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Abstract: ranolazine (Rn) is a drug used to treat persistent chronic coronary ischemia. It has
also been shown to have therapeutic benefits on the central nervous system and an anti-diabetic
effect by lowering blood glucose levels and however, no effects of Rn on cellular sensitivity to insu-
lin (Ins) have been demonstrated yet. The present study aimed to investigate the permissive effects
of Rn on the actions of Ins in astrocytes in primary culture. Ins at 10% M, Rn (10°M) and Ins+Rn (10-
8 M and 10-° M respectively) were added to astrocytes during 24 h. In comparison to control cells,
Rn and/or Ins caused modifications in cell viability and proliferation. p-AKT, p-ERK, p-eNOS, Mn-
SOD, COX-2, and the anti-inflammatory protein COX-2 were all upregulated by ins. On the con-
trary, no significant changes were found in the protein expression of Cu/Zn-SOD, NF-kB and IkB.
The presence of Rn produced an increase in p-ERK protein and a significant decrease in COX-2
protein expression. Furthermore, Rn significantly increased the effects of Ins on the expression of p-
AKT, p-eNOS, p-ERK, Mn-SOD, and PPAR-y. On the other hand, Rn+Ins produced a significant
decrease in COX-2 expression. In conclusion, Rn facilitated the effects of insulin on the p-AKT, p-
eNOS, p-ERK, Mn-S0OD and PPAR-y, signaling pathways, as well as on the anti-inflammatory and
antioxidant effects of the hormone.

Keywords: Ranolazine; Insulin; astrocytes; inflammation; antioxidants

1. Introduction

Astrocytes are the most abundant cells in the central nervous system (CNS) and per-
form a variety of functions, including structural support, blood-brain barrier integrity,
and the development of important protective roles (1). They take part also in immunolog-
ical responses and in the reparative processes that occur at different stages of neuroin-
flammation (2).

Astrocytes secrete both neurotrophic and inflammatory cytokines, and express re-
ceptors for mediators like IL-13, and TNF-a, among others (3,4). Glucose absorption and
storage are two of insulin's most essential effects (5). Insulin crosses the blood-brain bar-
rier acting on astrocytes and, indirectly, on neurons (6). The brain expresses insulin recep-
tors (IR) on neurons, microglia, and astrocytes. Its effects include metabolic functions and
neuronal survival after trauma or during neurodegeneration (7). In fact, these effects are
due to anti-inflammatory insulin action. At 108 M, insulin inhibits inducible nitric oxide
synthase (iNOS) expression and NF«B level increase in astrocytes induced by LPS (8).
Furthermore, insulin increased the vitality of rat and human astrocytes (9,10). Insulin is
generally degraded in lysosomes within cells [6), although there is evidence of the pres-
ence of the insulin-degrading enzyme (IDE) in different types of cells, including astrocytes
(11). In addition, IDE degrades other peptides such as a beta-amyloid peptide, which is
involved in the pathogenesis of Alzheimer's disease (12).
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In clinical practice, ranolazine (Rn) is used to treat refractory chronic stable angina
(13,14). Data from patients indicate that ranolazine preserves myocardial blood flow dur-
ing ischemic insults (15). Human studies back up the idea that ranolazine can help im-
prove coronary blood flow by lowering the mechanical consequences of ischemia contrac-
ture, enhancing endothelial function, or both (16,17). At therapeutic concentrations, Rn
inhibits the late inward sodium current (I(NaL)) (18) reducing tissue damage caused by
intracellular sodium and calcium overload that is associated with myocardial ischemia
(19,20,21). I(NaL) amplitude is increased in many pathological situations, such as myocar-
dial ischemia and oxidative stress (22,23,24). In addition to its antianginal effects, Rn acts
as an anti-inflammatory agent reducing asymmetric dimethylarginine and C-reactive pro-
tein plasma levels and promoting the endothelial release of vasodilator mediators in pa-
tients with ischemic coronary disease (25). Furthermore, metabolic effects, such as the
lowering of hemoglobin Alc (HbAlc) in patients with ischemic heart disease and diabetes
(26,27,28), or the improvement of insulin secretion and 3-cell survival in diabetic mice (29)
have already been described. Moreover, several studies evaluated the effects of Rn on the
nervous system (30,31,32). They suggested that these effects would be also mediated by
late INa or inwardly rectifying K* current (33).

Therefore, the objective of this study is to evaluate the effects of insulin on astrocytes
in primary culture and the facilitating actions of ranolazine on the sensitivity of astrocytes
to insulin. It is intended to evaluate the effects of insulin and ranolazine on cell viability,
as well as on anti-inflammatory and antioxidant mechanisms and processes.

2. Results
2.1. Cell Viability

The role of Rn, Ins or Ins+Rn on cell viability were studied using MTT conversion
assay. Figure 1 shows that incubation with Rn, Ins or Ins+Rn, produced significant in-
crease compared with control astrocytes (Figure 1) (Rn 28%, Ins 27% and Ins+Rn 72%).
Furthermore, Ins+Rn produced an increase in viability compared to Ins about 25%.

x«+#
200 -
180 -
160 -
140 -
120 -
100 -

% of Control

40 -
20 -
0

C Rn Ins Ins+Rn

Figure 1. Effect of Ins and Rn on astrocytes viability. Cell viability was determined by MTT assay in cells treated for 24

h. Astrocytes were incubated without (control, C), with Rn (106 M), with Ins (10 M) or with Ins+Rn (106 M+10-¢ M).

Data are mean = SD of four independent experiments (four different rats). *p < 0.05 vs. control. +p < 0.05 vs. Rn. #p <

0.05 vs. Ins.

Figure 2 shows that Ins or Ins+Rn increased astrocytes number compared to control
cells.
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Figure 2. Effect of Ins and Ins + Rn on astrocytes in primary culture. Cells were isolated and seeded at 7 x 10* cells/35
mm dish for 5 days. Currently, cells were incubated without (control, C), with Ins (108 M) or with Ins+Rn (108+10% M)
for 24 h. Fluorescence products used were: Mitotracker (250 nM) to stain mitochondria, Lysotracker (250 nM) to stain

lysosomes and Hoechst 33342 (2 ug ml1) to stain nuclei. Contrast images are added. Bar represents 20 um.

2.2. Cell proliferation

Trypan blue exclusion assay was used to count the living cells and monitor cell pro-
liferation. Astrocytes were isolated and seeded at 7x10* cells/35 mm dish. After 5 days of
culture, cells were incubated without (control, C) or with Rn (10¢ M), Ins (10® M), or with
Ins+Rn (10 and 10 M) for 24 h. In control conditions proliferation was 0.85%, with Rn
30.31%, with Ins 29.18%% and with Ins+Rn 33.91%, demonstrating significant differences
(Table 1).
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Seeding cells (x104/35 5 days of 24 h %
mm dish) culture Treatment | Proliferation
Control 7 12.86£0.32 | 12.97£0.24 0.85
Rn 7 12.87+0.25 | 16.77+£0.35 30.31*
Ins 7 12.85+0.23 | 16.60+ 0.37 29.18*
Ins+Rn 7 12.88+0.26 | 17.25+0.35 33.91*#

Table 1. Effect of Ins and Rn on astrocytes proliferation. Cell proliferation and counting living cells. Astrocytes were
isolated and seeded at 7 x 10* cells/35 mm dish for 5 days. Currently, cells were incubated without (control, C), with Rn
(10 M), with Ins (10-8 M) or with Ins+Rn (10-8+10-% M) for 24 h. Trypan blue exclusion was used to count the living cells
and monitor cell proliferation. Data are mean = SD of four independent experiments (four different rats). *p < 0.05 vs.

control.

2.3. Protein expression of p-AKT

Figure 3 shows that Rn (10¢ M), Ins (10 M) and Ins+Rn (10% M and 10 M) produced
significant differences in p-AKT compared to control cells. In fact, Ins increased the ex-
pression of p-AKT by 43.3% compared to the control and Ins+Rn increased by 87.2% com-
pared to the control. Furthermore, Rn did not produce significant changes compared to
control cells. In addition, the joint effect of Ins+Rn increased the expression of p-AKT with
respect to Ins by 31.6% (Figure 3).
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Figure 3. Effect of Ins and Rn on p-AKT and AKT protein expression. Astrocytes were incubated without (control, C),
with Rn (106 M), with Ins (10-8 M) or with Ins+Rn (108 M+10-¢ M) for 24 h and collected to determine p-AKT and AKT
protein expressions by Western blot. A representative immunoblot is shown in the panel. Data are mean + SD of four

independent experiments (four different rats). *p < 0.05 vs. control. +p < 0.05 vs. Rn. #p < 0.05 vs. Ins.

2.4. Expression of p-eNOS protein
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We determined the expression of p-eNOS in astrocytes in primary culture. The pres-
ence of Rn did not produce any significant differences respect to control cells. Ins in-
creased the expression of p-eNOS protein compared to control cells (32.25%). Ins+Rn sig-
nificantly increased the expression of p-eNOS compared to the control (74.1%). Further-
more, the joint effect of Ins+Rn significantly increased (30.6%) the expression of p-eNOS
with respect to the Ins group (Figure 4).
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Figure 4. Effect of Ins and Rn on p-eNOS and eNos protein expression. Astrocytes were incubated without (control, C),
with Rn (10-¢ M), with Ins (10-8 M) or with Ins+Rn (10-8 M+10-6 M) for 24 h and collected to determine p-eNOS and eNOS
protein expressions by Western blot. A representative immunoblot is shown in the panel. Data are mean + SD of four

independent experiments (four different rats). *p < 0.05 vs. control. +p < 0.05 vs. Rn. #p < 0.05 vs. Ins.

2.5. p-ERK protein expression

We determined p-ERK protein expression in astrocytes in primary culture. After ad-
dition of Rn or Ins, a significant increase in p-ERK protein expression was detected com-
pared to control astrocytes (22.8% and 33.2%). The incubation with Ins+Rn significantly
increased p-ERK expression compared to control cells (60.1%) and respect to Rn or Ins
treated cells (29.7 and 21.4% respectively) (Figure 5).
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Figure 5. Effect of Ins and Rn on p-ERK and ERK protein expression. Astrocytes were incubated without (control, C),
with Rn (10¢ M), with Ins (108 M) or with Ins+Rn (108 M+10-% M) for 24 h and collected to determine p-ERK and ERK
protein expressions by Western blot. A representative immunoblot is shown in the panel. Data are mean + SD of four

independent experiments (four different rats). *p < 0.05 vs. control. +p < 0.05 vs. Rn. #p < 0.05 vs. Ins.

2.6. COX-2 protein expression

We detected a significant decrease after addition of Rn (10-* M) and an increase of
COX-2 protein expression after addition of Ins (10® M) compared with control values
(15.2% and 20.1% respectively). Furthermore, the presence of Ins+tRn decreased COX-2
expression (18.1%) respect to control astrocytes and 48.8% respect to astrocytes treated
with Ins, showing no differences respect to Rn addition (Figure 6).
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Figure 6. Effect of Ins and Rn on COX-2 protein expression. Astrocytes were incubated without (control, C), with Rn
(106 M), with Ins (108 M) or with Ins+Rn (10-8 M+10%¢ M) for 24 h and collected to determine COX-2 protein expression
by Western blot. A representative immunoblot is shown in the panel. Data are mean + SD of four independent

experiments (four different rats). *p < 0.05 vs. control. +p < 0.05 vs. Rn. #p < 0.05 vs. Ins.

2.7. Expression of Cu/Zn-SOD and Mn-SOD proteins

In astrocytes, Rn, Ins or Ins+Rn did not produced changes in Cu/Zn-SOD (Figure 7A)
protein expression compared to control cells (Figure 7A). Expression of Mn-SOD was de-
termined and showed in Figure 7B. Addition of Ins significantly increased protein expres-
sion compared to control astrocytes (51.2%). Incubation with Ins+Rn significantly in-
creased Mn-SOD protein expression compared to control (59.1%), Rn (58.9%) and 16.4%
respect to Ins treated astrocytes (Figure 7B).


https://doi.org/10.20944/preprints202206.0085.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 June 2022

d0i:10.20944/preprints202206.0085.v1

7 of 26

Cu/Zn-SOD (16 kDa) 04 -

0.35
0.3 -
5025 4
2 0.2 -
0.15 4
0.1 -

Tubulin (60 kDa)  0.05 1

nits

Arbitra

0

T s e

Mn-SOD (25 kDa) 2: ]

Cu/Zn-SOD/Tubulin

0.1 4
Tubulin (60kDa)

Mn-SOD/Tubulin

Ins+Rn

* + #

Ins+Rn

Figure 7. Effect of Ins and Rn on Cu/Zn-SOD and Mn-SOD protein expression. Astrocytes were incubated without

(control, C), with Rn (10-% M), with Ins (10-® M) or with Ins+Rn (108 M+10¢ M) for 24 h and collected to determine Cu/Zn-

SOD (Figure 6A) and Mn-SOD (Figure 6B) protein expression by Western blot. A representative immunoblot is shown

in the panel. Data are mean = SD of four independent experiments (four different rats). *p < 0.05 vs. control. +p < 0.05

vs. Rn. #p < 0.05 vs. Ins.

2.8. NF-xB and IKB expression

NF-«B is a transcription factor that regulates positively gene expression of pro-in-
flammatory proteins. Figure 8A shows that Rn (10¢ M), Ins (10®M) and Ins+Rn (10® M
and 10 M) did not produce significant differences compared to control cells. On the other
hand, IkB is one member of a family of cellular proteins that inhibit the NF-kB transcrip-
tion factor. Figure 8B shows that Rn, Ins and Ins+Rn did not induce significant differences
in IKB protein expression compared to control cells.
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Figure 8. Effect of Ins and Rn on NFkB and IkB protein expression. Astrocytes were incubated without (control, C), with
Rn (106 M), with Ins (10-% M) or with Ins+Rn (10-8 M+10%¢ M) for 24 h and collected to determine NFkB (Figure 7A) and

IkB (Figure 7B) protein expression by Western blot. A representative immunoblot is shown in the panel. Data are mean

+ SD of four independent experiments (four different rats).

2.9. PPAR-y expression

PPARs family negatively regulates gene expression of pro-inflammatory proteins.
Figure 9 shows PPAR-y expression in astrocytes in primary culture. Ins increased PPAR-
Y expression compared to control astrocytes (46.8%). Furthermore, incubation with
Ins+Rn increased PPAR-y protein expression compared to control astrocytes (74.6%) and
18.4% with respect to Ins treated cells (Figure 9).
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Figure 9. Effect of Ins and Rn on PPAR-y protein expression. Astrocytes were incubated without (control, C), with Rn
(10¢ M), with Ins (108 M), or with Ins+Rn (108 M+10%¢ M) for 24 h and collected to determine PPAR-y protein expression
by Western blot. A representative immunoblot is shown in the top panel. Data are mean = SD of four independent

experiments (four different rats). *p < 0.05 vs. control. +p < 0.05 vs. Rn. #p < 0.05 vs. Ins.

3. Discussion

The main findings of this research are that Ins enhanced both cell viability and pro-
liferation. Moreover, Ins increases p-AKT, p-eNOS, p-ERK, Mn-SOD, COX-2 and PPAR-
Y protein expression in astrocytes in primary culture. Furthermore, Rn potentiated insu-
lin-induced effects at doses similar to those seen in individuals treated with this medica-
tion. On the contrary, the expression of Cu/Zn-SOD, NF-kB and IkB after Rn, Ins or Ins+Rn
addition did not produce any alterations in astrocytes in the primary culture. The inclu-
sion of Rn in the culture also resulted in a decrease in COX-2 protein expression.

Astrocytes are glial cells that perform a variety of functions in the brain, including
structural and metabolic support for the cell brain, maintenance of the blood-brain barrier
(36), glutathione synthesis and neuroprotective actions against oxidative stress and in-
flammation (2,37). Astrocytes play a fundamental role in neuronal protection through va-
riety of mechanisms, the most notable of which is mitochondrial biogenesis, which allows
them to shield neurons against inflammatory and oxidative processes (38).

Furthermore, astrocytes play roles in neuroendocrine, regulation of energy balance
and metabolism control by responding to the different hormonal stimuli (39,40). Glucose
uptake by astrocytes is an insulin-dependent process (41). Astrocytes and microglia ex-
press insulin receptor isoforms as well as insulin receptor substrate (IRS)-1 and IRS-2 (42).

In our experiments, we found that Ins boosted the expression of p-AKT and p-eNOS.
Functional studies with glial cells demonstrated that Ins activates PI3K and AKT (43). Fur-
thermore, AKT promotes NO production by mediating eNOS activation (44). Insulin treat-
ment of hippocampal CA1 cells improves memory and spatial learning. The synthesis of
endogenous NO seems to be involved in these effects, since they are inhibited by L-
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NAME, a blocker of NO synthesis (45,46). Insulin resistance appears to be implicated in
cognitive decline in patients with type II diabetes and Alzheimer's disease. In addition,
there is evidence that D1D and T2D patients show a higher frequency of depression, anx-
iety, cognitive impairment, and dementia (47,48).

A decrease in insulin release and/or a reduction in its sensitivity, is a risk factors in
both Alzheimer’s disease (AD) (49,50) and Parkinson’s disease (PD) (51). Downregulation
in PIBK/AKT pathway is characteristic of insulin resistance (52). Cognitive decline is asso-
ciated with serine phosphorylation of IRS1 and co-localized with neurofibrillary tangles
(53), decreasing insulin actions (54) by changes in PI3K signaling pathway [55]. Further-
more, Rn causes a protective effect against cognitive decline in T2DM patients (56).

Insulin binding to its receptor activates the MAPK and ERK signalling pathways in
addition to the AKT/eNOS pathway. ERK controls cell proliferation, mitogenesis, and dif-
ferentiation, and the production of endothelin 1 (57). Moreover, in the brain insulin plays
a key role in the direct regulation of ERK, which is involved in maintaining the type of
memory involved in Alzheimer's disease (58). Our results show that insulin increases the
expression of p-ERK, coinciding with the data presented by these authors.

Insulin inhibits the production of reactive oxygen species and iNOS expression when
the cells are exposed to pro-inflammatory agents (59). Furthermore, at low concentrations,
insulin shows pro-inflammatory actions (42). However, in our experiments, insulin does
not show pro-inflammatory effects since there is no variation in the expression of NFKB
and IkB and, on the other hand, it produces an overexpression of PPAR-y. In diabetic pa-
tients and in animals with insulin resistance, PPARy improves both glucose tolerance and
cellular insulin sensitivity (60,61,62). On the other hand, insulin induces anti-inflamma-
tory effects mediated by PPARy, and PI3K/Akt/Rac-1 signaling pathways (63). In cardio-
vascular cells, activation of PPARy inhibits the effects of angiotensin II and acts as an an-
tioxidant and anti-inflammatory (64). The use of PPARy antagonists in neurodegenerative
diseases associated with inflammatory processes has recently been proposed (65).

In our study, we observed that insulin causes an increase in the expression of COX-
2. Insulin reduced amyloidogenesis and COX-2-mediated neuroinflammation in astro-
cytes treated with streptozotocin, which are hallmarks of Alzheimer's disease (1). On the
contrary, intracerebral insulin administration decreased the expression of the inflamma-
tory factor COX-2 in rats treated with streptozotocin (66).

In our experiments, insulin increased the expression of Mn-SOD and did not produce
changes in Cu/Zn-SOD protein expression. In cardiomyocytes, the absence of insulin has
been related to an increase in free radicals due to a decrease in SOD activity (67). Insulin
improves cognitive impairment in Wistar rats by reducing brain oxidative stress and in-
creasing antioxidant systems like SOD, catalase, and GSH (68). Insulin resistance can be
reversed with Mn-SOD mimetics or Mn-SOD overexpression Insulin resistance can be re-
versed with Mn-SOD mimetics or overexpression (69). In diabetic rats, insulin has been
shown to protect against oxidative stress and inhibit apoptosis induced by H20, intracel-
lular ROS, and increases superoxide dismutase, catalase, and glutathione peroxidase ac-
tivity (70).

Ranolazine improves ATP production and O2 consumption by stimulating glucose
oxidation and decreasing fatty acid oxidation (71). In type II diabetic patients, RN has been
shown to offer a variety of effects, including lowering blood glucose and glycosylated
haemoglobin levels, promoting insulin release, and decreasing glucagon synthesis, there-
fore improving pre- and postprandial blood glucose (72,73,74) and decreasing glucagon
synthesis, thus improving pre- and postprandial blood glucose (75). Rn reduced the pro-
inflammatory profile and improved learning and long-term memory in a Wistar rat model
of type II diabetes. Rn may be useful in addressing cognitive deterioration in type 2 dia-
betes in this way (56). Its clinical use is especially interesting in patients with type II dia-
betes and coronary ischemia (27,76) and, in fact, Rn has been proposed as the first treat-
ment for type II diabetes (74). Rn does not modify the AKT pathway, or the kinases in-
volved in glucose uptake (77). In our experiments, Rn enhanced the effects of insulin on
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AKT and eNOS, increasing the expression of p-AKT and p-eNOS, indicating that this ef-
fect is probably due to a facilitation of insulin action.

The Rn improved insulin resistance in non-diabetic patients with coronary heart dis-
ease, reducing the HOMA-IR index with better results than that obtained with treatment
with beta-blockers or calcium-channel blockers (78). However, there is no direct evidence
of the effects of Rn that increase cellular sensitivity to insulin. The data from our study
seem to indicate a facilitating effect of Rn on the sensitivity of astrocytes to insulin.

Ranolazine interacts with different isoforms of the neuronal Nav channel (79), such
as those involved in altered neuronal excitability in different forms of epilepsy, migraine,
or neuropathic pain (80,81), which would allow its clinical use (80,30). Moreover, Rn has
recently been shown to improve diabetic neuropathy in rats (82). Together, the cardiopro-
tective and neuroprotective effects of Rn are related to its anti-inflammatory and antioxi-
dant actions (4,83).

Ranolazine enhances the effects of insulin in primary culture astrocytes by boosting
the expression of anti-inflammatory mediators like PPAR-y and reducing the production
of pro-inflammatory mediators like COX-2. Furthermore, ranolazine increased the action
of insulin on the Mn-SOD antioxidant enzyme, as well as components of the AKT-eNOS
and ERK signalling pathways (Figure 10).
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Figure 10. Changes after Ins and Rn to astrocytes in primary culture. Rn facilitates the effects of insulin increasing cell
viability and proliferation, the expression of anti-inflammatory mediators, such as PPAR-y, and inhibiting that of pro-
inflammatory mediators, such as COX-2. Furthermore, Rn potentiated the effect of insulin on the expression of

antioxidant enzyme (Mn-SOD), the components of the AKT-eNOS pathway and the ERK signaling pathway.

4. Materials and Methods
4.1. Materials

3-(4,5-dimethyl-2-thiazolyl)-2,5-dipheniyl-2H tetrazolium bromide (MTT) was ob-
tained from Sigma Chemical Co. (St Louis, MO). Dulbecco’s modified Eagle’s medium

(DMEM) and fetal bovine serum (FBS) were obtained from Gibco (Gibco Invitrogen Cor-
poration, Barcelona, Spain). Ranolazine (Rn) and Insulin (Ins) were obtained from Sigma-
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Aldrich biotechnology and dissolved in Krebs solution to the proper final concentration
10* M and 10 M respectively. Western Blot Chemiluminescent Detection System (ECL)
was from Amersham (Amersham Biosciences, Barcelona, Spain). Antibodies: polyclonal
anti-manganese superoxide dismutase (anti-MnSOD) (1:250), monoclonal anti-NF-kB)
(1:250), monoclonal anti-IxB (1:250), polyclonal anti-PPAR-y (1:300), monoclonal anti-
COX-2 (1:500), monoclonal anti-Cu/Zn-SOD (1:500), monoclonal anti-AKT (1:500), mono-
clonal anti-p-AKT (1:500), monoclonal anti-e-NOS (1:250), monoclonal anti-ERK (1:500),
monoclonal anti-p-ERK (1:500) and monoclonal anti-tubulin (1:3000) antibodies (Sigma
Aldrich, Madrid, Spain) were used. All other reagents were of analytical or culture-grade

purity.

4.2. Primary culture of cortical astrocytes

All animals were handled according to the rules established by the bioethics commit-
tee of the School of Medicine, University of Valencia, Spain. Cerebral cortical astrocytes
were isolated from rat fetuses of 21 days gestation. Fetuses were obtained by cesarean
section and decapitated. Cerebral cortices were removed and cut into 1 mm cubes and
triturated 10-15 times through a Pasteur pipette. After centrifugation at 1000 rpm for 5
min the pellet was resuspended in DMEM containing 20% fetal bovine serum (FBS), sup-
plemented with L-glutamine (1%), HEPES (10 mM), fungizone (1%), and antibiotics (1%).
Cells were plated on T75 culture flask. Cultures were maintained in a humidified atmos-
phere of 5% CO2/95% air at 37°C and allowed to grow to confluence and used at 15-20
days in vitro. After one week of culture, the FBS content was reduced to 10%, and the
medium was changed twice a week. The purity of astrocytes was assessed by immuno-
fluorescence using anti-glial fibrillary acidic protein (anti-GFAP, astrocyte marker: Sigma-
Aldrich, Madrid, Spain), anti-CD-68 (microglial marker: Serotec, Kidlington, UK), anti-
myelin basic protein (oligodendroglial marker; Sigma-Aldrich, Madrid, Spain) and anti-
microtubule-associated protein 2 (anti-MAP2, neuronal marker; Sigma-Aldrich, Madrid,
Spain). The astrocytes were found to be at least 99% glial fibrillary acidic protein positive.
No cells were found to express CD-68, myelin basic protein or microtubule-associated
protein-2. For all the experiments we used toxin-free sterile culture materials.

4.3. MTT assay

Cell viability of the cultures was determined by the MTT assay (34). Astrocytes were
plated in 96 well cultures. Rn, Ins or Ins+Rn were added to wells for 24h. After cell treat-
ments, the medium was removed and the cortical cells were incubated with red free me-
dium and MTT solution [0.5 mg/ml, prepared in phosphate buffer saline (PBS) solution]
for 4 h at 37°C. Finally, the medium was removed, and formazan particles were dissolved
in dimethyl sulfoxide (DMSO). Cell viability, defined as the relative amount of MTT re-
duction was determined by spectrophotometry at 570 nm.

4.4. Trypan Blue Assay

Trypan blue exclusion assay was used to count the living cells and monitor cell pro-
liferation. Astrocytes were isolated and seeded at 7x10* cells/35 mm dish. After 5 days of
culture, cells were incubated without (control, C), with Rn (10M), Ins (10%), or with
Ins+Rn (10-8 + 10 M) for 24 h. 1.5% trypan blue solution was applied to astrocyte cultures
at room temperature for 3 min.

4.5. Western blot analysis

Cultured cells were treated with lysis buffer and then mechanically degraded to re-
lease the proteins. Protein concentration was determined using modified Lowry method
(35). Loading buffer (0.125 M Tris-HCI, pH 6.8, 2% SDS, 0.5% (v/v) 2-mercaptoethanol, 1%
bromophenol blue and 19% glycerol) was added to protein sample and heated for 5 min
at 95°C. Proteins were separated on SDS-PAGE gels and transferred to nitrocellulose
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membranes in a humid environment using a transfer buffer (25 mM Tris, 190 mM glycine,
20% methanol). Membranes were blocked with 5% milk in TBS (0.05% Tween-20) and
were incubated with primary antibodies overnight at 4°C. Membranes were washed 3
times with wash buffer TBS-T (TBS, 0.2% Tween-20) and were incubated with a secondary
anti-rabbit IgG or anti-mouse IgG (Cell Signaling Technologies Danvers, MA) antibody
conjugated to the enzyme horseradish peroxidase (HRP) for 1 h. Membranes were washed
three times and proteins were detected using the ECL method as specified by the manu-
facturer. Autoradiography signals were assessed using digital image system ImageQuant
LAS 4000 (GE Healthcare).

4.6. Statistical methods

Values are expressed as mean + S.D. Differences between groups were assessed using
t-test (Student’s test) and by one-way analysis of variance (ANOVA) with the program
GraphPad Prism. Statistical significance was accepted at p <0.05. Data sets in which F was
significant were examined by a modified t-test.

5. Conclusions

Ranolazine enhances the effects of insulin in primary culture astrocytes by boosting
the expression of anti-inflammatory mediators like PPAR-y and reducing the production
of pro-inflammatory mediators like COX-2. Furthermore, ranolazine increased the action
of insulin on the Mn-5OD antioxidant enzyme, as well as components of the AKT-eNOS
and ERK signalling pathways (Figure 10).

Astrocytes

l‘— Ins

T T T 17711

Inflammation Anti-inflammatory Anti-oxidant AKT-NO ERK Cell Cell
= NF-xkB Mediators Enzymes Pathway Pathway viability proliferation
= IkB - -AKT
PPAR- = Cu/Zn-SOD P p-ERK
I COX-2 I v ‘I Mn-SOD p-eNOS I ' I
Ins+Rn
Inflammation Anti-inflammatory  Anti-oxidant AKT-NO ERK Cell Cell
= NF-kB Mediators Enzymes Pathway Pathway viability proliferation
= IkB - -AKT
PPAR- = Cuon-SOD p p-ERK
| cox-2 ] Y 11 Mn-soD LLI p-eNOS 1 I I

Figure 10. Changes after Ins and Rn to astrocytes in primary culture. Rn facilitates the effects of insulin increasing cell
viability and proliferation, the expression of anti-inflammatory mediators, such as PPAR-y, and inhibiting that of pro-
inflammatory mediators, such as COX-2. Furthermore, Rn potentiated the effect of insulin on the expression of

antioxidant enzyme (Mn-SOD), the components of the AKT-eNOS pathway and the ERK signaling pathway.
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Abbreviations: Ins: insulin; Rn, ranolazine; AKT, protein kinase B; p-AKT, phosphor-protein kinase
B; eNOS, endothelial nitric oxide synthase; p-eNOS, phosphor-endothelial nitric oxide synthase;
ERK, extracellular regulated kinase; p-ERK, phospho-extracellular regulated kinase; COX-2, cy-
clooxygenase 2; Cu/Zn-SOD, Cu/Zn-superoxide dismutase; Mn-SOD, Mn-superoxide dismutase;
NF-kB, nuclear factor-kappa B; IkB, an inhibitor of nuclear factor-kappa B; PPAR-y, peroxisome
proliferator activated receptor y.
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