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Abstract: Objective: Radiomics and deep transfer learning are two popular technologies used to
develop computer-aided detection and diagnosis (CAD) schemes of medical images. This study
aims to investigate and compare advantages and potential limitations of applying these two tech-
nologies in developing CAD schemes. Methods: A relatively large and diverse retrospective dataset
including 3,000 digital mammograms is assembled in which 1,496 images depict malignant lesions
and 1,504 images depict benign lesions. Two CAD schemes are developed to classify breast lesions.
The first scheme is developed using four steps namely, applying an adaptive multi-layer topo-
graphic region growing algorithm to segment lesions, computing initial radiomics features, apply-
ing a principal component algorithm to generate an optimal feature vector, and building a support
vector machine classifier. The second CAD scheme is built based a pre-trained residual net architec-
ture (ResNet50) as a transfer learning model to classify breast lesions. Both CAD schemes are trained
and tested using a 10-fold cross-validation method. Several score fusion methods are also investi-
gated to classify breast lesions. CAD performances are evaluated and compared by the areas under
ROC curve (AUC). Results: ResNet50 model-based CAD scheme yields AUC = 0.85+0.02, which is
significantly higher than radiomics feature-based CAD scheme with AUC = 0.77+0.02 (p < 0.01).
Additionally, fusion of classification scores generated by two CAD schemes does not further im-
prove classification performance. Conclusion: This study demonstrates that using deep transfer
learning is more efficient to develop CAD schemes and enables to yield higher lesion classification
performance than CAD schemes developed using radiomics-based technology.

Keywords: computer-aided diagnosis (CAD) schemes; radiomics; deep transfer learning; breast le-
sion classification; assessment of CAD performance

1. Introduction

Medical images are routinely used in clinical practice to detect and diagnose diseases
including cancer. However, reading and interpreting medical images is often a difficult
and time-consuming task for radiologists, which does not only reduce diagnostic accu-
racy, but also generates large intra- and inter-reader variability [1]. For example, Full-field
digital mammography (FFDM) is the most popular imaging modality used in the general
population-based breast cancer screening in order to detect breast cancer at early stage.
However, due to two-dimensional projection imaging, FFDM has a relatively lower can-
cer detection sensitivity and specificity [2], particularly, to detect and classify subtle breast
lesions in women of younger age and/or having dense breast tissue [3]. Additionally, the
higher false-positive recall and biopsy rates do not only increase healthcare cost, but also
add anxiety to patients with potentially long-term psychosocial consequences [4].

Thus, in order to address and overcome this challenge to help radiologists more ac-
curately and efficiently reading and diagnosing medical images (i.e., FFDM images),
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developing computer-aided detection and diagnosis (CAD) schemes of medical images
has been attracting broad research interest in the last several decades [5, 6]. For CAD of
mammograms, the computer-aided detection (CADe) schemes of suspicious lesion detec-
tion have been implemented in many medical centers or hospitals to assist radiologists
reading screening mammograms [7]. However, although great research effort has been
made to develop computer-aided diagnosis (CADx) schemes of lesion classification [8, 9],
no CADx schemes have been approved and accepted in clinical practice. In this study, we
focus on developing computer-aided diagnosis schemes of mammograms in order to help
improve accuracy of lesion classification. In the following sections of this paper, CAD rep-
resents computer-aided diagnosis. If successful, applying CAD schemes to assist radiolo-
gists in classifying between malignant and benign breast lesions will have high clinical
impact to help significantly reduce false-positive recalls and unnecessary biopsies in fu-
ture clinical practice.

In recent years, most CAD schemes are developed using either radiomics image fea-
tures or deep learning models. When using radiomics concept, CAD schemes initially ex-
tract and compute large number of handcrafted features (i.e., > 1,000) in order to detect
the underlying phenomenon of suspicious breast lesions [10]. These radiomic features can
be obtained from a wide range of characteristics covering lesion morphology, density het-
erogeneity, texture patterns, and other frequency domain features. The previous studies
have demonstrated feasibility to identify differently optimal feature vectors that may
highly associate with lesion type (i.e., malignant vs. benign) [11], grade [12] and/or prog-
nosis [13]. However, using radiomics approach often faces a challenge of how to accu-
rately segment lesions from the images. The accuracy or scientific rigor of the computed
radiomics features often depends on accuracy of lesion segmentation. The lesion segmen-
tation errors may have negative impact in the final performance of CAD schemes.

When applying deep learning technology, CAD schemes automatically extract and
compute image features from the existing deep learning models using the transfer learn-
ing concept [14]. In this approach, a deep learning model pre-trained using a large data-
base of non-medical images is selected. Then, a small set of medical images are used to
finetune the model and extract the automated features for the specific application tasks.
In addition, in this approach, the image features are typically computed from the fixed
regions of interest (ROIs) or image patches without lesion segmentation. Many previous
studies have demonstrated feasibility of developing CAD schemes using automated fea-
tures directly extracted by deep transfer learning [15, 16]. However, the physicians (i.e.,
radiologists) often do not have higher confidence to accept such “a black box” type of
image-in and prediction-out scheme as a decision-making support tool [17]. Thus, how to
provide more convinced scientific data or evidence to increase confidence of physicians
to accept or consider deep learning model generated classification results is an important
research task.

Since in previous studies, CAD schemes are separately developed using either hand-
crafted radiomics features or deep transfer learning model generated automated features
using different and relatively small image datasets, it is difficult to compare the perfor-
mance of CAD schemes developed using these two types of image features. As a result,
the advantages and/or potential limitations of CAD schemes trained using the radiomics
and automated features or methods have not been well investigated to date. In order to
address this issue, we conduct a new study to explore the association between the tradi-
tional radiomics feature-based CADs and deep transfer learning model-based CAD
scheme in classifying between malignant and benign breast lesions using a relatively large
and diverse image dataset, as well as the same 10-fold cross-validation method. Addition-
ally, we also investigate whether fusion of classification scores generated by these two
types of CAD schemes can further improve CAD performance in breast lesion classifica-
tion.
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2. Materials and methods
2.1. Image Dataset:

In our medical imaging research laboratory, we have previously assembled a large
and diverse de-identified retrospective database of full-field digital mammography
(FFDM) images with multiple year screenings. All FFDM images were acquired using Ho-
logic Selenia (Hologic Inc, Bedford, MA, USA) digital mammography machines, which
have a fixed pixel size of 70pum. The detailed patients’ demographic information, breast
density distribution and other image characteristics have been reported in our previous
studies [9, 18]. In this study, we selected 3,000 FFDM images from this existing database
to assemble a specific dataset for this study. Each image in this dataset depicts a detected
soft tissue mass lesion with biopsy verified clinical diagnostic result. Table 1 shows distri-
bution of the lesions depicting on craniocaudal (CC) and mediolateral oblique (MLO)
views of left and right FFDM images. In summary, this dataset includes 1,496 images that
depict malignant lesions and 1,504 images that depict benign lesions.

Table 1. Distribution of breast lesions depicting on CC and MLO view of left and right FFDM im-

ages.
Image View Malignant Lesions Benign Lesions Total Lesions
Left - CC 362 368 730
Right - CC 376 409 785
Left - MLO 371 361 732
Right - MLO 387 366 753

The center location of each suspicious lesion was previously marked by the radiolo-
gist. Since we only focus on classification of soft tissue mass lesions in this study, all orig-
inal FFDM images are first subsampled using a pixel averaging method with a kernel of
5 x 5 pixels, which increases image pixel size to 0.35mm. Then, using each marked lesion
center as a reference, we extract a region of interest (ROI) or patch that has pixel size of
150 x 150 to cover all mass lesions in the dataset. The lesion center and the extracted ROI
center are overlapped. If part of ROI is beyond boundary of original FFDM image (i.e., a
small lesion that is detected close to the edge of the image), a zero-pad correction method
is applied. The examples of ROIs with zero-pad correction will be demonstrated in the
sample ROIs in Results section of paper. The same size ROI or patch has been affectively
used in our previous CAD studies (i.e., [8, 9]).

Based on these extracted image ROIs, we build two CAD schemes including a tradi-
tional CAD scheme implemented with a conventional machine learning classifier that is
optimized using radiomics features and an automated CAD scheme implemented with a
deep transfer learning model (ResNet50). Figure 1 illustrates steps to build these two CAD
schemes and evaluate their performance to classify breast lesions. The detailed infor-
mation of each image processing and analysis step is described in the following three sub-
sections.
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Figure 1. Illustration of each step to build two CAD schemes and evaluate their performance in
breast lesion classification.

2.2. A CAD Scheme Using Radiomics Features

As shown in Figure 1, developing the radiomics feature based CAD scheme includes
following steps. First, we apply an adaptive multi-layer topographic region growing al-
gorithm to segment lesion depicting in each ROI. Specifically, based on change of local
lesion contrast in different topographic layers (j), adaptive region growing thresholds
(Tj,j = 1,---n) are computed as following.

Ty = Lseeq + alseea, a=0.1
Ti=T_,+BC,, =05 j=2-n

where I.q is the pixel value of marked lesion center (growth seed), a and f are two
pre-determined coefficients, C;_; is the region contrast at previous topographic layer (j —
1), which is computed by difference between average pixel value of lesion boundary con-
tour and internal lesion region in this layer.

Lesion segmentation is performed layer-by-layer until the growing results in the new
layer violates one of two predetermined thresholds including (1) the ratio of lesion region
size (S;) increase and (2) ratio of lesion circularity (V) reduction.

S;i—Si_1

Gsize—growth—ratio = S
i1

> 2.0
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These two growth termination thresholds prevent leakage of lesion growth to sur-
rounding background tissue region. Thus, if one of above threshold is violated, the multi-
layer topographic region growing stops and the previous layer (j — 1) is used to represent
the final lesion regions segmented by the CAD scheme. This lesion segmentation algo-
rithm has been tested in our previous studies (i.e., [18]). After applying this automated
lesion segmentation algorithm, we also visually examine lesion segmentation results and
manually correct the possible segmentation errors (if any). Thus, we can reduce the errors
or variations in computing lesion-associated radiomics features.

Second, after lesion segmentation, CAD scheme initially computes a total of 235 tra-
ditional handcrafted image features that cover a variety of radiomic information repre-
senting lesion characteristics such as morphology, density heterogeneity, boundary con-
trast, texture patterns, and wavelet-based frequency domain features. These lesion-spe-
cific features explore and represent the local patterns like lesion shape, boundary spicula-
tion, density distribution within and around the boundary region of the lesion. The details
of computing these radiomics features have been reported in our previous studies [19, 20].

Third, many initially computed radiomics features can be highly redundant or irrel-
evant to the lesion classification. Thus, we apply a standard principal component analysis
(PCA) algorithm to process this initial feature pool of 235 features. The PCA is set to gen-
erate a new principal component feature vector with a variance rate of 95%, which has
been approved quite effective to reduce feature dimensionality and redundancy [20]. As
a result, the PCA-generated optimal feature vector has significantly smaller number of
features, which can reduce feature redundancy and overfitting risk to train and build a
machine learning (ML) model to classify between malignant and benign lesions.

Fourth, although many different types of ML models have been investigated and ap-
plied in CAD schemes of medical images, we select a support vector machine (SVM) as a
ML model in this study because a SVM model uses a constructive ML process based on
the statistical learning theory to classify feature vectors into two classes of images (i.e., the
images depicting malignant and benign lesions). By comparing with many other ML mod-
els, SVM has been approved with the minimal generalization error or higher robustness
[21], which makes SVM an optimal choice in medical image application with a relatively
small image dataset. Thus, based on our previous experience [22], we select a polynomial
kernel to build the proposed SVM model in this study. A 10-fold cross-validation method
is applied to train and test this SVM classification model.

2.3. A CAD Scheme Using Deep Transfer Learning Model

The second CAD scheme uses a deep learning architecture that is finetuned for ex-
tract automated image features. In the recent years, many different deep learning models
including AlexNet, VGG, DenseNet, Inception and ResNet have been investigated as
transfer learning models used in CAD schemes of image or lesion classification. Previous
studies have compared performance of applying different deep learning models in CAD
schemes of medical images. For example, one recent study compared 32 deep learning
models to detect and classify different lung diseases. Among them ResNet50 yields the
highest classification accuracy [23]. Another study compared VGG-16, VGG-19 and Res-
Net50 and concluded that ResNet 50 was the best architecture framework for image clas-
sification task with the highest accuracy and efficiency to train [24]. Thus, in this study we
select the popular image classification architecture of residual net architecture (ResNet50)
to build a deep transfer learning model used in our CAD scheme. The detailed architec-
ture of ResNet50 has been previously described in reference [25]. In original ResNet50, all
network connection weights are pre-trained using a large color ImageNet dataset (with 3
RGB channels) to recognize or classify 1,000 different object classes.
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In our CAD scheme, the original architecture of ResNet50 remains unchanged until
the last fully connection (FC) feed-forward neural network, which is remodeled to classify
two classes only namely, two classes of malignant and benign lesions. Following steps are
applied to finetune ResNet50 model to acquire transfer learning features and train the
lesion classifier. First, in order to using ResNet50 model to extract automated features rel-
evant to lesion characteristics depicting on mammograms, we apply several image pre-
processing methods, which include that (1) the originally extracted image ROI or patches
of size 150 x 150 are resized to the required size of 224 x 224 pixels using a bilinear inter-
polation algorithm, (2) the same grayscale FFDM image patch repeatedly input to the
three channels of the ResNet50 model, (3) a minimal augmentation step (involving ran-
dom centered crop, random horizontal, and random vertical flip with p = 0.5) is added to
introduce slight variation of a sample image for different epochs (ROIs) during the train-
ing phase.

Next, due to the nature of medical images, a simple feature extractor type training
involves freezing of all unchanged layers and updates only the weights and biases of the
modified last fully connection (FC) layer, which often does not yield satisfactory results.
Thus, in this study, we finetune and optimize the weights of all layers of the ResNet50
model during the training. Specifically, given the limitation of our dataset size relative to
other computer vision field, we maximize the training and consider the time required for
this network-tuning. Specifically, we used a 10-fold cross-validation (CV) method. During
each fold, the data is split randomly into training (90%) and testing (10%) without data
repetition, and each sample case is only used once in the test phase. We investigate various
batch sizes (i.e., 4, 8, 16, etc.) and observe that a batch size of 4 works well for our analysis.
Additionally, we select Adam optimizer with an initial learning rate of 10™* at the begin-
ning of each cross-validation fold. We update the learning rate scheduler with an expo-
nential decay function using a gamma value of 0.4 after each epoch. After each epoch, the
network is evaluated to monitor training and validation loss during the training process,
thereby deciding the stopping criterion. We notice that by 10 epochs, the network is satu-
rated, and any further training results in overfitting. Thus, we only train the network for
10 epochs during each cross-validation fold. After model finetuning and training, images
in the testing fold are then processed by the model. The last FC feed-forward neural net-
work of the modified ResNet50 model generates a classification score of each testing im-
age, which predicts a likelihood of the testing image depicting a malignant lesion.

2.4. Performance Evaluation and Comparison

After applying the 10-fold cross-validation method to train and test the classifiers of
two CAD schemes, each image in the dataset has two classification scores representing
the probability or likelihood (from 0 to 1) of the image depicting a malignant breast lesion.
We define the support vector machine (SVM) classifier used in Radiomics feature-based
CAD scheme and neural network (NN) used in the last fully-connected (FC) layer of Res-
NEt50-based CAD scheme as Model-I and Model-II with the classification scores as S;
and S,, respectively. In addition, we also test four fusion methods to build new models
(Model-III) that combine two classification scores (S; and S,). In model-III.1, S; and S,
are used as two new features to build another SVM classifier. In model-III.2 to model-III.4,
following three simple score fusion methods are applied.

1) Model-1IL.2, S3, = W; X S; + W, X S,. In this study, W; = 0.5 representing that
the average score is used as the final classification score.

2) Model-IIL.3, S55; = min(S;,S,). The minimum score between Model-I and Model-
IIis used as the final classification score.

3) Model-111.4, S5, = max(S;,S,). The maximum score between Model-I and Model-
IIis used as the final classification score.

The similar CAD score fusion methods have been tested and applied in our previous
studies aiming to improve lesion detection or classification performance of CAD schemes
[26, 27].
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Next, to evaluate and compare the performance of each ML model, we apply the fol-
lowing two statistical data analysis steps. First, we use a receiver operating characteristic
(ROC) type data analysis method. In order to reduce the potential bias of directly using
raw scoring data to generate a unsmoothed ROC curve and compute the area under ROC
curve (AUC), we use a maximum likelihood-based ROC curve fitting program (ROCKIT,
http://metz-roc.uchicago.edu/MetzROC/software) to generate a smoothed ROC curve.
The corresponding AUC value along with the standard deviation (STD) is computed and
used as an index to evaluate the performance of a CAD model to classify between malig-
nant and benign breast lesions. The significant differences (p-values) between AUC values
are also computed for comparing classification performance of different models. Second,
after applying an operation threshold on the model-generated classification scores (T =
0.5) to divide all testing cases into two classes (namely, score < 0.5 represents a benign
lesion and score > 0.5 represents a malignant lesion), we compute and compare the overall
classification accuracy of different models:

TM+TB

ACC = ———

All Images
where TM and TB represent the numbers of correctly classified images depicting with
malignant and benign lesions, respectively. All Images include total number of images
in the dataset. Both AUC and ACC along with the standard deviation (STD) are tabulated
for comparison.

3. Results

Figure 2 shows 24 sample images included in our dataset with an overlay of lesion
boundary segmentation results. The images with segmentation overlay marked in red or
green color represent malignant or benign lesions, respectively. The figure also shows that
in 7 images, zero paddings (black strips) are performed because these 7 lesions locate near
the edge or corner inside the original image. From density distribution of these lesions,
we can observe both solid and diffused lesions. It is often challenging to segment the dif-
fused or hidden lesions. The computed features and analysis results may not accurately
represent the underlying lesion image marker. Despite such challenge, our study results
show that the lesion segmentation results are in general satisfactory and only a small sub-
set (<5%) of images need a minor manual correction of CAD-segmented lesion boundary.
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Figure 2. Illustration of sample image patches with lesion boundary contour segmentation overlay
(in which Red and Green color marked boundary contours represent malignant and benign lesions,
respectively).

Table 2 summarizes and compares lesion classification performance of 6 models in-
cluding (1) AUC values and standard deviation (STD) computed from ROC curves and
(2) overall classification accuracy (ACC) and STD after applying an operation threshold
(T =0.5) to the model-generated classification scores. In Model-I, PCA generates an opti-
mal feature vector with 50 features, which is significantly reduced from original 235 radi-
omics features in the initial feature pool. However, the AUC value of Model-I trained us-
ing PCA-generated feature vector is 0.77+0.02, which is significantly lower than the AUC
value of 0.85+0.02 generated by Model-II optimized using a deep transfer learning (Res-
Net50) model (p < 0.01). In four Model-III that test four different fusion methods to com-
bine classification scores generated by Model-I and Model-II yield very comparable AUC
values and no statistically significant differences are detected among these AUC values.

Table 2. Summary and comparison of the computed areas under ROC curves (AUC) and overall
classification accuracy (ACC) along with the standard deviations (STD) after applying an operation
threshold (T = 0.5) to the classification scores generated by 6 models tested in this study.

Model (output score) Feature description AUC*STD ACC (%) £ STD
Model-I (S1) PCA-generated feature vector 0.77 £0.02 71.23 £2.44
Model-II (52) Transfer learning classification of ResNet50 0.85+0.02 77.31 +2.65

Model-III.1 (Ss.1) SVM (51, S2) 0.85 +0.01 77.42 +2.47
Model-IIL.2 (S32) Wi x S1+ W2 x S2 0.85 +0.01 77.31+2.83
Model-II1.3 (Ss.3) Min (51, S2) 0.83 +0.02 73.35+2.17
Model-II1.4 (Ss.4) Max (51, S2) 0.85 +0.02 74.07 +2.24

After applying the operation threshold to divide images into two classes of depicting
malignant and benign lesions, the overall classification accuracy (ACC) of Model-II is also
significantly higher than Model-I (as shown in Table 2). Additionally, Figure 3 shows
trend of bar patterns that represent the average ACC values and their overall distribution
ranges among 6 models in which Model-III.1 that uses a new SVM model fusing with two
classification scores generated by Model-I and Model-II yields the highest ACC =
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77.42%+2.47%. However, it is not statistically significant difference from ACC =
77.31%+2.65% generated by Model II (p = 0.87).

Distribution of ACCs for each Model
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Figure 3. Illustration of 6 bar graphs representing distribution of overall accuracy of applying 6
models to classify between malignant and benign breast lesions.

4. Discussion

Although many CAD schemes aiming to classify between malignant and benign
breast lesions have been developed using different image processing algorithms and ma-
chine learning models, the reported classification performance vary greatly due to the use
of differently smaller image datasets (i.e., AUCs ranging from 0.70 to 0.87 using datasets
with 38 to 1,200 images [28] or AUC = 0.76+0.04 using a state-of-the-art VGG16 transfer
learning model and an image dataset of 1,535 images [29]). Thus, objectively comparing
different CAD schemes and discussing their advantages or limitations is difficult. In this
study, we investigate and systematically compare performance of two CAD schemes that
are developed using a popular conventional SVM model trained by a PCA-generated op-
timal radiomics feature vector and a deep transfer learning framework (ResNet50) to clas-
sify between malignant and benign breast lesions. Both CAD schemes are trained and
tested using a 10-fold cross-validation method with a much larger image dataset involving
3,000 lesion regions as comparing to most of previous studies (i.e., reviewed in [28]). Thus,
this unique study generates several new and interesting observations, which may be use-
ful to guide future CAD research to develop new CAD schemes with the improved clas-
sification accuracy and high scientific rigor or robustness.

First, radiomics and deep learning are two new concepts or advanced technologies
widely adopted in current CAD field. Although which approach can yield significantly
higher performance is still debatable particularly when using small training image da-
tasets, this study demonstrates that a CAD scheme optimized using a deep transfer learn-
ing model (i.e., ResNet50) yields significantly higher performance to classify breast lesions
than using the scheme optimized using radiomics features when using a relatively large
image dataset (i.e., 3,000 images in this study). This new observation supports the im-
portance of building large and diverse image datasets in developing CAD schemes based
on deep learning technologies. In addition, comparing to our own previous studies that
used other deep leaning models including an AlexNet [30] and a VGG-16 [29], we also
observe that ResNet50 yields the higher accuracy of breast lesion classification, which sup-
ports conclusions previously reported by other researchers [23, 24].

Second, after observing that the CAD scheme using radiomics features yields lower
classification performance, we conduct additional studies to analyze the contribution of
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using different types of radiomics features. Specifically, we divide radiomics features into
three subgroups namely, (1) lesion morphology (i.e., shape) and density heterogeneity
features, (2) wavelets-generated frequency domain features and (3) texture patten distri-
bution features. We then apply the same PCA to create optimal feature vector from the
features in each subgroup, train and test the SVM model using the same 10-fold cross-
validation method. We observe that performance of three SVM models optimized using
subgroups of radiomic features is lower than using initial radiomics feature pool. The
classification accuracy values ACCs = 65.68+3.02, 64.39+3.14, 61.94+3.42 for using three
subgroups of features, respectively. However, combining all features, ACC significantly
increases to 71.23+2.44 (p > 0.01), which indicates different types or subgroups of radi-
omics features contain complementary discriminatory information that can be fused to-
gether to help improve CAD performance. As a result, other types of radiomics features
should also be explored in future studies.

Third, CAD scheme implemented with a deep transfer learning ResNet50 (Model-II)
yields the higher lesion classification performance (as shown in Table 2). We believe that
the significant classification performance improvement in comparing to Model-I is
achieved by retraining or finetuning a transfer learning model to update weights of all the
layers in the network. The results demonstrate that initializing the deep learning frame-
work with weights from pre-trained ImageNet and customizing for a binary classification
task (i.e., classifying between malignant and benign breast lesions in this study) works
well. This step of careful customization and training all network layers for certain epochs
is essential for optimally applying the deep transfer learning network to learn the param-
eters used in CAD schemes of medical images. In addition, we further analyze perfor-
mance of Model-II in 10-fold cross-validation. Figure 4 shows classification accuracy
(ACC) of Model-II in 10 folds. Inter-fold variation is observed, particularly, fold one has
significantly lower accuracy. The observation indicates the importance to conduct valid
statistical data analysis method (i.e., using cross-validation or bootstrapping method) to
minimize the potential bias in data partitions and test the robustness of the deep learning
models.

A comparison of distribution of each fold-ACCs improving by epochs
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o
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HLLLAad

(o]
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Figure 4. Illustration of classification accuracy and inter-fold variations in 10-fold cross validation
of the CAD scheme implemented using a transfer learning ResNet50 model.
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Fourth, in this study, we also build and test four fusion models (Model-II1.1 to Model-
III.4) to detect potential performance improvement by combining Model-I and Model-II
generated classification scores. In model-IIl.1 and Model-II1.2, we use a new SVM ap-
proach and the weighted averaging methods to combine classification scores of Model-I
(S1) and Model-II (S2). The results show that the classification performance metrics are
very similar to Model-II, which indicates that both Model-I using radiomics features and
Model-II using deep transfer learning generated automated features converge towards
classification scores with high correlation. It also supports that applying our deep transfer
learning method to finetune all weights used in ResNet50 model using mammograms is
effective to characterize lesion information difference between malignant and benign le-
sions. Additionally, a negative effect on performance is observed when selecting either
the minimum or maximum classification score from Model-I and Model-II to serve as the
final classification score of new models (Model-II.3 and Model-IIL.4).

Despite above encouraging and unique observations, we also recognize some limita-
tions in our study. First, even though we used a wide range of radiomic features (mor-
phology, density heterogeneity, texture pattens and wavelets-generated features) for
Model-I, more radiomics features can be computed from mammograms and analyzed
[11]. In addition, besides PCA, other feature dimensionality reduction methods (i.e., a lo-
cality preserving projection algorithm [31] and a random projection algorithm [9]) need
to be investigated to build optimal feature vectors. Second, although an adaptive multi-
layer topographic region growing algorithm is a simple and relatively robust lesion seg-
mentation algorithm, minor manual correction is needed in small fraction (<5%) of study
cases in this large image dataset. In the future study, we will investigate feasibility of ap-
plying deep learning-based lesion segmentation methods as we have investigated and
used in other types of image segmentation tasks [32]. Third, we only use the standard
method to finetune ResNet50 model to conduct deep transfer learning. We need to further
investigate and compare other methods including the optimal image pre-processing tech-
nologies [33] to better finetune ResNet50 or other deep learning models in the future.
Fourth, we only test four simple fusion methods to combine classification scores of two
CAD models, which is different from a more comprehensive fusion method that directly
fuses radiomics features and automated features to build a new multi-feature fusion SVM
model as reported by another recent study [29]. Thus, in the future, we will try to investi-
gate and test more effective fusion methods after identifying more clinically relevant ra-
diomics features and improve performance of radiomics feature-based machine learning
models.

5. Conclusion

In this paper, we present a unique study that develops and tests two CAD schemes
of digital mammograms applying to classify between malignant and benign breast lesions
using two poplar and advanced approaches based radiomics and deep transfer learning
concepts and technologies. Two CAD schemes or machine learning models are trained
and tested using a relatively large and diverse image dataset of 3,000 images and a 10-fold
cross-validation method. The study results demonstrate that although a deep transfer
learning model-based CAD scheme is widely considered “a black-box” type model with
a high degree of difficulty for human users to understand its learning or decision-making
logic or reasoning, the automated features generated by the deep transfer learning model
(i.e., ResNet50) can provide high discriminatory information or power than the traditional
handcrafted radiomics features. More comprehensive analysis covering both radiomics
and deep learning architectures needs to be further investigated to validate these obser-
vations in future studies.
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