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Abstract: Objective: Radiomics and deep transfer learning are two popular technologies used to 

develop computer-aided detection and diagnosis (CAD) schemes of medical images. This study 

aims to investigate and compare advantages and potential limitations of applying these two tech-

nologies in developing CAD schemes. Methods: A relatively large and diverse retrospective dataset 

including 3,000 digital mammograms is assembled in which 1,496 images depict malignant lesions 

and 1,504 images depict benign lesions. Two CAD schemes are developed to classify breast lesions. 

The first scheme is developed using four steps namely, applying an adaptive multi-layer topo-

graphic region growing algorithm to segment lesions, computing initial radiomics features, apply-

ing a principal component algorithm to generate an optimal feature vector, and building a support 

vector machine classifier. The second CAD scheme is built based a pre-trained residual net architec-

ture (ResNet50) as a transfer learning model to classify breast lesions. Both CAD schemes are trained 

and tested using a 10-fold cross-validation method. Several score fusion methods are also investi-

gated to classify breast lesions. CAD performances are evaluated and compared by the areas under 

ROC curve (AUC). Results: ResNet50 model-based CAD scheme yields AUC = 0.85±0.02, which is 

significantly higher than radiomics feature-based CAD scheme with AUC = 0.77±0.02 (p < 0.01). 

Additionally, fusion of classification scores generated by two CAD schemes does not further im-

prove classification performance. Conclusion: This study demonstrates that using deep transfer 

learning is more efficient to develop CAD schemes and enables to yield higher lesion classification 

performance than CAD schemes developed using radiomics-based technology. 

Keywords: computer-aided diagnosis (CAD) schemes; radiomics; deep transfer learning; breast le-

sion classification; assessment of CAD performance 

 

1. Introduction 

Medical images are routinely used in clinical practice to detect and diagnose diseases 

including cancer. However, reading and interpreting medical images is often a difficult 

and time-consuming task for radiologists, which does not only reduce diagnostic accu-

racy, but also generates large intra- and inter-reader variability [1]. For example, Full-field 

digital mammography (FFDM) is the most popular imaging modality used in the general 

population-based breast cancer screening in order to detect breast cancer at early stage. 

However, due to two-dimensional projection imaging, FFDM has a relatively lower can-

cer detection sensitivity and specificity [2], particularly, to detect and classify subtle breast 

lesions in women of younger age and/or having dense breast tissue [3]. Additionally, the 

higher false-positive recall and biopsy rates do not only increase healthcare cost, but also 

add anxiety to patients with potentially long-term psychosocial consequences [4].  

Thus, in order to address and overcome this challenge to help radiologists more ac-

curately and efficiently reading and diagnosing medical images (i.e., FFDM images), 
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developing computer-aided detection and diagnosis (CAD) schemes of medical images 

has been attracting broad research interest in the last several decades [5, 6]. For CAD of 

mammograms, the computer-aided detection (CADe) schemes of suspicious lesion detec-

tion have been implemented in many medical centers or hospitals to assist radiologists 

reading screening mammograms [7]. However, although great research effort has been 

made to develop computer-aided diagnosis (CADx) schemes of lesion classification [8, 9], 

no CADx schemes have been approved and accepted in clinical practice. In this study, we 

focus on developing computer-aided diagnosis schemes of mammograms in order to help 

improve accuracy of lesion classification. In the following sections of this paper, CAD rep-

resents computer-aided diagnosis. If successful, applying CAD schemes to assist radiolo-

gists in classifying between malignant and benign breast lesions will have high clinical 

impact to help significantly reduce false-positive recalls and unnecessary biopsies in fu-

ture clinical practice. 

In recent years, most CAD schemes are developed using either radiomics image fea-

tures or deep learning models. When using radiomics concept, CAD schemes initially ex-

tract and compute large number of handcrafted features (i.e., > 1,000) in order to detect 

the underlying phenomenon of suspicious breast lesions [10]. These radiomic features can 

be obtained from a wide range of characteristics covering lesion morphology, density het-

erogeneity, texture patterns, and other frequency domain features. The previous studies 

have demonstrated feasibility to identify differently optimal feature vectors that may 

highly associate with lesion type (i.e., malignant vs. benign) [11], grade [12] and/or prog-

nosis [13]. However, using radiomics approach often faces a challenge of how to accu-

rately segment lesions from the images. The accuracy or scientific rigor of the computed 

radiomics features often depends on accuracy of lesion segmentation. The lesion segmen-

tation errors may have negative impact in the final performance of CAD schemes.  

 When applying deep learning technology, CAD schemes automatically extract and 

compute image features from the existing deep learning models using the transfer learn-

ing concept [14]. In this approach, a deep learning model pre-trained using a large data-

base of non-medical images is selected. Then, a small set of medical images are used to 

finetune the model and extract the automated features for the specific application tasks. 

In addition, in this approach, the image features are typically computed from the fixed 

regions of interest (ROIs) or image patches without lesion segmentation. Many previous 

studies have demonstrated feasibility of developing CAD schemes using automated fea-

tures directly extracted by deep transfer learning [15, 16]. However, the physicians (i.e., 

radiologists) often do not have higher confidence to accept such “a black box” type of 

image-in and prediction-out scheme as a decision-making support tool [17]. Thus, how to 

provide more convinced scientific data or evidence to increase confidence of physicians 

to accept or consider deep learning model generated classification results is an important 

research task.  

Since in previous studies, CAD schemes are separately developed using either hand-

crafted radiomics features or deep transfer learning model generated automated features 

using different and relatively small image datasets, it is difficult to compare the perfor-

mance of CAD schemes developed using these two types of image features. As a result, 

the advantages and/or potential limitations of CAD schemes trained using the radiomics 

and automated features or methods have not been well investigated to date. In order to 

address this issue, we conduct a new study to explore the association between the tradi-

tional radiomics feature-based CADs and deep transfer learning model-based CAD 

scheme in classifying between malignant and benign breast lesions using a relatively large 

and diverse image dataset, as well as the same 10-fold cross-validation method. Addition-

ally, we also investigate whether fusion of classification scores generated by these two 

types of CAD schemes can further improve CAD performance in breast lesion classifica-

tion.  
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2. Materials and methods 

2.1. Image Dataset: 

In our medical imaging research laboratory, we have previously assembled a large 

and diverse de-identified retrospective database of full-field digital mammography 

(FFDM) images with multiple year screenings. All FFDM images were acquired using Ho-

logic Selenia (Hologic Inc, Bedford, MA, USA) digital mammography machines, which 

have a fixed pixel size of 70μm. The detailed patients’ demographic information, breast 

density distribution and other image characteristics have been reported in our previous 

studies [9, 18]. In this study, we selected 3,000 FFDM images from this existing database 

to assemble a specific dataset for this study. Each image in this dataset depicts a detected 

soft tissue mass lesion with biopsy verified clinical diagnostic result. Table 1 shows distri-

bution of the lesions depicting on craniocaudal (CC) and mediolateral oblique (MLO) 

views of left and right FFDM images. In summary, this dataset includes 1,496 images that 

depict malignant lesions and 1,504 images that depict benign lesions.  

Table 1. Distribution of breast lesions depicting on CC and MLO view of left and right FFDM im-

ages. 

Image View Malignant Lesions Benign Lesions Total Lesions 

Left – CC 362 368 730 

Right – CC 376 409 785 

Left – MLO 371 361 732 

Right – MLO 387 366 753 

 

The center location of each suspicious lesion was previously marked by the radiolo-

gist. Since we only focus on classification of soft tissue mass lesions in this study, all orig-

inal FFDM images are first subsampled using a pixel averaging method with a kernel of 

5 × 5 pixels, which increases image pixel size to 0.35mm. Then, using each marked lesion 

center as a reference, we extract a region of interest (ROI) or patch that has pixel size of 

150 × 150 to cover all mass lesions in the dataset. The lesion center and the extracted ROI 

center are overlapped. If part of ROI is beyond boundary of original FFDM image (i.e., a 

small lesion that is detected close to the edge of the image), a zero-pad correction method 

is applied. The examples of ROIs with zero-pad correction will be demonstrated in the 

sample ROIs in Results section of paper. The same size ROI or patch has been affectively 

used in our previous CAD studies (i.e., [8, 9]).  

Based on these extracted image ROIs, we build two CAD schemes including a tradi-

tional CAD scheme implemented with a conventional machine learning classifier that is 

optimized using radiomics features and an automated CAD scheme implemented with a 

deep transfer learning model (ResNet50). Figure 1 illustrates steps to build these two CAD 

schemes and evaluate their performance to classify breast lesions. The detailed infor-

mation of each image processing and analysis step is described in the following three sub-

sections. 
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Figure 1. Illustration of each step to build two CAD schemes and evaluate their performance in 

breast lesion classification. 

2.2. A CAD Scheme Using Radiomics Features 

As shown in Figure 1, developing the radiomics feature based CAD scheme includes 

following steps. First, we apply an adaptive multi-layer topographic region growing al-

gorithm to segment lesion depicting in each ROI. Specifically, based on change of local 

lesion contrast in different topographic layers (�), adaptive region growing thresholds 

(��, � = 1, ⋯ �) are computed as following.  

�� = ����� + ������, � = 0.1 

�� = ���� + �����,   � = 0.5, � = 2, ⋯ � 

where �����  is the pixel value of marked lesion center (growth seed), � and � are two 

pre-determined coefficients, ���� is the region contrast at previous topographic layer (� −

1), which is computed by difference between average pixel value of lesion boundary con-

tour and internal lesion region in this layer.   

Lesion segmentation is performed layer-by-layer until the growing results in the new 

layer violates one of two predetermined thresholds including (1) the ratio of lesion region 

size (��) increase and (2) ratio of lesion circularity (��) reduction.  

������������������ =
�� − ����

����

> 2.0 
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���������������������������� =
|���� − ��|

����

> 0.5 

These two growth termination thresholds prevent leakage of lesion growth to sur-

rounding background tissue region. Thus, if one of above threshold is violated, the multi-

layer topographic region growing stops and the previous layer (� − 1) is used to represent 

the final lesion regions segmented by the CAD scheme. This lesion segmentation algo-

rithm has been tested in our previous studies (i.e., [18]). After applying this automated 

lesion segmentation algorithm, we also visually examine lesion segmentation results and 

manually correct the possible segmentation errors (if any). Thus, we can reduce the errors 

or variations in computing lesion-associated radiomics features.    

Second, after lesion segmentation, CAD scheme initially computes a total of 235 tra-

ditional handcrafted image features that cover a variety of radiomic information repre-

senting lesion characteristics such as morphology, density heterogeneity, boundary con-

trast, texture patterns, and wavelet-based frequency domain features. These lesion-spe-

cific features explore and represent the local patterns like lesion shape, boundary spicula-

tion, density distribution within and around the boundary region of the lesion. The details 

of computing these radiomics features have been reported in our previous studies [19, 20].  

Third, many initially computed radiomics features can be highly redundant or irrel-

evant to the lesion classification. Thus, we apply a standard principal component analysis 

(PCA) algorithm to process this initial feature pool of 235 features. The PCA is set to gen-

erate a new principal component feature vector with a variance rate of 95%, which has 

been approved quite effective to reduce feature dimensionality and redundancy [20]. As 

a result, the PCA-generated optimal feature vector has significantly smaller number of 

features, which can reduce feature redundancy and overfitting risk to train and build a 

machine learning (ML) model to classify between malignant and benign lesions.   

Fourth, although many different types of ML models have been investigated and ap-

plied in CAD schemes of medical images, we select a support vector machine (SVM) as a 

ML model in this study because a SVM model uses a constructive ML process based on 

the statistical learning theory to classify feature vectors into two classes of images (i.e., the 

images depicting malignant and benign lesions). By comparing with many other ML mod-

els, SVM has been approved with the minimal generalization error or higher robustness 

[21], which makes SVM an optimal choice in medical image application with a relatively 

small image dataset. Thus, based on our previous experience [22], we select a polynomial 

kernel to build the proposed SVM model in this study. A 10-fold cross-validation method 

is applied to train and test this SVM classification model. 

2.3. A CAD Scheme Using Deep Transfer Learning Model 

The second CAD scheme uses a deep learning architecture that is finetuned for ex-

tract automated image features. In the recent years, many different deep learning models 

including AlexNet, VGG, DenseNet, Inception and ResNet have been investigated as 

transfer learning models used in CAD schemes of image or lesion classification. Previous 

studies have compared performance of applying different deep learning models in CAD 

schemes of medical images. For example, one recent study compared 32 deep learning 

models to detect and classify different lung diseases. Among them ResNet50 yields the 

highest classification accuracy [23]. Another study compared VGG-16, VGG-19 and Res-

Net50 and concluded that ResNet 50 was the best architecture framework for image clas-

sification task with the highest accuracy and efficiency to train [24]. Thus, in this study we 

select the popular image classification architecture of residual net architecture (ResNet50) 

to build a deep transfer learning model used in our CAD scheme. The detailed architec-

ture of ResNet50 has been previously described in reference [25]. In original ResNet50, all 

network connection weights are pre-trained using a large color ImageNet dataset (with 3 

RGB channels) to recognize or classify 1,000 different object classes.  
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In our CAD scheme, the original architecture of ResNet50 remains unchanged until 

the last fully connection (FC) feed-forward neural network, which is remodeled to classify 

two classes only namely, two classes of malignant and benign lesions. Following steps are 

applied to finetune ResNet50 model to acquire transfer learning features and train the 

lesion classifier. First, in order to using ResNet50 model to extract automated features rel-

evant to lesion characteristics depicting on mammograms, we apply several image pre-

processing methods, which include that (1) the originally extracted image ROI or patches 

of size 150 × 150 are resized to the required size of 224 × 224 pixels using a bilinear inter-

polation algorithm, (2) the same grayscale FFDM image patch repeatedly input to the 

three channels of the ResNet50 model, (3) a minimal augmentation step (involving ran-

dom centered crop, random horizontal, and random vertical flip with p = 0.5) is added to 

introduce slight variation of a sample image for different epochs (ROIs) during the train-

ing phase. 

Next, due to the nature of medical images, a simple feature extractor type training 

involves freezing of all unchanged layers and updates only the weights and biases of the 

modified last fully connection (FC) layer, which often does not yield satisfactory results. 

Thus, in this study, we finetune and optimize the weights of all layers of the ResNet50 

model during the training. Specifically, given the limitation of our dataset size relative to 

other computer vision field, we maximize the training and consider the time required for 

this network-tuning. Specifically, we used a 10-fold cross-validation (CV) method. During 

each fold, the data is split randomly into training (90%) and testing (10%) without data 

repetition, and each sample case is only used once in the test phase. We investigate various 

batch sizes (i.e., 4, 8, 16, etc.) and observe that a batch size of 4 works well for our analysis. 

Additionally, we select Adam optimizer with an initial learning rate of 10�� at the begin-

ning of each cross-validation fold. We update the learning rate scheduler with an expo-

nential decay function using a gamma value of 0.4 after each epoch. After each epoch, the 

network is evaluated to monitor training and validation loss during the training process, 

thereby deciding the stopping criterion. We notice that by 10 epochs, the network is satu-

rated, and any further training results in overfitting. Thus, we only train the network for 

10 epochs during each cross-validation fold. After model finetuning and training, images 

in the testing fold are then processed by the model. The last FC feed-forward neural net-

work of the modified ResNet50 model generates a classification score of each testing im-

age, which predicts a likelihood of the testing image depicting a malignant lesion. 

2.4. Performance Evaluation and Comparison 

After applying the 10-fold cross-validation method to train and test the classifiers of 

two CAD schemes, each image in the dataset has two classification scores representing 

the probability or likelihood (from 0 to 1) of the image depicting a malignant breast lesion. 

We define the support vector machine (SVM) classifier used in Radiomics feature-based 

CAD scheme and neural network (NN) used in the last fully-connected (FC) layer of Res-

NEt50-based CAD scheme as Model-I and Model-II with the classification scores as �� 

and ��, respectively. In addition, we also test four fusion methods to build new models 

(Model-III) that combine two classification scores (�� and ��). In model-III.1, �� and �� 

are used as two new features to build another SVM classifier. In model-III.2 to model-III.4, 

following three simple score fusion methods are applied.  

1) Model-III.2, ��.� = �� × �� + �� × �� . In this study, �� = 0.5 representing that 

the average score is used as the final classification score. 

2) Model-III.3, ��.� = min(��, ��). The minimum score between Model-I and Model-

II is used as the final classification score. 

3) Model-III.4, ��.� = max(��, ��). The maximum score between Model-I and Model-

II is used as the final classification score.  

The similar CAD score fusion methods have been tested and applied in our previous 

studies aiming to improve lesion detection or classification performance of CAD schemes 

[26, 27].  
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Next, to evaluate and compare the performance of each ML model, we apply the fol-

lowing two statistical data analysis steps. First, we use a receiver operating characteristic 

(ROC) type data analysis method. In order to reduce the potential bias of directly using 

raw scoring data to generate a unsmoothed ROC curve and compute the area under ROC 

curve (AUC), we use a maximum likelihood-based ROC curve fitting program (ROCKIT, 

http://metz-roc.uchicago.edu/MetzROC/software) to generate a smoothed ROC curve. 

The corresponding AUC value along with the standard deviation (STD) is computed and 

used as an index to evaluate the performance of a CAD model to classify between malig-

nant and benign breast lesions. The significant differences (p-values) between AUC values 

are also computed for comparing classification performance of different models. Second, 

after applying an operation threshold on the model-generated classification scores (T = 

0.5) to divide all testing cases into two classes (namely, score ≤ 0.5 represents a benign 

lesion and score > 0.5 represents a malignant lesion), we compute and compare the overall 

classification accuracy of different models: 

��� =  
�� + ��

��� ������
 

where �� and �� represent the numbers of correctly classified images depicting with 

malignant and benign lesions, respectively. ��� ������ include total number of images 

in the dataset. Both AUC and ACC along with the standard deviation (STD) are tabulated 

for comparison. 

3. Results 

Figure 2 shows 24 sample images included in our dataset with an overlay of lesion 

boundary segmentation results. The images with segmentation overlay marked in red or 

green color represent malignant or benign lesions, respectively. The figure also shows that 

in 7 images, zero paddings (black strips) are performed because these 7 lesions locate near 

the edge or corner inside the original image. From density distribution of these lesions, 

we can observe both solid and diffused lesions. It is often challenging to segment the dif-

fused or hidden lesions. The computed features and analysis results may not accurately 

represent the underlying lesion image marker. Despite such challenge, our study results 

show that the lesion segmentation results are in general satisfactory and only a small sub-

set (<5%) of images need a minor manual correction of CAD-segmented lesion boundary. 
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Figure 2. Illustration of sample image patches with lesion boundary contour segmentation overlay 

(in which Red and Green color marked boundary contours represent malignant and benign lesions, 

respectively). 

Table 2 summarizes and compares lesion classification performance of 6 models in-

cluding (1) AUC values and standard deviation (STD) computed from ROC curves and 

(2) overall classification accuracy (ACC) and STD after applying an operation threshold 

(T = 0.5) to the model-generated classification scores. In Model-I, PCA generates an opti-

mal feature vector with 50 features, which is significantly reduced from original 235 radi-

omics features in the initial feature pool. However, the AUC value of Model-I trained us-

ing PCA-generated feature vector is 0.77±0.02, which is significantly lower than the AUC 

value of 0.85±0.02 generated by Model-II optimized using a deep transfer learning (Res-

Net50) model (p < 0.01). In four Model-III that test four different fusion methods to com-

bine classification scores generated by Model-I and Model-II yield very comparable AUC 

values and no statistically significant differences are detected among these AUC values.  

Table 2. Summary and comparison of the computed areas under ROC curves (AUC) and overall 

classification accuracy (ACC) along with the standard deviations (STD) after applying an operation 

threshold (T = 0.5) to the classification scores generated by 6 models tested in this study. 

Model (output score) Feature description AUC ± STD ACC (%) ± STD 

Model-I (S1) PCA-generated feature vector 0.77 ± 0.02 71.23 ± 2.44 

Model-II (S2) Transfer learning classification of ResNet50 0.85 ± 0.02 77.31 ± 2.65 

Model-III.1 (S3.1) SVM (S1¸ S2) 0.85 ± 0.01 77.42 ± 2.47 

Model-III.2 (S3.2) W1 × S1 + W2 × S2 0.85 ± 0.01 77.31 ± 2.83 

Model-III.3 (S3.3) Min (S1, S2) 0.83 ± 0.02 73.35 ± 2.17 

Model-III.4 (S3.4) Max (S1, S2) 0.85 ± 0.02 74.07 ± 2.24 

 

After applying the operation threshold to divide images into two classes of depicting 

malignant and benign lesions, the overall classification accuracy (ACC) of Model-II is also 

significantly higher than Model-I (as shown in Table 2). Additionally, Figure 3 shows 

trend of bar patterns that represent the average ACC values and their overall distribution 

ranges among 6 models in which Model-III.1 that uses a new SVM model fusing with two 

classification scores generated by Model-I and Model-II yields the highest ACC = 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 June 2022                   doi:10.20944/preprints202206.0112.v1

https://doi.org/10.20944/preprints202206.0112.v1


 

77.42%±2.47%. However, it is not statistically significant difference from ACC = 

77.31%±2.65% generated by Model II (p = 0.87). 

 

Figure 3. Illustration of 6 bar graphs representing distribution of overall accuracy of applying 6 

models to classify between malignant and benign breast lesions. 

4. Discussion 

Although many CAD schemes aiming to classify between malignant and benign 

breast lesions have been developed using different image processing algorithms and ma-

chine learning models, the reported classification performance vary greatly due to the use 

of differently smaller image datasets (i.e., AUCs ranging from 0.70 to 0.87 using datasets 

with 38 to 1,200 images [28] or AUC = 0.76±0.04 using a state-of-the-art VGG16 transfer 

learning model and an image dataset of 1,535 images [29]). Thus, objectively comparing 

different CAD schemes and discussing their advantages or limitations is difficult. In this 

study, we investigate and systematically compare performance of two CAD schemes that 

are developed using a popular conventional SVM model trained by a PCA-generated op-

timal radiomics feature vector and a deep transfer learning framework (ResNet50) to clas-

sify between malignant and benign breast lesions. Both CAD schemes are trained and 

tested using a 10-fold cross-validation method with a much larger image dataset involving 

3,000 lesion regions as comparing to most of previous studies (i.e., reviewed in [28]). Thus, 

this unique study generates several new and interesting observations, which may be use-

ful to guide future CAD research to develop new CAD schemes with the improved clas-

sification accuracy and high scientific rigor or robustness.  

First, radiomics and deep learning are two new concepts or advanced technologies 

widely adopted in current CAD field. Although which approach can yield significantly 

higher performance is still debatable particularly when using small training image da-

tasets, this study demonstrates that a CAD scheme optimized using a deep transfer learn-

ing model (i.e., ResNet50) yields significantly higher performance to classify breast lesions 

than using the scheme optimized using radiomics features when using a relatively large 

image dataset (i.e., 3,000 images in this study). This new observation supports the im-

portance of building large and diverse image datasets in developing CAD schemes based 

on deep learning technologies. In addition, comparing to our own previous studies that 

used other deep leaning models including an AlexNet [30] and a VGG-16 [29], we also 

observe that ResNet50 yields the higher accuracy of breast lesion classification, which sup-

ports conclusions previously reported by other researchers [23, 24].    

Second, after observing that the CAD scheme using radiomics features yields lower 

classification performance, we conduct additional studies to analyze the contribution of 
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using different types of radiomics features. Specifically, we divide radiomics features into 

three subgroups namely, (1) lesion morphology (i.e., shape) and density heterogeneity 

features, (2) wavelets-generated frequency domain features and (3) texture patten distri-

bution features. We then apply the same PCA to create optimal feature vector from the 

features in each subgroup, train and test the SVM model using the same 10-fold cross-

validation method. We observe that performance of three SVM models optimized using 

subgroups of radiomic features is lower than using initial radiomics feature pool. The 

classification accuracy values ACCs = 65.68±3.02, 64.39±3.14, 61.94±3.42 for using three 

subgroups of features, respectively. However, combining all features, ACC significantly 

increases to 71.23±2.44 (p > 0.01), which indicates different types or subgroups of radi-

omics features contain complementary discriminatory information that can be fused to-

gether to help improve CAD performance. As a result, other types of radiomics features 

should also be explored in future studies. 

Third, CAD scheme implemented with a deep transfer learning ResNet50 (Model-II) 

yields the higher lesion classification performance (as shown in Table 2). We believe that 

the significant classification performance improvement in comparing to Model-I is 

achieved by retraining or finetuning a transfer learning model to update weights of all the 

layers in the network. The results demonstrate that initializing the deep learning frame-

work with weights from pre-trained ImageNet and customizing for a binary classification 

task (i.e., classifying between malignant and benign breast lesions in this study) works 

well. This step of careful customization and training all network layers for certain epochs 

is essential for optimally applying the deep transfer learning network to learn the param-

eters used in CAD schemes of medical images. In addition, we further analyze perfor-

mance of Model-II in 10-fold cross-validation. Figure 4 shows classification accuracy 

(ACC) of Model-II in 10 folds. Inter-fold variation is observed, particularly, fold one has 

significantly lower accuracy. The observation indicates the importance to conduct valid 

statistical data analysis method (i.e., using cross-validation or bootstrapping method) to 

minimize the potential bias in data partitions and test the robustness of the deep learning 

models. 

 

Figure 4. Illustration of classification accuracy and inter-fold variations in 10-fold cross validation 

of the CAD scheme implemented using a transfer learning ResNet50 model. 
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Fourth, in this study, we also build and test four fusion models (Model-III.1 to Model-

III.4) to detect potential performance improvement by combining Model-I and Model-II 

generated classification scores. In model-III.1 and Model-III.2, we use a new SVM ap-

proach and the weighted averaging methods to combine classification scores of Model-I 

(S1) and Model-II (S2). The results show that the classification performance metrics are 

very similar to Model-II, which indicates that both Model-I using radiomics features and 

Model-II using deep transfer learning generated automated features converge towards 

classification scores with high correlation. It also supports that applying our deep transfer 

learning method to finetune all weights used in ResNet50 model using mammograms is 

effective to characterize lesion information difference between malignant and benign le-

sions. Additionally, a negative effect on performance is observed when selecting either 

the minimum or maximum classification score from Model-I and Model-II to serve as the 

final classification score of new models (Model-III.3 and Model-III.4).  

Despite above encouraging and unique observations, we also recognize some limita-

tions in our study. First, even though we used a wide range of radiomic features (mor-

phology, density heterogeneity, texture pattens and wavelets-generated features) for 

Model-I, more radiomics features can be computed from mammograms and analyzed 

[11]. In addition, besides PCA, other feature dimensionality reduction methods (i.e., a lo-

cality preserving projection algorithm [31] and a random projection algorithm [9]) need 

to be investigated to build optimal feature vectors. Second, although an adaptive multi-

layer topographic region growing algorithm is a simple and relatively robust lesion seg-

mentation algorithm, minor manual correction is needed in small fraction (<5%) of study 

cases in this large image dataset. In the future study, we will investigate feasibility of ap-

plying deep learning-based lesion segmentation methods as we have investigated and 

used in other types of image segmentation tasks [32]. Third, we only use the standard 

method to finetune ResNet50 model to conduct deep transfer learning. We need to further 

investigate and compare other methods including the optimal image pre-processing tech-

nologies [33] to better finetune ResNet50 or other deep learning models in the future. 

Fourth, we only test four simple fusion methods to combine classification scores of two 

CAD models, which is different from a more comprehensive fusion method that directly 

fuses radiomics features and automated features to build a new multi-feature fusion SVM 

model as reported by another recent study [29]. Thus, in the future, we will try to investi-

gate and test more effective fusion methods after identifying more clinically relevant ra-

diomics features and improve performance of radiomics feature-based machine learning 

models.  

5. Conclusion 

In this paper, we present a unique study that develops and tests two CAD schemes 

of digital mammograms applying to classify between malignant and benign breast lesions 

using two poplar and advanced approaches based radiomics and deep transfer learning 

concepts and technologies. Two CAD schemes or machine learning models are trained 

and tested using a relatively large and diverse image dataset of 3,000 images and a 10-fold 

cross-validation method. The study results demonstrate that although a deep transfer 

learning model-based CAD scheme is widely considered “a black-box” type model with 

a high degree of difficulty for human users to understand its learning or decision-making 

logic or reasoning, the automated features generated by the deep transfer learning model 

(i.e., ResNet50) can provide high discriminatory information or power than the traditional 

handcrafted radiomics features. More comprehensive analysis covering both radiomics 

and deep learning architectures needs to be further investigated to validate these obser-

vations in future studies. 
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