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Abstract: Nowadays, great attention has been attributed to the study of runoff and its fluctuation 

over space and time. There is a crucial need for a good soil and water management system to 

overcome the challenges of water scarcity and other natural adverse events like floods and 

landslides, among others. Rainfall-runoff modeling is an appropriate approach for runoff 

prediction, making it possible to take preventive measures to avoid damage caused by natural 

hazards such as floods. In the present study, several data driven models, namely: Multiple linear 

regression (MLR), Multiple adaptive regression splines (MARS), Support vector machine (SVM), 

and Random Forest (RF), were used for rainfall-runoff prediction of the Gola watershed, located in 

the south-eastern part of the Uttarakhand. The performance of the models was evaluated based on 

the coefficient of determination (R2), root mean square error (RMSE), Nash-Sutcliffe efficiency 

(NSE), and percent bias (PBAIS) indices. In addition to the numerical comparison, the models were 

evaluated and their performances were evaluated base on graphical plotting, i.e., line diagram, 

scatter plot, Violin plot, relative error plot and Taylor diagram (TD). The comparison results 

revealed that the four heuristic methods gave higher accuracy than the MLR model. Among the 

machine learning models, the RF (RMSE (m3/s), R2, NSE, and PBIAS (%) = 6.31, 0.96, 0.94, and -0.20 

during the training period, respectively, and 5.53, 0.95, 0.92, and -0.20 during the testing period, 

respectively) surpassed the MARS, SVM, and the MLR models in forecasting daily runoff for all 

cases studies. Among all four models, the RF model outperformed in the training and testing 

periods. It can be summarized that the RF model is best-in-class and delivers a strong potential for 

runoff prediction of the Gola watershed. 
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1. Introduction 

Forecasting heavy precipitation is an important function in estimating the runoff and 

flooding in the short to medium term [1–4], flood warning [5], real-time flood forecasting 

[6], and flood mitigation [7,8]. Nonetheless, rainfall directly affects runoff generation in 

streams, rivers, and even floods, making it one of the most specific hydrological 

phenomena [2]. The socio-economic impacts resulting from rainfall are significant, from 

physical damage in floods to disruptions in transport networks [3,9]. Simultaneously, 

India is challenged with increasing population and climate change which has created a 

threat to present freshwater need for irrigation and drinking purpose [10–13]. To 

overcome from challenges of water scarcity and deterioration of cultivable land, the 

modelling of rainfall-runoff plays important role. Many aspects of our daily lives depend 

on the amount of rain we receive [14,15]. Rainfall remains one of the most influential 

meteorological variables [16]. The rainfall-runoff modelling in water resource 

management which attracts a lot of researchers and practitioners worldwide. Planning 

and managing water properly is the only way to prevent water stress and to balance the 

supply and demand [17–19]. In addition to natural disasters such as floods caused by 

runoff from precipitation and river flow and droughts caused by shorten of rainfall for 

long duration, we can also determine the occurrence of these natural disasters by 

assessing the rainfall–runoff relationship [20]. 

The major role of several nonlinear variables as well as nonstationary variables in 

conversion of rainfall into runoff are difficult to comprehend [21]. The response to the 

catchment precipitation become more complex due to the Moreover, the spatiotemporal 

variability in rainfall intensity and its uniformity [22]. However, the direct contribution of 

rainfall in runoff generation and runoff in streams, rivers, and even floods are one of the 

most focused hydrological phenomena. To understand the accurate relationship between 

two hydrological variables, the concept of rainfall-runoff (R-R) plays a critical role if the 

area of hydrological science [23]. However, the remaining inconsistency in rainfall–runoff 

relation, the application of machine learning is promising. These computational 

techniques either reduce the requirement of modelling parameters or improve modelling 

accuracy, or even applicable for both purposes [24]. The main aim of this modelling is to 

improve our understandings of the major’s hydrological phenomenon’s which influence 

all watershed system. It also helps to develop a simulation tool to help decision-makers 

optimize and plan operational rules of the water resource system [25].  

In rainfall–runoff modelling [2,26] and rainfall forecasting [27,28], the use of artificial 

intelligence (AI) and machine learning (ML) established modelling in water resource to a 

new direction. Several research attempts the application of AI and ML whether for R-R  

or for rainfall forecasting [4,9,29,30], streamflow [31–36], suspended sediment load 

prediction [36–42], flood forecasting [5,6,43], stage discharge modeling [44–48], soil 

temperature estimation [49–56], pan evaporation [57–68], reference evapotranspiration 

[69–78], soil parameter estimation such as infiltration, permeability and saturated 

hydraulic conductivity [79–88], groundwater quality index [89–92], drought- and stress-

tolerance in maize crop [93], water footprint [94,95], rice yield estimation [96] crop 

coefficients [97]. Artificial neural networks (ANN) gained immense popularity in rainfall–

runoff modelling [22,23,28,98] as well as rainfall forecasting [99–101]. Although, there is 

no requirement for deep knowledge of hydrological processes in AI-based rainfall-runoff 

modelling [102]. The MLR linear mode is the most common statistical tool to predict the 

output-input variables and develops a linear relationship between multiple variables 

[12,103,104]. A quantitative relationship is formed between dependent and independent 

variables in MLR [105]. The values of the independent variable in MLR are affiliated with 

the values of dependent variables [106]. The dependent variable, independent variables, 
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and intercept are local behavior that is calculated by the least-square rule or different other 

rules of regression [45].  

For R-R modelling, AI and ML have been extensively used for many decades [28]. 

These models have been compared to traditional statistical methods, and conceptual 

models. the nonlinear MARS is a non-linear and non-parametric regression [107,108]. 

MARS built several MLR models in the range of the dataset [109]. It is done by creating 

knots based on splitting strategy and running of suite of linear model for each subset, the 

nonlinear responses between input and output of a dataset are divided into piecewise 

linear segments (splines) of different gradients [110]. The SVM is a generalized nonlinear 

model for both classification and regression analysis, and it was introduced by Vapnik 

[111]. The basic concept of SVM is to minimize the structural risk, and the algorithm 

converts the patterns that are not linearly separable to higher-dimensional features space 

using kernel functions. It attempts to reduce the upper limit of the generalization error. 

For its advantages over another general algorithm such as ANN, it is a better method in 

the hydrological field for simulation and forecasting hydrological events. The RF is  a 

supervised ML algorithm  based on bagging or bootstrap aggregation, a part of ensemble 

learning [112]. 

Al-Sudani et al. [113] hybridized the MARS model using the differential evolution 

algorithm (DE) and they compared its performances, i.e., MARS-DE, with those of the 

single MARS and the least square support vector machine model (LSSVM). They reported 

the superiority of the hybrid MARS-DE. Adnan et al. [114] compared the performance of 

four ML models, i.e., the optimal pruning extreme learning machine (OPELM), MARS, 

M5Tree, and MARS- Kmeans. It was found that MARS- Kmeans surpassed all other models for 

multi-step ahead forecasting, i.e., one, six and twelve hours in advance. In another study, 

Li et al. [115] evaluated the performances of extreme learning machine (ELM), RF, SVM 

for forecasting daily, low and peak streamflow, and they reported the superiority of the 

ELM model. 

Therefore, the aim of the present paper is the comparison between the MLR, the SVM, 

MARS and the RF models for forecasting daily runoff at Gola watershed, located in 

Southeastern part of Uttarakhand. The study was conducted with major’s objectives of 

selecting the most relevant inputs variables for R-R forecasting and the comparisons of 

models performances across the studied stations. 

2. Materials and Methods 

2.1. General Description of Study Area 

The Gola watershed is located in the South-Eastern part of Uttarakhand state shown 

in Figure 1. Gola river is originated in Bhirapani valley near Paharpani village of 

Uttarakhand state in lesser Himalayas. The river's major tributaries are Kanchi, Kharkai, 

and Karkari. The watershed lies between 29°16’18” to 29°27’33” N latitudes and 79°46’5” 

to 79°32’51” E longitudes in Northern India. The total catchment area of the Gola 

watershed is about 611 km2. The climatic condition of the Gola watershed is mild and 

generally warm. The minimum and maximum elevation of the watershed are 252 m and 

2302 m, respectively, above mean sea level. Gola watershed comes under a sub-tropical 

climate with predominant seasonal rainfall. The average annual rainfall is 1699 mm, 

heavily influenced by monsoon rainfall. As the watershed lies on the Eastern edge of the 

Himalayan ranges, it is subjected to heavy rainfall. The monsoon season extends from July 

to September and produces 90% of annual rainfall. The months of July and August receive 

heavy rainfall in the watershed. Due to this, the mainstream of rainfed rivers like the Gola 

River has subsequently had high discharge in these months of the year. 
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Figure 1. Location map of the study area. 

2.2. Data Acquisition and input data preparation 

The daily data of rainfall and runoff for 12 years (2009 to 2020) of the study location 

(Gola watershed) were used to analyze rainfall-runoff modeling. The runoff data of the 

Gola River was taken from an observation station located at Kathgodam barrage. The 

rainfall data of three rain-gauge stations, namely- Nainital, Bhimtal, and Kathgodam, was 

taken from respective irrigation departments (Figure 2a). Thiessen polygon method was 

used to calculate the mean areal rainfall of the Gola watershed. The plot of rainfall and 

runoff time series data is shown in Figure 2b and Figure 2c, respectively. The daily data 

of rainfall and runoff for twelve years were used to develop and validate models. 

Table 1. The basic statistics of training, testing, and total rainfall and runoff datasets at study sta-

tions. 

Statistical Parameters Mean Median Minimum Maximum Standard Deviation C.V. (%) Skewness 

Total Dataset 

Rainfall (mm) 6.45 0 0 172.38 15.60 24.18 3.87 

Runoff (m3/s) 17.22 6.06 1.88 250.03 27.51 15.97 3.80 

Training data 

Rainfall (mm) 6.45 0 0 172.38 15.87 24.60 4.02 

Runoff (m3/s) 17.35 5.66 1.38 250.03 28.69 16.54 3.76 

Testing data 

Rainfall (mm) 6.89 0 0 111.69 14.47 21.00 3.07 

Runoff (m3/s) 16.83 7.5 1.61 197.08 22.16 13.16 3.59 
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a) 

 

b) 

 

c) 

 

Figure 2. (a) Rainfall data of three rain-gauge stations, namely- Nainital, Bhimtal, and Kathgodam; 

(b) Mean areal rainfall time-series data of Gola watershed and (c) Runoff time-series data of Gola 

watershed. 

Statistical parameters were used to analyze the time-series dataset for rainfall-runoff 

modeling of the Gola watershed presented in Table 1. The complete dataset has been di-

vided into training and testing datasets. The first 80% of the complete data was used in 

training, and the rest 20% was used for the testing period. During the division of datasets 

in training and testing subsets, cross-validation of the dataset is necessary to have the 
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same statistical population. The skewness value of the dataset showed that the distribu-

tion was highly skewed. Figure 3 shows the flow chart of the proposed methodology. 

 

Figure 3. Flowchart of methodology. 
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2.3. Gamma test  

The Gamma test selects the best input variables in modeling a dataset [47,116–119]. 

It is a flexible and unbiased tool for evaluating the potential of each input parameter. Tra-

ditionally, trial and error methods were used to select the best input variable, making it a 

very time-consuming and tedious job that includes training and testing of every possible 

input combination to select the best suitable input vector. It also fails to provide infor-

mation about the number of data points necessary for calibration to achieve the accuracy 

of the optimum model. The Gamma test plays a significant role by guiding the selection 

of various input parameters to develop reliable and smooth models. Non-linear correla-

tion between random variables is evaluated by gamma tests, like the non-linear correla-

tion between input and output pairs. The idea of the Gamma test was first discovered by 

Stefansson et al. [120] for simulation; it was then another researcher further adapted it for 

research activity [38,47,121–123]. It was used for estimating the minimum standard error 

for non-linear models for any input variables [121]. 

The mathematical gamma test is represented as: 

{X�(i), … … … X�(i), Y�} =  {(X�, Y�)|1 ≤ i ≤ N} (1) 

where X is the X1,…, Xn correspond to the predictors variables, i. e, m variables for a total 

of N data points  , , scalar Yi is the output variable, Gamma (Г) is calculated by building 

up a linear regression between input (X) and output (Y) as: 

Y = f(X�, . … … … X�) + Г (2) 

Where f is a smooth function and Г corresponds to the noise. The overall model complexity 

is evaluated according to the output of the Eq. 2. More suitable input variables were re-

flected by a low value of Г, i.e., close to zero. In addition, based on the obtained gradient 

value a complicated model is obtained and based on the standard error (SE) of Г, more 

reliable gamma value is obtained. In addition, Vratio given by Eq. 3 indicates the predicta-

bility of the output variables. A model's complexity can be determined from the output Y 

of Eq. 2. A value of Г close to zero indicates a suitable input variables. We has a complicated 

model when the gradient is high; we have a simple model if the gradient is low. Gamma 

value is more reliable if the standard error (SE) of Г is smaller. Vratio, given in Eq. 3, measures 

the predictability of a variable. 

V����� =
Г

σ�(Y)
 

(3) 

Here σ2(y) is the output variance of Y, and Г is the gamma function. When Vratio is 

near 0, predictability is higher. We can build a more qualitative mathematical model with 

smaller values for gamma (Г), gradient, SE, and Vratio. 

3. Multiple linear regression and machine learning techniques for rainfall-runoff 

modeling 

The machine learning techniques, namely, MLR, MARS, SVM, and RF, were used in 

rainfall-runoff modeling of the Gola watershed. The description of these models is as fol-

lows: 

3.1. Multiple linear regression 

Multiple linear regression is the simplest statistical technique to predict the output 

from several input variables. The linear relationship is developed between multiple vari-
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ables. In this regression, a quantitative relationship is made by independent and depend-

ent variables. The values of independent variables are related to dependent variables 

[106]. 

MLR predicts runoff from input rainfall by taking the dataset into training and test-

ing data periods. The expression for MLR is defined as follows: 

Y =  α� + α�X� + α�X� + α�X� … … … +  α�X� (4) 

where, Y = the output or he modelled variable; X1, X2……. Xn = the inputs variables varia-

bles; 0 = intercept, and 1, 2…… n= Regression coefficients. 

3.2. Multivariate adaptive regression splines (MARS) 

Multivariate adaptive regression splines (MARS) is a non-linear and non-parametric 

regression method that built several MLR models across the range of predictor values. It 

is done by splitting data and running a linear model on each different partition. The non-

linear responses between input and output of a dataset are divided into piecewise linear 

segments (splines) of different gradients [124]. The extensible regression models proposed 

by mars have the solution space for each model divided into intervals, and splines fit 

every interval space [125]. There is the creation of a bias function and finding a potential 

knot location to improve the model's performance result and over-fit. The backstage of 

the MARS model is done by pruning the ineffective term [126]. The comparison of differ-

ent subsets of the model is done by the less expansive technique of generalized cross-

validation [127]. It is expressed as follows: 

GCV =
MSE

�1 −
(f + 1) + pf

n
�

� 
(5) 

where, MSE= mean square error; f = number of bias functions; p = bias function penalty 

and n= number of observations. 

The MARS model performs under two types of forwarding and backward functions 

[126]. In the forward stage of function, the model develops a huge quantity of bias func-

tions introduced by the MARS model. The generalized form of the MARS model is given 

below [128]: 

Y = βₒ + � βᵢHₑᵢ�Xᵥ(e, I)�

�

���

 
(6) 

where, Y = output parameter; �ₒ  = constant value; I= number of bias functions; 

Hₑᵢ�Xᵥ(e, I)� = ith bias function, βi = the corresponding coefficient of Hₑᵢ�Xᵥ(e, I)�. 

The model has a collection of bias functions. In the second stage, it can estimate the 

least square model. MARS model is defined as follows [129]:  

Y = ∂ₒ + � ∂

�

���

ᵢhᵢ(X) 
(7) 

where, hi(X)= splines function; δ= coefficient of the spline function; I = total number of 

functions in model. 

3.3. Support Vector Machine (SVM) 

The Support Vector Machine (SVM) is a supervised ML model that uses a nonlinear 

generalization algorithm used to classify two groups and regression problems, The foun-

dation of the SVM was made by Vapnik [111,130]. It was introduced by Bray and Han 

[131]; Vapnik [111]. SVM are generalized linear classifiers, supervised learning methods 
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used for regression and data classification. The kernel allows SVMs to form non-linear 

boundaries. Different kernel functions like Linear kernel, Polynomial kernel, Radial basis, 

and Sigmoid kernel. The expression of the algorithm by the inner products of the dataset 

is called the Dual problem. Support vector regression (SVR) was developed by Vladimir 

Vapnik [111]. It is characterized by using kernels, sparse solution, and Vapnik-Chervonen-

kis (VC) controls of margin and many support vectors.  

SVR is a powerful tool in real value function estimation. It estimates continuous value 

multivariate function. It uses a supervised learning approach; SVR trains by taking sym-

metrical loss functions, reducing high and low misestimation [132]. Support vector regres-

sion (SVR) attempts to minimize the upper limit of the generalization error instead of fix-

ing the empirical error. The first formulation of SVR is a hard-margin solution that con-

tributes to overfitting. Soft margin appears to generalize in the presence of outliers and 

noise. It prevents overfitting, which makes it favorable for forecasting research work. It 

has high generalization capability and great prediction accuracy. SVM formulate binary 

classification problems to convex optimization problems [111]. The ε-intense region 

around the function does SVM generalization to SVR, also called ε-tube. It helps reformu-

late the optimization problem in continuous-valued function, which helps to balance 

model complexity and prediction error. Considering the training dataset, T, represented 

as: 

T = {(x�, y�), (x�, y�) … … (x�, y�)} (8) 

x ϵ X Rn are the training inputs and y ϵ Y ⸦ Rn are the training outputs. Assume a non-

linear function y is given by: 

f(x)=wTΦ(xi)+b  (9) 

where, f(x) = Non-linear function; T = Training data; W = Weight vector, b = Bias, Φ(xi) = 

higher dimensional feature space by linear mapping function of input space x. The main 

objective is to fit dataset T with the help of function f(x), having the highest deviation ε 

from training dataset T. The equation is now transformed into a constrained complex 

problem as follows: 

min. �
1

2
w�w� 

subject to: �
yi − (���(��) + b) ≤  ε

yi – (���(��) + b) ≥ ε
 

(10) 

Where, ε (≥0) is the maximum acceptable deviation. The equation (7) can be written as: 

min. �
1

2
w�w� 

subject to: �
yi – ���(�� ) − � ≤  ε

���(�� ) + � − y� ≤ ε
 

(11) 

Further, the final expression for SVM becomes: 

�(�) = �( ��
� − ��

�)����, ���

�

���

+ � 

(12) 

where, ��
�and ��

� are the Langrangian multipliers, ����, ��� is the kernel function. [133]. 
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3.4. Random Forest (RF) 

Random Forest is supervised ML that uses ensemble learning techniques for classifi-

cation and regression problems. It is a technique that predicts from different machine 

learning algorithms or the same algorithm several times for more accurate prediction. RF 

uses the bagging technique or bootstrap aggregation, part of ensemble learning. It is used 

to create several subsets of data from training samples chosen randomly with replace-

ment. Each subset of data is used to train its decision tree. 

The bootstrap aggregation technique reduces the variance of an estimated prediction 

function. Bagging works excellent for high variance and low bias, such as decision trees. 

Random forest constructs multiple decision trees at training time. It combines the predic-

tion results from each decision tree to give the final output. Decision trees are computa-

tionally expansive; these are very sensitive to data on which they are trained and may get 

deviation in prediction the underlying data gets changed. Several decision trees are con-

structed by the algorithm that operates the model. RF is the aggression of tree predictors. 

The trees are estimated by the values of a random vector computed from the same distri-

bution for each forest tree [134]. In the RF model, every tree is grown with a random subset 

of variables [135]. It ensures that the bagged trees are in the way that a single tree reduces 

the correlation and variance between trees of the model. Each decision tree picks a random 

sample from the dataset while generating its split adds a further element of randomness 

to minimize the problem of overfitting. The random forest chooses nodes from a random 

subset of available features that breaks variables at each node to reduce the association 

between trees. The mean square error (MSE) can be calculated as [127]: 

MSE =
1

�
�(�� − �)�

�

���

 

(13) 

Zi = measured variable value and i= mean of all out-of-bag (OOB) predictions. 

The Random Forest model comes under the classification of regression tree (CART) 

tools and is used for classification and regression problems. Many trees of RF models are 

key parameters; the model performance can be evaluated by Out-of-bag (OOB). Random 

Forest can help over-fitting the model for the training dataset, which can be evaded by 

selecting input data during the training cycle and establishing variation in weak learners 

[136]. The RF model makes multiple decision trees, and the output of models can be esti-

mated by taking the mean output of every tree. The predicted values are calculated as:  

� =
1

�
� �(�)

�

���

 

(14) 

where, Y = predicted output by RF model, N = number of trees (n-tree) utilized in RF 

model, and R(x) = results of every random tree. 

4. Performance Evaluation of Models 

The performances of the MLR, MARS, SVM, and RF models were evaluated based 

on the coefficient of determination (R2), root mean square error (RMSE), Nash-Sutcliffe 

efficiency (NSE), and percent bias (PBAIS), and visual interpretation using line diagram, 

scatter diagram, Violin plot, relative and Taylor diagram. The R2, RMSE [47,117,137–139], 

NSE [140], and BIAS [119,141,142] are described as: 
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��� = 1 − �
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� 
(17) 

PBIAS = �
∑ (�� − ��

�
��� )

∑ (��)�
���

� 100 
(18) 

where, �� = observed runoff value; �� = predicted runoff value; N = total number of val-

ues of the variable in the dataset; �� 
���� = mean of observed discharge data. 

The coefficient of determination describes the statical relationship (collinearity) be-

tween variables and helps to show the nature of association among predicted and ob-

served data. R2 is the ratio of explained variation compared to the total variation [143]. 

The coefficient of multiple determination measures the percentage of various independent 

variables, which could be explained by variation in independent variables when taken 

together [144]. It ranges from 0 to 1; its higher value indicates less error variance; gener-

ally, a value greater than (0.5) is considered acceptable [145,146]. It is famously used in 

model evaluation. This statistical tool is highly sensitive to outliers and insensitive to ad-

ditive and proportional differences between observed and predicted data [147]. The 

square root of the average square of all the errors is called root mean square error (RMSE) 

[104]. It is an excellent general-purpose error matrix commonly used for the numerical 

prediction model. RMSE has a good measure of accuracy, but it can only compare the 

prediction error of models or configure only a particular variable and not between two 

different variables, making it scalar-dependent. RMSE lies between 0 to ∞ [47]. NSE is a 

normalized statistical tool that determines the relative magnitude of residual variance or 

noise. NSE lies between -∞ to 1, and it is less sensitive to high extreme values [140]. Percent 

bias measures the relationship between observed data and its predicted data; it measures 

the average tendency of observed data to be larger or smaller than predicted data [148]. 

Percent bias describes whether the simulated model is over-estimated or under-estimated. 

A low value or the value that tends to zero of PBIAS indicates the optimal model. A low 

value or the value that tends to zero of PBIAS indicates the optimal model. The negative 

value indicates the overestimation of the model. In contrast, the positive value of PBIAS 

indicates an underestimation of the model [119,141,142,148]. When data is evaluated, 

PBIAS reveals a deviation of data in percent [149].  

The model had higher R2 and NSE values and lower RMSE and PBAIS values decreed 

a relatively better model for the simulation of Qt. 

5. Results and discussion  

This section deals with developing runoff prediction models using ML techniques 

for the Gola watershed. Multiple linear regression (MLR), Multivariate adaptive regres-

sion splines (MARS), Support vector machine (SVM), and random forest (RF) models were 

applied to develop rainfall-runoff models for the Gola watershed in Uttarakhand. In the 

present study total of twelve years of data from 2009-to 2020 (4380 data points) were used, 

from which 80% of the total dataset was used in training. The remaining 20% were used 

in the testing period. The use of more data length than the data above length would lead 

to an overfitting problem due to increased complexity of the learning process, whereas 

using fewer data compared to standard length would reduce the efficiency of the models 
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significantly, as the model would not be able to learn the entire data patterns (Singh et al., 

2018). Thus, using length data other than the standard length would hinder developing a 

potential model. The qualitative performance evaluation of models was done by visual 

observation, and quantitative evaluation was carried out using different statistical and 

hydrological performance indices; namely, root mean square error (RMSE), coefficient of 

determination (R2), Nash-Sutcliffe coefficient of efficiency (NSE), percent bias (PBIAS). 

5.1. Selection of Best input combination 

The selection of the most appropriate input variables is a vital part of model devel-

opment [79].  In the present investigation, the GT algorithm was used for selecting the 

relevant inputs variables combination for runoff prediction. In this study, various combi-

nations of present-day runoff (Q(t)), previous day runoff (Q(t-1)), two-day previous runoff 

(Q(t-2)), three-day previous runoff (Q(t-3)), present-day rainfall (R(t)), previous day rainfall 

(R(t-1)), two days previous rainfall (R(t-2)) and three days previous rainfall (R(t-3)) were used 

for testing by Gamma test (Table 2). The models having low Gamma (┌) and low Vratio 

values were considered most appropriate for developing models [150]. It could be noticed 

that the gamma value and Vratio decreased with an increase in the number of predictors. 

However, after a certain point, the gamma value again started increasing. It might be due 

to the following two reasons: i) the inclusion of high number of inputs variables may be 

the cause of overfitting, and ii) inclusion of less number of input variables results in inca-

pacity of the model to correctly provide an explanation of the total variance of the fore-

casted subset. . The minimum gamma (┌) and Vratio values were 0.407 and 0.191, respec-

tively, for the M19 predictor set. Hence, the M19 predictor combination was employed for 

further analysis. It could be stated that using rainfall till two-day lag and the discharge 

from one to three days lag as a predictor would produce an optimum rainfall-runoff 

model. It was also noticed that the gamma value and Vratio increased when rainfall of three-

day lag was included in the predictors. It might be due to the low correlation of the pre-

dictor variable with the predictand. 
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Table 2. Gamma statistics for different input combinations. 

Model No. Model input combination Mask Gamma V-Ratio 

M1 Q(t-1) 0000001 0.082 0.329 

M2 R(t), Q(t-1) 1000001 0.061 0.244 

M3 R(t), R(t-1), Q(t-1) 1100001 0.064 0.256 

M4 R(t), R(t-1), R(t-2), Q(t-1) 1110001 0.056 0.225 

M5 R(t), R(t-1), R(t-2), R(t-3), Q(t-1) 1111001 0.051 0.207 

M6 R(t), R(t-1), R(t-2), R(t-3), Q(t-3), Q(t-1) 1111101 0.054 0.217 

M7 Q(t-1), Q(t-2) 0000011 0.081 0.320 

M8 R(t), Q(t-1), Q(t-2) 1000011 0.063 0.254 

M9 R(t), R(t-1), Q(t-1), Q(t-2) 1100011 0.051 0.212 

M10 Q(t-1), Q(t-2), Q(t-3) 0000111 0.076 0.307 

M11 R(t), R(t-1), Q(t-1), Q(t-2), Q(t-3) 1000111 0.053 0.213 

M12 R(t), R(t-2), Q(t-1), Q(t-2), Q(t-3) 1100111 0.048 0.194 

M13 R(t), R(t-1), R(t-2), R(t-3) 1111000 0.107 0.430 

M14 R(t), R(t-1), R(t-2), R(t-3), Q(t-1) 1111001 0.061 0.207 

M15 R(t), R(t-1), R(t-2), Q(t-1), Q(t-2), Q(t-3) 1110111 0.050 0.200 

M16 R(t), R(t-1), R(t-2) 1110000 0.114 0.459 

M17 R(t), R(t-1), R(t-2), Q(t-1) 1110001 0.056 0.225 

M18 R(t), R(t-1), R(t-2), Q(t-1), Q(t-2) 1110011 0.052 0.209 

M19 R(t), R(t-1), R(t-2), Q(t-1), Q(t-2), Q(t-3) 1110111 0.047 0.191 

M20 R(t), R(t-1) 1100000 0.124 0.498 

M21 R(t), R(t-1), Q(t-1) 1100001 0.064 0.256 

M22 R(t), R(t-1), Q(t-1), Q(t-2) 1100011 0.053 0.212 

M23 R(t), R(t-1), Q(t-1), Q(t-2), Q(t-3) 1100111 0.073 0.194 

M24 R(t), R(t-1), R(t-3) Q(t-1), Q(t-2), Q(t-3) 1101111 0.050 0.203 

M25 R(t), Q(t-1) 1000001 0.061 0.244 

M26 R(t), Q(t-1), Q(t-2) 1000011 0.063 0.254 

M27 R(t), Q(t-1), Q(t-2), Q(t-3) 1000111 0.053 0.213 

M28 R(t), R(t-1), Q(t-1), Q(t-2), Q(t-3) 1100111 0.048 0.194 

M29 R(t), R(t-1), R(t-2), R(t-3) 1111000 0.107 0.430 

M30 R(t), R(t-1), R(t-2), R(t-3), Q(t-1) 1111001 0.051 0.207 

M31 R(t), R(t-1), R(t-2), Q(t-1), Q(t-2) 1110011 0.052 0.209 

M32 R(t) R(t-1) R(t-2) R(t-3) Q(t-1) Q(t-2) 1111011 0.050 0.200 

M33 R(t), R(t-1), R(t-2) R(t-3), Q(t-1), Q(t-2), Q(t-3) 1111111 0.048 0.194 

5.2. Application of Machine Learning Techniques for Rainfall-Runoff Modelling 

As per the GT result, the best-input combination for the development of MLR, MARS, 

SVM, and RF models was made based on the following equation: 

�(�) = ���(�), �(���), �(���), �(���), �(���), �(���)� (20) 
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5.2.1. MLR model for runoff prediction 

The MLR technique was used to predict runoff of the Gola watershed using the best 

input combination based on Gamma test results in the R-Studio environment. The devel-

oped MLR model with training dataset can be formulated as follows: 

�(�) = 1.11 + 0.55�(�) + 0.01�(���) − 0.03�(���) + 0.48�(���) + 0.21�(���) + 0.03�(���) (21) 

The qualitative performance assessment of the MLR model for predicting runoff of 

the Gola watershed was done by graphical comparison between ordinates of observed 

and predicted runoff values (Figures 4 & 5). It was revealed from the visual observation 

that there was a large variation in observed and predicted peak values of runoff. It was 

also observed that the MLR model underpredicts larger values and overpredicts small 

values of runoff in the training and testing periods. The MLR, being a linear model, could 

not capture the nonlinearity in the predictor-predictand relationship. Hence, the MLR 

model explained the medium range of variance in the predictand variable better than the 

extreme values. In other words, these models simulated the average runoff values more 

effectively than extreme events.  

The values of RMSE, R2, NSE, and PBIAS were 13.44 m3/s, 0.78, 0.72, 0.00%, respec-

tively during training and 12.67 m3/s, 0.67, 0.51 and 0.80%, respectively during testing pe-

riod for the MLR model (Table 3). It revealed that the model has a low bias in training and 

under-estimation of runoff values in the testing period. It was seen that the MLR model 

lacked in mapping runoff of the Gola watershed satisfactorily. 

Table 4. Comparison of different machine learning models for daily runoff prediction. 

Model Training Testing 

RMSE (m3/s) R2 NSE PBIAS (%) RMSE (m3/s) R2 NSE PBIAS (%) 

MLR 13.44 0.78 0.72 0 12.67 0.67 0.51 0.80 

MARS 12.55 0.81 0.76 0 10.07 0.79 0.74 0.20 

SVM 12.61 0.83 0.81 -3.90 14.02 0.60 0.60 0.40 

RF 6.31 0.96 0.94 -0.20 5.53 0.95 0.92 -0.20 

5.2.2. MARS model for runoff prediction 

In the case of MARS modeling, the backward pass was used to prune the model by 

deleting unnecessary bias functions at every stage until the supermodel has been found 

and for good generalization ability. The value of the GCV parameter for best models was 

159.80 and 107.05 for the training and testing set, respectively. RMSE, R2, NSE, and PBIAS 

were 12.55 m3/s, 0.81, 0.76, and 0.00%, respectively, during training, and 10.07 m3/s, 0.79, 

0.74, and 0.20%, respectively during the testing period for the MARS model (Table 3). 

Temporal variations and scatter plot of observed and predicted runoff during the testing 

period is displayed in Figure 6 & 7, respectively. The trend of predicting runoff was satis-

factory for observed runoff of the Gola watershed. The peak values of runoff were not 

predicted with great accuracy. Low values of PBIAS were found in the MARS model dur-

ing the training period, which indicates an accurate model simulation. It was revealed by 

(0.00%) PBIAS value, and the positive value (0.20%) of PBIAS indicated slight under-esti-

mation during the testing period. 
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Figure 4. Observed and predicted runoff using the MLR model during the testing set. 

 

Figure 5. Scatter plot of runoff using MLR model during the testing set. 

5.2.3. SVM model for runoff prediction  

The present study uses the radial basis and linear kernel functions for SVM-based 

runoff modeling. The radial basis function performed better than the linear function; that 

is why selected for the current study. Variations in three parameters, namely, cost (C), 

gamma (�), and epsilon (ε), were done to conduct a trial-and-error method for the selec-

tion of an optimum performing SVM model. The variation in the C parameter was made 

from (C=1 to C=10), and it was found that there was negligible variation in the results. The 

ε parameter was varied too (0.1, 0.01, 0.001), and it was revealed that there was a signifi-

cant change in results for every model. It was observed that there was an increase in RMSE 

value when the value of ε decreased from (0.1 to 0.001). After comparing the results, it 

was concluded that the SVM model having (C = 10, � = 0.1667, ε = 0.1) outperformed in 

mapping the rainfall-runoff relationship for the Gola watershed. The time-series plot re-

vealed the fact that the model was underpredicting large values in the training period as 

well as in the testing period.  
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Figure 6. Observed and predicted runoff using MARS mode during the testing set. 

 

Figure 7. Scatter plot of runoff using MARS model during the testing set. 

The values of RMSE, R2, NSE, and PBIAS for the SVM model were 12.614 m3/s, 0.83, 

0.81, and -3.90% for the training period 14.02 m3/s, 0.60, 0.60, and 0.40% for the testing 

period respectively (Table 3). Temporal variations and scatter plot of observed and pre-

dicted runoff during the testing period is displayed in Figure 8 & 9, respectively. The R2 

value (0.83) shows the strong linear relationship between observed and predicted varia-

bles in the training period. It was found satisfactory (0.60) during the testing period. The 

NSE value (0.81) revealed good model predictive skills during the training period. The 

0.60 value in the testing period shows satisfactory predictive skills during the testing pe-

riod. The PBIAS value was found to be (-3.90%) during the training period, which shows 

the model was over-predicting runoff values during the training period and the testing 

period (0.40%) reveals that the model was under-predicting runoff values.  
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Figure 8. Observed and predicted runoff using the SVM model during the training set. 

 

Figure 9. Scatter plot of runoff using SVM model during the testing set. 

5.2.4. Random Forest model for runoff prediction  

Two parameters were used in tuning the Random Forest model ntree (number of 

trees) and mtry (number of variables) (Naghibi et al., 2017). In the present study, a trial-

and-error technique was used in which n-trees values were varied from 200 to 600, and the 

m-try values were varied from 2 to 6 to find the best performing Random Forest model. It 

was found that 400 decision trees (n-tree) and seven variables (m-try) were optimal for the 

best fit model. It was apparent from Table 4 that RMSE values were in the range of 6.318 

m3/s to 6.480 m3/s and R2 values were in the range of 0.95 to 0.96 during the training period. 

The values of RMSE lie in the range of 5.430 m3/s to 5.677 m3/s, and R2 values lie in a range 

of 0.94 to 95 during the testing period. From the evaluation of all the results, it was ob-

served that the RF-28 model was superior to other RF models.  

The value of RMSE, R2, NSE, and PBIAS of the RF-28 model was 6.318 m3/s, 0.96, 0.94, 

and -0.20% for the training period and 5.565 m3/s, 0.95, 0.92, -0.10% for the testing period 

(Table 3). Low values of RMSE show a concentration of data around the best fit line. The 
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R2 value (0.96 & 0.95) during the training and testing period revealed a strong linear rela-

tionship between observed and predicted runoff values. The value of NSE was found to 

be 0.94 and 0.95 during the training and testing period, respectively, which shows the 

good predictive ability of the model. The PBIAS values revealed that the model slightly 

overpredicts runoff values during training and testing. Temporal variations and scatter 

plot of observed and predicted runoff during the testing period is displayed in Figure 10 

& 11, respectively. 

 

Figure 10. Observed and predicted runoff using RF during the testing set. 

 

Figure 11. Scatter plot of runoff using RF model during the testing set. 
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Table 4. Results of different performance indicators for RF models during training and testing 

sets. 

Models Training Testing 

RMSE R2 RMSE R2 

RF-1 6.443 0.95 5.553 0.95 

RF-2 6.388 0.95 5.576 0.95 

RF-3 6.351 0.96 5.572 0.94 

RF-4 6.423 0.95 5.550 0.95 

RF-5 6.442 0.95 5.621 0.94 

RF-6 6.480 0.95 5.459 0.95 

RF-7 6.415 0.95 5.609 0.95 

RF-8 6.371 0.95 5.677 0.94 

RF-9 6.404 0.95 5.598 0.95 

RF-10 6.378 0.95 5.521 0.95 

RF-11 6.403 0.95 5.430 0.95 

RF-12 6.445 0.95 5.481 0.95 

RF-13 6.373 0.95 5.563 0.95 

RF-14 6.449 0.95 5.500 0.95 

RF-15 6.447 0.95 5.468 0.95 

RF-16 6.435 0.96 5.571 0.94 

RF-17 6.386 0.95 5.580 0.95 

RF-18 6.395 0.95 5.539 0.95 

RF-19 6.481 0.95 5.451 0.95 

RF-20 6.408 0.95 5.575 0.95 

RF-21 6.375 0.95 5.626 0.94 

RF-22 6.389 0.95 5.529 0.95 

RF-23 6.451 0.95 5.467 0.95 

RF-24 6.446 0.95 5.613 0.94 

RF-25 6.369 0.95 5.453 0.95 

RF-26 6.427 0.95 5.536 0.95 

RF-27 6.322 0.95 5.547 0.95 

RF-28 6.318 0.96 5.565 0.95 

RF-29 6.375 0.95 5.480 0.95 

5.3. Model comparison 

It was noticed that the MLR model showed the least accuracy among all models (Ta-

ble 3). As reported by Panda et al. (2022), the poor performance of the MLR model might 

be attributed to the following two reasons, (1) the inability of the MLR to address predic-

tor-predictand nonlinearity and (2) reduced efficiency of the model due to the presence of 

outliers and serially correlation. The hydrological model developed by the RF was a sig-

nificant improvement over the rest of the models. The superior performance of the RF 

model could be due to the following reasons, (1) superior ability of the model to address 

nonlinearity compared to the rest of the models (Zhang et al., 2019), (2) capability to han-

dle noisy data efficiently (Reis et al., 2018), and (3) ability to reduce the overfitting problem 

(Kim et al., 2022). It was also found that the MARS model outperformed the SVM model 
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during the testing period. It indicated that the MARS could handle the predictor-pre-

dictand nonlinearity better than the SVM model. 

The Violin plot distribution of observed and simulated runoff during the training 

and testing periods was depicted in Figure 12. The MARS model captured the extreme 

values better during the training period than the other models. However, the RF model 

demonstrated a greater ability to capture the high runoff values during the testing period. 

It indicated that the RF model could learn the hidden processes better than other models. 

The performance of the MARS model was similar to that of the RF. Although the MLR 

performed better in capturing extreme events during the calibration period, it could not 

perform similarly during the validation period. The SVM model showed the least efficacy 

in simulating the high values during calibration and validation periods. 

The relative error plot further validated the above results (Figure 13). Finally, the 

model efficiencies were compared using a Taylor diagram (Figure 14). It was concluded 

that the RF model showed the highest accuracy, followed by the MARS model. In contrast, 

the SVM model showed the lowest efficacy, followed by the MLR model. 

a) 

 

b)

 

Figure 12. The Violin plot displays the observed and predicted runoff distribution for the four mod-

els during the a) training and b) testing phase at the Gola watershed. 

a) 

  
b)
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c) 

  
d)

  

Figure 13. Relative error distribution over the training and testing phase for the daily time scale 

river flow for the Gola watershed, (a) MLR, (b) SVM and (c) MARS, and (d) Random Forest. 

a) 

 

b) 

 
 

Figure 14. Taylor diagram of SVM, Random Forest, MARS, and MLR models during the a) training 

and b) testing period at the Gola watershed. 

6. Conclusions 

Rainfall is an essential hydrological phenomenon to maintain the balance of freshwa-

ter availability for the survival and growth of life. This study was conducted to evaluate 

the runoff pattern of the Gola watershed. The comparative results of training and testing 

dataset sets between the MLR, MARS, SVM, and RF model's potential in predicting runoff 

of the Gola watershed were investigated. Among the developed models, for root mean 

square error (RMSE), the ranking of models was RF, MARS, SVM, and MLR for the train-

ing period and RF, MARS, MLR, and SVM for the testing period, respectively. Based on 

the coefficient of determination (R2) statistics, the models were ranked as RF, SVM, MARS, 

and MLR for the training dataset and RF, MARS, MLR, and SVM for the testing dataset. 

The models were ranked as RF, SVM, MARS, and MLR for training and RF, MARS, SVM, 

and MLR for testing in the case of NSE statistics, respectively. Based on the quantitative 

analysis and indices, the ranking of models was RF, MARS, SVM & MLR for the training 

period. It was RF, MARS, MLR & SVM for the testing period. Perhaps these uncertainties 
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in results were due to data division, input uncertainties, and model parameter optimiza-

tion. In order to determine the consistency of models, these should be tested by varying 

data length and training-testing split. The obtained results suggested that the accuracy of 

MLR, MARS, SVM and RF techniques were adequate using rainfall and runoff parameter 

for modeling. It was found that there was variation in the results of different machine 

learning models. The evaluation of performances revealed that the RF model outper-

formed other regression models for predicting runoff of the Gola watershed. 
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