation, 10-fold Under group 10-fold CV: PRE = 97.57%, RE = 99.82

CV, stratified 10-fold CV,

group 10-fold CV

99.47%, F1 score = 98.40%, AUC = 0.995

Ghassemi et al. [101] 2020 MEN vs. Glioma vs. PT CNN-GAN 5-fold CV PRE = 95.29%, SEN = 94.91%, SPE = 97.69%, 95.6
F1 score = 95.10%
Kakarla et al. [102] 2021 MEN vs. Glioma vs. PT Custom CNN model 5-fold CV PRE =97.41%, RE = 97.42% 97.42
Noreen et al. [103] 2021 MEN vs. Glioma vs. PT Transfer learning with Inception-v3 K-fold CV 93.31
Transfer learning with Inception model K-fold CV 91.63
Noreen et al. [104] 2020 MEN vs. Glioma vs. PT Transfer learning with Inception-v3 No info shared 99.34
Transfer learning with DensNet201 No info shared 99.51
Kumar et al. [105] 2021 MEN vs. Glioma vs. PT Transfer learning with ResNet50 5-fold CV PRE = 97.20%, RE = 97.20%, F1 score = 97.20%
Table 4.2. (Continued).
Author & Year Classification Tasks Model Architecture Validation Performance ACC%!
Badza et al. [106] 2020 MEN vs. Glioma vs. PT Custom CNN model 10-fold CV PRE = 95.79%, RE = 96.51%, F1 score =96.11%  96.56
Alaraimi et al. [107] 2021 MEN vs. Glioma vs. PT Transfer learning with AlexNet No info shared AUC=0.976 94.4
Transfer learning with VGG16 No info shared AUC=0.981 100
Transfer learning with GoogLeNet No info shared AUC =0.986 98.5
Lo et al. [108] 2019 Grade II vs. Grade III vs. Grade IV Transfer learning with AlexNet 10-fold CV 97.9
Pei et al. [110] 2020 GBM vs. AST vs. OLI 3D CNN No info shared 74.9
Gu et al. [29] 2021 1. MEN vs. Glioma vs. PT Custom CNN model 5-fold CV SEN = 94.64%, PRE = 94.61%, F1 score = 96.39
94.70%
2. GBM vs. AST vs. OLI Custom CNN model 5-fold CV SEN = 93.66%, PRE = 95.12%, F1 score = 97.37
94.05%
Rajini [115] 2019 MEN vs. Glioma vs. PT Custom CNN model 5-fold CV 98.16
Anaraki et al. [116] 2019 MEN vs. Glioma vs. PT Custom CNN model 5-fold CV 94.2
Sajjad et al. [90] 2019 MEN vs. Glioma vs. PT Transfer learning with VGG19 No info shared SEN = 88.41%, SPE = 96.12% 94.58
Wahlang et al. [118] 2020 Metastasis vs. Glioma vs. MEN Lenet No info shared 48
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AlexNet No info shared 75
Xiao et al. [87] 2021 MEN vs. Glioma vs. PT Transfer learning with ResNet50 3-fold, 5-fold, 10-fold CV 98.02
Tandel et al. [22] 2020 Normal vs. LGG vs. HGG Transfer learning with AlexNet Multiple CV (K2, K5, K10) RE =94.85%, PRE = 94.75%, F1 score = 94.8% 95.97
Ayadi et al. [88] 2021 1. Normal vs. LGG vs. HGG Custom CNN model 5-fold CV 95
2. MEN vs. Glioma vs. PT Custom CNN model 5-fold CV 94.74
4 classes
Ahammed et al. [68] 2019 Grade I vs. Grade II vs. Grade III vs. Grade VGG19 No info shared PRE = 94.71%, SEN = 92.72%, SPE = 98.13%, 98.25
v F1 score = 93.71%
Mohammed et al. [48] 2020 EP vs. MEN vs. MB vs. Normal Custom CNN model No info shared SEN = 96%, PRE = 100% 96
Gilanie et al. [112] 2021 AST-1vs. AST-1II vs. AST-III vs. AST-IV Custom CNN model No info shared 96.56
Artzi et al. [114] 2021 Normal vs. PA vs. MB vs. EP Custom CNN model 5-fold CV 88
Rajini [115] 2019 Normal vs. Grade II vs. Grade III vs. Grade Custom CNN model 5-fold CV 96.77
v
Anaraki et al. [116] 2019 Normal vs. Grade II vs. Grade III vs. Grade Custom CNN model 5-fold CV
v
Table 4.2. (Continued).
Author & Year Classification Tasks Model Architecture Validation Performance ACC%?!
Sajjad et al. [90] 2019 Grade I vs. Grade II vs. Grade III vs. Grade Transfer learning with VGG19 No info shared 90.67
v
Xiao et al. [87] 2021 MEN vs. Glioma vs. PT vs. Normal Transfer learning with ResNet50 3-fold, 5-fold, 10-fold CV PRE =97.43%, RE = 97.67%, SPE = 99.24%, F1 97.7
score = 97.55%
Tandel et al. [22] 2020 Normal vs. AST vs. OLI vs. GBM Transfer learning with AlexNet Multiple CV (K2, K5, K10) RE =94.17%, PRE = 95.41%, F1 score = 94.78% 96.56
Ayadi et al. [88] 2021 1. normal vs. AST vs. OLI vs. GBM Custom CNN model 5-fold CV 94.41
2. Grade I vs. Grade II vs. Grade III vs. Grade Custom CNN model 5-fold CV 93.71

5 classes

v
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Tandel et al. [22] 2020

Ayadi et al. [88] 2021

6 classes

Tandel et al. [22] 2020

Ayadi et al. [88] 2021

AST-II vs. AST-III vs. OLI-II vs. OLI-III vs.

GBM-1V

AST-II vs. AST-III vs. OLI-II vs. OLI-III vs.

GBM

Normal vs. AST-II vs. AST-III vs. OLI-1I vs.

OLI-III vs. GBM-IV

normal vs. AST-II vs. AST-III vs. OLI-II vs.

OLI-III vs. GBM

Transfer learning with AlexNet

Custom CNN model

Transfer learning with AlexNet

Custom CNN model

Multiple CV (K2, K5, K10) RE = 84.4%, PRE = 89.57%, F1 score = 86.89%

5-fold CV

Multiple CV (K2, K5, K10) RE =91.51%, PRE = 92.46%, F1 score = 91.97%

5-fold CV

87.14

86.08

93.74

92.09
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Many attempts have been made to investigate the value of transfer learning tech-
niques for brain tumor classification [36][42][47][92][96][100][108][113]. Deepak and
Ameer [36] used the GoogLeNet with transfer learning technique to differentiate among
glioma, MEN, and PT from the dataset provided by Cheng [52]. This proposed system
achieved a mean classification accuracy of 98%.

In a study conducted by Yang et al. [42], AlexNet and GoogLeNet were both trained
from scratch and fine-tuned from pre-trained models from the ImageNet database to HGG
and LGG classification. The dataset used in this method consists of ceTiw images from
113 patients (52 LGG, 61 HGG) with pathologically proven gliomas. The results show that
GoogLeNet proved superior to AlexNet for the task. The performance measures, includ-
ing validation accuracy, test accuracy, and test AUC of GoogLeNet trained from scratch,
were 0.867, 0.909, and 0.939, respectively. With fine-tuning, pre-trained GoogLeNet ob-
tained better performance for glioma grading with validation accuracy of 0.867, test accu-
racy of 0.945, and test AUC 0.968.

Authors in [47] proposed a block-wise fine-tuning strategy using a pre-trained
VGG19 for brain tumor classification. The dataset consists of 3064 images (708 MEN, 1426
glioma, and 930 PT) from 233 patients (82 MEN, 89 glioma, and 62 PT). The authors
achieved an overall accuracy of 94.82% under five-fold cross-validation. In another study
by Bulla et al. [100], the classification was performed in a pre-trained InceptionV3 CNN
model with data from the same dataset. Several validation methods, including holdout
validation, 10-fold cross-validation, stratified 10-fold cross-validation, and group 10-fold
cross-validation, were used during the training process. The best classification accuracy
99.82% of patient-level classification was obtained under group 10-fold cross-validation.

Authors in [96] used InceptionResNetV2, DenseNet121, MobileNet, InceptionV3,
Xception, VGG16, and VGG19 which have already been pre-trained on the ImageNet da-
taset for the classification between HGG and LGG brain images. The MR images used in
this research are collected from the BraTS 2019 database, containing 285 patients (210
HGG, 75 LGG). The 3D MRI volumes from the dataset are then converted into 2D slices,
generating 26532 images of LGG and 94284 images of HGG. The authors selected 26532
images from HGG to balance these two classes to reduce the impact on classification per-
formance due to class imbalance. The average precision, fl-score, and sensitivity on the
test dataset are 98.67%, 98.62%, and 98.33%, respectively.

Lo et al. [108] used transfer learning with fine-tune AlexNet and data augmentation
to classify Grade II, Grade III, and Grade IV brain tumor images from a small dataset with
130 patients (30 Grade II, 43 Grade III, 57 Grade IV). The results demonstrate much higher
accuracy using pre-trained AlexNet. The proposed transferred DCNN CADx system
achieved a mean accuracy of 97.9% and a mean AUC of 0.9991, while the DCNN without
pre-trained features only achieved a mean accuracy of 61.42% and a mean AUC of 0.8222.

Kulkarni and Sundari [113] utilized five transfer learning architectures, AlexNet,
VGG16, ResNet18, ResNet50, and GoogLeNet, to classify benign and malignant brain tu-
mors from the private dataset collected by the authors, which contains only 200 images
(100 benign and 100 malignant). In addition, data augmentation techniques, including
scaling, translation, rotation, translation, shearing, and reflection, were performed to gen-
eralize the model and reduce the overfitting possibilities. The results show that the fine-
tuned AlexNet architecture achieved the highest accuracy and sensitivity of 93.7% and
100%.

Despite many studies on CADx systems that have demonstrated inspiring classifica-
tion performance, the validating of their algorithms for clinical practice has hardly been
carried out. External validation is an efficient approach to overcome the problem caused
by data mismatch and to improve the generalization, stability, and robustness of classifi-
cation algorithms. It is the action of evaluating the classification model in a new independ-
ent dataset to determine whether the model performs well. However, we found only two
studies that used an external clinical dataset to evaluate the effectiveness and generaliza-
tion capability of the proposed scheme, described in the following.
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Decuyper et al. [69] proposed a 3D CNN model to classify the brain MR volumes
collected from TCGA-LGG, TCGA-GBM, and BraTS 2019 databases into HGG and LGG.
Multiple MRI sequences, including Tiw, ceTiw, Tow, and FLAIR, were used in this re-
search. All MR data were co-registered to the same anatomical template and interpolated
to 1 mm? voxel sizes. Additionally, a completely independent dataset of 110 patients ac-
quired at the Ghent University Hospital (GUH) was used as an external dataset to validate
the efficiency and generalization of the proposed model. The resulting validation accu-
racy, sensitivity, specificity, and AUC on GUH dataset are 90.00%, 90.16%, 89.80%, and
0.9398.

Gilanie et al. in [112] presented an automatic method using CNN architecture for
astrocytoma grading between AST-I, AST-II, AST-III, and AST-IV. The dataset consists of
MR slices of 180 subjects, including 50 AST-I cases, 40 AST-II cases, 40 AST-III cases, and
50 AST-1V cases. T1lw, T2w, and FLAIR have been used in the experiments. In addition,
N4ITK method [119] was used in the preprocessing stage to correct bias field distortion
present in MR images. Results have been validated on a locally developed dataset to eval-
uate the effectiveness and generalization capability of the proposed scheme. The proposed
method obtained an overall accuracy of 96.56% on the external validation dataset.

In brain tumor classification, it is often necessary to use image co-registration to pre-
process input data when images were collected from different sequences or different scan-
ners. However, we found that this problem has not yet been taken seriously. In the sur-
veyed articles, six studies [69][88][94][110][115,116] used data from multi datasets for one
classification target, while only two studies [69][94] performed image co-registration dur-
ing the image preprocessing process.

Authors in [94] proposed a 2D Mask RCNN model and a 3DConvNet model for au-
tomatic and non-invasively distinguishing LGG (Grades II and Grade III) and HGG
(Grade IV) on multiple MR sequences of Tiw, ceTiw, Tow, and FLAIR. TCIA-LGG and
BraTS 2018 databases were used to train and validate these two CNN models in this re-
search work. In the 2D Mask RCNN model, all input MR images were first preprocessed
by rigid image registration and intensity inhomogeneity correction. In addition, data aug-
mentation has also been implemented to increase the size and the diversity of the training
data. The performance measures, including accuracy, sensitivity, and specificity, were
96.3%, 93.5%, and 97.2% achieved by the proposed 2D Mask RCNN-based method and
97.1%, 94.7%, and 96.8% for the 3DConvNet method, respectively.

In the study conducted by Ayadi [88], the researchers built a custom CNN model for
multiple classification tasks. They collected data from three online databases, Radiopae-
dia, the dataset provided by Cheng, and REMBRANDT for brain tumor classification,
while no image co-registration was performed to minimize shifts between images and
reduce its impact on the classification performance. The overall accuracy obtained for tu-
morous and normal classification reaches 100%, for normal, LGG, and HGG classification
95%, for MEN, glioma, and PT classification 94.74%, for normal, AST, OLI, and GBM clas-
sification 94.41%, for Grade I, Grade II, Grade III, and Grade IV classification 90.35%, for
AST-II, AST-III, OLI-II, OLI-III, and GBM classification 86.08%, and for normal, AST-II,
AST-III, OLI-II, OLI-III, and GBM 92.09%.

Authors in [110] proposed a 3D CNN model for brain tumor classification between
GBM, AST, and OLI. A merged dataset from CPM-RadPath 2019 and BraTS 2019 data-
bases was used to train and validate the proposed model, while they did not perform
image co-registration. The result shows that the classification model has very poor perfor-
mance for brain tumor classification, with an accuracy of 74.9%.

In [115], the researchers presented a CNN-PSO method for two classification tasks,
Normal vs. Grade Il vs. Grade IIl vs. Grade IV and MEN vs. glioma vs. PA. The MR images
used for the first task were collected from four publicly available datasets, the IXI dataset,
REMBRANDT, TCGA-GBM, and TCGA-LGG. The overall accuracy obtained is 96.77%
for classification between normal, Grade II, Grade III, and Grade IV and 98.16% for MEN,
glioma, and PA classification.
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Similar to the work conducted in [115], Anaraki et al. [116] used MR data merged
from four online databases, IXI dataset, REMBRANDT, TCGA-GBM, TCGA-LGG, and
one private dataset collected by authors for the classification between normal, Grade 1I,
Grade III, and Grade IV, and the dataset proposed by Cheng [52] for MEN, glioma, and
PA classification. Different data augmentation methods were performed to enlarge the
size of the dataset, including rotation, translation, scaling, and mirroring. The authors in
these studies did not co-register MR images of different sequences from different institu-
tions for the 4-class classification task. The results show the accuracy is 93.1% for normal,
Grade II, Grade III, and Grade IV classification and 94.2% for MEN, glioma, and PA clas-
sification.

Despite the high accuracy gained in most studies by CNN techniques, we found in
several studies [92][109,110][117], the models obtained very poor performance for brain
tumor classification.

Authors in [92] explored transfer learning techniques for brain tumor classification.
The experiments were performed on the BraTS 2019 dataset which consists of 335 patients
diagnosed with brain tumors (259 patients with HGG and 76 patients with LGG). The
model achieved a classification AUC of 82.89% on a separate test dataset of 66 patients.
The classification performance obtained by transfer learning in this study is relatively low,
hindering its following development and application into clinical practice. [109] presented
a 3D CNN model developed to categorize adult diffuse glioma cases into OLI and AST
classes. The dataset used in the experiment consists of 32 patients (16 patients with OLI
and 16 patients with AST). Multiple preprocessing methods were applied, including bias
field correction, skull stripping, co-registration, and data augmentation (rotation and
cropping). The model achieved accuracy values of 80%. The main reason for the poor per-
formance lies in the small dataset with only 32 patients for model training. It is far from
enough to train a 3D model.

In another study [117], two brain tumor classification tasks were studied using Lenet,
AlexNet, and U-net CNN architectures. In the experiments, MR images of 11 patients (2
metastasis, 6 glioma, and 3 MEN) from Radiopaedia were utilized to classify metastasis,
glioma, and MEN, the data of 20 patients collected from BraTS 2017 were used for HGG
and LGG classification. The results show poor classification performance of three CNN
architectures on two tasks, with an accuracy of 75% by AlexNet, 48% obtained by Lenet
for the first task, and 62% by AlexNet, 60% obtained by U-net for the second task. The
poor performance of Lenet is probably due to its simple architecture that is not capable of
high-resolution image classification. On the other hand, U-net CNN performs well for
segmentation tasks but is not the most used network for classification.

Even though, in the majority of the reviewed studies, CNNs have demonstrated re-
markable performances in brain tumor classification, their level of trustworthiness and
transparency must be evaluated in a clinic context. Of the included articles, only one
study, conducted by Artzi et al. [114], has investigated the Black-Box nature of CNN mod-
els for brain tumor classification to ensure that the model is looking at the correct place
rather than noise or unrelated artifacts. The authors proposed a pre-trained ResNet-50
CNN architecture to classify three posterior fossa tumors from a private dataset and ex-
plained the classification decision by using Gradient-weighted Class Activation Mapping
(Grad-CAM). The dataset consists of 158 MRI scans of 22 healthy controls, 63 PA, 57 MB,
and 16 EP patients. In this study, several preprocessing methods were used to reduce the
influence of MRI data on the classification performance of the proposed CNN model. Im-
age co-registration was performed to ensure that the images become spatially aligned.
Bias field correction was also conducted to remove the intensity gradient from the image.
Data augmentation methods, including flipping, reflection, rotation, and zooming, were
used to increase the size and diversity of the dataset. However, class imbalance within the
dataset, particularly the under-representation of EP, was not addressed. The proposed
architecture achieved a mean validation accuracy of 88% and 87% for the test dataset. The
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result demonstrates that the proposed network with Grad-CAM can identify the area of
interest and train the classification model based on the pathology-related features.

5. Discussion

Many articles included in this review demonstrate that CNN-based architectures can
be powerful and effective when applied to different brain tumor classification tasks. Table
4.2 shows that the classification of images as HGG and LGG, and the differentiation be-
tween MEN, glioma, and PT, were the most frequently studied applications. The popu-
larity of these applications is likely linked to the availability of well-known and easily
accessible public databases, such as the BraTS datasets and the dataset made available by
Cheng [52]. We compared the articles that studied the classification of HGG and LGG and
found that the classification performance varies widely even between the articles pub-
lished in 2021 that utilized state-of-the-art CNN techniques. For example, the study [96],
which used transfer learning for brain tumor classification with augmented MRI data
from the BraTS 2019 dataset, obtained very high classification performance with a preci-
sion of 98.67%, while another study [92] that also used transfer learning technique with
advanced CNN-based architecture, AlexNet, for brain tumor classification on MRI data
from the same dataset, achieved a quite low classification AUC of 82.89% on an independ-
ent test dataset. It is possible that this result was influenced by the lack of data and feature
variability, which can be mitigated with data augmentation techniques. In addition, we
also observed that one of the key factors that significantly affect the performance of CNN
models for brain tumor classification lies in the size of the datasets. Authors in [37] and
[95] both proposed custom CNN models to classify HGG and LGG images of 285 MRI
scans from the BraTS 2017 dataset. The overall accuracy is 90.7% and 94.28%, respectively.
[117] utilized AlexNet for the same task, while the MRI data of only 20 patients from the
same dataset were studied. The model in this study yielded poor classification accuracy
of 62%, the lowest value among the articles on this classification task.

Among the 61 reviewed articles, 20 articles explored the classification between MEN,
glioma, and PT on the MRI data from the same dataset by Cheng [52]. It was demonstrated
in Table 4.2 and Figure 6 that all articles achieved relatively high classification accuracy,
ranging between 94.2% and 99.82%, the latter being obtained by [100], who applied trans-
fer learning with an InceptionV3 CNN model for the classification task. Among them, five
articles [42][47][100][103][107] explored transfer learning with CNN models pre-trained
from the ImageNet dataset. [107] utilized transfer learning with the most popular pre-
trained CNN architectures VGG16, AlexNet, and GoogLeNet for MEN, glioma, and PT
classification. Before feeding the input images into the networks, preprocessing steps, in-
cluding normalization, resizing, and data augmentation (rotation, cropping, flipping, scal-
ing, and translation) were performed. The result showed that VGG16 attains the best ac-
curacy of 98.92%, higher than pre-trained AlexNet 97.6% and GoogLeNet 98.3%. Another
study by [47] did not perform data augmentation before propagating the input data into
the pre-trained VGGIY9, obtaining a lower accuracy by 4.1% compared with the accuracy
obtained by VGG16 in [107], while research in [120] found that the classification error of
VGG models decreases with the increased convolution depth from 11 to 19 layers, that is,
VGG19 is supposed to have better performance than VGG16. [100] and [103] both used
the pre-trained InceptionV3 CNN model for the classification task. The major difference
between the two studies lies in the validation methods. Bulla et al. performed various
validation methods, including holdout validation, 10-fold cross-validation, stratified 10-
fold cross-validation, and group 10-fold cross-validation during the training process,
yielding the best accuracy of 99.82% for group 10-fold cross-validation.
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Figure 6. Classification accuracy by classification task.

Figure 6 presents the overall accuracies achieved by the reviewed studies that
worked on different classification tasks. What stands out in the figure is that except for
the five-class tasks with accuracies lower than 90%, CNNs have achieved promising ac-
curacies on different brain tumor classification tasks, especially the 3-class classification
between MEN, glioma, and PT. It is also noticed that the accuracies of 3-class classification
tasks fluctuated widely, with the lowest accuracy being 48% in [117] for the metastasis vs.
glioma vs. MEN classification. More research attention should be paid to improving the
accuracies of these classification tasks.

Figure 7 reveals that there is an increase in the overall accuracy achieved by CNN
architectures for brain tumor classification from 2018 to 2021. It is observed that from 2019
the overall classification accuracy achieved in most studies reached 90%, only few works
obtained lower accuracies, and the extreme outlier accuracy is 48% in [117] published in
2020. It is also apparent from this figure that the proportion of papers with an accuracy
higher than 95% increases from 2020.
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Figure 7. Classification accuracy by publication year.
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The overall accuracies by different CNN architectures that were used extensively for
brain tumor classification are summarized in Figure 8. It shows that the majority of CNN
models have achieved high performance for brain tumor classification tasks, in which
transfer learning with ResNet, VGG, and GoogleNet have shown more stable performance
than other models, like 3D CNN. Among the reviewed articles, five articles utilized 3D
CNN for brain tumor classification and the classification accuracy fluctuates wildly. The
highest accuracy was 97.1%, achieved by Zhuge et al. [94], who trained a 3D CNN archi-
tecture with a dataset of 315 patients (210 HGG, 105 LGG). The lowest accuracy of 75%
was obtained by Pei et al. [110] who used 398 brain MR image volumes for GBM vs. AST
vs. OLI classification. In another study [109], authors explored a 3D CNN model for the
classification between OLI and AST from a very small dataset of 32 patients (16 OLI, 16
AST) and obtained a low accuracy of 80%. 3D CNN is a promising technique for realizing
patient-wise diagnosis, and the accessibility of a large MRI dataset can hopefully improve
the performance of 3D CNNs on brain tumor classification.
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Figure 8. Classification accuracy by CNN architecture.

As was mentioned in the previous chapter, the dataset size is considered a critical
factor in determining the classification performance of a CNN architecture. Figure 9 and
Figure 10 sum up the classification accuracy obtained with different sizes of datasets, and
Figure 9 shows that there is a marked increase in the overall accuracy achieved with more
MRI data for brain tumor classification.


https://doi.org/10.20944/preprints202206.0167.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2022 d0i:10.20944/preprints202206.0167.v1

30 of 36

Accuracy by Number of Patients

100.00 @ = ﬁ - .'!.
| PR .

90.00

80.00 ®

/0

0/

70.00

Unit:

60.00 H
50.00

40.00
10 100 1000

Figure 9. Classification accuracy by number of patients.

Accuracy by Number of Images

100.00 ® 3 o @ —
9500 | . l' o

90.00 : ° s

85.00
80.00
75.00
70.00
65.00
60.00

Unit: %

(1]

100 1000 10000 100000 1000000
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Researchers have paid increasing attention to enhancing input image quality by do-
ing different preprocessing steps on the brain MRI datasets before propagating into the
CNN architectures. Figure 11 presents the overall accuracy obtained with different
numbers of preprocessing operations. It shows that studies that pre-processed input MR
images collectively obtained higher classification accuracies than studies that performed
no preprocessing methods. However, it is not obvious that more steps lead to better
performance.
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Figure 11. Classification accuracy by number of preprocessing operations.
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As previously stated, data augmentation can create variations of the images that can
improve the generalization capability of the models to new images, and different data
augmentation techniques have been widely explored and applied to increase both the
amount and the diversity of the training data. Figure 12 illustrates the overall accuracy
obtained with different numbers of data augmentation operations. It can be seen that
studies that performed five data augmentation techniques achieved higher and more
stable classification performance than studies that performed fewer operations. However,
no studies have systematically tested the number and combination of operations that
optimise classification accuracy.
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Figure 12. Classification accuracy by number of data augmentation operations.

Beyond showing accuracy gains, the surveyed articles rarely examined their gener-
alization capability and interpretability. Only very few studies [69][112] tested their clas-
sification models on an independent dataset, and only one study [114] investigated the
Black-Box characteristic of CNN models for brain tumor classification to ensure that the
model they obtained was looking at the correct place for decision-making, rather than
within the noise or unrelated artifacts.

6. Conclusion

CADx systems may play an important role in assisting physicians in making deci-
sions. This paper surveyed 61 articles that adopted CNNs5s for brain MRI classification and
analyzed the challenges and barriers that CNN-based CADx brain tumor classification
systems face today in clinical application and development. The proposed challenges can
help advance progress in this field if appropriately addressed.

When considering future directions, despite the achievements of CNNs, we still face
challenges in translating and developing them into clinical practice. The Black-Box nature
of deep CNNSs has greatly limited its application outside a research context. To trust sys-
tems powered by CNN models, clinicians need to know how they make predictions. How-
ever, among the articles surveyed, very few addressed this problem. Authors in [121] pro-
posed a prototypical part network (ProtoPNet) that can highlight image regions used for
decision-making and explain the reasoning process of the classification target by compar-
ing the representative patches of the test image with the prototypes learned from a large
amount of data. To date, several studies have tested the explanation model proposed in
[121] able to highlight image regions used for decision making in medical imaging fields,
such as mass lesion classification [122], lung disease detection [123,124], and Alzheimer’s
diseases classification [125]. Those developments suggest directions for future research in
the brain tumor classification field to tame the Black-Box problem.

With a limited number of training data, transfer learning with fine-tuning on pre-
trained CNNs was demonstrated to yield better results for brain tumor classification than
training such CNNs from scratch [42][108]. It is efficient for training networks when
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training data is expensive or difficult to collect in medical fields. In addition, high hard-
ware requirements and long training time are also the challenges that CNN-based CADx
brain tumor classification systems face today in clinical applications. The continued de-
velopment of state-of-the-art CNN architectures has come with a voracious appetite for
computing power. Since the cost of training a deep learning model scales with the number
of parameters and the amount of input data, this implies that computational requirements
grow as at least the square of the number of training data [126]. With pre-trained models,
transfer learning is also promising to address the difficulties caused by high hardware
requirements and long training time when adopting CNN-based CADx systems for brain
tumor classification in clinical practice.

In light of the limitations and challenges mentioned above, there are still some gen-
eral limitations that hinder the clinic adoption of CNN-based CADx systems. CADx sys-
tems are mainly used for educational and training purposes but not in clinical practice.
The majority of clinics still hesitate to use CADx-based systems. One reason for this is the
lack of standardized methods for evaluating CADx systems. Another reason lies in some
technical weaknesses involved in the task of making diagnostic decisions with CADx sys-
tems. It is the lack of training of physicians on how to interact with the system and how
to interpret the results, which can be a key reason for the poor performance of CADx sys-
tems. Therefore, proper education and training for physicians on how to use the systems
and interpret the outcomes of CAD systems are important.

In short, the future of CNN-based brain tumor classification studies is very promis-
ing and focusing on the right direction with references to the challenges mentioned above
would advance these studies from research labs to hospitals. We believe that our review
provides researchers in the biomedical and machine learning communities with indicators
for useful future directions for this purpose.

Author Contributions: Conceptualization, C.T., D.N.M., F.Z, LR, Y.T.X,; Methodology, C.T,,
D.N.M,, F.Z, LR, Y.T.X,; Writing—original draft preparation, Y.T.X.; Writing —review and editing,
Ca.T,CT,D.NM,F.Z, LR, Resources, Ca.T., R.A., R.L,; Supervision, Ca.T., C.T., D.N.M; All au-
thors have read and agreed to the published version of the manuscript.

Funding;: This research was supported by the China Scholarship Council (No. 202008320283).
Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Louis, D. N,; Perry, A.; Wesseling, P.; Brat, D. J.; Cree, . A.; et al. The 2021 WHO classification of tumors of the central nervous
system: a summary. Neuro-oncology 2021, 23, 1231-1251. [CrossRef]

2. Cancer Research UK. https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/brain-
other-cns-and-intracranial-tumours/incidence%23collapseTen#heading-One (archived on 10 February 2022).

3.  IslamiF; Ward E M; Sung H; et al. Annual report to the nation on the status of cancer, part 1: national cancer statistics[J]. [NCI:
Journal of the National Cancer Institute 2021, 113, 1648-1669. [CrossRef]

4.  Johnson DR; O'Neill BP. Glioblastoma survival in the United States before and during the temozolomide era. ] Neurooncol. 2012,
107, 359-64. [CrossRef]

5. GaoH, Jiang X. Progress on the diagnosis and evaluation of brain tumors[]J]. Cancer Imaging 2013, 13, 466. [CrossRef]

6. Villanueva-Meyer, J. E.; Mabray, M. C.; Cha, S. Current clinical brain tumor imaging. Neurosurgery 2017, 81, 397-415. [CrossRef]
[PubMed]

7. Zaccagna, F.; Riemer, F.; Priest, A. N.; McLean, M. A,; et al. A. Non-invasive assessment of glioma microstructure using VER-
DICT MRI: correlation with histology. European radiology 2019, 29, 5559-5566. [CrossRef]

8.  Radbruch A; Wiestler B; Kramp L; et al. Differentiation of glioblastoma and primary CNS lymphomas using susceptibility

weighted imaging. Eur | Radiol. 2013, 82, 552-556. [CrossRef]


https://doi.org/10.1093/neuonc/noab106
https://doi.org/10.1093/jnci/djab131
https://doi.org/10.1007/s11060-011-0749-4
https://doi.org/10.1102/1470-7330.2013.0039
https://doi.org/10.1093/neuros/nyx103
https://pubmed.ncbi.nlm.nih.gov/28486641/
https://doi.org/10.1007/s00330-019-6011-8
https://doi.org/10.1016/j.ejrad.2012.11.002
https://doi.org/10.20944/preprints202206.0167.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2022 d0i:10.20944/preprints202206.0167.v1

33 of 36

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Xiao H-F; Chen Z-Y; Lou X; et al. Astrocytic tumour grading: a comparative study of three-dimensional pseudo continuous
arterial spin labelling, dynamic susceptibility contrast-enhanced perfusion-weighted imaging, and diffusion- weighted imag-
ing. Eur Radiol. 2015, 25, 3423-3430. [CrossRef]

Zaccagna, F.; Grist, ]. T.; Quartuccio, N.; Riemer, F.; Fraioli, F.; et al. Imaging and treatment of brain tumors through molecular
targeting: Recent clinical advances. European Journal of Radiology 2021, 142, 109842. [CrossRef]

Figueiredo P; Figueiredo I; Pinto L; Kumar S; Tsai Y; Mamonov A. Polyp detection with computer-aided diagnosis in white
light colonoscopy: Comparison of three different methods. Endosc Int Open 2019, 7, E209-E215. [CrossRef]

Yeung M.; Sala E.; Schonlieb C.B.; Rundo L. Focus U-Net: A novel dual attention-gated CNN for polyp segmentation during
colonoscopy. Computers in Biology and Medicine 2021, 137, 104815. [CrossRef]

Gong, J.; Liy, J. Y.; Sun, X. W.; Zheng, B.; Nie, S. D. Computer-aided diagnosis of lung cancer: the effect of training data sets on
classification accuracy of lung nodules. Physics in Medicine & Biology 2018, 63, 035036. [CrossRef] [PubMed]

Nishio M; Sugiyama O; Yakami M; Ueno S; Kubo T; Kuroda T; Togashi K. Computer-aided diagnosis of lung nodule classifica-
tion between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional
neural network with transfer learning. PLoS One 2018, 13, 0200721. [CrossRef]

Buchlak Q D; Esmaili N; Leveque ] C; et al. Machine learning applications to neuroimaging for glioma detection and classifica-
tion: An artificial intelligence augmented systematic review([J]. Journal of Clinical Neuroscience 2021, 89, 177-198. [CrossRef]
Ahmadi M; Dashti Ahangar F; Astaraki N; et al. FWNNet: Presentation of a New Classifier of Brain Tumor Diagnosis Based on
Fuzzy Logic and the Wavelet-Based Neural Network Using Machine-Learning Methods[J]. Computational Intelligence and Neu-
roscience 2021, 2021. [CrossRef]

Sengupta A; Ramaniharan A K; Gupta R K; et al. Glioma grading using a machine-learning framework based on optimized
features obtained from T1 perfusion MRI and volumes of tumor components[]]. Journal of Magnetic Resonance Imaging 2019, 50,
1295-1306. [CrossRef]

Hu J; Wu W; Zhu B; et al. Cerebral glioma grading using Bayesian network with features extracted from multiple modalities of
magnetic resonance imaging|[J]. PLoS One 2016, 11, e0153369. [CrossRef] [PubMed]

Raju A R; Suresh P; Rao R R. Bayesian HCS-based multi-SVNN: a classification approach for brain tumor segmentation and
classification using Bayesian fuzzy clustering(J]. Biocybernetics and Biomedical Engineering 2018, 38, 646-660. [CrossRef]

Schulz M A; Yeo B T; Vogelstein J T; et al. Different scaling of linear models and deep learning in UKBiobank brain images
versus machine-learning datasets[J]. Nature communications 2020, 11, 1-15. [CrossRef]

Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw 2015, 61, 85-117. [CrossRef]

Tandel G S; Balestrieri A; Jujaray T; et al. Multiclass magnetic resonance imaging brain tumor classification using artificial
intelligence paradigm[J]. Computers in Biology and Medicine 2020, 122, 103804. [CrossRef]

Shen D; Wu G; Suk H L. Deep learning in medical image analysis[J]. Annual review of biomedical engineering 2017, 19, 221-248.
[CrossRef]

Yasaka K; Akai H; Kunimatsu A; et al. Deep learning with convolutional neural network in radiology([J]. Japanese journal of
radiology 2018, 36, 257-272. [CrossRef]

Ozcan H; Emiroglu B G; Sabuncuoglu H; et al. A comparative study for glioma classification using deep convolutional neural
networks. [J]. Mathematical Biosciences and Engineering: MBE 2021, 18, 1550-1572. [CrossRef] [PubMed]

Diaz-Pernas, F.J.; Martinez-Zarzuela, M.; Antén-Rodriguez, M.; Gonzalez-Ortega, D. A. Deep Learning Approach for Brain
Tumor Classification and Segmentation Using a Multiscale Convolutional Neural Network. Healthcare 2021, 9, 153. [CrossRef]
Mzoughi H; Njeh I; Wali A; et al. Deep multi-scale 3D convolutional neural network (CNN) for MRI gliomas brain tumor
classification[J]. Journal of Digital Imaging 2020, 33, 903-915. [CrossRef]

Abd El Kader ; Xu G; Shuai Z; et al. Differential deep convolutional neural network model for brain tumor classification[J].
Brain Sciences 2021, 11, 352. [CrossRef] [PubMed]

Gu X; Shen Z; Xue J; et al. Brain Tumor MR Image Classification Using Convolutional Dictionary Learning With Local Con-
straint[J]. Frontiers in Neuroscience 2021, 15. [CrossRef] [PubMed]

Avorn J; Fischer M. ‘Bench to behavior”: translating comparative effectiveness research into improved clinical practice[J]. Health
Affairs 2010 29, 1891-1900. [CrossRef] [PubMed]

Zadeh Shirazi A; Fornaciari E; McDonnell M D; et al. The application of deep convolutional neural networks to brain cancer
images: a survey[J]. Journal of Personalized Medicine 2020, 10, 224. [CrossRef]

Nazir M; Shakil S; Khurshid K. Role of Deep Learning in Brain Tumor Detection and Classification (2015 to 2020): A Review[]].
Computerized Medical Imaging and Graphics, 2021, 101940. [CrossRef]

Muhammad K; Khan S; Del Ser J; et al. Deep learning for multigrade brain tumor classification in smart healthcare systems: A
prospective survey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32, 507-522. [CrossRef]

Moher D; Liberati A; Tetzlaff J; Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA
statement. Annals of internal medicine 2009, 151, 264-9. [CrossRef]

Miotto R; Wang F; Wang S; et al. Deep learning for healthcare: review, opportunities and challenges[]J]. Briefings in bioinformatics
2018, 19, 1236-1246. [CrossRef]

Deepak, S.; P. M. Ameer. Brain tumor classification using deep CNN features via transfer learning. Computers in biology and
medicine 111, 2019, 103345. [CrossRef]



https://doi.org/10.1007/s00330-015-3768-2
https://doi.org/10.1016/j.ejrad.2021.109842
https://doi.org/10.1055/a-0808-4456
https://doi.org/10.1016/j.compbiomed.2021.104815
https://doi.org/10.1088/1361-6560/aaa610
https://pubmed.ncbi.nlm.nih.gov/29311420/
https://doi.org/10.1371/journal.pone.0200721
https://doi.org/10.1016/j.jocn.2021.04.043
https://doi.org/10.1155/2021/8542637
https://doi.org/10.1002/jmri.26704
https://doi.org/10.1371/journal.pone.0153369
https://pubmed.ncbi.nlm.nih.gov/27077923/
https://doi.org/10.1016/j.bbe.2018.05.001
https://doi.org/10.1038/s41467-020-18037-z
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.compbiomed.2020.103804
https://doi.org/10.1146/annurev-bioeng-071516-044442
https://doi.org/10.1007/s11604-018-0726-3
https://doi.org/10.3934/mbe.2021080
https://pubmed.ncbi.nlm.nih.gov/33757198/
https://doi.org/10.3390/healthcare9020153
https://doi.org/10.1007/s10278-020-00347-9
https://doi.org/10.3390/brainsci11030352
https://pubmed.ncbi.nlm.nih.gov/33801994/
https://doi.org/10.3389/fnins.2021.679847
https://pubmed.ncbi.nlm.nih.gov/34122001/
https://doi.org/10.1377/hlthaff.2010.0696
https://pubmed.ncbi.nlm.nih.gov/20921491/
https://doi.org/10.3390/jpm10040224
https://doi.org/10.1016/j.compmedimag.2021.101940
https://doi.org/%2010.1109/TNNLS.2020.2995800
https://doi.org/10.7326/0003-4819-151-4-200908180-00135
https://doi.org/10.1093/bib/bbx044
https://doi.org/10.1016/j.compbiomed.2019.103345
https://doi.org/10.20944/preprints202206.0167.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2022 d0i:10.20944/preprints202206.0167.v1

34 of 36

37.

38.

39.

40.

41.

42.

43.

44.

45.
46.

47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.

71.
72.

73.

Ge, C; Gu, L. Y. H,; Jakola, A. S.; Yang, ]J. Deep semi-supervised learning for brain tumor classification. BMC Medical Imaging
2020, 20, 1-11. [CrossRef]

Huang, Z.; Xu, H.; Su, S;; Wang, T.; Luo, Y.; Zhao, X,; et al. A computer-aided diagnosis system for brain magnetic resonance
imaging images using a novel differential feature neural network. Computers in biology and medicine 2020, 121, 103818. [CrossRef]
Diaz-Pernas F J; Martinez-Zarzuela M; Anton-Rodriguez M; et al. A deep learning approach for brain tumor classification and
segmentation using a multiscale convolutional neural network. Healthcare 2021, 9, 153. [CrossRef]

Guan, Y.; Aamir, M.; Rahman, Z. Ali, A.; Abro, W. A,; et al. A framework for efficient brain tumor classification using MRI
images. Mathematical Biosciences and Engineering 2021, 18, 5790-5815. [CrossRef]

Gab Allah; Ahmed M.; Amany M. Sarhan; Nada M. Elshennawy. Classification of Brain MRI Tumor Images Based on Deep
Learning PGGAN Augmentation. Diagnostics 2021, 11, 2343. [CrossRef]

Yang Y; Yan L F; Zhang X; et al. Glioma grading on conventional MR images: a deep learning study with transfer learning|J].
Frontiers in neuroscience 2018, 804. [CrossRef]

Brownlee, Jason. "What is the Difference Between Test and Validation Datasets?". https://machinelearningmastery.com/ differ-
ence-test-validation-datasets (Retrieved on 18 February 2022).

Prechelt, Lutz; Genevieve B. Orr. "Early Stopping — But When?". In Grégoire Montavon; Klaus-Robert Miiller (eds.). Neural
Networks: Tricks of the Trade. Lecture Notes in Computer Science. Springer Berlin Heidelberg 2012, 53-67. [CrossRef]

F-score, Wikipedia. Available online: https://en.wikipedia.org/wiki/F-score (archived on 22 March 2022)

Ismael S A A; Mohammed A; Hefny H. An enhanced deep learning approach for brain cancer MRI images classification using
residual networks[J]. Artificial intelligence in medicine 2020, 102, 101779. [CrossRef]

Swati Z N K; Zhao Q; Kabir M; et al. Brain tumor classification for MR images using transfer learning and fine-tuning[J]. Com-
puterized Medical Imaging and Graphics 2019, 75, 34-46. [CrossRef]

Mohammed B A; Al-Ani M S. An efficient approach to diagnose brain tumors through deep CNN[J]. Math. Biosci. Eng, 2020, 18,
851-867. [CrossRef]

Andri Signorell; Ken Aho; Andreas Alfons; Nanina Anderegg; et al. DescTools: Tools for descriptive statistics. R package ver-
sion 0.99.44. Available online: https://cran.r-project.org/package=DescTools. (accessed on 4 May 2022)

The Cancer Genome Atlas, TCGA-GBM. Available online: https://wiki.cancerimagingarchive.net/display/Public/TCGA-GBM.
The Cancer Genome Atlas, TCGA-LGG. Available online: https://wiki.cancerimagingarchive.net/display/Public/TCGA-LGG.
Figshare, Brain tumor dataset. Available online: https://figshare.com/articles/dataset/brain tumor dataset/ 1512427/5.

C. Navoneel. Available online: https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detect.

REMBRANDT. Available online: https://wiki.cancerimagingarchive.net/display/Public/REMBRANDT.

Brain Tumor Segmentation (BraTS) Challenge. Available online: http://www.braintumorsegmentation.orgj/.

ClinicalTrials.gov. Available online: https://www.clinicaltrials.gov/.

Computational Precision Medicine: Radiology-Pathology Challenge on Brain Tumor Classification 2019. Available online:
https://www.med.upenn.edu/cbica/cpm-rad-path-2019/.

IXI dataset. Available online: https://brain-development.org/ixi-dataset/

Rider neuro MRI. Available online: https://wiki.cancerimagingarchive.net/display/Public/RIDER+NEURO+MRI.

Harvard Medical School Data. Available online: http://www.med.harvard.edu/AANLIB/.

MRI sequence. Wikipedia. Available online: https://en.wikipedia.org/wiki/MRI_sequence (accessed on 18 February 2022).
My-MS.org. MRI Basics. Available online: https://my-ms.org/mri basics.htm (accessed on 18 February 2022).

Basic proton MR imaging. Harvard Medical School. Available online: http://www.med.harvard.edu/aanlib/basicsmr.html (ac-
cessed on 19 February 2022).

Fluid attenuation inversion recovery. Radiopaedia.org. Available online: https://radiopaedia.org/articles/fluid-attenuated-in-
version-recovery (accessed on 19 February 2022).

Chen M W; King N K K; Selvarajan S; et al. Benign scalp lump as an unusual presentation of extranodal Rosai-Dorfman dis-
easel[J]. Surgical neurology international 2014, 5. [CrossRef]

Mohan G; Subashini M M. MRI based medical image analysis: Survey on brain tumor grade classification[J]. Biomedical Signal
Processing and Control 2018, 39, 139-161. [CrossRef]

Collewet G; Strzelecki M; Mariette F. Influence of MRI acquisition protocols and image intensity normalization methods on
texture classification[J]. Magnetic resonance imaging 2004, 22, 81-91. [CrossRef]

KV A M; Rajendran V R. Glioma tumor grade identification using artificial intelligent techniques|J]. Journal of medical systems
2019, 43, 1-12. [CrossRef]

Decuyper M; Bonte S; Deblaere K; et al. Automated MRI based pipeline for segmentation and prediction of grade, IDH mutation
and 1p19q co-deletion in glioma([J]. Computerized Medical Imaging and Graphics 2021, 88, 101831. [CrossRef]

Hashemi M. Enlarging smaller images before inputting into convolutional neural network: zero-padding vs. interpolation][J].
Journal of Big Data 2019, 6, 1-13. [CrossRef]

Hashemi M. Web page classification: a survey of perspectives, gaps, and future directions. Multimed Tools Appl 2019. [CrossRef]
Karthick S; Maniraj S. Different medical image registration techniques: a comparative analysis[J]. Current Medical Imaging 2019,
15, 911-921. [CrossRef]

Song S; Zheng Y; He Y. A review of methods for bias correction in medical images[]]. Biomedical Engineering Review 2017, 1.
[CrossRef]



https://doi.org/10.1186/s12880-020-00485-0
https://doi.org/10.1016/j.compbiomed.2020.103818
https://doi.org/10.3390/healthcare9020153
https://doi.org/10.3934/mbe.2021292
https://doi.org/10.3390/diagnostics11122343
https://doi.org/10.3389/fnins.2018.00804
https://machinelearningmastery.com/
doi:10.1007/978-3-642-35289-8_5.%20ISBN%20978-3-642-35289-8
https://doi.org/10.1016/j.artmed.2019.101779
https://doi.org/10.1016/j.compmedimag.2019.05.001
https://doi.org/10.3934/mbe.2021045
https://cran.r-project.org/package=DescTools
https://wiki.cancerimagingarchive.net/display/
https://wiki.cancerimagingarchive.net/display/Public/TCGA-LGG
https://figshare.com/articles/dataset/brain_tumor_dataset/%201512427/5
https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detect
https://www.clinicaltrials.gov/
https://www.med.upenn.edu/cbica/cpm-rad-path-2019/
https://wiki.cancerimagingarchive.net/display/Public/RIDER+NEURO+MRI
http://www.med.harvard.edu/AANLIB/
https://en.wikipedia.org/wiki/MRI_sequence
https://my-ms.org/mri_basics.htm
https://radiopaedia.org/articles/fluid-attenuated-inversion-recovery
https://radiopaedia.org/articles/fluid-attenuated-inversion-recovery
https://doi.org/10.4103/2152-7806.134912
https://doi.org/10.1016/j.bspc.2017.07.007
https://doi.org/10.1016/j.mri.2003.09.001
https://doi.org/10.1007/s10916-019-1228-2
https://doi.org/10.1016/j.compmedimag.2020.101831
https://doi.org/10.1186/s40537-019-0263-7
https://doi.org/10.1007/s11042-019-08373-8
https://doi.org/10.2174/1573405614666180905094032
https://doi.org/10.18103/bme.v3i1.1550
https://doi.org/10.20944/preprints202206.0167.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2022 d0i:10.20944/preprints202206.0167.v1

35 of 36

74.

75.

76.
77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.
92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

Introduction to Data Mismatch, Overfitting and Underfitting in Building Machine Learning Systems. Towards Data Science.
Available online: https://towardsdatascience.com/introduction-to-overfitting-underfitting-and-data-mismatch-in-building-ma-
chine-learning-systems-52f1225a8a35 (accessed on 19 February 2022).

Krizhevsky A; Sutskever I; Hinton G E. Imagenet classification with deep convolutional neural networks[J]. Advances in neural
information processing systems 2012, 25. [CrossRef]

Simonyan K; Zisserman A. Very deep CNN for large-scale image recognition[J]. 2015. [CrossRef]

Szegedy C; Liu W; Jia Y; et al. Going deeper with convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern
recognition 2015, 1-9. [CrossRef]

He K; Zhang X; Ren S; et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision
and pattern recognition 2016, 770-778. [CrossRef]

Huang G; Liu Z; Van Der Maaten L; et al. Densely connected convolutional networks[C]//Proceedings of the IEEE conference on
computer vision and pattern recognition 2017, 4700-4708. [CrossRef]

Tan M; Le Q. Efficientnet: Rethinking model scaling for convolutional neural networks[C]//International conference on machine
learning. PMLLR 2019, 6105-6114. [CrossRef]

Srivastava N; Hinton G; Krizhevsky A; et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The journal
of machine learning research 2014, 15, 1929-1958.

The Perelman School of Medicine at the University of Pennsylvania. ‘Multimodal Brain Tumor Segmentation Challenge 2019’.
Available online: http://braintumorsegmentation.org/(accessed on 19 February 2022).

Li D G Liu CW; Hu S C. A learning method for the class imbalance problem with medical data sets[J]. Computers in biology and
medicine 2010, 40, 509-518. [CrossRef]

El Kader I A; Xu G; Shuai Z; et al. Brain tumor detection and classification by hybrid CNN-DWA model using MR images|]J].
Current Medical Imaging 2021, 17, 1248-1255. [CrossRef]

Khan H A; Jue W; Mushtaq M; et al. Brain tumor classification in MRI image using convolutional neural network[J]. Math. Biosci.
Eng 2020, 17, 6203-6216. [CrossRef]

Naser M A; Deen M ]J. Brain tumor segmentation and grading of lower-grade glioma using deep learning in MRI images|[J].
Computers in biology and medicine 2020, 121, 103758. [CrossRef]

Xiao G; Wang H; Shen J; et al. Synergy Factorized Bilinear Network with a Dual Suppression Strategy for Brain Tumor Classi-
fication in MRI[J]. Micromachines 2022, 13, 15. [CrossRef]

Ayadi W; Elhamzi W; Charfi I; et al. Deep CNN for brain tumor classification[J]. Neural Processing Letters 2021, 53, 671-700.
[CrossRef]

Amann J; Blasimme A; Vayena E; et al. Explainability for artificial intelligence in healthcare: a multidisciplinary perspectivel[J].
BMC Medical Informatics and Decision Making 2020, 20, 1-9. [CrossRef]

Sajjad M; Khan S; Muhammad K; et al. Multi-grade brain tumor classification using deep CNN with extensive data augmenta-
tion[]J]. Journal of computational science 2019, 30, 174-182. [CrossRef]

Weiss K; Khoshgoftaar T M; Wang D D. A survey of transfer learning([J]. Journal of Big data 2016, 3, 1-40.[CrossRef]

Hao R; Namdar K; Liu L; et al. A transfer learning—based active learning framework for brain tumor classification[J]. Frontiers
in Artificial Intelligence 2021, 4. [CrossRef]

Tripathi P C; Bag S. A computer-aided grading of glioma tumor using deep residual networks fusion[J]. Computer Methods and
Programs in Biomedicine 2022, 215, 106597. [CrossRef]

Zhuge Y; Ning H; Mathen P; et al. Automated glioma grading on conventional MRI images using deep convolutional neural
networks[J]. Medical physics 2020, 47, 3044-3053. [CrossRef]

He M; Han K; Zhang Y; et al. Hierarchical-order multimodal interaction fusion network for grading gliomas[J]. Physics in Med-
icine & Biology 2021, 66, 215016. [CrossRef]

El Hamdaoui H.; Benfares, A.; Boujraf, S.; et al. High precision brain tumor classification model based on deep transfer learning
and stacking concepts. Indonesian Journal of Electrical Engineering and Computer Science 2021, 24, 167-177. [CrossRef]

Chikhalikar A M; Dharwadkar N V. Model for Enhancement and Segmentation of Magnetic Resonance Images for Brain Tumor
Classification[J]. Pattern Recognition and Image Analysis 2021, 31, 49-59. [CrossRef]

Ahmad, F. Classification on magnetic resonance imaging (Mri) brain tumour using BPNN, SVM and CNN[J]. International Jour-
nal of Recent Technology and Engineering (IJRTE) 2019, 8, 8601-8607. [CrossRef]

Alhassan A M; Zainon W M N W. Brain tumor classification in magnetic resonance image using hard swish-based RELU acti-
vation function-convolutional neural network[J]. Neural Computing and Applications 2021, 33, 9075-9087. [CrossRef]

Bulla P; Anantha L; Peram S. Deep Neural Networks with Transfer Learning Model for Brain Tumors Classification[J].
Traitement du Signal 2020, 37. [CrossRef]

Ghassemi N; Shoeibi A; Rouhani M. Deep neural network with generative adversarial networks pre-training for brain tumor
classification based on MR images[]]. Biomedical Signal Processing and Control 2020, 57, 101678. [CrossRef]

Kakarla J; Isunuri B V; Doppalapudi K S; et al. Three-class classification of brain magnetic resonance images using average-
pooling convolutional neural network[]J]. International Journal of Imaging Systems and Technology 2021, 31, 1731-1740. [CrossRef]
Noreen N; Palaniappan S; Qayyum A; et al. Brain Tumor Classification Based on Fine-Tuned Models and the Ensemble
Method[J]. CMC-COMPUTERS MATERIALS & CONTINUA 2021, 67, 3967-3982. [CrossRef]


https://towardsdatascience.com/introduction-to-overfitting-underfitting-and-data-mismatch-in-building-machine-learning-systems-52f1225a8a35
https://towardsdatascience.com/introduction-to-overfitting-underfitting-and-data-mismatch-in-building-machine-learning-systems-52f1225a8a35
https://doi.org/10.1145/3065386
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.48550/arXiv.1905.11946
http://braintumorsegmentation.org/
https://doi.org/10.1016/j.compbiomed.2010.03.005
https://doi.org/10.2174/1573405617666210224113315
https://doi.org/10.3934/mbe.2020328
https://doi.org/10.1016/j.compbiomed.2020.103758
https://doi.org/10.3390/mi13010015
https://doi.org/10.1007/s11063-020-10398-2
https://doi.org/10.1186/s12911-020-01332-6
https://doi.org/10.1016/j.jocs.2018.12.003
https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/10.3389/frai.2021.635766
https://doi.org/10.1016/j.cmpb.2021.106597
https://doi.org/10.1002/mp.14168
https://doi.org/10.1088/1361-6560/ac30a1
http://doi.org/10.11591/ijeecs.v24.i1.pp167-177
https://doi.org/10.1134/S1054661821010065
https://doi.org/10.35940/ijrte.C6442.098319
https://doi.org/10.1007/s00521-020-05671-3
https://doi.org/10.18280/ts.370407
https://doi.org/10.1016/j.bspc.2019.101678
https://doi.org/10.1002/ima.22554
https://doi.org/10.32604/cmc.2021.014158
https://doi.org/10.20944/preprints202206.0167.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2022 d0i:10.20944/preprints202206.0167.v1

36 of 36

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.
121.

122.

123.

124.

125.

126.

Noreen N; Palaniappan S; Qayyum A; et al. A deep learning model based on concatenation approach for the diagnosis of brain
tumor([J]. IEEE Access 2020, 8, 55135-55144. [CrossRef]

Kumar R L; Kakarla J; Isunuri B V; et al. Multi-class brain tumor classification using residual network and global average pool-
ing[J]. Multimedia Tools and Applications 2021, 80, 13429-13438. [CrossRef]

Badza M M; Barjaktarovi¢ M C. Classification of brain tumors from MRI images using a convolutional neural network[J]. Applied
Sciences 2020, 10, 1999. [CrossRef]

Alaraimi S; Okedu K E; Tianfield H; et al. Transfer learning networks with skip connections for classification of brain tumors|[J].
International Journal of Imaging Systems and Technology 2021, 31, 1564-1582. [CrossRef]

Lo CM; Chen Y C; Weng R C; et al. Intelligent glioma grading based on deep transfer learning of MRI radiomic features][J].
Applied Sciences, 2019, 9, 4926. [CrossRef]

Kurc T; Bakas S; Ren X; et al. Segmentation and classification in digital pathology for glioma research: challenges and deep
learning approaches(J]. Frontiers in neuroscience 2020, 27. [CrossRef]

Pei L; Vidyaratne L; Rahman M M; et al. Context aware deep learning for brain tumor segmentation, subtype classification, and
survival prediction using radiology images|[J]. Scientific Reports 2020, 10, 1-11. [CrossRef]

McAvoy M; Prieto P C; Kaczmarzyk ] R; et al. Classification of glioblastoma versus primary central nervous system lymphoma
using convolutional neural networks][J]. Scientific Reports 2021, 11, 1-7. [CrossRef]

Gilanie G; Bajwa U I, Waraich M M; et al. Risk-free WHO grading of astrocytoma using convolutional neural networks from
MRI images[J]. Multimedia Tools and Applications 2021, 80, 4295-4306. [CrossRef]

KULKARNI S M; SUNDARI G. COMPARATIVE ANALYSIS OF PERFORMANCE OF DEEP CNN BASED FRAMEWORK FOR
BRAIN MRI CLASSIFICATION USING TRANSFER LEARNING(J]. Journal of Engineering Science and Technology 2021, 16, 2901-
2917.

Artzi M; Redmard E; Tzemach O; et al. Classification of pediatric posterior fossa tumors using convolutional neural network
and tabular data[J]. IEEE Access 2021, 9, 91966-91973. [CrossRef]

Rajini N H. Brain tumor image classification and grading using convolutional neural network and particle swarm optimization
algorithm[J]. International Journal of Engineering and Advanced Technology (IJEAT) 2019, 8, 2249-8958.

Anaraki A K; Ayati M; Kazemi F. Magnetic resonance imaging-based brain tumor grades classification and grading via convo-
lutional neural networks and genetic algorithms][J]. biocybernetics and biomedical engineering 2019, 39, 63-74. [CrossRef]

Wahlang I; Sharma P; Sanyal S; et al. Deep learning techniques for classification of brain MRI[J]. International Journal of Intelli-
gent Systems Technologies and Applications 2020, 19, 571-588. [CrossRef]

Tandel G S; Tiwari A; Kakde O G. Performance optimisation of deep learning models using majority voting algorithm for brain
tumour classification[J]. Computers in Biology and Medicine 2021, 135, 104564. [CrossRef]

Tustison NJ; Avants BB; Cook PA; Zheng Y; Egan A; Yushkevich PA; Gee JC. N4ITK: improved N3 bias correction. IEEE Trans
Med Imaging 2010, 29, 1310-1320. [CrossRef]

Simonyan K; Zisserman A. Very deep CNN for large-scale image recognition[J]. 2015. [CrossRef]

Chen C; Li O; Tao D; et al. This looks like that: deep learning for interpretable image recognition[J]. Advances in neural information
processing systems 2019, 32. [CrossRef]

Barnett A J; Schwartz F R; Tao C; et al. A case-based interpretable deep learning model for classification of mass lesions in digital
mammography[J]. Nature Machine Intelligence 2021, 3, 1061-1070. [CrossRef]

Singh G; Yow K C. An interpretable deep learning model for COVID-19 detection with chest x-ray images[J]. IEEE Access 2021,
9, 85198-85208. [CrossRef]

Kim E; Kim S; Seo M; et al. XProtoNet: diagnosis in chest radiography with global and local explanations[C]//Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition 2021, 15719-15728. [CrossRef]

Mohammadjafari S; Cevik M; Thanabalasingam M; et al. Using ProtoPNet for interpretable Alzheimer’s disease classifica-
tion[C]//Proceedings of the Canadian Conference on Artificial Intelligence 2021. [CrossRef]

Thompson N C; Greenewald K; Lee K; et al. The Computational Limits of Deep Learning[J]. 2020. [CrossRef]


https://doi.org/10.1109/ACCESS.2020.2978629
https://doi.org/10.1007/s11042-020-10335-4
https://doi.org/10.3390/app10061999
https://doi.org/10.1002/ima.22546
https://doi.org/10.3390/app9224926
https://doi.org/10.3389/fnins.2020.00027
https://doi.org/10.1038/s41598-020-74419-9
https://doi.org/10.1038/s41598-021-94733-0
https://doi.org/10.1007/s11042-020-09970-8
https://doi.org/10.1109/ACCESS.2021.3085771
https://doi.org/10.1016/j.bbe.2018.10.004
https://doi.org/10.1504/IJISTA.2020.112441
https://doi.org/10.1016/j.compbiomed.2021.104564
https://doi.org/10.1109/TMI.2010.2046908
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.48550/arXiv.1806.10574
https://doi.org/10.48550/arXiv.2103.12308
https://doi.org/10.1109/ACCESS.2021.3087583
https://doi.org/10.48550/arXiv.2103.10663
https://doi.org/10.21428/594757db.fb59ce6c
https://doi.org/10.48550/arXiv.2007.05558
https://doi.org/10.20944/preprints202206.0167.v1

