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Abstract

Computation of circuit complexity has gained much attention in the Theoretical Physics
community in recent times to gain insights into the chaotic features and random fluctua-
tions of fields in the quantum regime. Recent studies of circuit complexity take inspiration
from Nielsen’s geometric approach, which is based on the idea of optimal quantum control
in which a cost function is introduced for the various possible path to determine the opti-
mum circuit. In this paper, we study the relationship between the circuit complexity and
Morse theory within the framework of algebraic topology, which will then help us study
circuit complexity in supersymmetric quantum field theory describing both simple and
inverted harmonic oscillators up to higher orders of quantum corrections. We will restrict
ourselves to N/ = 1 supersymmetry with one fermionic generator (),. The expression of
circuit complexity in quantum regime would then be given by the Hessian of the Morse
function in supersymmetric quantum field theory. We also provide technical proof of the
well known universal connecting relation between quantum chaos and circuit complexity of
the supersymmetric quantum field theories, using the general description of Morse theory.
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1 Introduction

AdS/CFT correspondence has helped in providing great insights on the geometry of the
bulk from information in the boundary CFT [1-6]. However, probing the physics behind
the horizon is still a major challenge. It has been inspected that even if the entangled
entropy of an eternal AdS black hole saturates after reaching the equilibrium, the size of
the Einstein-Rosen(ER) bridge continues to grow with time, posing a problem to the dual
description of boundary CFT. Considering this, Susskind has introduced new observables
in bulk geometry [7-13]. One is the volume of a maximal co-dimension-one bulk surface
extending to the boundary of AdS space-time, and the second is the action defined on the
Wheeler-De-Witt patch. According to the conjecture, these new observables are a dual
description of the complexity of the boundary field theory.

One of these crucial observables is volume, which according to “Complexity = Volume”
conjecture, states that volume V(B) of a maximal co-dimension-one bulk surface B that
extends to the AdS boundary and asymptotic to the time slice ) is proportional to the
complexity of the boundary state, Cy (D), which is given by:

Oy (Z) = maz []é(fl)] . (1.1)

The second observable is the gravitational action estimated in the Wheeler-De-Witt
(WDW) patch in the bulk region Zy py, which according to the another important con-

jecture, namely the “Complexity = Action” conjecture; is proportional to complexity of
the boundary field theory [14], given by:

Twpw

Cy e (1.2)

Complexity in quantum field theory and various other quantum system has been the
attraction of the theoretical physics community in recent times. It provides insights about
what happens inside the horizon in a gravity dual and helps study the sensitive depen-
dence of initial conditions of boundary fields. In other words, it helps in understanding
the out-of-time-order-correlation (OTOC) function of observables in a quantum system
that depicts the chaotic and random quantum fields[15-17]. OTOC within the framework
of supersymmetric quantum mechanics was studied in the simple harmonic oscillator, one
dimensional infinite potential well and various other models in [18, 19]. The main idea was
to put the free scalar field theory on a lattice, which reduces it to the family of coupled os-
cillators, then identifying the circuit as a path ordered exponential of Hamiltonian, which
forms the representation of GL(2, R), and then construct the Euclidean metric. Mini-
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mizing the length of this metric would finally give the expression for circuit complexity.
These results were obtained in the inverted harmonic oscillator framework and interact-
ing field theories to look for chaotic behaviour in quantum field theories(QFT). In this
paper, our main objective is to calculate circuit complexity for supersymmetric quantum
field theories for simple and inverted harmonic oscillators for various higher-order quantum
corrections. We will restrict ourselves to A/ = 1 supersymmetry, such that we will have
only one fermionic annihilation and creation operator and thereby only one supercharge.
We will take an unusual approach and first try to connect complexity in quantum field
theories, namely, supersymmetric field theories, with the Morse function. Morse theory
acts as an essential tool to study the topology of manifolds by studying the differentiable
functions through which we could identify the critical points on that manifold: the min-
ima, maxima, and saddle points. To study the connection between circuit complexity in
supersymmetric quantum field theories with the Morse function, we will first identify the
so-called “cost function”, an important parameter in computing the circuit complexity.
Cost function counts the number of gates operating at a particular time ¢ to construct the
optimal circuit with the Morse function on a given manifold. By computing the Hessian of
the Morse function, we obtain the expression for circuit complexity in the present context
of the discussion. Our motivation for doing so lies in the fact that the eigenvalues of super-
symmetric Hamiltonian are closely concentrated near the Morse function’s critical points.
The number of zero eigenvalues of the ground state is exactly equal to the Betti number of
the manifold. In this paper, we will show how the increase in the number of critical points
of the manifold captures the amount of chaos present in supersymmetric quantum field
theories for the inverted harmonic oscillator (IHO) and how the mathematical structure of
supersymmetry (SUSY) in the regime inverted harmonic oscillators whose potentials forms
the generators of SL(2, R) group underlies chaos. It makes the number of critical points
increase by a factor of exponential with respect to the superpotential appearing in super-
symmetric quantum field theory. For the scalar field theories in the regime where it can
be described as a simple harmonic oscillator (SHO), we will identify the non-dynamical
auxiliary field; namely the F' - term in the lagrangian of SUSY theory involving scalar
fields; with the gradient of the Morse function, which passes through every critical point
on the manifold. In turn, we will show that the complexity of supersymmetric quantum
field theories for simple harmonic oscillator only depends on the absolute value of the
non-dynamical auxiliary field, which also acts as an order parameter for supersymmetry
breaking. This way of identifying the F' - term with the gradient of the Morse function
provides another way to check when the supersymmetry is broken. If the gradient flow
passes through the critical points, then it could be said that there exist no ground states
with zero energy or SUSY is spontaneously broken. Following this, we will compute the
Hessian in the space of super-coordinates and will derive the expression for complexity.
Edward Witten has shown that supersymmetric quantum field theory is a Hodge Derham
cohomology and has derived the Morse inequality using the formalism of supersymmetry.
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This paper will not work along the same lines, but our main objective would be to give
quantum chaos a topological flavour in supersymmetric theories. At present, Out-of-time
ordered correlation (OTOC) function has been an essential theoretical tool to capture the
effect of chaos in any quantum system at late time scales. By following this fundamental
notion, in this paper, we will explicitly give a technical proof of the wuniversal relation
relating circuit complexity with the quantum chaos in terms of the previously mentioned
Out-of-Time Ordered Correlation Function (OTOC) within the framework of the super-
symmetric quantum field by using the general description of Morse theory.

Organization of the paper is as follows:

e In section 2, we provide a brief review of the concept of circuit complexity in the
general context of quantum information theory.

e In section 3, we will explain the Lie algebra formulation and how the potential of
Inverted Harmonic Oscillator (IHO) could be embedded in the structure of the man-
ifold.

e In section 4, we will give a brief review of Morse theory, namely the Morse function
and the gradient flow of the Morse function for completeness.

e In section 5, we will comment on the relationship between circuit complexity and
Morse function over a manifold in supersymmetric quantum mechanics.

e In section 6, we will explicitly compute the expression of circuit complexity for the
Inverted Harmonic Oscillator (IHO) up to higher-order of quantum corrections.

e In section 7, we will compute the complexity for supersymmetric field theories for
simple harmonic oscillators up to higher orders of quantum corrections in terms of
the non-dynamical auxiliary field.

e In section 8, we will compare the results of complexity between supersymmetric and
non-supersymmetric quantum field theory for SHO and THO in table 8.1 and 8.3.

e In section 9, we will provide the detailed numerical and graphical analysis of the
results for both SHO and IHO using the prescription of supersymmetric Morse quan-
tum field theory.

e In section 10, we will derive the universal relation between the circuit complexity and
quantum chaos expressed in terms of OTOC function for supersymmetric quantum
field theory prescription using Morse function.
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e Finally section 11, we will conclude our result and comment on how the behaviour
of complexity for the supersymmetric model is already implemented in the structure
of a manifold.

2 Circuit Complexity for dummies

The notion of circuit complexity was first introduced in information theory to find the
minimum number of gates to get the desired state from an initial state. It involves acting
the initial state with a unitary operator or a set of quantum gates to obtain the desired
target state.

) = U |is) (2.1)

There exists many such set of unitary operators to get the desired final state but to find
a minimum number of such operations to execute the task is what constitutes an optimal
quantum circuit. Taking inspiration from this Nielsen and collaborators have developed
this idea further and have taken a geometric approach to finding the most optimal quantum
circuit to get the desired target state via unitary operations in physics [20-30],

U(t) = Pexp (—z’ /;H(t)dt) where H(t) = ZYI(t)MI, (2.2)

where M; are the Pauli matrices and Y (t) are referred to as the control function that
decides the nature of gate that will act at a certain value of parameter t. This approach of
identifying the action of quantum gates via control function could be morphed in terms of
finding the extremal curves, i.e. geodesics. Hence we define a cost function F(U(t), U(t))
which is a function of the unitary operator U and a vector at a point in the tangent space
formed by unitaries. The idea is to minimize this cost function for various possible paths,
which is described by the following expression:

D(U(H)) = /0 1 (P ). Ui di (2.3)

The task now is to determine the cost function which as described above counts the
number of gates to construct the optimal quantum circuit. A general class of cost functions
are:

FU.Y) =S iy, (2.4)
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F(UY) =y Z qr(Y'1)?, (2.5)

where minimizing F, would give us the expression for the length of geodesic of a Riemann
surface. The length of the geodesic traced out by intermidiate states in constructing target
state via mininmum number of gates would give us an expression for complexity-

C' = min / ds) = min / dt/ (B (D). (2.6)

Y(s)

The gate action on the reference state could be written in terms of the generators decided
by the Hamiltonian and an arbitrary small parameter € as:

U= eXp[M[JE] (27)

therefore from (2.2) the expression for Y; could be given as:

Yi(s) = i(0,U(s)) U (s), (2.8)

where we have used, T'r(M;M J ) = 0ry. The general expression for the cost function could
be further written as:

Yi(s) = —%Tr[(asU(S))(U_l(S)MI)] (2.9)

We have written the expression for cost function in terms of the unitary operators which
will explicitly demonstrate the relation between it and the Morse function for the super-
symmetric Hamiltonian H; to compute the circuit complexity for supersymmetric field
theories.

3 Lie algebra formulation of the Inverted Harmonic Oscillator (IHO)

To work out the circuit complexity in various models researchers have considered a
simple, exactly solvable system known as the Inverted Harmonic Oscillator (IHO), which
is described by the Hamiltonian function:

P 1
H(p,z) = = — —wa? (3.1)

2 2
This encapsulates the sensitivity to initial conditions exhibited by the chaotic systems [31—
33]. The Inverted Harmonic Oscillator (IHO) differs from the Simple Harmonic Oscillator
(SHO) in many ways. For instance, the energy spectrum of IHO has a continuous energy
spectrum, whereas the regular SHO has a discrete energy spectrum (n+%)7§w Unlike SHO,
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the THO is precisely solvable. While the SHO provides a good description of the deviations
from the stable equilibrium, the IHO models the decay from an unstable equilibrium.
The THO in recent times has been proven to be incredibly useful to show the equivalence
among various diverse fields. The THO appears in the quantum hall effect and in the
mechanism of Rindler Hamiltonian, whose time evolution would give rise to the Hawking-
Unruh effect [34-36]. The equivalence between the two phenomena can be shown in terms
of the isomorphism of the underlying lie algebra [37, 38].

In this paper, our main objective will not be to formally describe the lie algebra isomor-
phism but instead using that to calculate the circuit complexity over a manifold via Morse
function for supersymmetric quantum field theories. To do this, first we have to show how
the potential of THO forms the generators of Lie algebra. We start with the settings of
the quantum hall effect (QHE), the three quadratic potentials generate the Hamiltonian
dynamics in the lowest Landau level (LLL):

PrrViProp = MR, + R)), (3.2)

PrriVoPrrr, = M(Rx Ry + Ry Ry ), (3.3)

PrriVsProp = MR, — R2). (3.4)

Furthermore, one can write:

—4\?

PriViPrrr = B 3.5

Vil = g5 rp (3.5)

PrriVoPrrr = 2M%PrrrjiPrir, (3.6)
—4N\?

PriiVaPrrn = B__ 3.7

LenVslion = 3 PrrrjiPiis (3.7)

where Ppr; is the projection operator to the lowest Landau level, Ry, Ry are bilinears
and j,,j, are strain generators. Therefore by projecting the potentials to the LLL both
bilinears and the strain generators lead to the quadratic Hamiltonian which is similar to
the electrostatic potential and THO appears in quantum hall effect as might expected.
We now rename the three quadratic potentials in a quantum hall effect V, V5, V3 as
Ky, K5, K3 and we identify:
pott B (3.9)
IB IB

Consequently, we get the Hamiltonians in the LLL to be of the following form:

K, = (P* 4+ X?), (3.9)
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Ky = (PX + XP), (3.10)
K3 = (P* — X?). (3.11)

On the basis of LLL wave functions the potentials could be written the form of differential
operators namely:

1 0? 5
/ o 1
Ky = % (X% + 5) , (3.13)
1 0?
Ky = <_8X2 — X2> . (3.14)

These are precisely the generators of SL(2, R) Lie-algebra[39], which act as an area preserv-
ing deformations of a two dimensional manifold and satisfy the following non-commuting

relations:
[K27K3] = _iK17 (315)
Ky, K] = i K, (3.16)
(K3, Ky = i K. (3.17)

With these techniques at hand, our main objective will now be to describe a Morse
function on a manifold formed by the Lie-algebra of SL(2, R), namely the potential of the
IHO. Then we will show how the critical points of the Morse function on a manifold play
the role of the cost function, which decides the gate in action at a particular parameter ¢
to form the optimal circuit.

4 Brief review of Morse Theory

In this section, we are going to give a very brief review of Morse theory. The Morse
function helps classify surfaces up to homeomorphism when it passes the critical point of
index 0,1, 2. The index 2,1, and 0 represents the maximum, minimum and saddle points
of the manifold.

4.1 Definition of Morse function

To define Morse function, we consider a manifold M and a function f such that:

d0i:10.20944/preprints202206.0162.v1
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Theorem 1:

A smooth map f : X" — R is a Morse function if, for every critical point p € X, 3
coordinates x1, ...x,, and a coordinate y around f(p) w.r.t. which,

(@1, ey y) = =27 — 13 — . —XF + X e T (4.1)

such that the value of the function at the critical points vanishes.

Theorem 2:

A map f — R is a morse function if its critical points vanishes and the Hessian of
f at each critical point is non-singular.

A Morse function on a compact manifold X helps to determine it’s topology, by mapping
it’s critical points to an axis on a one-dimensional plane, which helps to encode a lot of
information about M [40]. The goal of the Morse theory is to find the invariant of the
manifold by counting the critical points of chosen Morse function.

4.2 Gradient flow of Morse function

The gradient flow of the Morse function creates a vector field on the surface of the
manifold, which helps to define a notion of transport from one point to another. Let us
suppose we have an integral curve v,: R — M such that:

Vo(t) = dulx),  do(x) = 0. (4.2)
Here ¢ is a smooth one-parameter group of diffeomorphism on M. Then, we get:

SH0ult) = S o )
= dfg,(x) © %d&(ﬂ?)
= df () (=V f)ee(2)
= (V) <0 (43)

Thus the gradient flow of f is decreasing down the lines of v,. One of the reasons we have
defined the gradient flow of the Morse function will become apparent in the latter part of
this paper, where it will play a crucial role in deriving the complexity of supersymmetric
field theories for the SHO.
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5 Circuit complexity in SUSY QFT via Morse function

To compute circuit complexity within the framework of supersymmetric quantum field
theory using Morse function, we will consider SL(2, R) modular curve, which encodes the
potential of THO as generators of Lie algebra and identifies it with a Riemann manifold
M, and the Morse function to the cost function as described in the previous section, and
thereby associate the critical points to the action of the control function which decides,
which quantum gate will be active at a particular time .

The supersymmetric operators in terms of an exterior derivative and its adjoint can be
described as:

Q1 =d+d, (5.1)
Qo = i(d — d), (5.2)
H = dd* + d*d. (5.3)

The connection between supersymmetric quantum field theories and Derham operators
could found in the ref. [41]. Then further by taking into account the following crucial fact:

d*=0=d? (5.4)

we get the following subsequent supersymmetric relations in the present context, which
are given by:

Qi=Q; =1, (5.5)
Q1Q2 + Q201 = 0. (5.6)

Now let us consider a Morse function f on the surface of the manifold M, and t be a
real number. Then,

dy = exp(—ht) d exp(ht), (5.7)
T =exp(—ht) d* exp(ht). (5.8)

Here we can show that:
d? =0=d? (5.9)

using which we get the following expressions:
Qlt - d + d*, (510)

Qgt — Z(dt - d:), (511)

d0i:10.20944/preprints202206.0162.v1
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H, = did; + didy. (5.12)

We will now explicitly calculate the formula for H; in terms f, to understand how
critical points come into the picture. Let, v*(p) and v*% be an orthonormal basis of
tangent vectors and the corresponding dual vectors at each point p in M. The a* and
a** could be regarded as creation and annihilation operators in the present context. We
could calculate the covariant second derivative of Morse function f in the dual basis of v*

D2
as (ﬁ) f, with these accords, one could then calculate the Laplacian operator H;
' Dx

acting on p forms on manifold M:

D%f o
H, — * * 2 2 _—J *7 J1 1
, = dd* + d*d + t*(df) +Zt<DﬂD$J)[v 0] (5.13)

Here we define (df)? by the following expression:

(df)* = g" (;Z) (%) . (5.14)

which is the square of the gradient of the Morse function f, measured with respect to the

Riemannian metric g of M. Here the term ¢?(df)?* plays the role of IHO potential, and
also the critical points for the Morse function f lies, where we have

df = 1 g (;Z) (%) ~0. (5.15)

To compute circuit complexity in supersymmetric quantum field theory, one could see

that the gradient of the Morse function vanishes exactly at the critical points which in turn
for supersymmetric field theories are the energy eigenvalues of H; thus the Morse function
exactly picks up those eigenstates in the field space, as by supersymmteric charges @)
to act on an arbitary reference state, thereby from (2.5) and the definition of Y;(t), we
see that the Morse function defined on the surface of the manifold exactly describes the
function of F(U(t),U(t)) for supersymmetric field theories, hence we make the following
identification.,

FQ(t), Q) — f. (5.16)

The role of F(Q(t), Q(t)) is to count the number of gates required to construct the optimal
quantum circuit. Still, in the present context, it is to find the minimum of supersymmetric
charges estimated by the Morse function based on the number of critical points on the

10
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surface of manifold M to get:

Ql |En>bosonic = gozgnic' (517)

One could see in the argument mentioned above that eigenfunction of H; for large ¢, are
concentrated near the critical points of f therefore, for the identification, we could say that
the eigenvalues of the cost function are the critical values of SL(2, R) Riemann surface.

The eigenvalues of H; acting on p forms for large ¢t can be expressed in the following
way: on

B’I’L
An(t) :t(A;‘+7t+t—§+...>. (5.18)

Thus we could see that for large t, the above equation, within few orders, agrees with
the computations of out-of-time-order-correlations (OTOC) from supersymmetric quantum
mechanics computed in [18].

Now to calculate the general expression for circuit complexity, we will make use of the
Hessian matrix. Remember, a function f is a morse function if and only if the Hessian of
f at each critical point is non-singular. This is described as:

H(f(2)) = J(VF (@) (H f)yy = =20 (5.19)

- 656181%'] .

we will now identify Hessian of f in the tangent space of unitary operator as:
T,(M) x T,(M) — R. (5.20)

and from (5.13) exactly along the geodesic connnecting critical points of the Morse function,
the supersymmetric hamiltonian could be written as:

D? L
H=|— o) 21
t (Dﬂw)”ﬁv ) (5.21)

comparing the above to (2.2) we get the desired relation between cost function and the
Morse function such that
dU(s)
ds

where Y/ is the control function, that decides the action of of operators acting on the

= —iY) = (Hf)y, (5.22)

reference state to make the optimal circuit.
Consequently, we compute:

D(Q)(s) = V(Y1) + (Y12)2 + (Y2)2 + (Y2)2, (5.23)

11
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and the corresponding circuit complexity can be computed as:

02 f

C(Q) = [H(f(x)] = [7(Vf(x))(Hf)ij| = Dw0z,

(5.24)

6 Effect on circuit complexity from IHO perturbation theory

To explicitly calculate circuit complexity for IHO in a supersymmetric case, we will use
the concept of the Witten index and show how the critical point near which the eigenvalues
of H(t) are concentrated grows exponentially with the superpotential.

The excited states of supersymmetric quantum field theory always come with pair of
states, this could be seen in the algebra of supersymmetry which has no one-dimensional
representation [42]:

{Q,Q"}y =2H  such that Q2 = Q*2 =0. (6.1)

The Witten index Tr[(—1)"e™#], where (—1)¥ is the well known fermion number oper-
ator, carries interesting information about the ground state of supersymmetric quantum
system especially when it is non-zero, i.e. the system has at least one ground state when
the Witten index is non-zero, however, it doesn’t make any comment on the number of
ground states of the system when it is zero [43]. We will take the Hamiltonian of the
supersymmetric quantum system in THO regime by replacing W (x) by ¢W (z) and show
how the critical points of Morse function or complexity grow exponentially with respect to
the superpotential, which is given by:
2 2
H(P,W) = % _ WT . (6.2)

have a ground state wave function, which is defined as:

) = exp (—7;02 /Oo ) de) . (6.3)

Now by doing supersymmetry on the two dimensional manifold the Witten index can be
expressed by the following expression [44]:

Te[(—1)F exp(—BH)] = ¥(M) . (6.4)

where x(M) is the Euler characteristic of the manifold, thereby using the strong Morse

12
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inequality, we further get:

X(M) = Tr[(=1)F exp(=BH)] = Y (-1)" exp(—BH) = Y (~1)7C7 .
(6.5)
where C7 is the number of critical points of index +, using which one can find out the
following simplified expression:

CW::‘C—DF‘V@q)(—¢3(é;——ygz))‘. (6.6)

Circuit complexity for higher-order interacting term could be calculated in terms of super-
field formalism @, in which all super-partners related by SUSY transformations could be
treated as a single field [45-47]. Scalars and fermions related by supersymmetry correspond
to different components of super-field. The most general form of super-fields in terms of
super-space variables can be expressed as follows:

®(2) = ¢(z) + 0 + Ox(z) + 00”0 A, (x) + 6*°F(x) . (6.7)

Now, to write the super-field in terms of any single field component, we will apply the
SUSY transformations by applying the operator i(£Q + £Q) under the projection:

0=60=0, (6.8)

Expressing the result in terms of other components:

0cp(x) = i(§D + ED) Py = —Eb(z) — Ex(2), (6.9)

where D is a super-covariant derivative of the super-field which anti-commutes with the
supersymmetric charges @ and @ and under transformations maps super-field to super-
field, given by:

5€Daq)(z) = Da(géq)(Z) =i(£Q + EQ)DQCI)(Z) (6.10)

They satisfy the same algebra as supersymmetric charges, thus the scalar component ¢(z),
the super-field can be recovered by exponentiating supersymmetry transformations with ¢
as the parameter:

D = exp (~0)0(x), (6.11)

Thus, the super-fields can be constructed by applying the operator exp (—dy) to any com-
ponent field. Hence under the previously mentioned projection # = § = 0 the complexity
for higher order interactions in the super-potential could be written is as follow:
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. 3 F— P2 m o A 3
Complexity for ¢° term: C7 = (—1)" "exp | =0 -5 = 5gb — §¢ (6.12)
2
Complexity for ¢* + ¢* term : C7 = (—=1)" 7V exp (—5 (% — %QSZ - %¢4))

(6.13)

7 Effect on circuit complexity from SHO perturbation theory

To calculate the circuit complexity for supersymmetric quantum field theory, it is con-
venient to work in the super-space formalism [48, 49], i.e. we extend the 4 commuting
space-time coordinates z, to 4 commuting and 4 ant-commuting coordinates xz,, 6%, <.
These new coordinates satisfy the following anti-commuting relations:

00,03} = {600, 05} = {0,033 = 0. (1)

Now, any super-multiplet in super-space coordinates could be communicated in terms of
super-fields and can be expressed as:

& = ¢(z) —i0"00,¢(x) — iezeﬁa%(x) +/20n + %eﬁmué +V20%F ().
(7.2)

where 7 is a Weyl fermion having 4 off-shell degrees of freedom and ¢ are the Pauli matrices
and ¢ is a complex scalar having two degrees of freedom. The supersymmetric Lagrangian
remains invariant even after the addition of the term, i.e.

6L = j°F + h.c. (7.3)

The F' term is an auxiliary complex bosonic field with two off-shell degrees of freedom to
match the four off-shell degrees of freedom of a Weyl fermion. Also, the F’ term is an order
parameter for SUSY breaking, substituting ' = -u? the ground state will not be invariant,
and supersymmetry will be spontaneously broken.

The Lagrangian in terms of components fields up to second order is:

L = 10,0 + in' ot + | F2 + (quzS . %nn + h.c) L (74)

14
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We will now identify the auxiliary field F with the gradient of the Morse function which
passes through every critical point on the surface, such that these points act as an or-
der parameter for SUSY breaking. By doing the coordinate transformation, U(u,v) =
(x(u,v),0(u,v)) we could define:

h(u,v) = g o U(u,v) (7.5)
such that: 9 . (7 6)
ox” '

The eigenvalues of H(t) are concentrated at the critical points of g, hence precisely at the
critical point where:

dg=F =0 (7.7)

represents the scalar potential of the theory with no supersymmetric ground state. Then
Hessian of h can be calculated as:

O0?h

2
0%h 5
w — F.I',U + 2Fx1}01}7 (79)
0%h
= Fyyx, + Foyx, + FO,0, + Fx,y + Fx,0,. (7.10)
Oudv

the above dependence on the derivative of super-space variable with respect to u and v is
actually the Jacobian due to the change of the variables as mentioned above. Now solving
the equation of motion for F', the circuit complexity can be evaluated as:

C(Q) = ‘Fl(xu7xvaeu7eva ¢) _Il(xU7xvaxuva0ua¢) ) (711)

where the newly introduced function Fi(xy, z,, 0y, 0,, @) and Zy(zy, Ty, Ty, Oy, @) are de-
fined by the following expressions:

Fi(tn, 0,00, 00, 6) = (Wb > 4 oMo eu) (””qu > oMo ev),

2 2 2 2
(7.12)
2
Il(xu, Lyy Ty, Qu, ¢) = (ngbxuxv + %bxvxu + mT¢Cqu + m7¢$u9u .
(7.13)
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7.1  Circuit complexity for ¢* term

To calculate the complexity for higher order interacting terms we will follow the same
procedure as above, notice that circuit complexity for SUSY field theories only depends
on the value of auxiliary field which also act an order parameter for soft SUSY breaking.
The Lagrangian for cubic interactions could be defined as:

m

L = |0,0*+in 0,00+ | FI*+ <mF¢ AP -2

nn — A¢nn + h.c) (7.14)
The kinetic term is a Khiler potential corresponding to the 88 term which is invariant under
the SUSY transformations. A general Khaler potential could give rise to complicated terms
in the Lagrangian, but for simplicity we will consider the most canonical kinetic terms.
A here is the coupling constant, and the corresponding F' term is given by the following
expression:

Flz) = —w. (7.15)

As described above we will now identify gradient of the Morse function with absolute
value of the auxiliary field F' which is invariant under the SUSY transformations, and then
compute the hessian of the Morse function and thereby the complexity as described above:

C(Q) - "r2(xu7xv90uaeva (b) _ZQ(xu;xvaxuvaeua(b) ) (716)

where the newly introduced function Fo(xy, xy, 0y, 0y, @) and Zy(zy, Ty, Ty, Ou, ¢) are de-
fined by the following expressions:

FoTu, Ty, Ouy 0y, @) 1= (MZBZ 2@%%) (Mzi + QM%QU) )
(7.17)

LTy Toyy Ty Ouiy @) 1= (M“‘”” + w%% + wxw + wxvﬁ )2.
(7.18)

7.2 Circuit complexity for ¢* term

Super-potential allows to introduce a variety of supersymmetric interactions, here we
will study complexity for quartic interaction terms namely ¢* + ¢*. The representative
Lagrangian involving quartic interaction in terms of components of super-fields is given

by:

L = |0,0*+in' 9,00+ | F |2+ <mF¢ TS — %nn PV h.c) . (7.19)
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Here F is again representing the auxiliary field as described above, responsible for soft
SUSY breaking. By solving the equation of motion for F' term we get:

mao + A
—

Again identifying the auxiliary field by gradient of the Morse function as described in

F=— (7.20)

previous section, we could compute the circuit complexity by computing the Hessian of
the Morse function for the corresponding perturbed term which then gives:

C(Q) = ‘F?)(xlb?x?}?e?ueva ¢) _I3(xU7xvuxuv70ua¢) ) (721)

where the newly introduced function F3(xy, z,, 0y, 0y, @) and Z3(zy, Ty, Ty, Oy, @) are de-
fined by the following expressions:

F3(xy, Ty, 04,0y, 0) = (Mmi + 2m¢+wxu9u) (Mm% + QM’UQU) ,
(7.22)

I3(Tu, Ty, Ty, Ou, @) := (Mmuxv + vaxu + mg ; AP Tuw + mé —{2— il xv9u> 2 .
(7.23)

Hence we see that circuit complexity for supersymmetric field theories only depends on
the absolute value of the auxiliary field coming from the linear term in the superpotential.
The above method for calculating the complexity of SHO in a similar manner to what we
have used for THO. The number of zero eigenvalues of supersymmetric H is precisely equal
to the Euler number of the manifold, therefore by identifying the F' the term with the
gradient of the Morse function, the critical points are exactly where the F' term becomes
zero and determines the ground state of the system.

8 Comparative Analysis

8.1 SHO

17
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Parameter Non-SUSY QFT SUSY QFT

_ ¢4 + ¢2 ¢2 ¢4 + ¢2 ¢2

Mass Complexity Circuit complexity for | Complexity for Super- | Complexity for Su-
for Non- | Non-SUSY QFT  has | symmetric field theories | persymmetric field
supersymmetric logarithmic support on | has only  polynomial | theories in case of
field theories has | the square of the mass | dependence, namely the | quadratic pertur-
polynomial as well | parameter log(m?26), | quadratic exponent of | bations also has
as logarithmic | and in the infrared (IR) | the mass parameter. For | polynomial, namely
dependence on the | region it takes the form | large masses we observe | the quadratic de-
mass parameter as | —logF(mk). a decrease in rate and | pendence on the
log(md) reaches a saturation value. | mass parameter.

Topological Complexity Complexity due to just | Complexity for supersym- | SUSY complexity

dependence for Non- | quadratic perturbations in | metric field theories due to | due to quadratic
supersymmetric Non-SUSY QFT doesn’t | quadratic interactions de- | term in the su-
field theories has a | have any topological de- | pends on the Hessian of | perpotential  also
fractional reliance | pendence but depends on | the Morse function whose | depends on topo-
on the volume of | the dimension of lattice | gradient has been iden- | logical parameters
lattice for interact- | used for computations tified with the auxiliary | (Hessian of the
ing terms, such as field and also on the criti- | Morse function)
V2 for dimension cal points of the manifold | defined on the
d=3 and hence has topological | manifold.

dependence

Dependence | Complexity Due to quadratic pertur- | Complexity for SUSY | In case of quadratic

on the field for Non- | bations, complexity for | QFT only depends on | perturbation com-
supersymmetric Non-SUSY field theories | the absolute value of the | plexity changes due
field theories de- | on a lattice depends on | non-dynamical auxiliary | to the shift of F-
pends on various | components of the mo- | field, namely the F —term | term which by solv-
parameters of a | mentum vectors and the | a5 F = %W which is | ing the equation
quantized field in | number of oscillators in | identified as the gradient | of motion is given
theories and the | the lattice formalism. It | of the Morse function, | by mT¢ and doesn’t
strength of inter- | doesn’t depend on the | which passes through | have any depen-
action with each | coupling parameter. every critical point on the | dence on coupling
other and mnormal surface constant
frequency modes

Growth  of | Complexity for per- | In the infrared scale i.e | When we change coupling | In supersymmetric

complexity turbating term ¢* | wy < % their is an ad- | A from 1 to -1, we observe | field theories, we
for dimension d > | ditional logarithmic factor | that complexity first rises | have strangely
0 breaks down and | in the complexity and lead | and then have a sudden | observed that com-
in the limit A — 0 | to divergences in the limit | dip. As we go to more neg- | plexity first rapidly
the circuit complex- | § — 0. ative values of lambda, we | grows and then
ity have a continu- observe the rate of satura- | saturates doesn’t
ous limit tion to be faster. change much when

we change the
coupling A to -1

Table 8.1: Comparison in circuit complexity between SUSY & NON-SUSY QFT for SHO
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Parameters

of SHO

Features of graph and Lyapunov

General
features

The graphs rise fast initially and then slowly saturate. The rate of saturation and complexity at
the saturation point depends on the order for perturbation, with ¢* term being the slowest to
saturate. Hence the slope is significant, and the Lyapunov exponent is expected to be larger for
¢* theory. The ¢ theory saturates quickly, giving a smaller slope than the rest and a smaller
Lyapunov exponent.

Mass

For large masses we observe a decrease in rate and saturation value of ¢? theory. It becomes in-
differentiable to the ¢? term as we approach massive fields (hence a smaller Lyapunov exponent).
For smaller masses the ¢ graph approaches ¢?, decreasing slightly in rate. We can expect a
slight increment in the Lyapunov exponent.

When we make A\ negative we observe the saturation is slower in ¢ and ¢> perturbations. In
the case of ¢* perturbation, we encounter a zero, thereby right-shifting the point of initial rise,
increasing the value of the Lyapunov exponent. As we go to more negative values of lambda, we
observe the rate of saturation to be faster, and we expect the Lyapunov exponent to be smaller.

Table 8.2: Discussions on Lyapunov exponent for SHO complexity

8.2 IHO

Parameter

Non-supersymmetric QFT (¢?)

Supersymmetric QFT (¢?)

Mass

Circuit complexity for Non-SUSY QFT in the
regime of inverted harmonic oscillators has a
quadratic dependence on a mass parameter in
the exponential type function, namely the in-
verse cosine hyperbolic function. It has also
been observed that complexity starts to in-

crease before the critical value \ = m?.

Circuit complexity for supersymmetric field
theories for the inverted harmonic oscillator
also has a quadratic dependence on the mass
parameter in the exponential function. We
also observe that as mass increases, the rate
of change of complexity increases.

Topological
dependence

Circuit complexity of Non-supersymmetric
quantum field theories doesn’t have any topo-
logical dependence. However, it depends on
the number of oscillators and dimension of the
lattice

Circuit complexity for supersymmetric field
theories depends on the critical points of the
manifold, and for even values of F' —y, we see
that complexity increases exponentially.

The complexity starts to increase for A < A..
At the critical point, the complexity sharply
increases. Beyond the critical value A = m?2,
the model becomes unstable. We expect the
complexity to grow rapidly with decreasing

pick up time

The change in the value of A contributes to the
rate with increasing values resulting in faster
rates of increase and hence higher slopes. For
negative values of A we observe that complex-
ity decreases exponentially, and the model be-
comes irrelevant.

Growth in
complexity

For inverted harmonic oscillator, complexity
for non-supersymmetric field theories for the
initial time is nearly zero, after which it ex-
hibits linear growth.

On the contrary, the inverted harmonic oscil-
lator complexity doesn’t exhibit any exponen-
tial or linear growth, as seen in figure (9.5).

Table 8.3: Comparison in complexity between NON-SUSY & SUSY QFT for IHO

19



https://doi.org/10.20944/preprints202206.0162.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 June 2022 d0i:10.20944/preprints202206.0162.v1

Parameters of IHO | Features of graph and Lyapunov

General features We do not observe any saturation behaviour, and the complexity values rise quickly
to very high values. Although we can not associate a Lyapunov exponent, we make
general statements about the increase rate (hence the slope) of the graphs. We observe
increased gradients upon adding perturbation terms.

(F—7) For even values, the graphs are increasing exponentially, whereas, for odd values, we
see negative complexity values and hence have not included them in our graphical
analysis.

Momentum p The constant momentum factor acts as a scale multiplying the overall complexity
value and is hence redundant.
Mass For ¢ perturbation, we observe as mass increases, the rate also increases, resulting in

larger slope values. This is also true in the case of ¢* theory, with the only difference
being the symmetry along the vertical-axis.

Temperature The dependence on temperature can be evaluated by varying 3 (the inverse tempera-
ture). By varying this, we can observe that for high temperatures, the rate of increase
is much lesser as compared to lower temperatures in the case of IHO. This is true
for both ¢ and ¢* perturbations. One can note that this behaviour contradicts the
upper bound that we can set for Lyapunov exponents giving us more incentive not to
associate the slope of IHO with the Lyapunov exponent.

A For negative \ value, we observe a mirror inversion of the graph about vertical-axis and
hence the complexity are exponentially decreasing. One can interpret the opposite
behaviour of the graphs with mass and temperature variation in negative A. The
change in the value of A contributes to the rate with increasing values resulting in
faster rates of increase and hence, higher slopes.

Table 8.4: Discussions on Lyapunov exponent for IHO complexity

9 Graphical Analysis

With the computed formulae for complexity for ITHO and SHO in the previous sections,
we plot the graphs using different values of parameters.

9.1 SHO

For SHO, the parameters involved are the mass m and coupling coefficient A for higher-
order theories. We have chosen a simple linear coordinate transformation between the field
variables x and 6 and wu,v. This ensures that the Hessian is a constant, and our computa-
tions become much more straightforward. The particular coefficients of the transformation
have been chosen so that complexity is positive and rising for all cases.

In Fig. 9.1 we have plotted the three different complexities for an intermediate value
of mass, keeping the coupling coefficient fixed. We observe that the complexity rises and
saturates as expected.

It is important to know how the complexity value behaves for different masses. For
lighter particles, as we see in Fig. 9.2, we see a slight overall decrease in the complexity
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Figure 9.1: Complexity against ¢ form =1, A =1
SHO Complexity
1010,' ' ' ' ' ' ]
105" i
10 —
107°} ;
10—10:, ]
10715 ]
0 5 10 15 20 25 30

¢

Figure 9.2: Complexity against ¢ for m = 0.01, A =1
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1 — ¢? term
1 — ¢% term

| — ¢* term

1 — ¢° term
1 — ¢3 term

1 — (;54 term

values, but more importantly, we observe that the graph of ¢* term tends very close to the
¢? graph. We conclude that as the mass grows smaller, the ¢* graph will inch closer and

be in-differentiable to the ¢? graph.
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SHO Complexity
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Figure 9.3: Complexity against ¢ for m = 100, A =1

For larger masses, we see a stark difference. Here the graph of the ¢* theory inches
closer to the ¢? graph as seen in Fig. 9.3 and we can once again expect that it will become
in-differentiable for much larger masses.

The other important parameter that we need to vary is the value of A\, and we start
by seeing what will happen when it is made negative as seen in Fig. 9.4. We know the
behaviour of the complexity remains the same, i.e. it grows and saturates as we go right.
An exciting behaviour occurs in the ¢* graph - We see an initial rise and dip before the
rise and saturation. This indicates that we have a zero in the ¢* theory.

We observe no behavioural changes when we vary the specific value of A apart from
the fact that for higher values, it saturates much quickly (pointing to a larger Lyapunov
exponent) and saturates slower for smaller values (smaller Lyapunov exponent).
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Figure 9.4: Complexity against ¢ for m =1, A = —1
9.2 IHO

For the plots of IHO, we need to keep in mind that there are many more parametric
values. We will do a graphical analysis mainly by varying mass and temperature. We will
merely state the redundancy involved in other parameters and therefore explain our choice
of fixing it.

o [f one looks closer to the formulae given for IHO in Sec. 6 we see the value of the

momentum - p just adds an overall factor that multiplies the function, thereby acting
as a scaling factor. Hence we can set this to p = 1 without any issues.

e Another important parameter that might affect our plots is whether the value of
F — ~is Odd or Even. When it is even, we have positive complexity, and when it
is odd, we find that we are dealing with negative complexity values, which we safely
ignore in the present context of the discussion.

Before we proceed to vary the inverse temperature (/3) and the mass (m), we can take
a look at the general feature of the graphs of different perturbations in the field for both
positive and negative A as we have done in Fig. 9.5 and Fig. 9.6.

We see that the complexity values in all perturbations rise for positive coupling coefhi-
cient but at different rates. In contrast, in the case of a negative coupling coefficient, we
see that they decrease rapidly after an initial period of rising (almost an inverse behaviour
of the positive A case). We also observe symmetry for negative values of the field in the
¢* 4+ ¢* graph. It is important to note that although we can calculate the slope values,
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Figure 9.5: Complexity against ¢ for different perturbations of field with A =1
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Figure 9.6: Complexity against ¢ for different perturbations of field with A = —1

one cannot associate a Lyapunov exponent for the same because saturation does not exist.
Maybe we can regard the slight rise and saturation before the dip in the case of negative
Lambda values and associate a Lyapunov exponent to it.
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(b) Variation of mass

Figure 9.7: behvior of the complexity of ¢* + ¢3 perturbation with varying 8 and m

In Fig. 9.7, we have plotted how the complexity values vary when we vary the inverse
temperature and the mass. Very similar behaviour is observed in the case of ¢? + ¢*
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Figure 9.8: behvior of the complexity of ¢* + ¢* perturbation with varying 8 and m

perturbation, shown in Fig. 9.8.
Since we have already established the behaviour of the complexity in the case of neg-
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ative \, we take the liberty of not explicitly plotting the above variations in the inverse
temperature and mass for that case. One has to imagine a decreasing (cannot associate a
Lyapunov exponent) mirror inversion in the negatively valued domain of the field. This is
true for the cases of both perturbations that we have discussed in the present context.

10 Quantum Chaos from Morse function

The emergence of chaos in quantum phenomena can be estimated using an out-of-time-
order correlation function that is firmly associated with the operator commutator, split up
in time. However, the universal relation C = — In(OT'OC) relating complexity with OTOC
[19, 50-56] has been studied greatly in recent times to diagnose chaos in various physical
models. This section will prove this universal relation for the supersymmetric case, relating
the complexity with OTOC using the frame of Morse theory. We will comment on the up-
per bound of chaos, namely the Lyapunov exponent. In the above sections, by identifying
the Morse function on a manifold with the cost function, we have calculated the com-
plexity for supersymmetric field theories in various regimes in terms of the Hessian H(f)
and also have made use of the fact that the eigenvalues of supersymmetric Hamiltonian
H; are concentrated near the critical points of the Morse function defined on the mani-
fold. In this section, we will make use of the same facts and derive the universality relation.

Theorem - Let ¢(t) be an integral curve which represents the state of the particle at
various time, then if xq,...x,, be a local coordinate chart around a critical point p € M

such that — ., ...., =— 1s an orthonormal basis for T, M with respect to the metric g, then

for any t € R the out-of-time-correlator at p is equal to the exponential of the minus the
matrix of the Hessian at p, 1. e.

2 by = exp(—Hy(1)1) (10.1)

By identifying ¢; as a smooth function on the surface of the manifold we have

Gott.a) = ~(91) (grotta) ). (102)

By changing the order of differentiation for any x € M we get,

% ((%gb(t,x)) . (%v f) (%qﬁ(t,x}) | (10.3)
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Therefore by defining:

0
D(t,x) = —o(t 10.4
(t,2) = 5-6(t,2) (104)
is a solution of the linear system of ODE’s:
d 0

Because exp (— <§V f) t> is also a solution to the linear ODE’s; we finally get:
x

@@xyzgﬁuwy:ap(—(gﬁq)a. (10.6)

Since the solution is unique, thereby, at the location of critical point p we have:

2 buly = exp(—Hy()1) (10.7

Hence by identifying the complexity of SUSY field theories with the Hessian as described
in this paper, the above equation under good approximations could be written as:

C = —In(0TOC). (10.8)

From the above equation, we could see that the Hessian of the Morse function, under
good approximations, is perfectly consistent with universal relation and is of great interest
to capture the effect of chaos in supersymmetric field theories.

we will now comment on the behaviour of Lyapunov exponent in SUSY field theories,
especially in the framework of an inverted harmonic oscillator under which it is expected
to have chaotic features, depending upon the increase in the number of critical points as
described in section 6. Thus we could write the expression for complexity in the THO
regime as:

Ci(t)~cexp(Nt) V i =1,2,....n. (10.9)

It is to be noted that the above equation is valid only for the IHO. The index 7 indicates
the higher order quantum corrections in the Lagrangian for which the complexity has been
measured, then mathematically Lyapunov exponent could be written as:

V= (EO) 010

Now using the universal relation relating complexity with the Out-of-Time Ordered
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Correlation (OTOC) function, one could write:

OTOC = exp(—cexp (At)) (10.11)

where A is the Lyapunov exponent [57-59] which captures the effect of chaos in the quan-
tum regime and relates different measures of complexity with OTOC through the universal
relation. The above universal relation between complexities in different order of perturba-
tions in the superpotential can be translated to the Lyapunov exponent through the MSS

bound as:
2

&

where [ is the inverse temperature. We have shown that the Morse function could be used

N<A<Z YV i=1,2,..n. (10.12)

to classify the topology of surfaces and capture the effect of chaos in the quantum regime
of supersymmetric field theories.

11 Conclusions

Out-of-order-correlation-function (OTOC) in the framework of supersymmetry has been
studied before and, as a result, didn’t show any chaotic behaviour in the regime of SHO.
Our primary focus in this paper was to bring out the relationship between circuit complex-
ity and Morse function and comment on the complexity of supersymmetric quantum field
theory, in the regime of the simple and inverted harmonic oscillator (IHO), by formulating
the potential of IHO as the generators of SL(2, Z) group. By pointing out the relationship
between the cost and Morse function on a manifold, we have explicitly shown how the crit-
ical points on the surface encapsulate the action of the supersymmetric charge on the given
reference state. We have explicitly made use of the fact that the eigenvalues of the super-
symmetric Hamiltonian are concentrated near the critical points of the Morse function in
the manifold, and then using the Witten index, which comments on the symmetry breaking
of the theory, we commented on the complexity of the supersymmetric field theories for
the THO, which increases by a factor of exponential. For computations of complexity in the
regime of the simple harmonic oscillator, we found out that circuit complexity didn’t show
any dependence on initial conditions or exponential behaviour. Next, we have the well
known universal relation relating complexity and out-of-time ordered correlation function
C = —In(OTOC) using the general description of Morse theory.

e Remark I:

The circuit complexity for supersymmetric field theories has very deep connections
with the Morse function defined on the surface of the manifold. We have obtained
the expression for complexity for SUSY field theories in terms of the Hessian of the
Morse function. In doing so, we have made use of the fact the eigenvalues of the
supersymmetric Hamiltonian are concentrated near the critical points of the Morse

29


https://doi.org/10.20944/preprints202206.0162.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 June 2022 d0i:10.20944/preprints202206.0162.v1

function.

e Remark II:
The behaviour of complexity for supersymmetric field theories for the inverted har-
monic oscillator is of prime importance, we have found that the growth of complexity
in the regime of THO is directly related to the growth of the number of critical points
on the manifold, which in turn grows exponentially with respect to the superpoten-
tial, we observed similar behaviour for higher-order quantum corrections namely ¢*
and ¢* theories.

e Remark III:
We have also computed complexity for the simple harmonic oscillator, and found out
that circuit complexity didn’t show any dependence on initial conditions or expo-
nential behaviour. It is also worth mentioning that complexity for supersymmetric
scalar field theories only depends on the absolute value of the non-dynamical auxiliary
field. The F' - term is identified with the gradient of the Morse function determines
whether the supersymmetry is spontaneously broken or not depending upon whether
the gradient has passed through the critical points. On passing through the critical
points, we get F' = 0 which means no zero energy supersymmetric ground states exist.

e Remark 1V:

We have proved the well known universal relation C = —In(OTOC) which relates
complexity with the out-of-time ordered correlation function for supersymmetric field
theories using Morse theory. The out-of-time ordered correlation function is an ex-
cellent gadget to capture the effect of chaos in the quantum regime. In this paper,
we have obtained an upper bound on the Lyapunov exponent and also commented
on its various features for supersymmetric field theories purely for SHO and THO
in table 8.1 and 8.3 using aspects of Morse Theory. The main point of Witten’s
paper on supersymmetry and Morse theory was to provide supersymmetry with a
mathematical structure. Like the Witten index, which tells if the supersymmetry is
broken or not, various results wouldn’t have been possible by the normal description
of particle physics.

e Remark V:
We have found that complexity for supersymmetric field theories differ significantly
from ordinary quantum field theories in the sense that for non-SUSY QFT complex-
ity, slowly starts to increase at the critical point, however for SUSY field theories the
graph rises fast initially and then gradually tends to saturate. The rate of saturation
depends on the order of quantum corrections. The ¢® theory saturates very rapidly
and have the smallest Lyapunov exponent among the other studied perturbations,
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while the complexity for theory involving ¢* term saturates slowly. For IHO, we ob-
served that complexity increases exponentially and quickly rose to very high values
unlike ordinary QFT where it has a linear growth.

e Remark VI:

We have explicitly studied the dependence of mass on the behaviour of circuit com-
plexity and have observed that for massive fields there is a decrease in the rate of
change of complexity for ¢* theory, and it interesting to note that the graph becomes
nearly indistinguishable from that of free field theory. However, for smaller masses,
the complexity for ¢® graph approaches to ¢? slowly with a slight decrease in the
rate of complexity. Hence, we expect an increase in the value of the Lyapunov ex-
ponent. In the case of IHO, we observe that as mass increases, the rate of change of
complexity w.r.t ¢ also increases.

e Remark VII:
We have also commented on the behaviour of complexity w.r.t the coupling constant

A and have observed that for negatives values of A in the regime of SHO the saturation
is slower for ¢? and ¢ perturbations and in the case of ¢* theory their is a sudden dip
at the initial stage to zero thereby right shifting the point of initial rise of complexity.
In the case of IHO, the increase in the value of A results in an increase in the rate
of change complexity; however, for negative values of A we found that complexity
decreases exponentially SUSY field theories.

The future prospects of the present work are appended below:

e Prospect I:
In this paper we have restricted ourselves to supersymmetric scalar field theories,
however similar computations could be done for supersymmetric gauge and non-
abelian gauge theories by taking in consideration the dynamical D - term [60, 61],
which would give further understanding about complexity and effect of chaos in su-
persymmetric field theories.

e Prospect II: circuit complexity for interacting quantum field theories and its re-
lation with renormalization group has been studied by Arpan Bhattacharyya and
collaborator and thus, it will be interesting to see what new mathematical structure
does renormalization group flow brings out and how it is related to complexity|[62-64].

e Prospect I1I: In this paper, we have computed the complexity for SUSY scalar field

theories by making use of the properties of the Hessian matrix. However, we hope
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that this is not all[65]. The use of other remarkable properties of the Morse function
could help in gaining a much broader perspective in supersymmetric field theories
and its matter content and interactions and the effect it has on the expansion of
universe. [66].

e Prospect IV: The study of supersymmetry and its complexity in terms of Morse

theory has given it a geometrical structure, however for theories of supergravity it
is still not quit clear what the right mathematical structure is[67, 68], we suppose
that the work on this direction would bring interesting connections between quantum
chaos and various other mathematical theories.
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