

Article

Facilitation of Insulin Effects by Ranolazine in Astrocytes in Primary Culture

Adrián Jorda^{a,b}, Martín Aldasoro^a, Ignacio Campo-Palacio^a, José M. Vila^a, Constanza Aldasoro^a, Juan Campos-Campos^{a,b}, Carlos Colmena^a, Sandeep Kumar Singh^c, Elena Obredor^a and Soraya L. Valles^{a*}

^aDepartment of Physiology, University of Valencia. Spain

^bDepartment of Nursing and Podiatry, University of Valencia. Spain

^cIndian Scientific Education and Technology Foundation, Lucknow, India

* Correspondence: author: Soraya L. Valles. Phone: 34963983813. Fax: 34963864642. email:lilian.valles@uv.es.

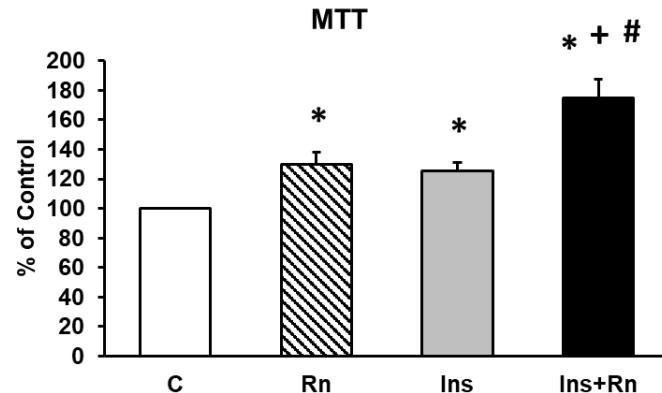
Abstract: Ranolazine (Rn) is a drug used to treat persistent chronic coronary ischemia. It has also been shown to have therapeutic benefits on the central nervous system and an anti-diabetic effect by lowering blood glucose levels and however, no effects of Rn on cellular sensitivity to insulin (Ins) have been demonstrated yet. The present study aimed to investigate the permissive effects of Rn on the actions of Ins in astrocytes in primary culture. Ins at 10^{-8} M, Rn (10^{-6} M) and Ins+Rn (10^{-8} M and 10^{-6} M respectively) were added to astrocytes during 24 h. In comparison to control cells, Rn and/or Ins caused modifications in cell viability and proliferation. p-AKT, p-ERK, p-eNOS, Mn-SOD, COX-2, and the anti-inflammatory protein COX-2 were all upregulated by Ins. On the contrary, no significant changes were found in the protein expression of Cu/Zn-SOD, NF-κB and IκB. The presence of Rn produced an increase in p-ERK protein and a significant decrease in COX-2 protein expression. Furthermore, Rn significantly increased the effects of Ins on the expression of p-AKT, p-eNOS, p-ERK, Mn-SOD, and PPAR-γ. On the other hand, Rn+Ins produced a significant decrease in COX-2 expression. In conclusion, Rn facilitated the effects of insulin on the p-AKT, p-eNOS, p-ERK, Mn-SOD and PPAR-γ, signaling pathways, as well as on the anti-inflammatory and antioxidant effects of the hormone.

Keywords: Ranolazine; Insulin; astrocytes; inflammation; antioxidants

1. Introduction

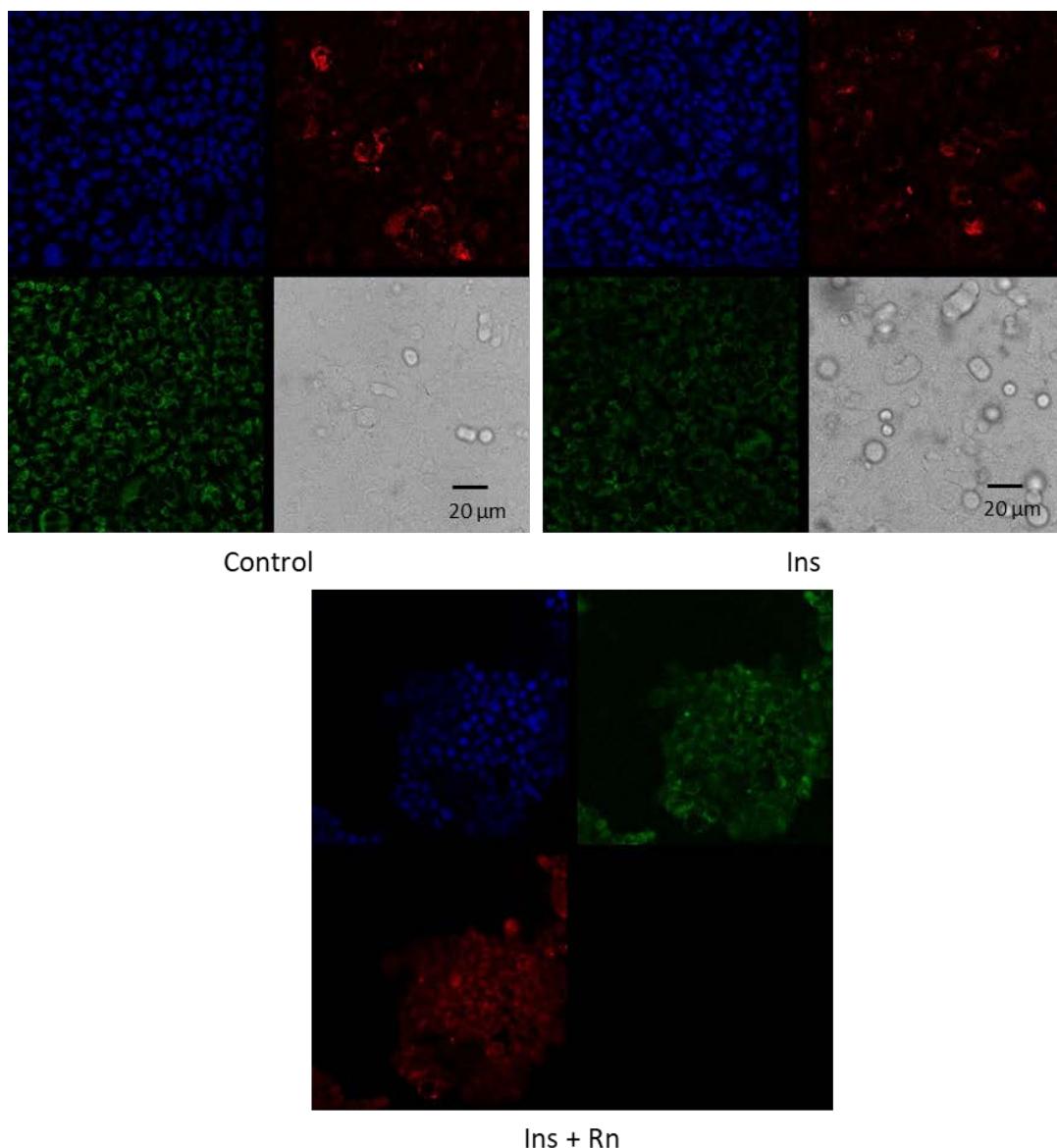
Astrocytes are the most abundant cells in the central nervous system (CNS) and perform a variety of functions, including structural support, blood-brain barrier integrity, and the development of important protective roles (1). They take part also in immunological responses and in the reparative processes that occur at different stages of neuroinflammation (2).

Astrocytes secrete both neurotrophic and inflammatory cytokines, and express receptors for mediators like IL-1β, and TNF-α, among others (3,4). Glucose absorption and storage are two of insulin's most essential effects (5). Insulin crosses the blood-brain barrier acting on astrocytes and, indirectly, on neurons (6). The brain expresses insulin receptors (IR) on neurons, microglia, and astrocytes. Its effects include metabolic functions and neuronal survival after trauma or during neurodegeneration (7). In fact, these effects are due to anti-inflammatory insulin action. At 10^{-8} M, insulin inhibits inducible nitric oxide synthase (iNOS) expression and NF-κB level increase in astrocytes induced by LPS (8). Furthermore, insulin increased the vitality of rat and human astrocytes (9,10). Insulin is generally degraded in lysosomes within cells [6], although there is evidence of the presence of the insulin-degrading enzyme (IDE) in different types of cells, including astrocytes (11). In addition, IDE degrades other peptides such as a beta-amyloid peptide, which is involved in the pathogenesis of Alzheimer's disease (12).


In clinical practice, ranolazine (Rn) is used to treat refractory chronic stable angina (13,14). Data from patients indicate that ranolazine preserves myocardial blood flow during ischemic insults (15). Human studies back up the idea that ranolazine can help improve coronary blood flow by lowering the mechanical consequences of ischemia contraction, enhancing endothelial function, or both (16,17). At therapeutic concentrations, Rn inhibits the late inward sodium current ($I_{(NaL)}$) (18) reducing tissue damage caused by intracellular sodium and calcium overload that is associated with myocardial ischemia (19,20,21). $I_{(NaL)}$ amplitude is increased in many pathological situations, such as myocardial ischemia and oxidative stress (22,23,24). In addition to its antianginal effects, Rn acts as an anti-inflammatory agent reducing asymmetric dimethylarginine and C-reactive protein plasma levels and promoting the endothelial release of vasodilator mediators in patients with ischemic coronary disease (25). Furthermore, metabolic effects, such as the lowering of hemoglobin A1c (HbA1c) in patients with ischemic heart disease and diabetes (26,27,28), or the improvement of insulin secretion and β -cell survival in diabetic mice (29) have already been described. Moreover, several studies evaluated the effects of Rn on the nervous system (30,31,32). They suggested that these effects would be also mediated by late I_{Na} or inwardly rectifying K^+ current (33).

Therefore, the objective of this study is to evaluate the effects of insulin on astrocytes in primary culture and the facilitating actions of ranolazine on the sensitivity of astrocytes to insulin. It is intended to evaluate the effects of insulin and ranolazine on cell viability, as well as on anti-inflammatory and antioxidant mechanisms and processes.

2. Results


2.1. Cell Viability

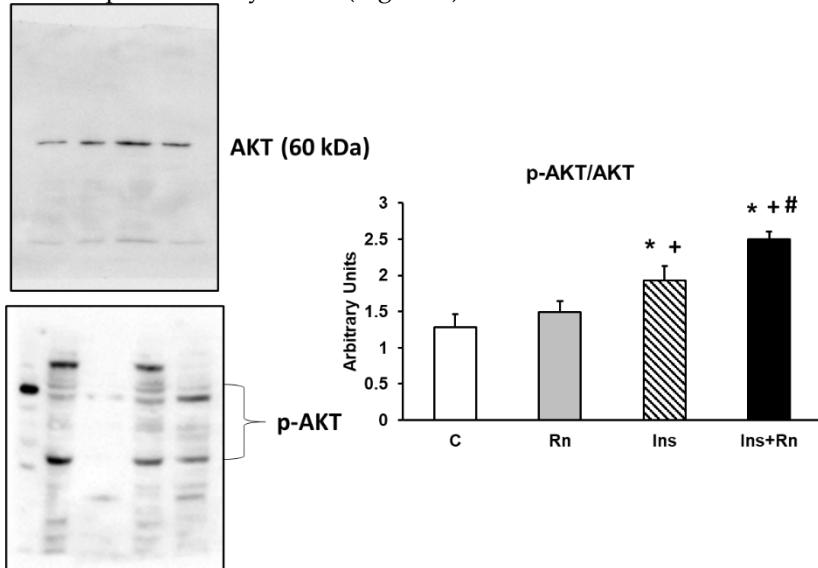
The role of Rn, Ins or Ins+Rn on cell viability were studied using MTT conversion assay. Figure 1 shows that incubation with Rn, Ins or Ins+Rn, produced significant increase compared with control astrocytes (Figure 1) (Rn 28%, Ins 27% and Ins+Rn 72%). Furthermore, Ins+Rn produced an increase in viability compared to Ins about 25%.

Figure 1. Effect of Ins and Rn on astrocytes viability. Cell viability was determined by MTT assay in cells treated for 24 h. Astrocytes were incubated without (control, C), with Rn (10^{-6} M), with Ins (10^{-8} M) or with Ins+Rn (10^{-6} M+ 10^{-8} M). Data are mean \pm SD of four independent experiments (four different rats). * p < 0.05 vs. control. + p < 0.05 vs. Rn. # p < 0.05 vs. Ins.

Figure 2 shows that Ins or Ins+Rn increased astrocytes number compared to control cells.

Figure 2. Effect of Ins and Ins + Rn on astrocytes in primary culture. Cells were isolated and seeded at 7×10^4 cells/35 mm dish for 5 days. Currently, cells were incubated without (control, C), with Ins (10^{-8} M) or with Ins+Rn ($10^{-8}+10^{-6}$ M) for 24 h. Fluorescence products used were: Mitotracker (250 nM) to stain mitochondria, Lysotracker (250 nM) to stain lysosomes and Hoechst 33342 ($2 \mu\text{g ml}^{-1}$) to stain nuclei. Contrast images are added. Bar represents 20 μm .

2.2. Cell proliferation


Trypan blue exclusion assay was used to count the living cells and monitor cell proliferation. Astrocytes were isolated and seeded at 7×10^4 cells/35 mm dish. After 5 days of culture, cells were incubated without (control, C) or with Rn (10^{-6} M), Ins (10^{-8} M), or with Ins+Rn (10^{-8} and 10^{-6} M) for 24 h. In control conditions proliferation was 0.85%, with Rn 30.31%, with Ins 29.18% and with Ins+Rn 33.91%, demonstrating significant differences (Table 1).

	Seeding cells ($\times 10^4$ /35 mm dish)	5 days of culture	24 h Treatment	% Proliferation
Control	7	12.86 ± 0.32	12.97 ± 0.24	0.85
Rn	7	12.87 ± 0.25	16.77 ± 0.35	30.31*
Ins	7	12.85 ± 0.23	16.60 ± 0.37	29.18*
Ins+Rn	7	12.88 ± 0.26	17.25 ± 0.35	33.91**#

Table 1. Effect of Ins and Rn on astrocytes proliferation. Cell proliferation and counting living cells. Astrocytes were isolated and seeded at 7×10^4 cells/35 mm dish for 5 days. Currently, cells were incubated without (control, C), with Rn (10^{-6} M), with Ins (10^{-8} M) or with Ins+Rn (10^{-8} + 10^{-6} M) for 24 h. Trypan blue exclusion was used to count the living cells and monitor cell proliferation. Data are mean \pm SD of four independent experiments (four different rats). * $p < 0.05$ vs. control.

2.3. Protein expression of p-AKT

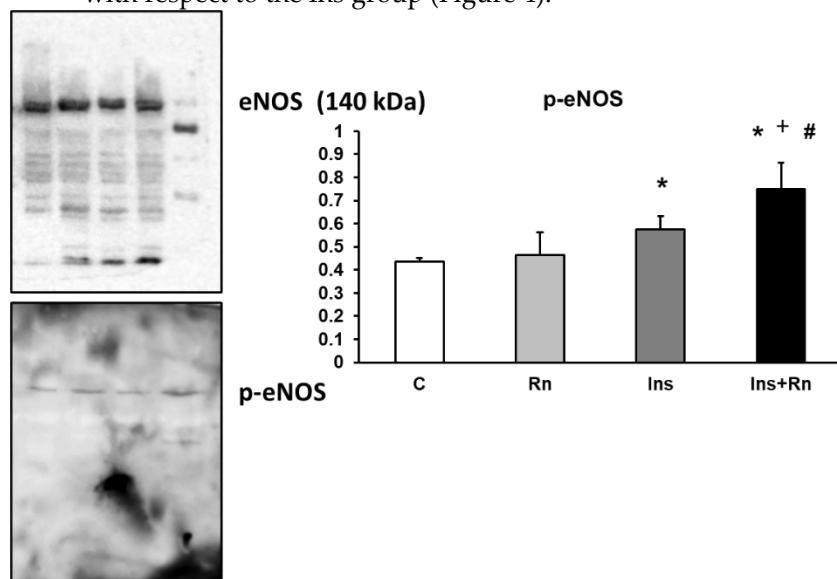

Figure 3 shows that Rn (10^{-6} M), Ins (10^{-8} M) and Ins+Rn (10^{-8} M and 10^{-6} M) produced significant differences in p-AKT compared to control cells. In fact, Ins increased the expression of p-AKT by 43.3% compared to the control and Ins+Rn increased by 87.2% compared to the control. Furthermore, Rn did not produce significant changes compared to control cells. In addition, the joint effect of Ins+Rn increased the expression of p-AKT with respect to Ins by 31.6% (Figure 3).

Figure 3. Effect of Ins and Rn on p-AKT and AKT protein expression. Astrocytes were incubated without (control, C), with Rn (10^{-6} M), with Ins (10^{-8} M) or with Ins+Rn (10^{-8} M+ 10^{-6} M) for 24 h and collected to determine p-AKT and AKT protein expressions by Western blot. A representative immunoblot is shown in the panel. Data are mean \pm SD of four independent experiments (four different rats). * $p < 0.05$ vs. control. + $p < 0.05$ vs. Rn. # $p < 0.05$ vs. Ins.

2.4. Expression of p-eNOS protein

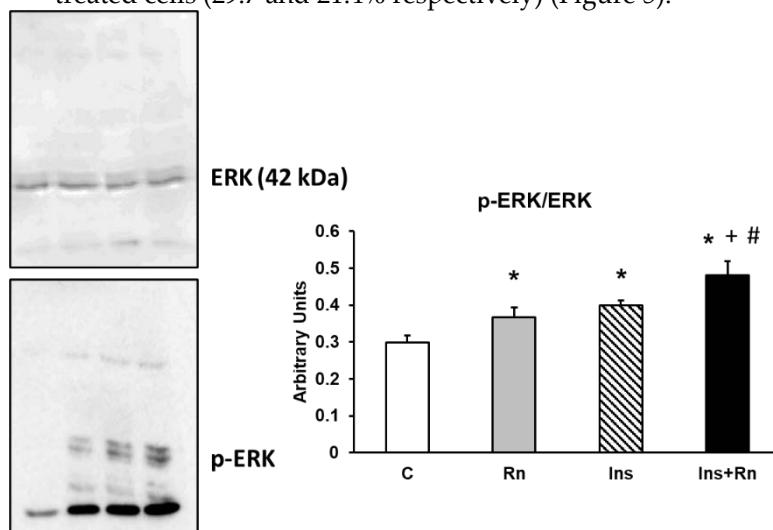

We determined the expression of p-eNOS in astrocytes in primary culture. The presence of Rn did not produce any significant differences respect to control cells. Ins increased the expression of p-eNOS protein compared to control cells (32.25%). Ins+Rn significantly increased the expression of p-eNOS compared to the control (74.1%). Furthermore, the joint effect of Ins+Rn significantly increased (30.6%) the expression of p-eNOS with respect to the Ins group (Figure 4).

Figure 4. Effect of Ins and Rn on p-eNOS and eNOS protein expression. Astrocytes were incubated without (control, C), with Rn (10^{-6} M), with Ins (10^{-8} M) or with Ins+Rn (10^{-8} M+ 10^{-6} M) for 24 h and collected to determine p-eNOS and eNOS protein expressions by Western blot. A representative immunoblot is shown in the panel. Data are mean \pm SD of four independent experiments (four different rats). * $p < 0.05$ vs. control. + $p < 0.05$ vs. Rn. # $p < 0.05$ vs. Ins.

2.5. p-ERK protein expression

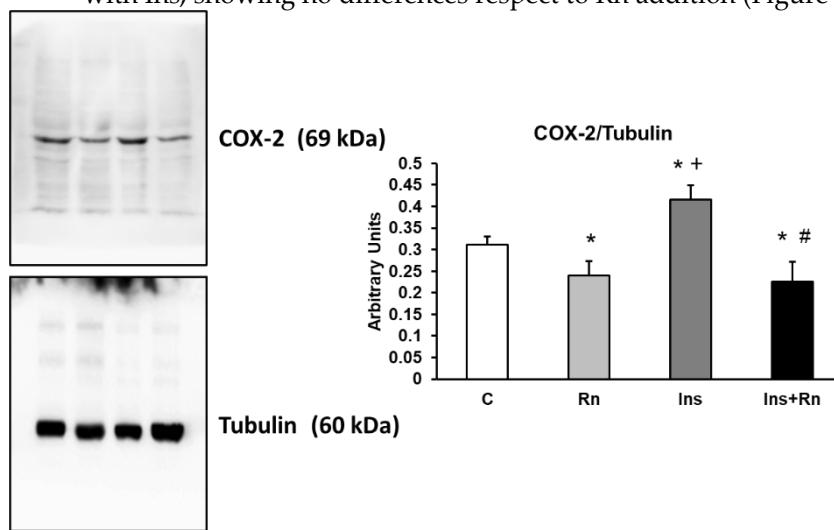

We determined p-ERK protein expression in astrocytes in primary culture. After addition of Rn or Ins, a significant increase in p-ERK protein expression was detected compared to control astrocytes (22.8% and 33.2%). The incubation with Ins+Rn significantly increased p-ERK expression compared to control cells (60.1%) and respect to Rn or Ins treated cells (29.7 and 21.4% respectively) (Figure 5).

Figure 5. Effect of Ins and Rn on p-ERK and ERK protein expression. Astrocytes were incubated without (control, C), with Rn (10^{-6} M), with Ins (10^{-8} M) or with Ins+Rn (10^{-8} M+ 10^{-6} M) for 24 h and collected to determine p-ERK and ERK protein expressions by Western blot. A representative immunoblot is shown in the panel. Data are mean \pm SD of four independent experiments (four different rats). *p < 0.05 vs. control. +p < 0.05 vs. Rn. #p < 0.05 vs. Ins.

2.6. COX-2 protein expression

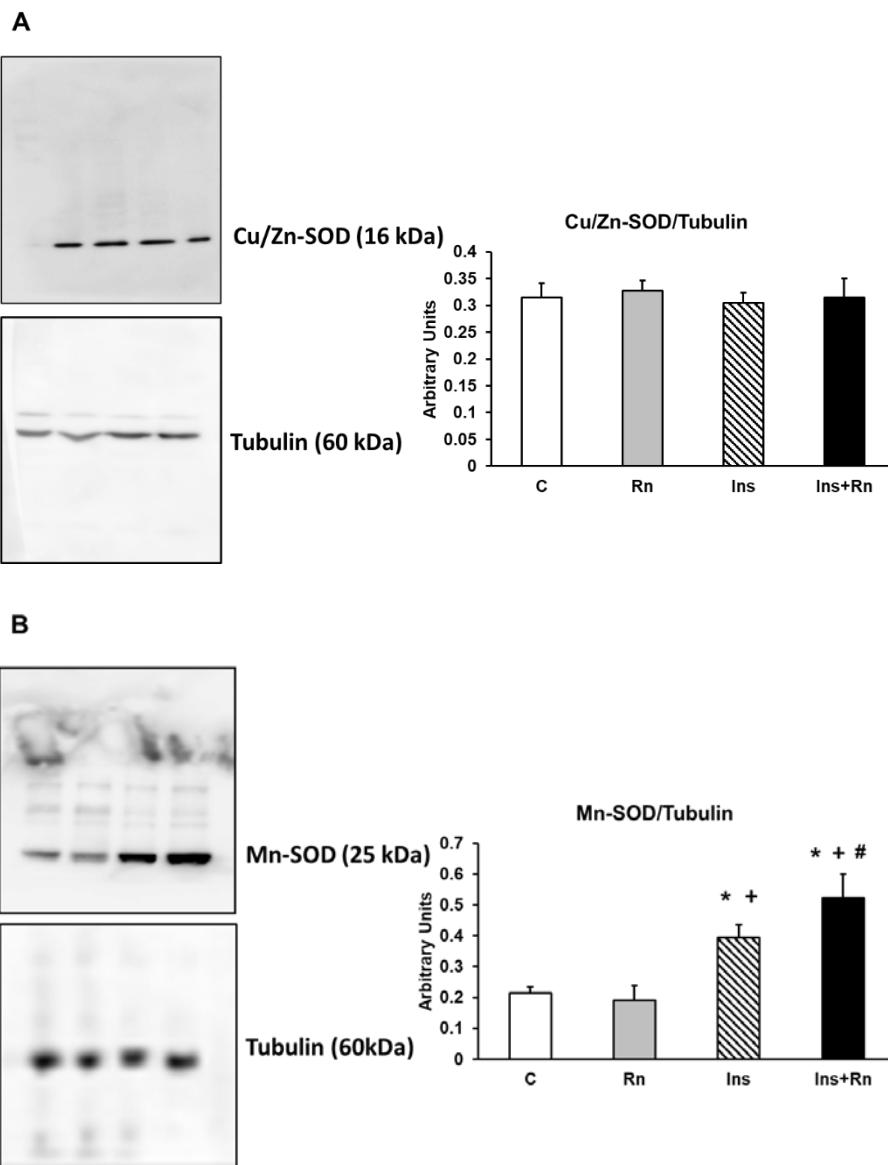

We detected a significant decrease after addition of Rn (10^{-6} M) and an increase of COX-2 protein expression after addition of Ins (10^{-8} M) compared with control values (15.2% and 20.1% respectively). Furthermore, the presence of Ins+Rn decreased COX-2 expression (18.1%) respect to control astrocytes and 48.8% respect to astrocytes treated with Ins, showing no differences respect to Rn addition (Figure 6).

Figure 6. Effect of Ins and Rn on COX-2 protein expression. Astrocytes were incubated without (control, C), with Rn (10^{-6} M), with Ins (10^{-8} M) or with Ins+Rn (10^{-8} M+ 10^{-6} M) for 24 h and collected to determine COX-2 protein expression by Western blot. A representative immunoblot is shown in the panel. Data are mean \pm SD of four independent experiments (four different rats). *p < 0.05 vs. control. +p < 0.05 vs. Rn. #p < 0.05 vs. Ins.

2.7. Expression of Cu/Zn-SOD and Mn-SOD proteins

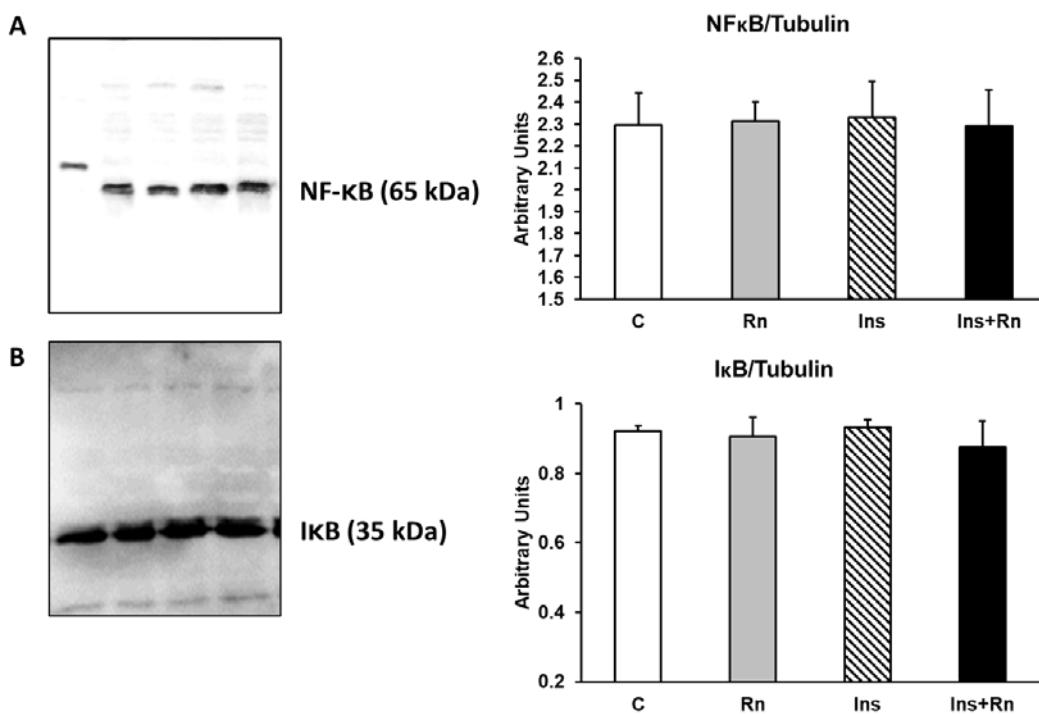

In astrocytes, Rn, Ins or Ins+Rn did not produced changes in Cu/Zn-SOD (Figure 7A) protein expression compared to control cells (Figure 7A). Expression of Mn-SOD was determined and showed in Figure 7B. Addition of Ins significantly increased protein expression compared to control astrocytes (51.2%). Incubation with Ins+Rn significantly increased Mn-SOD protein expression compared to control (59.1%), Rn (58.9%) and 16.4% respect to Ins treated astrocytes (Figure 7B).

Figure 7. Effect of Ins and Rn on Cu/Zn-SOD and Mn-SOD protein expression. Astrocytes were incubated without (control, C), with Rn (10^{-6} M), with Ins (10^{-8} M) or with Ins+Rn (10^{-8} M+ 10^{-6} M) for 24 h and collected to determine Cu/Zn-SOD (Figure 6A) and Mn-SOD (Figure 6B) protein expression by Western blot. A representative immunoblot is shown in the panel. Data are mean \pm SD of four independent experiments (four different rats). *p < 0.05 vs. control. +p < 0.05 vs. Rn. #p < 0.05 vs. Ins.

2.8. NF- κ B and I κ B expression

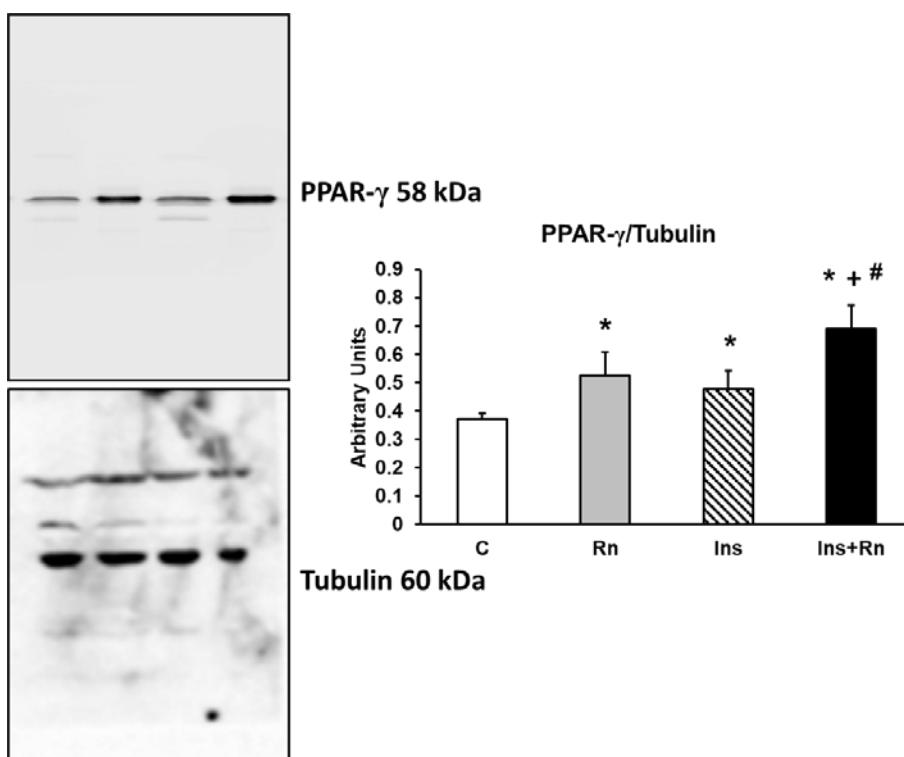

NF- κ B is a transcription factor that regulates positively gene expression of pro-inflammatory proteins. Figure 8A shows that Rn (10^{-6} M), Ins (10^{-8} M) and Ins+Rn (10^{-8} M and 10^{-6} M) did not produce significant differences compared to control cells. On the other hand, I κ B is one member of a family of cellular proteins that inhibit the NF- κ B transcription factor. Figure 8B shows that Rn, Ins and Ins+Rn did not induce significant differences in I κ B protein expression compared to control cells.

Figure 8. Effect of Ins and Rn on NF κ B and I κ B protein expression. Astrocytes were incubated without (control, C), with Rn (10^{-6} M), with Ins (10^{-8} M) or with Ins+Rn (10^{-8} M+ 10^{-6} M) for 24 h and collected to determine NF κ B (Figure 7A) and I κ B (Figure 7B) protein expression by Western blot. A representative immunoblot is shown in the panel. Data are mean \pm SD of four independent experiments (four different rats).

2.9. PPAR- γ expression

PPARs family negatively regulates gene expression of pro-inflammatory proteins. Figure 9 shows PPAR- γ expression in astrocytes in primary culture. Ins increased PPAR- γ expression compared to control astrocytes (46.8%). Furthermore, incubation with Ins+Rn increased PPAR- γ protein expression compared to control astrocytes (74.6%) and 18.4% with respect to Ins treated cells (Figure 9).

Figure 9. Effect of Ins and Rn on PPAR- γ protein expression. Astrocytes were incubated without (control, C), with Rn (10^{-6} M), with Ins (10^{-8} M), or with Ins+Rn (10^{-8} M+ 10^{-6} M) for 24 h and collected to determine PPAR- γ protein expression by Western blot. A representative immunoblot is shown in the top panel. Data are mean \pm SD of four independent experiments (four different rats). *p < 0.05 vs. control. +p < 0.05 vs. Rn. #p < 0.05 vs. Ins.

3. Discussion

The main findings of this research are that Ins enhanced both cell viability and proliferation. Moreover, Ins increases p-AKT, p-eNOS, p-ERK, Mn-SOD, COX-2 and PPAR- γ protein expression in astrocytes in primary culture. Furthermore, Rn potentiated insulin-induced effects at doses similar to those seen in individuals treated with this medication. On the contrary, the expression of Cu/Zn-SOD, NF- κ B and I κ B after Rn, Ins or Ins+Rn addition did not produce any alterations in astrocytes in the primary culture. The inclusion of Rn in the culture also resulted in a decrease in COX-2 protein expression.

Astrocytes are glial cells that perform a variety of functions in the brain, including structural and metabolic support for the cell brain, maintenance of the blood-brain barrier (36), glutathione synthesis and neuroprotective actions against oxidative stress and inflammation (2,37). Astrocytes play a fundamental role in neuronal protection through variety of mechanisms, the most notable of which is mitochondrial biogenesis, which allows them to shield neurons against inflammatory and oxidative processes (38).

Furthermore, astrocytes play roles in neuroendocrine, regulation of energy balance and metabolism control by responding to the different hormonal stimuli (39,40). Glucose uptake by astrocytes is an insulin-dependent process (41). Astrocytes and microglia express insulin receptor isoforms as well as insulin receptor substrate (IRS)-1 and IRS-2 (42).

In our experiments, we found that Ins boosted the expression of p-AKT and p-eNOS. Functional studies with glial cells demonstrated that Ins activates PI3K and AKT (43). Furthermore, AKT promotes NO production by mediating eNOS activation (44). Insulin treatment of hippocampal CA1 cells improves memory and spatial learning. The synthesis of endogenous NO seems to be involved in these effects, since they are inhibited by L-

NAME, a blocker of NO synthesis (45,46). Insulin resistance appears to be implicated in cognitive decline in patients with type II diabetes and Alzheimer's disease. In addition, there is evidence that D1D and T2D patients show a higher frequency of depression, anxiety, cognitive impairment, and dementia (47,48).

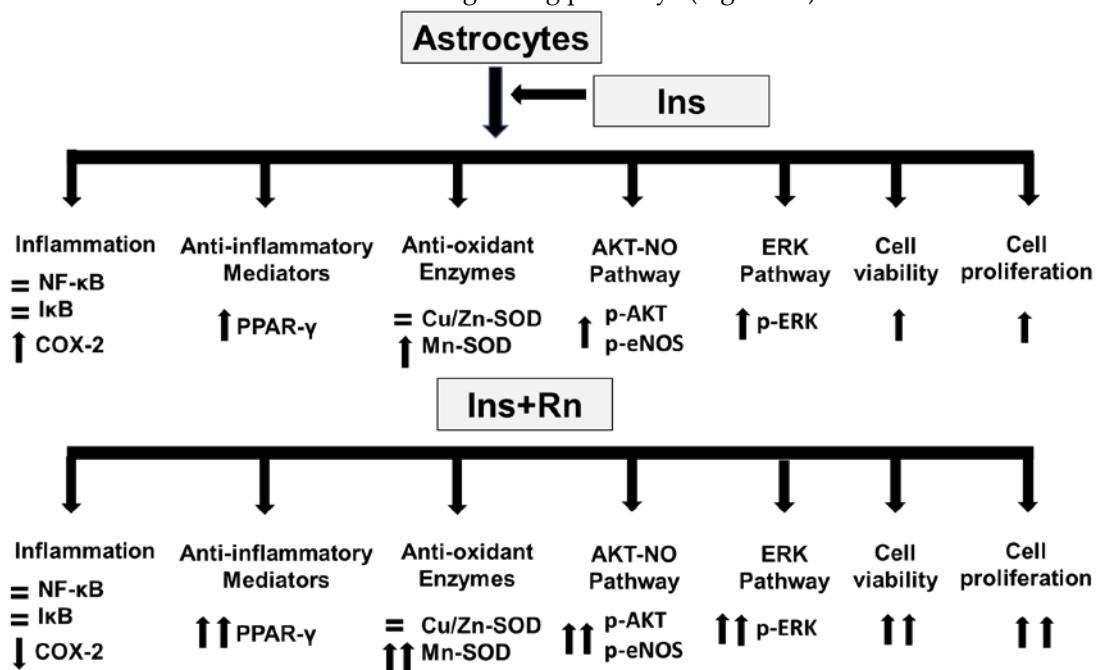
A decrease in insulin release and/or a reduction in its sensitivity, is a risk factors in both Alzheimer's disease (AD) (49,50) and Parkinson's disease (PD) (51). Downregulation in PI3K/AKT pathway is characteristic of insulin resistance (52). Cognitive decline is associated with serine phosphorylation of IRS1 and co-localized with neurofibrillary tangles (53), decreasing insulin actions (54) by changes in PI3K signaling pathway [55]. Furthermore, Rn causes a protective effect against cognitive decline in T2DM patients (56).

Insulin binding to its receptor activates the MAPK and ERK signalling pathways in addition to the AKT/eNOS pathway. ERK controls cell proliferation, mitogenesis, and differentiation, and the production of endothelin 1 (57). Moreover, in the brain insulin plays a key role in the direct regulation of ERK, which is involved in maintaining the type of memory involved in Alzheimer's disease (58). Our results show that insulin increases the expression of p-ERK, coinciding with the data presented by these authors.

Insulin inhibits the production of reactive oxygen species and iNOS expression when the cells are exposed to pro-inflammatory agents (59). Furthermore, at low concentrations, insulin shows pro-inflammatory actions (42). However, in our experiments, insulin does not show pro-inflammatory effects since there is no variation in the expression of NF κ B and I κ B and, on the other hand, it produces an overexpression of PPAR- γ . In diabetic patients and in animals with insulin resistance, PPAR γ improves both glucose tolerance and cellular insulin sensitivity (60,61,62). On the other hand, insulin induces anti-inflammatory effects mediated by PPAR γ , and PI3K/Akt/Rac-1 signaling pathways (63). In cardiovascular cells, activation of PPAR γ inhibits the effects of angiotensin II and acts as an antioxidant and anti-inflammatory (64). The use of PPAR γ antagonists in neurodegenerative diseases associated with inflammatory processes has recently been proposed (65).

In our study, we observed that insulin causes an increase in the expression of COX-2. Insulin reduced amyloidogenesis and COX-2-mediated neuroinflammation in astrocytes treated with streptozotocin, which are hallmarks of Alzheimer's disease (1). On the contrary, intracerebral insulin administration decreased the expression of the inflammatory factor COX-2 in rats treated with streptozotocin (66).

In our experiments, insulin increased the expression of Mn-SOD and did not produce changes in Cu/Zn-SOD protein expression. In cardiomyocytes, the absence of insulin has been related to an increase in free radicals due to a decrease in SOD activity (67). Insulin improves cognitive impairment in Wistar rats by reducing brain oxidative stress and increasing antioxidant systems like SOD, catalase, and GSH (68). Insulin resistance can be reversed with Mn-SOD mimetics or Mn-SOD overexpression. Insulin resistance can be reversed with Mn-SOD mimetics or overexpression (69). In diabetic rats, insulin has been shown to protect against oxidative stress and inhibit apoptosis induced by H₂O₂, intracellular ROS, and increases superoxide dismutase, catalase, and glutathione peroxidase activity (70).


Ranolazine improves ATP production and O₂ consumption by stimulating glucose oxidation and decreasing fatty acid oxidation (71). In type II diabetic patients, Rn has been shown to offer a variety of effects, including lowering blood glucose and glycosylated haemoglobin levels, promoting insulin release, and decreasing glucagon synthesis, therefore improving pre- and postprandial blood glucose (72,73,74) and decreasing glucagon synthesis, thus improving pre- and postprandial blood glucose (75). Rn reduced the pro-inflammatory profile and improved learning and long-term memory in a Wistar rat model of type II diabetes. Rn may be useful in addressing cognitive deterioration in type 2 diabetes in this way (56). Its clinical use is especially interesting in patients with type II diabetes and coronary ischemia (27,76) and, in fact, Rn has been proposed as the first treatment for type II diabetes (74). Rn does not modify the AKT pathway, or the kinases involved in glucose uptake (77). In our experiments, Rn enhanced the effects of insulin on

AKT and eNOS, increasing the expression of p-AKT and p-eNOS, indicating that this effect is probably due to a facilitation of insulin action.

The Rn improved insulin resistance in non-diabetic patients with coronary heart disease, reducing the HOMA-IR index with better results than that obtained with treatment with beta-blockers or calcium-channel blockers (78). However, there is no direct evidence of the effects of Rn that increase cellular sensitivity to insulin. The data from our study seem to indicate a facilitating effect of Rn on the sensitivity of astrocytes to insulin.

Ranolazine interacts with different isoforms of the neuronal Nav channel (79), such as those involved in altered neuronal excitability in different forms of epilepsy, migraine, or neuropathic pain (80,81), which would allow its clinical use (80,30). Moreover, Rn has recently been shown to improve diabetic neuropathy in rats (82). Together, the cardioprotective and neuroprotective effects of Rn are related to its anti-inflammatory and antioxidant actions (4,83).

Ranolazine enhances the effects of insulin in primary culture astrocytes by boosting the expression of anti-inflammatory mediators like PPAR- γ and reducing the production of pro-inflammatory mediators like COX-2. Furthermore, ranolazine increased the action of insulin on the Mn-SOD antioxidant enzyme, as well as components of the AKT-eNOS and ERK signalling pathways (Figure 10).

Figure 10. Changes after Ins and Rn to astrocytes in primary culture. Rn facilitates the effects of insulin increasing cell viability and proliferation, the expression of anti-inflammatory mediators, such as PPAR- γ , and inhibiting that of pro-inflammatory mediators, such as COX-2. Furthermore, Rn potentiated the effect of insulin on the expression of antioxidant enzyme (Mn-SOD), the components of the AKT-eNOS pathway and the ERK signaling pathway.

4. Materials and Methods

4.1. Materials

3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide (MTT) was obtained from Sigma Chemical Co. (St Louis, MO). Dulbecco's modified Eagle's medium (DMEM) and fetal bovine serum (FBS) were obtained from Gibco (Gibco Invitrogen Corporation, Barcelona, Spain). Ranolazine (Rn) and Insulin (Ins) were obtained from Sigma-

Aldrich biotechnology and dissolved in Krebs solution to the proper final concentration 10^{-6} M and 10^{-8} M respectively. Western Blot Chemiluminescent Detection System (ECL) was from Amersham (Amersham Biosciences, Barcelona, Spain). Antibodies: polyclonal anti-manganese superoxide dismutase (anti-MnSOD) (1:250), monoclonal anti-NF- κ B (1:250), monoclonal anti-I κ B (1:250), polyclonal anti-PPAR- γ (1:300), monoclonal anti-COX-2 (1:500), monoclonal anti-Cu/Zn-SOD (1:500), monoclonal anti-AKT (1:500), monoclonal anti-p-AKT (1:500), monoclonal anti-e-NOS (1:250), monoclonal anti-ERK (1:500), monoclonal anti-p-ERK (1:500) and monoclonal anti-tubulin (1:3000) antibodies (Sigma Aldrich, Madrid, Spain) were used. All other reagents were of analytical or culture-grade purity.

4.2. Primary culture of cortical astrocytes

All animals were handled according to the rules established by the bioethics committee of the School of Medicine, University of Valencia, Spain. Cerebral cortical astrocytes were isolated from rat fetuses of 21 days gestation. Fetuses were obtained by cesarean section and decapitated. Cerebral cortices were removed and cut into 1 mm cubes and triturated 10-15 times through a Pasteur pipette. After centrifugation at 1000 rpm for 5 min the pellet was resuspended in DMEM containing 20% fetal bovine serum (FBS), supplemented with L-glutamine (1%), HEPES (10 mM), fungizone (1%), and antibiotics (1%). Cells were plated on T75 culture flask. Cultures were maintained in a humidified atmosphere of 5% CO₂/95% air at 37°C and allowed to grow to confluence and used at 15-20 days in vitro. After one week of culture, the FBS content was reduced to 10%, and the medium was changed twice a week. The purity of astrocytes was assessed by immunofluorescence using anti-glial fibrillary acidic protein (anti-GFAP, astrocyte marker: Sigma-Aldrich, Madrid, Spain), anti-CD-68 (microglial marker: Serotec, Kidlington, UK), anti-myelin basic protein (oligodendroglial marker; Sigma-Aldrich, Madrid, Spain) and anti-microtubule-associated protein 2 (anti-MAP2, neuronal marker; Sigma-Aldrich, Madrid, Spain). The astrocytes were found to be at least 99% glial fibrillary acidic protein positive. No cells were found to express CD-68, myelin basic protein or microtubule-associated protein-2. For all the experiments we used toxin-free sterile culture materials.

4.3. MTT assay

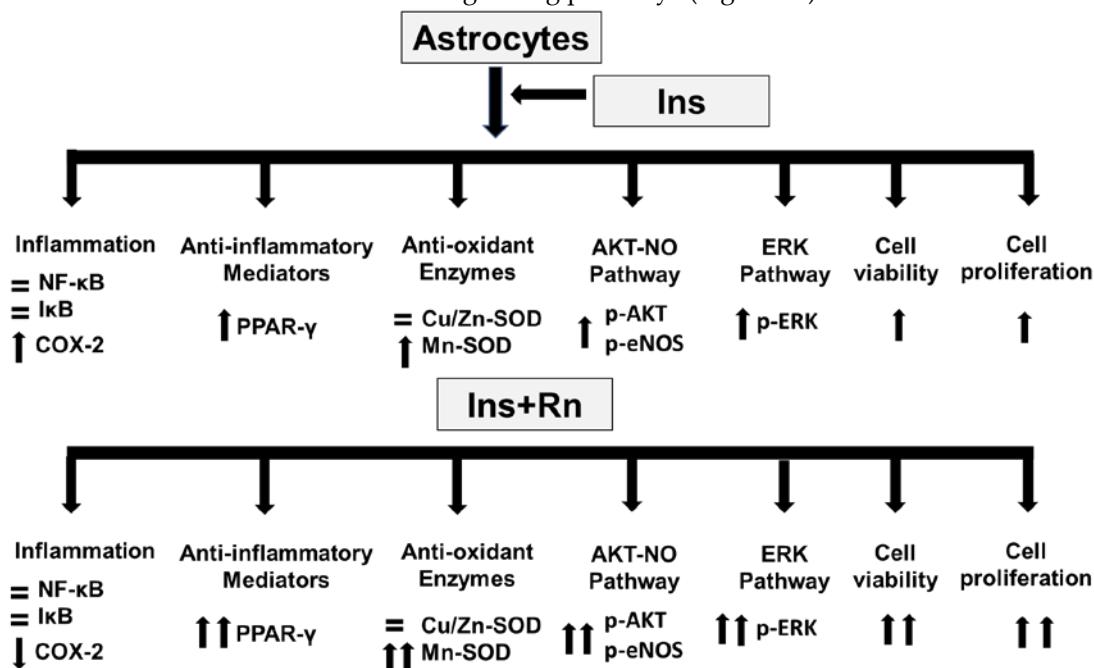
Cell viability of the cultures was determined by the MTT assay (34). Astrocytes were plated in 96 well cultures. Rn, Ins or Ins+Rn were added to wells for 24h. After cell treatments, the medium was removed and the cortical cells were incubated with red free medium and MTT solution [0.5 mg/ml, prepared in phosphate buffer saline (PBS) solution] for 4 h at 37°C. Finally, the medium was removed, and formazan particles were dissolved in dimethyl sulfoxide (DMSO). Cell viability, defined as the relative amount of MTT reduction was determined by spectrophotometry at 570 nm.

4.4. Trypan Blue Assay

Trypan blue exclusion assay was used to count the living cells and monitor cell proliferation. Astrocytes were isolated and seeded at 7×10^4 cells/35 mm dish. After 5 days of culture, cells were incubated without (control, C), with Rn (10^{-6} M), Ins (10^{-8}), or with Ins+Rn ($10^{-8} + 10^{-6}$ M) for 24 h. 1.5% trypan blue solution was applied to astrocyte cultures at room temperature for 3 min.

4.5. Western blot analysis

Cultured cells were treated with lysis buffer and then mechanically degraded to release the proteins. Protein concentration was determined using modified Lowry method (35). Loading buffer (0.125 M Tris-HCl, pH 6.8, 2% SDS, 0.5% (v/v) 2-mercaptoethanol, 1% bromophenol blue and 19% glycerol) was added to protein sample and heated for 5 min at 95°C. Proteins were separated on SDS-PAGE gels and transferred to nitrocellulose


membranes in a humid environment using a transfer buffer (25 mM Tris, 190 mM glycine, 20% methanol). Membranes were blocked with 5% milk in TBS (0.05% Tween-20) and were incubated with primary antibodies overnight at 4°C. Membranes were washed 3 times with wash buffer TBS-T (TBS, 0.2% Tween-20) and were incubated with a secondary anti-rabbit IgG or anti-mouse IgG (Cell Signaling Technologies Danvers, MA) antibody conjugated to the enzyme horseradish peroxidase (HRP) for 1 h. Membranes were washed three times and proteins were detected using the ECL method as specified by the manufacturer. Autoradiography signals were assessed using digital image system ImageQuant LAS 4000 (GE Healthcare).

4.6. Statistical methods

Values are expressed as mean \pm S.D. Differences between groups were assessed using t-test (Student's test) and by one-way analysis of variance (ANOVA) with the program GraphPad Prism. Statistical significance was accepted at $p \leq 0.05$. Data sets in which F was significant were examined by a modified t-test.

5. Conclusions

Ranolazine enhances the effects of insulin in primary culture astrocytes by boosting the expression of anti-inflammatory mediators like PPAR- γ and reducing the production of pro-inflammatory mediators like COX-2. Furthermore, ranolazine increased the action of insulin on the Mn-SOD antioxidant enzyme, as well as components of the AKT-eNOS and ERK signalling pathways (Figure 10).

Figure 10. Changes after Ins and Rn to astrocytes in primary culture. Rn facilitates the effects of insulin increasing cell viability and proliferation, the expression of anti-inflammatory mediators, such as PPAR- γ , and inhibiting that of pro-inflammatory mediators, such as COX-2. Furthermore, Rn potentiated the effect of insulin on the expression of antioxidant enzyme (Mn-SOD), the components of the AKT-eNOS pathway and the ERK signaling pathway.

Abbreviations: Ins: insulin; Rn, ranolazine; AKT, protein kinase B; p-AKT, phosphor-protein kinase B; eNOS, endothelial nitric oxide synthase; p-eNOS, phosphor-endothelial nitric oxide synthase; ERK, extracellular regulated kinase; p-ERK, phospho-extracellular regulated kinase; COX-2, cyclooxygenase 2; Cu/Zn-SOD, Cu/Zn-superoxide dismutase; Mn-SOD, Mn-superoxide dismutase; NF- κ B, nuclear factor-kappa B; I κ B, an inhibitor of nuclear factor-kappa B; PPAR- γ , peroxisome proliferator activated receptor γ .

Acknowledgments: We thank Mrs. Pilar Ribera for her help in the laboratory.

Funding: Financial support from the University of Valencia. (Specific Key 20180268).

Authors' contributions: AJ, IC and JCC did most of the experiments and interpreted the data. CA performed the statistical analysis. JMV and EO performed cell viability experiments. SKS helps with English. SLV and MA conceived of and designed the study, collected data, interpreted the data, and drafted the manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate: All animal procedures were carried out in accordance with the European legislation on the use and care of laboratory animals (CEE 86/609). Experimental research on mice was performed with the approval of the ethics committee on animal research of the University of Valencia (Spain) and all participants provided written informed consent. All procedures were performed in accordance with the 1964 Helsinki declaration and its later amendments.

Competing Interests: The authors have declared that no competing interest exists.

References:

1. Rajasekar, N., Dwivedi, S., Nath, C., Hanif, K., & Shukla, R. Protection of streptozotocin induced insulin receptor dysfunction, neuroinflammation and amyloidogenesis in astrocytes by insulin. *Neuropharmacology*. 2014, 86, 337–352. <https://doi.org/10.1016/j.neuropharm.2014.08.013>.
2. Ransohoff, R. M., & Engelhardt, B. The anatomical and cellular basis of immune surveillance in the central nervous system. *Nature reviews. Immunology*. 2012, 12, 623–635. <https://doi.org/10.1038/nri3265>
3. Sofroniew, M. V., & Vinters, H. V. Astrocytes: biology and pathology. *Acta neuropathologica*. 2010, 119, 7–35. <https://doi.org/10.1007/s00401-009-0619-8>
4. Aldasoro, M., Guerra-Ojeda, S., Aguirre-Rueda, D., Mauricio, M. D., Vila, J. M., Marchio, P., Iradi, A., Aldasoro, C., Jorda, A., Obrador, E., & Valles, S. L. Effects of Ranolazine on Astrocytes and Neurons in Primary Culture. *PloS one*. 2016, 11, e0150619. <https://doi.org/10.1371/journal.pone.0150619>
5. Thiebaud, D., Jacot, E., DeFronzo, R. A., Maeder, E., Jequier, E., & Felber, J. P. The effect of graded doses of insulin on total glucose uptake, glucose oxidation, and glucose storage in man. *Diabetes*. 1982, 31, 957–963. <https://doi.org/10.2337/diacare.31.11.957>

6. Gray, S. M., & Barrett, E. J. Insulin transport into the brain. *American journal of physiology. Cell physiology*. **2018**, *315*, C125–C136. <https://doi.org/10.1152/ajpcell.00240.2017>
7. Shaughness, M., Acs, D., Brabazon, F., Hockenbury, N., & Byrnes, K. R. Role of Insulin in Neurotrauma and Neurodegeneration: A Review. *Frontiers in neuroscience*. **2020**, *14*, 547175. <https://doi.org/10.3389/fnins.2020.547175>
8. Li, H., Liu, B., Huang, J., Chen, H., Guo, X., & Yuan, Z. Insulin inhibits lipopolysaccharide-induced nitric oxide synthase expression in rat primary astrocytes. *Brain research*. **2013**, *1506*, 1–11. <https://doi.org/10.1016/j.brainres.2013.01.055>
9. Heni, M., Hennige, A. M., Peter, A., Siegel-Axel, D., Ordelheide, A. M., Krebs, N., Machicao, F., Fritsche, A., Häring, H. U., & Staiger, H. Insulin promotes glycogen storage and cell proliferation in primary human astrocytes. *PloS one*. **2011**, *6*, e21594. <https://doi.org/10.1371/journal.pone.0021594>
10. Shahriary, L., Riazi, G., Lornejad, M. R., Ghezlou, M., Bigdeli, B., Delavari, B., Mamashli, F., Abbasi, S., Davoodi, J., & Saboury, A. A. Effect of glycated insulin on the blood-brain barrier permeability: An in vitro study. *Archives of biochemistry and biophysics*. **2018**, *647*, 54–66. <https://doi.org/10.1016/j.abb.2018.02.004>
11. Son, S. M., Cha, M. Y., Choi, H., Kang, S., Choi, H., Lee, M. S., Park, S. A., & Mook-Jung, I. Insulin-degrading enzyme secretion from astrocytes is mediated by an autophagy-based unconventional secretory pathway in Alzheimer disease. *Autophagy*. **2016**, *12*, 784–800. <https://doi.org/10.1080/15548627.2016.1159375>
12. Sousa, L., Guarda, M., Meneses, M. J., Macedo, M. P., & Vicente Miranda, H. Insulin-degrading enzyme: an ally against metabolic and neurodegenerative diseases. *The Journal of pathology*. **2021**, *255*, 346–361. <https://doi.org/10.1002/path.5777>
13. Siddiqui, M. A., & Keam, S. J. Ranolazine: a review of its use in chronic stable angina pectoris. *Drugs*. **2006**, *66*, 693–710. <https://doi.org/10.2165/00003495-200666050-00010>

14. Storey, K. M., Wang, J., Garberich, R. F., Bennett, N. M., Traverse, J. H., Arndt, T. L., Schmidt, C. W., & Henry, T. D. Long-Term (3 Years) Outcomes of Ranolazine Therapy for Refractory Angina Pectoris (from the Ranolazine Refractory Registry). *The American journal of cardiology*. **2020**, 129, 1–4. <https://doi.org/10.1016/j.amjcard.2020.05.020>

15. Stone, P. H., Chaitman, B. R., Stocke, K., Sano, J., DeVault, A., & Koch, G. G. The anti-ischemic mechanism of action of ranolazine in stable ischemic heart disease. *Journal of the American College of Cardiology*. **2010**, 56, 934–942. <https://doi.org/10.1016/j.jacc.2010.04.042>

16. Marchio, P., Guerra-Ojeda, S., Aldasoro, M., Valles, S. L., Martín-Gonzalez, I., Martínez-León, J. B., Mauricio, M. D., & Vila, J. M. Relaxant and antiadrenergic effects of ranolazine in human saphenous vein. *European journal of cardio-thoracic surgery: official journal of the European Association for Cardio-thoracic Surgery*. **2020**, 58, 277–285. <https://doi.org/10.1093/ejcts/ezaa034>

17. Nusca, A., Bernardini, F., Mangiacapra, F., Maddaloni, E., Melfi, R., Ricottini, E., Piccirillo, F., Manfrini, S., Ussia, G. P., & Grigioni, F. Ranolazine Improves Glycemic Variability and Endothelial Function in Patients with Diabetes and Chronic Coronary Syndromes: Results from an Experimental Study. *Journal of diabetes research*. **2021**, 4952447. <https://doi.org/10.1155/2021/4952447>

18. Shryock, J. C., & Belardinelli, L. Inhibition of late sodium current to reduce electrical and mechanical dysfunction of ischaemic myocardium. *British journal of pharmacology*. **2008**, 153, 1128–1132. <https://doi.org/10.1038/sj.bjp.0707522>

19. Chaitman B. R. Ranolazine for the treatment of chronic angina and potential use in other cardiovascular conditions. *Circulation*. **2006**, 113, 2462–2472. <https://doi.org/10.1161/CIRCULATIONAHA.105.597500>

20. Belardinelli, R., Lacalaprice, F., Faccenda, E., & Volpe, L. Clinical benefits of a metabolic approach in the cardiac rehabilitation of patients with coronary artery disease. *The American journal of cardiology*. **2006**, *98*(5A), 25J–33J. <https://doi.org/10.1016/j.amjcard.2006.07.006>

21. Kaplan, A., Amin, G., Abidi, E., Altara, R., Booz, G. W., & Zouein, F. A. Role of ranolazine in heart failure: From cellular to clinic perspective. *European journal of pharmacology*. **2022**, *919*, 174787. <https://doi.org/10.1016/j.ejphar.2022.174787>

22. Aldakkak, M., Camara, A. K., Heisner, J. S., Yang, M., & Stowe, D. F. Ranolazine reduces Ca²⁺ overload and oxidative stress and improves mitochondrial integrity to protect against ischemia reperfusion injury in isolated hearts. *Pharmacological research*. **2011**, *64*, 381–392. <https://doi.org/10.1016/j.phrs.2011.06.018>

23. Rambarat, C. A., Elgendi, I. Y., Handberg, E. M., Bairey Merz, C. N., Wei, J., Minissian, M. B., Nelson, M. D., Thomson, L., Berman, D. S., Shaw, L. J., Cook-Wiens, G., & Pepine, C. J. (2019). Late sodium channel blockade improves angina and myocardial perfusion in patients with severe coronary microvascular dysfunction: Women's Ischemia Syndrome Evaluation–Coronary Vascular Dysfunction ancillary study. *International journal of cardiology*. **2019**, *276*, 8–13. <https://doi.org/10.1016/j.ijcard.2018.09.081>

24. Chou, C. C., Lee, H. L., Chang, G. J., Wo, H. T., Yen, T. H., Wen, M. S., Chu, Y., Liu, H. T., & Chang, P. C. Mechanisms of ranolazine pretreatment in preventing ventricular tachyarrhythmias in diabetic db/db mice with acute regional ischemia-reperfusion injury. *Scientific reports*. **2020**, *10*, 20032. <https://doi.org/10.1038/s41598-020-77014-0>

25. Deshmukh, S. H., Patel, S. R., Pinassi, E., Mindrescu, C., Hermance, E. V., Infantino, M. N., Coppola, J. T., & Staniloae, C. S. Ranolazine improves endothelial function in patients with stable coronary artery disease. *Coronary artery disease*. **2009**, *20*, 343–347. <https://doi.org/10.1097/MCA.0b013e32832a198b>

26. Morrow, D. A., Scirica, B. M., Chaitman, B. R., McGuire, D. K., Murphy, S. A., Karwatowska-Prokopcuk, E., McCabe, C. H., Braunwald, E., & MERLIN-TIMI 36 Investigators. Evaluation of the glycometabolic effects of ranolazine in patients with and without diabetes mellitus in the MERLIN-TIMI 36 randomized controlled trial. *Circulation*. **2019**, *119*, 2032–2039. <https://doi.org/10.1161/CIRCULATIONAHA.107.763912>

27. Arnold, S. V., McGuire, D. K., Spertus, J. A., Li, Y., Yue, P., Ben-Yehuda, O., Belardinelli, L., Jones, P. G., Olmsted, A., Chaitman, B. R., & Kosiborod, M. Effectiveness of ranolazine in patients with type 2 diabetes mellitus and chronic stable angina according to baseline hemoglobin A1c. *American heart journal*. **2014a**, *168*, 457–465.e2. <https://doi.org/10.1016/j.ahj.2014.06.020>

28. Arnold, S. V., Kosiborod, M., McGuire, D. K., Li, Y., Yue, P., Ben-Yehuda, O., & Spertus, J. A. Effects of ranolazine on quality of life among patients with diabetes mellitus and stable angina. *JAMA internal medicine*. **2014b**, *174*, 1403–1405. <https://doi.org/10.1001/jamainternmed.2014.2120>

29. Ning, Y., Zhen, W., Fu, Z., Jiang, J., Liu, D., Belardinelli, L., & Dhalla, A. K. Ranolazine increases β -cell survival and improves glucose homeostasis in low-dose streptozotocin-induced diabetes in mice. *The Journal of pharmacology and experimental therapeutics*. **2011**, *337*, 50–58. <https://doi.org/10.1124/jpet.110.176396>

30. Peters, C. H., Sokolov, S., Rajamani, S., & Ruben, P. C. Effects of the antianginal drug, ranolazine, on the brain sodium channel Na(V)1.2 and its modulation by extracellular protons. *British journal of pharmacology*. **2013**, *169*, 704–716. <https://doi.org/10.1111/bph.12150>

31. Park, Y. Y., Johnston, D., & Gray, R. Slowly inactivating component of Na^+ current in peri-somatic region of hippocampal CA1 pyramidal neurons. *Journal of neurophysiology*. **2013**, *109*, 1378–1390. <https://doi.org/10.1152/jn.00435.2012>

32. Virsolvay, A., Farah, C., Pertuit, N., Kong, L., Lacampagne, A., Reboul, C., Aimond, F., & Richard, S. Antagonism of Nav channels and α 1-adrenergic receptors contributes to vascular smooth muscle effects of ranolazine. *Scientific reports*. **2015**, *5*, 17969. <https://doi.org/10.1038/srep17969>

33. Chen, B. S., Lo, Y. C., Peng, H., Hsu, T. I., & Wu, S. N. Effects of ranolazine, a novel anti-anginal drug, on ion currents and membrane potential in pituitary tumor GH (3) cells and NG108-15 neuronal cells. *Journal of pharmacological sciences*. **2009**, *110*, 295–305. <https://doi.org/10.1254/jphs.09018fp>

34. Stockert, J. C., Blázquez-Castro, A., Cañete, M., Horobin, R. W., & Villanueva, A. MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets. *Acta histochemical*. **2012**, *114*, 785–796. <https://doi.org/10.1016/j.acthis.2012.01.006>

35. Barja G. Mitochondrial oxygen radical generation and leak: sites of production in states 4 and 3, organ specificity, and relation to aging and longevity. *Journal of bioenergetics and biomembranes*. **1999**, *31*, 347–366. <https://doi.org/10.1023/a:1005427919188>

36. Karve, I. P., Taylor, J. M., & Crack, P. J. The contribution of astrocytes and microglia to traumatic brain injury. *British journal of pharmacology*. **2016**, *173*, 692–702. <https://doi.org/10.1111/bph.13125>

37. Skaper S. D. The brain as a target for inflammatory processes and neuroprotective strategies. *Annals of the New York Academy of Sciences*. **2007**, *1122*, 23–34. <https://doi.org/10.1196/annals.1403.002>

38. Aguirre-Rueda, D., Guerra-Ojeda, S., Aldasoro, M., Iradi, A., Obrador, E., Ortega, A., Mauricio, M. D., Vila, J. M., & Valles, S. L. Astrocytes protect neurons from A β 1-42 peptide-induced neurotoxicity increasing TFAM and PGC-1 and decreasing PPAR- γ and SIRT-1. *International journal of medical sciences*. **2015**, *12*, 48–56. <https://doi.org/10.7150/ijms.10035>

39. Bouyakdan, K., Martin, H., Liénard, F., Budry, L., Taib, B., Rodaros, D., Chrétien, C., Biron, É., Husson, Z., Cota, D., Pénicaud, L., Fulton, S., Fioramonti, X., & Alquier, T. The gliotransmitter ACBP controls feeding and energy homeostasis via the melanocortin system. *The Journal of clinical investigation*. **2019**, 129, 2417–2430. <https://doi.org/10.1172/JCI123454>

40. MacDonald, A. J., Holmes, F. E., Beall, C., Pickering, A. E., & Ellacott, K. Regulation of food intake by astrocytes in the brainstem dorsal vagal complex. *Glia*. **2020**, 68, 1241–1254. <https://doi.org/10.1002/glia.23774>

41. González-García, I., Gruber, T., & García-Cáceres, C. Insulin action on astrocytes: From energy homeostasis to behaviour. *Journal of neuroendocrinology*. **2021**, 33, e12953. <https://doi.org/10.1111/jne.12953>

42. Spielman, L. J., Bahniwal, M., Little, J. P., Walker, D. G., & Klegeris, A. Insulin Modulates In Vitro Secretion of Cytokines and Cytotoxins by Human Glial Cells. *Current Alzheimer research*. **2015**, 12, 684–693. <https://doi.org/10.2174/1567205012666150710104428>

43. Haas, C. B., de Carvalho, A. K., Muller, A. P., Eggen, B., & Portela, L. V. Insulin activates microglia and increases COX-2/IL-1 β expression in young but not in aged hippocampus. *Brain research*. **2020**, 1741, 146884. <https://doi.org/10.1016/j.brainres.2020.146884>

44. Dimmeler, S., Fleming, I., Fisslthaler, B., Hermann, C., Busse, R., & Zeiher, A. M. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. *Nature*. **1999**, 399, 601–605. <https://doi.org/10.1038/21224>

45. Moosavi, M., Naghdi, N., & Choopani, S. Intra CA1 insulin microinjection improves memory consolidation and retrieval. *Peptides*. **2007**, 28, 1029–1034. <https://doi.org/10.1016/j.peptides.2007.02.010>

46. Choopani, S., Moosavi, M., & Naghdi, N. Involvement of nitric oxide in insulin induced memory improvement. *Peptides*. **2008**, 29, 898–903. <https://doi.org/10.1016/j.peptides.2008.01.005>

47. McCrimmon, R. J., Ryan, C. M., & Frier, B. M. Diabetes and cognitive dysfunction. *Lancet (London, England)*. **2012**, 379, 2291–2299. [https://doi.org/10.1016/S0140-6736\(12\)60360-2](https://doi.org/10.1016/S0140-6736(12)60360-2)

48. Nefs, G., Hendrieckx, C., Reddy, P., Browne, J. L., Bot, M., Dixon, J., Kyrios, M., Speight, J., & Pouwer, F. Comorbid elevated symptoms of anxiety and depression in adults with type 1 or type 2 diabetes: Results from the International Diabetes MILES Study. *Journal of diabetes and its complications*. **2019**, 33, 523–529. <https://doi.org/10.1016/j.jdiacomp.2019.04.013>

49. Arvanitakis, Z., Wilson, R. S., Bienias, J. L., Evans, D. A., & Bennett, D. A. Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. *Archives of neurology*. **2004**, 61, 661–666. <https://doi.org/10.1001/archneur.61.5.661>

50. Akhtar, A., & Sah, S. P. Insulin signaling pathway and related molecules: Role in neurodegeneration and Alzheimer's disease. *Neurochemistry international*. **2020**, 135, 104707. <https://doi.org/10.1016/j.neuint.2020.104707>

51. Cheong, J., de Pablo-Fernandez, E., Foltynie, T., & Noyce, A. J. The Association Between Type 2 Diabetes Mellitus and Parkinson's Disease. *Journal of Parkinson's disease*. **2020**, 10, 775–789. <https://doi.org/10.3233/JPD-191900>

52. Gabbouj, S., Ryhänen, S., Marttinen, M., Wittrahm, R., Takalo, M., Kemppainen, S., Martiskainen, H., Tanila, H., Haapasalo, A., Hiltunen, M., & Natunen, T. Altered Insulin Signaling in Alzheimer's Disease Brain - Special Emphasis on PI3K-Akt Pathway. *Frontiers in neuroscience*. **2019**, 13, 629. <https://doi.org/10.3389/fnins.2019.00629>

53. Talbot, K., Wang, H. Y., Kazi, H., Han, L. Y., Bakshi, K. P., Stucky, A., Fuino, R. L., Kawaguchi, K. R., Samoyedny, A. J., Wilson, R. S., Arvanitakis, Z., Schneider, J. A., Wolf, B. A., Bennett, D. A., Trojanowski, J. Q., & Arnold, S. E. Demonstrated brain insulin resistance in Alzheimer's disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. *The Journal of clinical investigation*. **2012**, 122, 1316–1338. <https://doi.org/10.1172/JCI59903>

54. Yarchoan, M., Toledo, J. B., Lee, E. B., Arvanitakis, Z., Kazi, H., Han, L. Y., Louneva, N., Lee, V. M., Kim, S. F., Trojanowski, J. Q., & Arnold, S. E. Abnormal serine phosphorylation of insulin receptor substrate 1 is associated with tau pathology in Alzheimer's disease and tauopathies. *Acta neuropathologica*. **2014**, *128*, 679–689. <https://doi.org/10.1007/s00401-014-1328-5>

55. Metz, H. E., & Houghton, A. M. Insulin receptor substrate regulation of phosphoinositide 3-kinase. *Clinical cancer research: an official journal of the American Association for Cancer Research*. **2011**, *17*, 206–211. <https://doi.org/10.1158/1078-0432.CCR-10-0434>

56. Cassano, V., Leo, A., Tallarico, M., Nesci, V., Cimellaro, A., Fiorentino, T. V., Citraro, R., Hribal, M. L., De Sarro, G., Perticone, F., Sesti, G., Russo, E., & Sciacqua, A. Metabolic and Cognitive Effects of Ranolazine in Type 2 Diabetes Mellitus: Data from an in vivo Model. *Nutrients*. **2020**, *12*, 382. <https://doi.org/10.3390/nu12020382>

57. Marasciulo, F. L., Montagnani, M., & Potenza, M. A. Endothelin-1: the yin and yang on vascular function. *Current medicinal chemistry*. **2006**, *13*, 1655–1665. <https://doi.org/10.2174/092986706777441968>

58. Lee, J. H., Jahrling, J. B., Denner, L., & Dineley, K. T. Targeting Insulin for Alzheimer's Disease: Mechanisms, Status and Potential Directions. *Journal of Alzheimer's disease: JAD*. **2018**, *64*(s1), S427–S453. <https://doi.org/10.3233/JAD-179923>

59. Brabazon, F., Bermudez, S., Shaughness, M., Khayrullina, G., & Byrnes, K. R. The effects of insulin on the inflammatory activity of BV2 microglia. *PloS one*. **2018**, *13*, e0201878. <https://doi.org/10.1371/journal.pone.0201878>

60. Picard, F., & Auwerx, J. PPAR(gamma) and glucose homeostasis. *Annual review of nutrition*. **2002**, *22*, 167–197. <https://doi.org/10.1146/annurev.nutr.22.010402.102808>

61. Norris, A. W., Chen, L., Fisher, S. J., Szanto, I., Ristow, M., Jozsi, A. C., Hirshman, M. F., Rosen, E. D., Goodyear, L. J., Gonzalez, F. J., Spiegelman, B. M., & Kahn, C. R. Muscle-specific PPARgamma-deficient mice develop increased adiposity and insulin resistance but

respond to thiazolidinediones. *The Journal of clinical investigation.* **2003**, *112*, 608–618. <https://doi.org/10.1172/JCI17305>

62. Montaigne, D., Butruille, L., & Staels, B. PPAR control of metabolism and cardiovascular functions. *Nature reviews. Cardiology.* **2021**, *18*, 809–823. <https://doi.org/10.1038/s41569-021-00569-6>

63. Yu, T., Gao, M., Yang, P., Liu, D., Wang, D., Song, F., Zhang, X., & Liu, Y. Insulin promotes macrophage phenotype transition through PI3K/Akt and PPAR- γ signaling during diabetic wound healing. *Journal of cellular physiology.* **2019**, *234*, 4217–4231. <https://doi.org/10.1002/jcp.27185>

64. Touyz, R. M., & Schiffrin, E. L. (2006). Peroxisome proliferator-activated receptors in vascular biology-molecular mechanisms and clinical implications. *Vascular pharmacology.* **2006**, *45*, 19–28. <https://doi.org/10.1016/j.vph.2005.11.014>

65. Lee, Y., Cho, J. H., Lee, S., Lee, W., Chang, S. C., Chung, H. Y., Moon, H. R., & Lee, J. Neuroprotective effects of MHY908, a PPAR α/γ dual agonist, in a MPTP-induced Parkinson's disease model. *Brain research.* **2019**, *1704*, 47–58. <https://doi.org/10.1016/j.brainres.2018.09.036>

66. Rajasekar, N., Nath, C., Hanif, K., & Shukla, R. Intranasal Insulin Administration Ameliorates Streptozotocin (ICV)-Induced Insulin Receptor Dysfunction, Neuroinflammation, Amyloidogenesis, and Memory Impairment in Rats. *Molecular neurobiology.* **2017**, *54*, 6507–6522. <https://doi.org/10.1007/s12035-016-0169-8>

67. Matsuzaki, S., Eyster, C., Newhardt, M. F., Giorgione, J. R., Kinter, C., Young, Z. T., Kinter, M., & Humphries, K. M. Insulin signaling alters antioxidant capacity in the diabetic heart. *Redox biology.* **2021**, *47*, 102140. <https://doi.org/10.1016/j.redox.2021.102140>

68. Ramalingayya, G. V., Sonawane, V., Cheruku, S. P., Kishore, A., Nayak, P. G., Kumar, N., Shenoy, R. S., & Nandakumar, K. Insulin Protects against Brain Oxidative Stress with an

Apparent Effect on Episodic Memory in Doxorubicin-Induced Cognitive Dysfunction in Wistar Rats. *Journal of environmental pathology, toxicology and oncology: official organ of the International Society for Environmental Toxicology and Cancer*. **2017**, *36*, 121–130. <https://doi.org/10.1615/JEnvironPatholToxicolOncol.2017017087>

69. Hoehn, K. L., Salmon, A. B., Hohnen-Behrens, C., Turner, N., Hoy, A. J., Maghzal, G. J., Stocker, R., Van Remmen, H., Kraegen, E. W., Cooney, G. J., Richardson, A. R., & James, D. E. Insulin resistance is a cellular antioxidant defense mechanism. *Proceedings of the National Academy of Sciences of the United States of America*. **2009**, *106*, 17787–17792. <https://doi.org/10.1073/pnas.0902380106>

70. Song, Y., Ding, W., Bei, Y., Xiao, Y., Tong, H. D., Wang, L. B., & Ai, L. Y. Insulin is a potential antioxidant for diabetes-associated cognitive decline via regulating Nrf2 dependent antioxidant enzymes. *Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie*. **2018**, *104*, 474–484. <https://doi.org/10.1016/j.biopha.2018.04.097>

71. McCormack, J. G., Barr, R. L., Wolff, A. A., & Lopaschuk, G. D. Ranolazine stimulates glucose oxidation in normoxic, ischemic, and reperfused ischemic rat hearts. *Circulation*. **1996**, *93*, 135–142. <https://doi.org/10.1161/01.cir.93.1.135>

72. Fu, Z., Zhao, L., Chai, W., Dong, Z., Cao, W., & Liu, Z. Ranolazine recruits muscle microvasculature and enhances insulin action in rats. *The Journal of physiology*. **2013**, *591*, 5235–5249. <https://doi.org/10.1113/jphysiol.2013.257246>

73. Zeng, X., Zhang, Y., Lin, J., Zheng, H., Peng, J., & Huang, W. Efficacy and Safety of Ranolazine in Diabetic Patients: A Systematic Review and Meta-analysis. *The Annals of pharmacotherapy*. **2017**, *1060028017747901*. Advance online publication. <https://doi.org/10.1177/1060028017747901>

74. Gilbert, B. W., Sherard, M., Little, L., Branstetter, J., Meister, A., & Huffman, J. Antihyperglycemic and Metabolic Effects of Ranolazine in Patients with Diabetes Mellitus. *The*

American journal of cardiology. **2018**, *121*, 509–512.
<https://doi.org/10.1016/j.amjcard.2017.11.021>

75. Bell, D., & Goncalves, E. Diabetogenic effects of cardioprotective drugs. *Diabetes, obesity & metabolism*. **2021**, *23*, 877–885. <https://doi.org/10.1111/dom.14295>

76. Teoh, I. H., & Banerjee, M. Effect of ranolazine on glycaemia in adults with and without diabetes: a meta-analysis of randomised controlled trials. *Open heart*. **2018**, *5*, e000706.
<https://doi.org/10.1136/openhrt-2017-000706>

77. Terruzzi, I., Montesano, A., Senesi, P., Vacante, F., Benedini, S., & Luzi, L. Ranolazine promotes muscle differentiation and reduces oxidative stress in C2C12 skeletal muscle cells. *Endocrine*. **2017**, *58*, 33–45. <https://doi.org/10.1007/s12020-016-1181-5>

78. Caminiti, G., Fossati, C., Battaglia, D., Massaro, R., Rosano, G., & Volterrani, M. Ranolazine improves insulin resistance in non-diabetic patients with coronary heart disease. A pilot study. *International journal of cardiology*. **2016**, *219*, 127–129.
<https://doi.org/10.1016/j.ijcard.2016.06.003>

79. Theile, J. W., & Cummins, T. R. Recent developments regarding voltage-gated sodium channel blockers for the treatment of inherited and acquired neuropathic pain syndromes. *Frontiers in pharmacology*. **2011**, *2*, 54. <https://doi.org/10.3389/fphar.2011.00054>

80. Kahlig, K. M., Lepist, I., Leung, K., Rajamani, S., & George, A. L. Ranolazine selectively blocks persistent current evoked by epilepsy-associated Nav1.1 mutations. *British journal of pharmacology*. **2010**, *161*, 1414–1426. <https://doi.org/10.1111/j.1476-5381.2010.00976.x>

81. Nodera, H., & Rutkove, S. B. Changes of the peripheral nerve excitability in vivo induced by the persistent Na⁺ current blocker ranolazine. *Neuroscience letters*. **2012**, *518*, 36–40.
<https://doi.org/10.1016/j.neulet.2012.04.050>

82. Elkholy, S. E., Elaidy, S. M., El-Sherbeeny, N. A., Toraih, E. A., & El-Gawly, H. W. Neuroprotective effects of ranolazine versus pioglitazone in experimental diabetic neuropathy:

Targeting Nav1.7 channels and PPAR- γ . *Life sciences*. **2020**, *250*, 117557.

<https://doi.org/10.1016/j.lfs.2020.117557>

83. Rouhana, S., Virsolvý, A., Fares, N., Richard, S., & Thireau, J. Ranolazine: An Old Drug with Emerging Potential; Lessons from Pre-Clinical and Clinical Investigations for Possible Repositioning. *Pharmaceuticals (Basel, Switzerland)*. **2021**, *15*, 31.

<https://doi.org/10.3390/ph15010031>