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Abstract: Miscanthus holds a great potential in the frame of the bioeconomy and yield prediction 

can help improving Miscanthus logistic supply chain. Breeding programs in several countries are 

attempting to produce high-yielding Miscanthus hybrids better adapted to different climates and 

end-uses. Multispectral images acquired from unmanned aerial vehicles (UAVs) in Italy and in the 

UK in 2021 and 2022 were used to investigate the feasibility of high-throughput phenotyping (HTP) 

of novel Miscanthus hybrids for yield prediction and crop traits estimation. An intercalibration pro-

cedure was performed using simulated data from the PROSAIL model to link vegetation indices 

(VIs) derived from two different multispectral sensors. Random forest algorithm estimated with 

good accuracy yield traits (light interception, plant height, green leaf biomass and standing biomass) 

using VIs time series and predicted yield using peak descriptor derived from VIs time series with 

2.3 Mg DM ha-1 of RMSE. The study demonstrates the potential of UAVs multispectral in HTP ap-

plications and in yield prediction for providing important information needed to increase sustaina-

ble biomass production. 

Keywords: Miscanthus; remote sensing; UAV; multispectral images; high-throughput phenotyping; 

machine learning; yield prediction; trait estimation; PROSAIL; multi-sensor interoperability 

 

1. Introduction 

Miscanthus is a high yielding perennial biomass crop. Yield is one of the most im-

portant traits of Miscanthus [1] and has been the primary focus of the research portfolio on 

Miscanthus in the last ten years [2–4]. Yield depends not only on the climatic and soil char-

acteristics but also on crop age, harvest date and the genotype/hybrid type [4]. The rate of 

mature yield development varies with climate, but in general increases from 1-3 Mg ha-1 

of dry matter (DM) in the first year to 6-8 Mg DM ha-1 in the second year and to 12 -30 Mg 
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DM ha-1 in the third year and onwards in rainfed Northern and rainfed or irrigated South-

ern Europe [3,5–7]. Independent and collaborative efforts to breed high-yielding Miscan-

thus hybrids to produce sustainable biomass for the growing bio-based European market 

are ongoing in several countries [8–10]. In the EU-BBI demo-project GRACE, novel highly 

upscalable seed-based Miscanthus hybrids are evaluated [8,10–13] in seven European 

countries. Most yield prediction to date has relied on crop growth models driven by cli-

mate and soil data with crop specific parameters [14–16]. For example, MISCANFOR is a 

crop growth model specifically developed to predict Miscanthus x giganteus yields in a 

wide range of environments [17]. It has been widely used and validated at European [9] 

and national level [18] for Miscanthus and other perennial biomass crops [19], but new 

parameterization data to predict yield production of the novel Miscanthus hybrids [8] is 

required [17].  

Yield trait screening and prediction using remote sensing with unmanned aerial ve-

hicles (UAVs) can help both in breeding activities and in obtaining spatial and temporal 

information for optimising Miscanthus biomass supply chain logistics, from field to facili-

ties creating bioproducts or biopower [20,21]. Impollonia et al. [22] recently demonstrated 

the feasibility of moisture content estimation in Miscanthus hybrids using vegetation indi-

ces (VIs) derived from UAV-based remote sensing. Remote sensing approaches can also 

be used to i) estimate yield-related traits for high-throughput phenotyping (HTP) [23–25], 

ii) calibrate crop growth models [26,27] and iii) predict the yield of many crops for com-

mercial purposes [28]. To date, few studies have focused on the estimation and prediction 

of perennial biomass crops traits using remote sensing technologies from satellite or UAV 

[29–31] and only two on Miscanthus [21,22]. Crop traits such as the plant height [32], the 

fraction of absorbed photosynthetically active radiation (fAPAR) [33] and the above-

ground biomass [34] can be estimated from the VIs in combination with machine learning 

(ML) algorithms. One of the most used ML algorithms in remote sensing analyses for crop 

traits estimation is random forest (RF) [35–37]. RF proved to be robust to outliers and 

noise, does not suffer from overfitting, and can manage a high training size [38]. The use 

of ML algorithms shows great potentials in crop yield prediction [39–42]. In particular, 

the use of VIs’ time series helped to derive descriptors of land surface phenology (LSP, i.e. 

the spatial and temporal development of the vegetated land surface) [43–45] such as the 

start of season (SOS), the peak of growing season, the stay-green duration (onset of senes-

cence), the end of the season (EOS), and growing season length [46]. Among the available 

descriptors of LSP, the peak of a VI is one of the most important descriptor for crop yield 

prediction, such as the peak of NDVI [47] and EVI2 [20] for grain yield and the peak of 

GNDVI for biomass yields of perennial grass [29]. Yield prediction is, in many studies, 

theoretical, as it requires to fit the whole seasonal curve for deriving the peak of the time 

series of VIs. This renders impossible the yield prediction before having obtained the data 

of the whole seasonal time series. Being able to perform yield prediction months before 

harvest with partial time series should permit to optimize Miscanthus biomass supply 

chain logistics for practical applications. 

In addition, the VIs values used for estimation and prediction of crop traits are influ-

enced by many factors, such as sensor characteristics, atmospheric conditions during ac-

quisition, viewing angle, field of view, and sun elevation [48]. In the context of crop phe-

notyping, where the field trials are often carried out in multi-location and with different 

UAV sensors, these factors could have a relevant effect on the compatibility of VIs. Among 

different sensors characteristics, the full width at half maximum (FWHM) is the main fac-

tor that influences the comparability of VIs values among different sensors [49]. Indeed, 

due to the different spectral characteristics of the UAV multispectral sensors available on 

the market, differences among VIs derived from multiple UAV sensors for the same target 

can be found [48]. For this reason, there is a need to increase the interoperability of the 

sensors using equations able to overcome these differences through advanced linking pro-

cedures between the VIs of sensors [50,51]. The multi-sensor interoperability is an im-

portant topic in remote sensing science [52–54] when multi-location monitoring is con-

ducted. Overcoming this problematic can be realised by intercalibrating the VIs obtained 
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by different sensors and evaluating the correlation through linear regressions [55–57]. 

This intercalibration can be realised in two main ways: a direct approach where VIs are 

measured by sensors [58] and an indirect approach where VIs data are simulated by radi-

ative transfer models [59]. A major limitation of the direct regression approach is that it is 

not transferable because it is site-specific [50]. On the contrary, the indirect approach per-

mits to retrieve VIs data from radiative transfer models such as the PROSAIL model 

[60,61]. PROSAIL has been used to assess the performances of different satellite sensors 

for multiple VIs [62] but a similar application is currently lacking in UAV science. Hence, 

the use of such approach for VIs intercalibration in UAV science might allow to overcome 

the problematic of multi-sensor interoperability across different sites.  

In summary, the overall objectives of this study based on UAV remote sensing were: 

i) to estimate crop traits (light interception, plant height, green leaf biomass and standing 

biomass) for supporting breeding programs and for providing modelling parameters for 

Miscanthus, ii) to predict yield to obtain spatial and temporal information for improving 

the logistics biomass supply chain of Miscanthus, and iii) to explore the potential impact 

of the timeliness on the yield prediction, by evaluating the performance of the yield pre-

diction model using peak derived from partial time series of VIs. To achieve these over-

arching objectives, UAV multispectral images and ground phenotypic data were collected 

at two locations within the same multi-environment trial: one in Italy and one in the UK.  

These data were analysed using: i) the PROSAIL model to simulate crop spectral signa-

tures in order to intercalibrate VIs of two different common multispectral sensors, ii) ran-

dom forest (RF) algorithm to estimate crop traits using the VIs time series and to predict 

yield using the peak descriptor derived from the VIs time series, for the reliability it 

achieved in previous studies [20,29,47], and iii) generalized additive model (GAM) to de-

rive peak from complete and partial time series of VIs. 

2. Materials and Methods 

2.1. Experimental design 

The field trials were conducted in two locations: PAC 1 located in San Bonico in the 

Italian province of Piacenza (NW Italy) (45°00′11.70′′ N, 9°42′35.39′′ E) and TWS 1 located 

in Trawscoed near Aberystwyth in Wales (UK) (52°24'59.8"N, 4°04'02.6"W). These sites are 

two of the seven plot scale (PS) trials conducted within EU-BBI GRACE demo-project. In 

PAC 1 the climate is temperate with a mean annual precipitation of 792 mm, while the 

climate in TWS 1 is oceanic with a mean annual precipitation of 984 mm. The trials were 

established in April 2018 with 14 Miscanthus hybrids with n = 4 replicates for a total of n = 

56 plots. The trials were planted with eight novel intraspecific M. sinensis x M. sinensis 

hybrids (M. sin x M. sin), five novel interspecific hybrids M. sinensis x M. sacchariflorus (M. 

sin x M. sac) and M. x giganteus as control genotype (for more details see Impollonia et 

al.[22]). 

2.2. Phenotypic and yield measurements 

Phenotypic measurements were taken from the emergence of the crop in spring 2020 

until the winter harvest in the early months of 2021. This season will thereafter be referred 

to as the 2020 growing season. These phenotypic measurements were carried out in the 

two locations and on four out of the fourteen hybrids in the trial: GRC 3 (M. sin x M. sin), 

GRC 14 (seeded) and GRC 15 (clonal) (M. sin x M. sac) and GRC 9 (standard clonal M. x 

giganteus). The measurements of this study were carried during 3rd growing season. Five 

contiguous plants along a central row in each plot were used for monitoring along the 

growing season. The following list of crop traits were measured along the growing season: 

plant height (cm) and light interception (%) were measured weekly; green leaf biomass 

(Mg DM ha-1) and standing biomass (Mg DM ha-1) were measured fortnightly. One hun-

dred seventy-two and 145 data were collected for light interception, 240 and 204 for plant 

height, 232 and 316 for green leaf biomass, and 268 and 328 for standing biomass, in PAC 

1 and TWS 1 respectively. Plant height was measured from the soil to the height of the last 

ligule of the tallest stem using a graduated pole until crop reached complete flowering or 

started to senesce in November. Light interception was measured with a lab-constructed 
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1m “line ceptometer” with 10 photodiodes at 10 cm spacings generating an electric current 

which is converted with simple circuitry to a voltage linearly proportional to the light 

intensity. Light intensity was measured above the canopy and at the base of each of the 

five selected plants. Light interception measurements were carried out from emergence 

until full canopy closure (around 95% of light is intercepted by the crop canopy) on a 

weekly basis and later at a lower frequency. Standing aboveground biomass was esti-

mated on a monthly basis, starting after emergence in 2020 until harvest in winter 2021 

using the methods described in Magenau et al. [63]. In brief, 10 randomly sampled shoots 

per plot each fortnight (aka ‘serial cuts’) were related to the final quadrat yields at spring 

harvest and used to back calculate the seasonal dynamics of above ground biomass (Mg 

DM ha-1) from spring emergence until final harvest in the following spring. Each 10 shoot 

serial cuts were separated into green leaf, brown leaf, and stem fractions. The fresh weight 

measured in field, and the dry weight measured after oven drying to constant weight at 

80ºC were used to calculate the mass and moisture contents of each fraction and were 

scaled to Mg DM ha-1. The crop phenological stages were estimated using the thermal time 

following the method proposed on M. x giganteus by Tejera et al. [64]. Thermal time was 

measured in growing degree days (GDD, °C Day) as: 

 

𝐺𝐷𝐷 =  [
𝑇𝑚𝑎𝑥  +  𝑇𝑚𝑖𝑛

2
] −  𝑇𝑏  (1) 

 

where 𝑇𝑚𝑎𝑥  and 𝑇𝑚𝑖𝑛  are the daily highest and lowest temperatures measured by a 

weather station situated at each experimental site, and 𝑇𝑏  is a base growth temperature 

of 6°C [65]. Two main phenological stages were estimated: vegetative growth and senes-

cence. The GDD accumulation started at plant emergence, and the accumulation of 1500 

GDD was used as the threshold marking the difference between the vegetative growth 

and senescence. The final harvested yield was measured for all the fourteen hybrids using 

a quadrat area of 6.6 m2 (10 plants per plot planted at 1.5 plants m-2 (M. x giganteus and M. 

sin x M. sac) or 20 plants per plots at 3 plants m-2 (M. sin x M. sin)) and a cutting height of 

10 cm. In each plot, the fresh weight of all plants in the quadrat was recorded and a sub-

sample of approximately five stems per plot was used to determine the moisture content 

and calculate the yield in Mg DM ha-1. Plants were harvested on February 2nd 2021 (Days 

of year (DOY): 33) at PAC 1 and on March 8th 2021 (DOY: 67) at TWS 1. 

2.3. UAV multispectral data and vegetation indices 

Unmanned aerial vehicle (UAV) multispectral data acquisition flights were per-

formed approximately fortnightly from 24/04/2020 to 01/02/2021 at the PAC 1 (25 flights) 

site and from 09/06/2020 to 25/02/2021 at the TWS 1 (17 flights) site (Figure 1). Table 1 

details the specifications of the UAVs and the multispectral cameras used at the two sites. 

All the flights were performed between 11 am and 3 pm with flight altitude above ground 

level (AGL) fixed at 50 m and 40 m at PAC 1 and TWS 1, respectively. The forward and 

lateral overlap was set at 80% and 75% of the images, respectively. Spectral panels and 

light sensors mounted on top of the UAVs were used for the radiometric calibration of the 

images. The radiometric calibration and orthomosaic generation were done using the 

Pix4D mapper (Pix4D, S.A., Lausanne, Switzerland). The 15 vegetation indices (VIs) were 

calculated as shown in Table 2 using the orthomosaic. The mean of the VIs was extracted 

for each plot using the polygons of the experimental designs that were drafted in Auto-

CAD (Autodesk, San Rafael, California, USA) and georeferenced with QGIS software 

(QGIS Development Team, 2021). 
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Figure 1 Seasonal calendar of UAV flights performed in the two locations according to the esti-

mated phenological stages (vegetative growth and senescence). 

Table 1 Unmanned aerial vehicles (UAVs) and multispectral cameras used to perform flights in the 

two locations, with their respective characteristics of spectral bands, central wavelength, and full 

width at half maximum (FWHM). 

Location UAV 
Multispectral camera characteristics 

Model Band 
Centre 

(nm) 

FWHM 

(nm) 

PAC 1 

 

DJI M210 RTK 

 

MicaSense 

RedEdge-Mx 

 

Blue 475 32 

Green 560 27 

Red 668 14 

Red edge 717 12 

Near-infrared 840 57 

TWS 1 DJI M210 SlantRange 4P 

Blue 470 100 

Green 550 100 

Red 650 40 

Red edge 710 20 

Near-infrared 850 100 
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Table 2 List of the vegetation indices evaluated in random forest models for crop traits estimation 

and for yield prediction of Miscanthus.  

VIs Equation Reference 

Datt1 
NIR − RedEdge

NIR + Red
 [66] 

EVI2 2.4
NIR − Red

1 + NIR + Red
 [67] 

GNDVI 
NIR − Green

NIR + Green
 [68] 

GOSAVI 
NIR − Green

NIR + Green +  0.16
 [69] 

greenWDRVI 
0.1NIR − Green

0.1NIR + Green
+

1 − 0.1

1 +  0.1
 [70] 

MSAVI 2NIR +  1 −  √(2NIR +  1)2 −  8(NIR −  Red)

2
 

[71] 

MTVI1 1.2(1.2(NIR - Green) - 2.5(Red - Green)) [72] 

MTVI2 
1.5

1.2(NIR −  Green)  −  2.5(Red −  Green)

√(2NIR +  1)2 −  6NIR − 5√Red −  0.5  

 [72] 

NDRE 
NIR − RedEdge

NIR + RedEdge
 [73] 

NDVI 
NIR − Red

NIR + Red
 [74] 

OSAVI (1 +  0.16)
NIR − Red

NIR + Red +  0.16
 [75] 

OSAVI2 (1 +  0.16)
NIR − RedEdge

NIR + RedEdge +  0.16
 [76] 

rededgeWDRVI 
0.1NIR − RedEdge

0.1NIR + RedEdge
+

1 − 0.1

1 +  0.1
 [70] 

SAVI (1 +  0.5)
NIR − Red

NIR + Red +  0.5
 [77] 

WDRVI 
0.1NIR − Red

0.1NIR + Red
+

1 − 0.1

1 +  0.1
 [70] 

 

2.4. Using the PROSAIL model to intercalibrate VIs from different multispectral sensors 

The PROSAIL model was used to simulate crop spectral signatures to intercalibrate 

VIs (Table 2) calculated from the two different multispectral sensors used in this study 

(Table 1). The PROSAIL can simulate the canopy reflectance, between 400 and 2500 nm, 

by combining the PROSPECT and SAIL models. The PROSPECT model simulates the op-

tical properties of the leaves using 4 input parameters: leaf structure parameter (N), leaf 

chlorophyll content (LCC), relative leaf equivalent water thickness (Cwr) and leaf dry mat-

ter content (Cm). The SAIL model simulates the bidirectional reflectance of a canopy using 

6 input parameters: leaf area index (LAI), leaf inclination distribution (LIDF), hotspot pa-

rameter (hot), solar zenith angle (tts), observer zenith angle (tto) and relative azimuth an-

gle (psi). Canopy and leaf parameters for Miscanthus were retrieved from available data 

on literature [78,79]. The hsdar R package [80] was used to simulate the canopy reflectance 

of the PROSAIL model using the function PROSAIL which uses the FORTRAN code of 

the PROSAIL model (Version 5B). The look-up table (LUT) generated included 430,080 

parameter combinations following the min-max ranges of input parameters summarized 

in Table 3. 
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Table 3 Ranges of input parameters for the PROSAIL model for the generation of the LUT. 

Parameter Abbreviation Unit Values (step) 

Leaf 

Structure parameter N Unitless 1 – 2 (1) 

Chlorophyll content LCC µg cm-2 10 – 80 (10) 

Relative equivalent water thickness Cwr % 20 – 80 (20) 

Dry matter content Cm g cm-2 0.01 – 0.025 (0.005) 

Canopy 

Leaf area index LAI m2 m-2 1 – 8 (1) 

Leaf inclination distribution LIDF  Spherical 

Hotspot parameter hot m m-1 0.05 – 0.45 (0.2) 

Solar zenith angle tts deg 20 – 80 (10) 

Observer zenith angle tto deg 5 – 10 (5) 

Relative azimuth angle psi deg 180 – 220 (10) 

Structure parameter N Unitless 1 – 2 (1) 

The present work considers all potential parameters combinations for LUT genera-

tion because the novel Miscanthus hybrids evaluated have not previously been studied in 

literature and because the crop monitoring was performed on the whole growing season 

(vegetative growth and senescence). The spectral reflectance simulated were resampled 

based on UAV sensors characteristics (Table 1) and the 15 VIs used in this study were 

calculated. For each VI, regression analysis was conducted to intercalibrate the VI values 

calculated from the two multispectral sensors. Linear regressions were performed using 

the VIs and not the spectral bands, in order to i) evaluate the different sensitivity of the 

VIs to sensor characteristics and ii) identify which VIs need an intercalibration procedure 

between sensors. The final database of VIs was built by scaling SlantRange sensor VIs data 

toward MicaSense one. 

2.5. Time series of VIs and peak derivation 

The 15 VIs calculated from UAV multispectral images of the two sites and intercali-

brated using the linear models derived by the PROSAIL simulation were smoothed using 

a generalized additive model (GAM) to generate daily VIs time series. The GAM is a non-

parametric regression model which allows non-linear fitting of the variables. GAM mod-

els were fitted in R package “mgcv” [81]. GAM fittings of VIs allows to remove the outliers 

and regularize the time series [22,82,83]. The time series of VIs for each plot were fitted 

against the modified days of the year (DOYM). The DOYM was used to overcome the prob-

lem of having non-sequential DOY throughout the growing season, as this last overlaps 

two different years. DOYM were calculated as conventional DOY for the first year of the 

growing season (2020) and as DOY + 365 starting from the 1st of January for the year 2021. 

Daily time series of the VIs were used to estimate the crop traits by linking the traits 

values measured in the field with the VIs values of the time series. To predict yield, the 

peak descriptor was chosen among several land surface phenology (LSP) descriptors, due 

to the reliability it achieved in previous studies [20,29,47]. The peak descriptor is defined 

as the maximum value and was derived from the GAM fitting of each VI time series. Two 

types of VIs time series were evaluated to derive the peak descriptor value: complete and 

partial times series. Complete VIs time series were obtained by fitting the GAM models 

to the VIs data acquired throughout the entire growing season. Partial time series were 

obtained in two steps. Firstly, by fitting the GAM models to the VIs values obtained from 

a reduced set of initial UAV flights over the crop. The first seven flights (175 DOY in PAC 

1 and 266 DOY in TWS 1) were selected to form this reduced set of initial UAV flights, 

based on physiology and phenology of Miscanthus, to cover most of the vegetative phase, 

the seventh flight being close to the peak of biomass accumulation. Secondly, the VIs data 

obtained from the following UAV flights were added one by one to the data fitted in the 

first step, up to the end of the season. The peak derived from complete time series of VIs 

were used for the yield prediction modelling and those from partial time series of VIs 

were used to analyse the variation of peak values and the model performance in order to 

assess feasibility of “early season” yield prediction during Miscanthus crop grow. 
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The random forest (RF) algorithm was used to estimate the crop traits (section 2.2) 

and to predict the yield of Miscanthus hybrids. The RF models were created using the caret 

R package [84]. Three steps in RF modelling were adopted: firstly, RF models were created 

for i) traits estimation using the 15 VIs of the 4 Miscanthus hybrids (see section 2.2) and 

phenological stages (encoded as 0 and 1 for the stages of vegetative growth and senes-

cence, respectively) and ii) yield prediction using the peak values derived from complete 

time series of the 15 investigated VIs of the 14 Miscanthus hybrids; secondly, the im-

portance of variables for each tested RF models was calculated by dropout loss of RMSE 

and the variables with a median of RMSE loss greater than 0 were selected; thirdly, the RF 

models used to estimate the variable of interest (i.e. crop traits or yield) were created using 

only the selected variables. The optimal size of the variable subset (“mtry”) for each model 

was obtained by grid-searching method using repeated k-fold cross-validation (ten-fold 

cross validation repeated 5 times). The training dataset was created using a stratified ran-

dom sampling method [34]: data from both locations and genotypes were split into 2/3 of 

the dataset for training and 1/3 for testing based on data distribution. The variable im-

portance was calculated by dropout loss of RMSE (i.e.  increase of prediction RMSE [85]) 

using the DALEX package [86]. To show the uncertainty of importance estimation, the 

variable importance was calculated for 10 permutations [85]. The RF models’ perfor-

mances were evaluated through the root mean square error (RMSE) and the normalized 

root mean square error (NRMSE), calculated as follows: 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑖 − 𝑦𝑖)2𝑛

𝑖=1

𝑛
 (2) 

𝑁𝑅𝑀𝑆𝐸 (%) =  
√

∑ (𝑥𝑖 − 𝑦𝑖)
2𝑛

𝑖=1

𝑛
�̅�

100 
(3) 

 

where 𝑛 is the number of samples, 𝑥𝑖 and 𝑦𝑖  are the estimated and measured value 

of each trait, and �̅� is the mean of the measured values. RMSE and NRMSE metrics were 

also used to compare the performance of the yield prediction model using test datasets 

with the peak derived from complete and partial time series of VIs. 

3. Results 

3.1. PROSAIL model for intercalibration of VIs derived from different multispectral sensors 

The outputs of the linear regressions analysis for each VI of interest (see Table 2) as 

calculated from PROSAIL model simulation considering the specific spectral response 

function of the two sensors (y - the MicaSense VIs and x - the SlantRange VIs) are reported 

in Figure 2. EVI2, MSAVI and SAVI were the three VIs with the slope values closest to 1 

and intercept values closest to 0 (Figure 2). The slope values of these VIs were 0.99 for 

EVI2, 0.99 for MSAVI and 0.97 for SAVI, while the intercept was respectively 0.016 for 

EVI2, 0.02 for MSAVI and 0.025 for SAVI. OSAVI had a similar relation (slope: 0.91) but 

showed higher variability at VI values lower than 0.6. Datt1, NDRE and OSAVI2 had a 

relationship between the two sensors with a slope close to 1 but they showed a different 

intercept indicating and offset of SlantRange sensor due to underestimation of the VI com-

pared to MicaSense (Figure 2). A slope close to 1 associated with a high variability for the 

whole range of VI values was observed for MTVI1 (slope: 1) and MTVI2 (0.97). GNDVI, 

GOSAVI, greenWDRVI and NDVI showed instead the highest differences between the 

two sensors at the lowest values of VI. On the contrary, rededgeWDRVI showed the high-

est differences at high VI values.  
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Figure 2 Linear regression between VIs MicaSense and SlantRange derived from the PROSAIL 

model. The 1:1 relationship is represented by a dashed line. 
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3.2. Importance of variables in machine learning models 

Importance of random forest (RF) models’ variables for crop trait estimations and for 

yield prediction are shown in Figure 3. The analysis of variables' importance for the RF 

models was evaluated by drop-out loss of RMSE for each variable compared to the full 

model [85,86]. Phenological stage (“Stage”) was the most important variable for estimat-

ing plant height, green leaf biomass and standing biomass (Figure 3). For crop trait esti-

mations, the two most important VIs were NDVI and MTVI1 for light interception, 

rededgeWDRVI and NDVI for plant height, and greenWDRVI and GNDVI for green leaf 

biomass and standing biomass. For yield prediction using VIs peaks values, the most im-

portant VIs (with a median of RMSE loss greater than 0) were greenWDRVI, NDVI, 

WDRVI, GNDVI and MTVI2 (Figure 3) and the peak values of these five VIs will therefore 

be used for RF modelling. 

 

Figure 3 Importance of the RF models variables for crop trait estimations and for yield prediction, 

expressed as drop-out loss of model performance (RMSE) for each variable related to the drop-out 

loss of the full model (dotted line). *The RMSE values are in (%), (cm), (Mg DM ha-1), (Mg DM ha-

1) and (Mg DM ha-1) respectively for the light interception, plant height, green leaf biomass, stand-

ing biomass and yield. 
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3.3. Machine learning model for crop traits estimation 

Crop traits distribution of contrasting Miscanthus hybrids measured at two locations 

is shown in Figure 4. The frequency distribution of the traits (light interception, plant 

height, green leaf biomass and standing biomass), which values were used for training 

and testing the models, showed that lower values were recorded in TWS 1 than in PAC 1 

(Figure 4). For light interception, the range was from 5.2 % to 100 % in TWS 1 and PAC 1, 

and the mean was 58 % in TWS 1 and 81.5 % in PAC 1. The mean of plant height was 211 

cm in PAC 1 and 147 cm in TWS 1, with the range from 28 cm to 344 cm and from 22 cm 

to 280 cm in PAC 1 and TWS 1, respectively. The range and the mean of green leaf biomass 

were from 0.14 Mg DM ha-1 to 14.5 Mg DM ha-1 and 5 Mg DM ha-1 in PAC 1 and from 0.05 

Mg DM ha-1 to 6.3 Mg DM ha-1 and 1.5 Mg DM ha-1 in TWS 1. For standing biomass, the 

range was from 0.5 Mg DM ha-1 to 46.4 Mg DM ha-1 in PAC 1 and from 0.5 Mg DM ha-1 to 

21.1 Mg DM ha-1 in TWS 1, and the mean was 8 Mg DM ha-1 in TWS 1 and 18.9 Mg DM ha-

1 in PAC 1. 

 

 

Figure 4 Frequency distribution of Miscanthus traits at the two locations PAC 1 and TWS 1: (a) light 

interception (%), (b) plant height (cm), (c) green leaf biomass (Mg DM ha-1) and (d) standing biomass 

(Mg DM ha-1). 

Overall, the RF model estimated crop traits with good model performances (Figure 5 

and Figure 6). Among the crop traits, light interception was estimated with the greatest 

accuracy (NRMSE of 10.9 %, Figure 5). High model accuracy was also achieved for the 

estimation of plant height (21.8 NRMSE %), while the lowest model accuracies were ob-

served for the green leaf biomass and standing biomass (42.2 % and 45.3 % of NRMSE, 

respectively Figure 5). For these last parameters, the RF model showed good accuracy 

from low to intermediate values, while above values of 5 Mg DM ha-1 of green leaf biomass 

and 20 Mg DM ha-1 of standing biomass the model performances dropped. The NRMSE 

performance metrics for each location and hybrid are reported in Figure 6. Generally, no 

relevant differences were observed between the two locations (Figure 6). In PAC 1, the 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 June 2022                   doi:10.20944/preprints202206.0120.v1

https://doi.org/10.20944/preprints202206.0120.v1


 

GRC 3 hybrid showed the worst performance for green leaf biomass, for standing biomass 

and for plant height, while in TWS 1, GRC 14 hybrid showed the worst performance for 

all the crop traits considered, except for plant height. 

 

Figure 5 Estimated vs measured crop traits on the ground of four Miscanthus hybrids growth at PAC 

1 and TWS 1: (a) light interception (%), (b) plant height (cm), (c) green leaf biomass (Mg DM ha-1) 

and (d) standing biomass (Mg DM ha-1). 

 

Figure 6 NRMSE values of the RF models obtained for each crop trait assessed in four hybrids grown 

at the two locations PAC 1 and TWS 1. Note: lower values indicate higher estimation accuracies. 
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3.4. Machine learning model for yield prediction 

The frequency distribution of yield measured for the 14 Miscanthus hybrids in PAC 1 

and TWS 1 is shown in Figure 7. On average, the yield of Miscanthus was higher in PAC 1 

than in TWS 1. In PAC 1, the highest yield was recorded by M. sin x M. sac (mean of 18.3 

Mg DM ha-1). M. sin x M. sin productivity averaged 11.3 Mg DM ha-1, while M. giganteus 

was the less productive (mean of 9.6 Mg DM ha-1). In TWS 1, the highest yield was rec-

orded by M. sin x M. sin (mean of 9.4 Mg DM ha-1). M. sin x M. sac productivity averaged 

8.2 Mg DM ha-1 while M. giganteus was the less productive (mean of 6.6 Mg DM ha-1). The 

RF model, trained and tested with the yield values reported in Figure 7, enabled a reliable 

prediction of Miscanthus yield for all hybrids using the peak derived from complete time 

series of VIs (Figure 8). The RF model obtained a RMSE value of 2.3 Mg DM ha-1 and 

NRMSE value of 19.7 % (Figure 8a). In PAC 1, M. sin x M. sac showed the lowest NRMSE 

value while M. sin x M. sin showed the highest NRMSE value. On the contrary, in TWS 1, 

M. sin x M. sin showed the lowest NRMSE value while M. sin x M. sac showed the highest 

NRMSE value (Figure 8b). The modified days of the year (DOYM) of the peak of the VIs 

(greenWDRVI, NDVI, WDRVI, GNDVI and MTVI2) are reported in Figure 8c. On aver-

age, the VIs reached the peak earlier in PAC 1 (172 DOYM – June 20th) than in TWS 1 (DOYM 

232– August 19th). In PAC 1, all hybrids reached the peak at the same time while in TWS 

1 all M. sin x M. sin hybrids were the earliest to reach the peak (228 DOYM - August 15th), 

while M. sin x M. sac hybrids and M. x giganteus reached the peak along a wide timespan 

ranging from end-September until mid-November (Figure 8c). 

 

 

Figure 7 Frequency distribution of yield (Mg DM ha-1) for the different Miscanthus hybrids at the 

two locations PAC 1 and TWS 1. 
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Figure 8 (a) Predicted vs measured yield (Mg DM ha-1), (b) NRMSE of the RF model for yield pre-

diction and (c) boxplot of the modified days of the year (DOYM) of the peak derived from complete 

time series of the 5 VIs (greenWDRVI, GNDVI , MTVI2, NDVI and WDRVI,), of the different Mis-

canthus hybrids at two locations PAC 1 and TWS 1. 

3.5. Time series of VIs and yield prediction analysis 

The complete time series of the five VIs identified as the most important for yield 

prediction (see § 3.2 and figure 3) are reported in Figure 9a for PAC 1 and Figure 10a for 

TWS 1. In PAC 1, all VIs values recorded throughout the growth of Miscanthus were the 

highest for M. sin x M. sac and the lowest for M. giganteus (Figure 9a), following the same 

order of the mean yield measured in the field (Figure 7). In TWS 1, similar time series of 

all VIs were recorded for the M. sin x M. sac and M. giganteus (Figure 10a). In particular, 

the peaks of M. sin x M. sac and of M. giganteus were reached later than that of M. sin x M. 

sin, as shown in Figure 8c. The variation throughout the season of the peak derived by 

fitting the VIs via generalized additive model (GAM) are displayed in Figure 9b for PAC 

1 and Figure 10b for TWS 1. In PAC 1, the difference between the value of the peak derived 

from the complete time series of VIs and the value of the peak derived from the partial 

time series of VIs is the lowest (close to zero) after the DOYM 302 (end-October). Before 

this date, the peaks differences are lower for M. sin x M. sin than M. sin x M. sac and M. 

giganteus (Figure 9b). In TWS 1, the difference between the value of the peak derived from 

the complete time series of VIs and the value of the peak derived from the partial time 

series of VIs is lowest after DOYM 331 (end-November). As for PAC 1, the peaks differ-

ences are lower for M. sin x M. sin than M. giganteus and M. sin x M. sac (Figure 10b) in 

TWS 1 before 331 DOYM. The timeline of the performance of the RF model tested with the 

VIs peak from partial time series is reported in Figure 11. In PAC 1, the NRMSE decreased 

until DOYM 302 for M. giganteus and M. sin x M. sac while for M. sin x M. sin, it remained 

stable for all UAV flights performed from 175 DOYM and onward. In TWS 1, no relevant 

differences in NRMSE were observed between the UAV flights performed from 266 DOYM 

and onward. 
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Figure 9 (a) Time series of the five VIs (GNDVI, greenWDRVI, MTVI2, NDVI, WDRVI) fitted via 

generalized additive model (GAM) throughout the growing season of Miscanthus in PAC 1. Modi-

fied days of the year (DOYM) were calculated by adding 365 to the DOY of the corresponding year 

from January on. (b) Variation of the peak of the VIs derived from complete time series of the VIs as 

compared to the peak of the VIs derived from partial time series of the VIs. In the x-axis are reported 

the DOYM of the UAV flights performed during the season in PAC 1. In the y-axis are reported the 

peak differences between the peak derived to the end of the season in PAC 1 (397 DOYM) and the 

peak derived from partial time series fitted until the DOYM of the UAV flight. 
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Figure 10 (a) Time series of the five VIs (GNDVI, greenWDRVI, MTVI2, NDVI, WDRVI) fitted via 

generalized additive model (GAM) throughout the growing season of Miscanthus in TWS 1. Modi-

fied days of the year (DOYM) were calculated by adding 365 to the DOY of the corresponding year 

from January on. (b) Variation of the peak of the VIs derived from complete time series of the VIs as 

compared to the peak of the VIs derived from partial time series of the VIs. In the x-axis are reported 

the DOYM of the UAV flights performed during the season in TWS 1. In the y-axis are reported the 

peak differences between the peak derived to the end of the season in TWS 1 (421 DOYM) and the 

peak derived from partial time series fitted until the DOYM of the UAV flight. 
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Figure 11 NRMSE values of the RF model for yield prediction, trained with the peak of the VIs 

derived from complete time series and tested with the peak of the VIs derived from partial time 

series fitted until the modified days of the year (DOYM) of the UAV flight, at the two locations PAC 

1 and TWS 1. 

4. Discussion 

The use of UAV-based remote sensing provides a great potential for high-throughput 

phenotyping (HTP) at plot scale with applications in both breeding and in estimating the 

quality and quantity of the biomass for optimising downstream management of biomass 

fluxes. In this study, vegetation indices (VIs) and their peak were derived from unmanned 

aerial vehicles (UAVs) mounted multispectral sensors, to estimate crop traits (light inter-

ception, plant height, green leaf biomass and standing biomass) and to predict the final 

harvestable yield of novel Miscanthus hybrids and common M. x giganteus grown at two 

sites (Italy and UK).  

4.1. The importance of VIs intercalibration procedure for multi-sensor interoperability 

Intercalibrating VIs of multi-sensor is relevant for remote sensing crop monitoring 

[54], particularly when the objective is to build models to estimate crop traits or to predict 

yield, and when sensors with different spectral characteristics are used. Indeed, the mod-

els might not reach the same accuracy if the VIs are calculated with sensors with different 

spectral band characteristics. The spectral signatures simulated from the PROSAIL model 

were used in this study to intercalibrate VIs calculated from two common multispectral 

cameras (MicaSense RedEdge-MX and SlantRange 4P). Ideally, the VIs from any sensor 

can be then intercalibrated against the VIs of a selected reference sensor. This intercalibra-

tion approach is commonly adopted for VIs obtained from different satellites [59] but to 

our knowledge, this is the first time that such an approach is applied to UAV multispectral 

sensors. PROSAIL model was used to simulate the canopy reflectance based on the value 

of specific Miscanthus traits, such as LAI, chlorophyll content, dry matter content, relative 
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equivalent water thickness, leaf inclination distribution and two site-specific info: solar 

zenith angle and relative azimuth angle. This approach was applied to the values of 15 

VIs. EVI2, MSAVI and SAVI were the three VIs with the closest 1:1 relation, which indi-

cates that these VIs have a very low sensitivity to the spectral characteristics of the two 

sensors used in the present work. Similar results with no need for intercalibration for the 

same VIs were reported by  Li et al. [87] that compared ETM+ and OLI satellite imageries. 

However, the other VIs evaluated in this study (Datt1, GNDVI, GOSAVI, greenWDRVI, 

MTVI1, MTVI2, NDRE, NDVI, OSAVI, OSAVI2, rededgeWDRVI and WDRVI) showed a 

higher sensitivity to sensor characteristics, underlining the importance of intercalibrating 

VIs for multi-sensor interoperability. In particular, the VIs based on the green and red-

edge bands showed a higher variation than the VIs based on the red band at all ranges of 

values. These differences are explained by the differences in the spectral characteristics of 

MicaSense and SlantRange in the green and red-edge bands. In particular, the SlantRange 

sensor has a broader green FWHM (100 nm) and a different central wavelength (710 nm) 

of the red edge compared to the MicaSense sensor (green FWHM: 27 nm and red edge 

central wavelength: 717 nm). This difference was already reported to cause considerable 

signal differences in other studies [88,89].  

This study highlighted the importance of intercalibrating different multispectral sen-

sors to increase interoperability in remote sensing. Kim et al. [90] and Villaescusa-Nadal 

et al. [91] reported that the use of linear regression equations to intercalibrate multi-sensor 

contributes to significantly correct (up to 50%) the effects of different spectral characteris-

tics on VIs. However, it would be interesting to validate this procedure by flying simulta-

neously on the same field with two UAV sensors, comparing the values of the VIs with 

and without the intercalibration procedure, in order to evaluate the improvement in terms 

of VIs compatibility and multi-sensor interoperability. In fact, even if the spectral charac-

teristics of the multispectral sensor are the factor that influences the most the compatibility 

of the VIs of different sensors [49], other factors cause differences of VIs such as the at-

mospheric conditions during acquisition [48]. In the UAV images acquisitions, the chang-

ing light and meteorological conditions during the flights can affect the quality of the 

spectral data [92]. Therefore, this procedure is limited by other factors that cannot be con-

sidered by applying a simulated regression coefficient. However, using equations able to 

intercalibrate VIs derived by multiple multispectral sensors can reduce differences in VIs 

improving crop monitoring and modelling for estimation of crop traits and prediction of 

yield. 

4.2. Estimating Miscanthus traits with machine learning 

This study estimated Miscanthus traits using the random forest (RF) machine learning 

algorithm. The RF model was trained with the data collected on three novel seed-based 

Miscanthus hybrids and the common rhizome-based genotype M. x giganteus, at two con-

trasting locations (North-West Italy and Mid-West Wales). The RF algorithm, using 15 

common VIs, successfully estimated crop traits, solving the non-linear responses between 

VIs and crop traits observed by Li et al. [31] for other perennial crops. The estimation of 

the crop traits from time series of VIs acquired by UAV-based remote sensing can generate 

more data useful to calibrate existing Miscanthus crop models and to re-fine these models 

for novel Miscanthus hybrids in contrasting environments. The crop trait estimated with 

the greatest accuracy was light interception that showed a RMSE of 8.4 %, the accuracy 

being especially good at high values of light interception (Figure 5). This result is in agree-

ment with Guillen-Climent et al. [93] who found that the fraction of intercepted photosyn-

thetically active radiation (fIPAR) was successfully estimated by a ML algorithm. Upreti 

et al. [33] found similar values of NRMSE (12.06 %) using the RF tree bagger approach for 

estimating the fraction of absorbed photosynthetically active radiation (fAPAR) of durum 

wheat. Good model accuracy was also achieved for plant height estimation (RMSE = 42 

cm and NRMSE = 21.8 %, Figure 5). A similar RMSE value (41 cm) was found by Han et 

al. [34] for plant height estimation of maize using the crop surface model, and by Tao et al. 

[94] (NRMSE = 21.2 %) in the estimation of plant height of winter wheat using UAV hy-

perspectral images. The worst model accuracy was found for the green leaf biomass and 
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standing biomass with 1.3 Mg DM ha-1 and 5.8 Mg DM ha-1 of RMSE, respectively (Figure 

5). However, for these parameters, the model showed good accuracy from low to inter-

mediate values, while above values of 5 Mg DM ha-1 of green leaf biomass and 20 Mg DM 

ha-1 of standing biomass, the model performance dropped. The model could be affected 

by errors in the estimation in these intervals due to fewer data used to train the model 

[95], in fact, most of them were collected in PAC 1 (Figure 4). The different levels of accu-

racy of the models in estimating light interception and plant height compared to green 

leaf biomass and standing biomass could also be related to the period in which the meas-

urements were taken and to the response of VIs during senescence. Field measurements 

of light interception and plant height were carried out in each environment from emer-

gence until they peaked, which explains their good model accuracy. Estimation of crop 

traits with data coming from single UAV flights across the growing seasons is particularly 

affected after biomass reaches its maximum value in autumn. After biomass peak, with 

the start of the senescence period, the values of VIs start to decrease (Figure 9a and Figure 

10a) [96] while Miscanthus green leaf biomass and standing biomass values remained 

stable or slightly decreased during this period. The difference of rate of decrease between 

VIs and crop traits during senescence is a key aspect to consider in remote sensing esti-

mation of crop traits. The importance of the senescence stage in the crop traits estimation 

is confirmed by the results on the variables’ importance (Figure 3). Indeed, the phenolog-

ical variable “Stage” was the most important variable in the estimation of plant height, 

green leaf biomass and standing biomass. The plant height of the GRC 3 (a M. sin x M. sin 

planted at high density) were poorly estimated, and this could be due to its canopy archi-

tecture and flowering time. M. sin x M. sin hybrid has many distinguishable stems flow-

ering (where plant height is measured) but leaves are particularly curved and attached 

along the stem at a lower height than M. sin x M. sac. In addition, this genotype was trans-

planted at higher densities (3 plants m-2) and flowered earlier (end of August) compared 

to other genotypes that flowered in early autumn.  This more “prostrate” canopy archi-

tecture (with a higher stem segment between inflorescences and bent leaves) introduced 

noise in the plant height estimation from UAVs [97] since most of the reflectance comes 

from bent leaf mass. This noise caused by changes in plant architecture and the onset of 

flower can be seen in the NRMSE values of the RF models at the PAC 1 site (Figure 6). In 

fact, the earlier a genotype with prostrate architecture flowers, the worse is the estimation 

of plant height and biomass from UAV. 

4.3. Yield prediction using machine learning and peak of VIs 

The random forest (RF) trained with the peak derived from complete time series of 

five VIs acquired by UAVs was able to predict the yield of the 14 Miscanthus hybrids. The 

peak value of greenWDRVI, NDVI, WDRVI, GNDVI and MTVI2 resulted the most im-

portant features for RF modelling as derived from previous analysis (see § 3.2, Figure 3). 

The RF model accurately predicted the yield with 2.3 Mg DM ha-1 of RMSE and 19.7 % 

NRMSE (Figure 8a). The peak for Miscanthus hybrids occurs on average in mid-summer 

and early autumn in southern/warm (Italy) and northern/cold (UK) locations, respec-

tively. The importance of the peak as land surface phenology (LSP) descriptors for yield 

prediction was already reported by Prasad et al. [98], who found that peak had the highest 

correlation with cotton yield prediction compared to other LSP descriptors. Similar results 

were reported by Montazeaud et al. [47] who found a high correlation between the peak 

of NDVI and the yield, and by Liu et al. [20], who found that the EVI2 peak was a good 

predictor of grain yield. Among the VIs used in the RF model, the peak of the VIs based 

on the green band as GNDVI and greenWDRVI (Figure 3) were the most important vari-

ables for predicting not only Miscanthus yield at harvest but also to estimate standing bi-

omass and green leaf biomass during the growing season (Figure 4). Similar results for 

GNDVI were found in switchgrass and other warm-season perennial grasses [29]. In order 

to assess the capability of the model to predict the yield months before harvest (i.e. using 

only early season UAV acquisition and not waiting to perform UAV monitoring along the 

entire crop season), RF model was calculated using the peak derived from partial time 

series of VIs and performance analysed. In the UK, the RF model accurately predicted the 
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yield five months before harvest for all Miscanthus hybrids. In Italy, the yield of the M. sin 

x M. sin hybrids can be predicted with good accuracy seven months before harvest while 

M. giganteus and M. sin x M. sac hybrids required more time, as a good accuracy was ob-

tained 3-4 months before harvest. This capability of the model to predict yield months 

before harvest is possible if no damage to plants later in the season occurs, thus consider-

ing a steady development process. Given the good accuracy achieved by the RF model 

even when peak value is assessed on a limited number of data (see § 3.5, Figure 11), this 

approach can be considered as a suitable method to predict yield several months before 

harvest. However, it is possible that no time series analyses (i.e. a complete series of dense 

observation from sowing to harvest) are required, and the 5 VIs values could be used di-

rectly as inputs for yield prediction modelling if the UAV data is acquired in the range of 

expected peak occurrence. This opportunity was also reported for switchgrass [29] using 

multispectral images acquired from multiple UAV flights, underlying the possibility of 

reducing the number of multispectral observations (e.g. 25 UAV flights were performed 

in PAC 1) to 2-3 UAV flights in proximity of the VIs peak period. In this context, the iden-

tification of VIs peak period, which is generally related to crop physiology and phenology 

(reach the maximum production), is important in term of cost (reduction of number of 

observations) and of operationality of the yield prediction model. This model operability, 

intended as a capability of the model to accurately predict the yield some months before 

the harvest, is extremely relevant for improving the logistics of biomass supply chain of 

Miscanthus and for supporting the improvement of crop modelling with remote sensing 

data.  

5. Conclusions 

This study demonstrated that vegetation indices (VIs) derived from unmanned aerial 

vehicle (UAV) multispectral images acquired in Italy and UK can be successfully used in 

random forest (RF) machine learning (ML) algorithm to estimate the light interception, 

plant height, green leaf biomass and standing biomass, and to predict the yield of novel 

Miscanthus hybrids using the peak derived from VIs time series. This study evaluated the 

timeline of the performance of the model using peak derived from partial VIs time series 

and the RF model showed a good capability to predict the yield months before the harvest 

both in Italy and in the UK by using a limited number of UAV observation. In particular, 

the results suggested that the VIs values acquired during the peak period (without using 

complete or partial time series) could be used directly for yield prediction, increasing the 

model operability. Yield prediction and high-throughput phenotyping based on ML algo-

rithms and on UAV remote sensing can improve the logistics of biomass supply chain, for 

supporting breeding programs, and for improving crop modelling of novel Miscanthus 

hybrids. UAV platforms are suitable tools for HTP applications, as they enable the moni-

toring of small plots or field scale trials with numerous genotypes, due to their ability to 

capture high-resolution images. However, the satellite platforms are more suited for yield 

prediction, as they can collect data of many fields simultaneously and can develop appli-

cations to predict commercial yield at regional and national scales.  In addition, this 

study reported for the first time a methodology to overcome the issue of multi-sensor in-

teroperability among UAV multispectral sensors. The use of intercalibrating equations 

derived from the PROSAIL model proved to be a powerful tool to intercalibrate VIs from 

multi-sensor with different spectral characteristics. Although this intercalibration proce-

dure is relevant for the upscale of models from experimental plots to field by intercali-

brating the UAV with satellites sensor characteristics, it is limited because it only consid-

ers the spectral sensor characteristics and no other factors such as light and meteorological 

conditions during the flights, which may affect the quality of the spectral data, and which 

cannot be considered by applying a simulated regression coefficient. 
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