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Abstract

Few-shot classification is challenging since the goal is to classify unlabeled samples

with very few labeled samples provided. It has been shown that cross attention

helps generate more discriminative features for few-shot learning. This paper

extends the idea and proposes two cross attention modules, namely the cross scaled

attention (CSA) and the cross aligned attention (CAA). Specifically, CSA scales

different feature maps to make them better matched, and CAA adopts the principal

component analysis to further align features from different images. Experiments

showed that both CSA and CAA achieve consistent improvements over state-of-
the-art methods on four widely used few-shot classification benchmark datasets,

minilmageNet, tieredlmageNet, CIFAR-FS, and CUB-200-2011, while CSA is
slightly faster and CAA achieves higher accuracies.
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1 Introduction

Few-shot classification has drawn lots of attentions in recent years [52]]. It originates from the
observation that humans can learn new concepts with very few samples, and the goal is to classify
unseen query samples given very few support samples. One may consider fine-tuning a pre-trained
model using the labeled samples from the unseen classes; however, this usually causes severe
overfitting, which can be alleviated by regularization and data augmentation but cannot be fully
solved.

The meta-learning [[17] has been widely used for few-shot learning recently. However, they usually
do not focus enough on relevant features as shown in Figure 1, taking the prototypical network [46]]
for an example, and those irrelevant features causes the limitation of generalization to the unseen
classes. The cross attention network (CAN) [18] and the relational embedding network (RENet) [20]
remedy the above issue by proposing the cross attention. It has been shown that humans tend to locate
the most relevant regions in the pair of labeled and unlabeled samples first to recognize a sample from
an unseen class given a few labeled samples [18]. Inspired by that, CAN and RENet generate the
attention maps across the support class features and the query sample features to make the network
attends more on the target object regions.

In this work, we make improvements for RENet by further enhancing the feature discriminability for
few-shot classification. We propose the cross scaled attention (CSA) and the cross aligned attention
(CAA). CSA scales different feature maps to make them better matched. CAA further considers the
alignment issue between different images by adopting the principal component analysis (PCA).

Our main contributions are as follows:

* We propose two cross attention modules, CSA and CAA, to improve RENet.
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Figure 1. An example of the class activation maps [59] of an image (left) of an existing method [46]
(middle) and our method (right). The warmer color indicates the higher value.

* Both proposed modules surpass the results of state-of-the-art methods on minilmageNet,
tieredImageNet, CIFAR-FS, and CUB-200-2011.

* CSA is slightly faster than CAA, while CAA achieves higher accuracies than CSA. Users
can choose the one suitable for their needs.

The remaining of this paper is organized as follows. Section 2 provides background knowledge highly
related to this work. Section 3 presents our approaches. Section 4 shows the experiment results.
Section 5 concludes this work.

2 Related Work

Few-Shot Classification Few-shot classification can be categorized into three groups, optimization-
based methods [, 29} 10 44| 47], parameter-generating-based methods [3} 5, [32] 33], and metric-
based methods [46,/48| 50, 18,[58] 20]. Optimization-based methods learn to update model parameters
by designing the meta-learner as an optimizer. To adapt to new tasks efficiently for the learner, it
learn a good initialization. Parameter-generating-based methods predict parameters by designing the
meta-learner as a network. Metric-based methods learn an embedding function that maps images to a
metric space such that the relevance between images is distinguished based on a distance metric.

Our method belongs to metric-based methods. The prototypical network [46], CAN [18], and
RENet [20] are highly related to our work. Following CAN and RENet, we exploit the relation
between the support set and query set. However, the prototypical network extracts the support and
the query features independently which makes the model distracted by irrelevant features. The
cross attention network improves the performance by using an attention network to refine features,
which makes the model focus on the relevant regions. RENet further improves the performance by
integrating a module that matchs the features in an image itself. Inspired by these works, we follow
some of their structures and integrate a module that matchs the features between the support and the
query images.

RENet We follow the structure of RENet [20] and integrate our module to RENet. the self-
correlational representation (SCR) and the cross-correlational attention (CCA) are proposed in
RENet. SCR exploits the sliding window and the dilation to match the features in an image itself.
CCA computes the cosine similarity between the support and the query images and generate attention
maps. We consider the cross attention between the support and the query images by exploiting
the sliding window and the dilation, which is similar to SCR. In addition to matching the features
between the support and the query images, we also deal with the scaling and the alignment issues.

3 Approach

The network that addresses the challenge of generalization to unseen target classes is presented in
this section. The overall structure is composed of five modules: an embedding module, SCR, CCA,
and CSA/CAA, and a classification module. The embedding module extracts features of the input
image. It consists of several cascaded convolutional layers, mapping an input image into a feature
map. We use the ResNet-12 [16] network as our embedding module, which is identical to CAN [18]
and RENet [20]. Following the prototypical network [46], CAN, and RENet, the support feature of
a class is defined as the mean of its support set in the embedding space. The embedding module
takes the support set and a query sample as inputs and produces the support feature map Z5 and a
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Figure 2: The overall architecture.

query feature map Z,. Each pair of feature maps (Zs and Z,) are then fed through SCR, CCA, and
CSA/CAA, which highlight the relevant regions and output more discriminative feature pairs (s and
q) for classification. We first present a brief definition of the problem and a concise overview of the
proposed architecture in Section 3.1 and Section 3.2 respectively. We then present technical details of
CSA and CAA in Section 3.3 and describe our training objective in Section 3.4.

3.1 Problem Definition

The datasets for few-shot classification are split into the training set and the testing set, and each of
them are further split into the support set and the query set. The support set contains few labeled
samples and the query set contains unlabeled samples. Given the support set, few-shot classification
aims to correctly classify the query set. The problem is called N-way K-shot if the support set is
composed of N classes and K labeled samples per class.

Because deep neural networks are vulnerable to overfitting with few labeled samples [20], most
few-shot classification methods adopt a meta-learning framework with episodic training. Following
them, we adopt the episodic training mechanism, which has been shown effective for few-shot
learning [46, 50, 15,1221 10, 31].

3.2 Architecture Overview

The overall architecture is illustrated in Figure 2. For each pair of support classes and query samples,
we obtain proper feature representations. The network can model and exploit the semantic relevance
between the support feature and query feature. Our approach is different from many previous methods
which extract the support and the query features independently. We resort to metric learning in this
work. To be helpful to the subsequent matching, we integrate attention to the features.

The support feature map Z, € Re*"* is extracted from the support samples and the query feature
map Z, € Rexmxw jg extracted from the query sample, where ¢, h, and w denote the number of
channels, height, and width of the feature maps respectively. The network generates attention maps
for the input pair, which is then used to weight the feature map to achieve more discriminative feature
representation, and the final outputs are s and q. The architecture in Figure 2 consists of three main
learnable modules: SCR, CCA, and CSA or CAA. Since SCR and CCA have already proposed in
RENet [20], we start our description from CSA and CAA. More detail can refer to [20].

3.3 Cross Scaled Attention (CSA) and Cross Aligned Attention (CAA)

Figure 3 illustrates the structure of CSA and CAA. Inspired by SCR [20], We propose two similar
modules CSA and CAA. SCR only considers about the correlation in the image itself, and we further
think about the correlation between the support and the query images. CCA [20] also consider the
correlation between the support and the query images. It computes the cosine similarity between the
support and the query images and generate attention maps. On the other hand, CSA and CAA match
the features between the support and the query images by computing the Hadamard product. They
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Figure 3: The structure of CSA and CAA.

further help our model focus on more important features. SCR focuses on the target object in an
image, and CSA and CAA focus on the target objects in both the support and the query images. The
structure is almost identical to SCR, and the only difference is the input. Similar to CCA, CSA and
CAA take an input pair of support and query, Y, and Y, and produces the final embeddings, s and q.

Correlation computation Similar to SCR, we exploit the sliding window and the dilation to match
the features. However, instead of matching the features of each position and its neighborhood which is
presented in SCR, we match the features between the support and the query. The Hadamard product of
a vector at each position x € [1, H] x [1, W] and vectors at the neighborhood of x’ € [1, H| x [1, W]
is computed and collected into a cross-correlation tensor R. We represent the tensor R as a function
with a vector output:

Yy Yy (x'

R(x,x',p) = (x) q(x/ +p) ;
Vsl [1Ye(x +p)l

where p € [—dy, dy] X [—dyv, dy]. It corresponds to a relative position in the neighborhood window

such that 2dy; + 1 = U and 2dy + 1 = V, which includes the center position. The edges of the
feature map are zero-padded for sampling off the edges.

(1)

To make the training process more efficient, we do not iterate through the whole image for x’. We
take the position at attention map produced previously that has maximum value as the center and
crop the image to find the scope of the target object, where the region we iterate through. For CSA,
the size of the cropped region is s*w X s*h, where w and h are the width and the height of the image
respectively, and s* is the scaling factor which is the portion of pixels where attention values are
higher than the average of the whole attention map. If we change the scaling factor, which is the only
difference between CSA and CAA, the module will become CAA. We elaborate on how we tune the
scaling factor in the next two paragraphs.

Cross scaled attention (CSA) In this paragraph, we first elaborate on how we tune the scaling
factor. In general, we have two scaling factors, s; and ss, to crop the image with size s;w X s2h,
where w and h are the width and the height of the image respectively. We tune the scaling factors
s1 and ss in three different ways. Firstly, we let s* = s; = s and fix s* to 0.5. Secondly, we let
s* be the portion of pixels where attention values are higher than the average of the whole attention
map, which is the scaling factor adopted in CSA. Finally, we adopt PCA to determine the scaling
factors, and this is what CAA does. We find out that the first method achieves the lowest accuracy, so
we regard it as a baseline. CAA achieves higher accuracies than CSA, but its training time is longer
compared to CSA. The results of different methods are presented in Section 4.2.

The scaling factor s* for CSA is obtained by the following equation:
= — 2

where N is the number of pixels with attention values higher than the average of the attention map,
and A is the is the total number of pixels.
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Figure 4. The class activation maps [59] of the support image (top) and the query images (middle and
bottom). In CAA, the target objects in the support and the query images are aligned after rotation.
The warmer color indicates the higher value.

Cross aligned attention (CAA) We first filter all the pixels with the threshold of the average value
of the whole attention map. If the attention values of the pixels are lower than the threshold, we
will discard them. PCA is then conducted to find the first and the second principal components, and
the image is rotated with the angle 6, where 6 is the angle between the first principal component
and the horizontal line. We crop the image with size s;w x soh centered at the position where the
attention value is maximum, where s; and sy are the magnitudes of the first and the second principal
components respectively, and w and h are the width and the height of the image respectively.

Consider a data matrix X with column-wise zero empirical means, which indicates that the sample
mean of each column has been shifted to zero. The transformed is defined by a set of coefficient
vectors v, and each coefficient vector is constrained to be a unit vector. To maximize variance, the
first coefficient vector v; has to satisfy the following equation:
T T
v = argmaa:(vx;w—Xv). 3)
vl

With v; found, the first principal component is e; = Xv 07 .

The second principal component ez = Xvovd can be found by the second coefficient vector va. vo
can be found by the following equations:

X =X - Xvpol, 4)
TXTX
vy = argmax(vT—v). ®)
vy

The rotation angle 6 can be derived from the following equation:
- €1 U1
0 =cos t(——), 6)
lleallluall
where wu; is the horizontal unit vector (1, 0).

As shown in Figure 4, CAA aligns the target objects in the support and the query images since we
rotate the image to help us match the features of the target objects in both images.

Cross attention learning A series of 2D convolutions is applied to analyze the self-correlation
patterns in R. For computational efficiency, the convolutional block follows a bottleneck structure as
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shown in Figure 3. It consists of a point-wise convolution layer for channel size reduction, two 3 x
3 convolution layers for transformation, and another point-wise convolution layer for channel size
recovery. We insert batch normalization and ReLU between the convolutions. The spatial dimensions
of local correlation patterns are reduced from U x V to 1 x 1 such that the output g(R) and Yj
(Y;) has the same size since they are gradually aggregated by the convolution block g(-) without
padding. The process of analyzing structure patterns could be complementary to appearance patterns
in the representation Y, (Y,). Therefore, we combine the two representations to produce the final
embeddings s and ¢:

s =g(R) + Y5, @)
q=9gR)+Yy, 3

which reinforces the base features with relational features and helps the few-shot learner focus on the
target objects in the images.

3.4 Training and Testing (Inference)

Training Following [18] and [20], we train the network via minimizing the classification loss on
the query samples of the training set. The classification module is composed of the nearest neighbor
classifier and a global classifier. The nearest neighbor classifier classifies the query samples into N
support classes based on pre-defined similarity measures. Each position in the query feature maps
is constrained to be correctly classified to obtain precise attention maps. We define the nearest
neighbor classification loss L; as the negative log-probability according to the true class label. A
fully connected layer followed by softmax to classify each query sample among all available training
classes is used in the global classifier. We compute the global classification loss Ls. Finally, we
define the overall classification loss as L. = AL + Lo, where A is the weight to balance the effects
of different losses. We train the network end-to-end by optimizing L with the stochastic gradient
descent algorithm.

Testing (Inference) Many existing methods including the prototypical network [46] and RENet [20]
use the inductive inference. The global average pooling is performed to the features to get the mean
support and query features. The label for a query sample is predicted by finding the class which has
the nearest mean support feature under a distance metric.

However, each class has very few labeled samples in few-shot classification task, so the support
features of classes can hardly represent the true class distribution. To alleviate the problem, [18]
proposed a simple and effective transductive inference algorithm that utilizes the unlabeled query
samples to enrich the support features of classes.

Following [18], we use the transductive inference. In this way, the support features of classes can be
more representative and robust. Experiment shows that the transductive inference achieves higher
performance than the inductive inference especially in 1-shot where the problem described above is
more serious.

4 Experiment Results

4.1 Experiment Setup

Datasets We use four standard benchmarks for few-shot classification for evaluation: minilmageNet,
tieredlmageNet, CIFAR-FS, and CUB-200-2011 (Caltech-UCSD Birds-200-2011).

 minilmageNet [50] is a subset of ImageNet (ILSVRC-2012) [21]] which consists of 60000
images. It contains 100 object classes with 600 images per class. These classes are randomly
split into 64, 16, and 20 classes for training, validation, and testing respectively. All images
are of size 84 x 84.

* tieredlmageNet is a much larger subset of ImageNet (ILSVRC-2012) [21]. It contains
608 classes grouped into 34 high-level categories. These are divided into 20, 6, and 8
categories for training, validation, and testing respectively, which corresponds to 351, 97,
and 160 classes for training, validation, and testing respectively. All images are of size 84 x
84.
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* CIFAR-FS [2] is a subset of CIFAR-100 which consists of 60000 images. It contains 100
object classes with 600 images per class. These classes are randomly split into 64, 16, and
20 classes for training, validation, and testing respectively. All images are of size 32 x 32.

* CUB-200-2011 [53] is an image dataset with photos of 200 bird species (mostly North
American). It consists of 100, 50, and 50 classes for training, validation, and testing
respectively.

Experiment setting We conduct experiments for our approach on 5-way 1-shot and 5-way 5-shot
settings. For an IV-way K -shot setting, we form the episode with N classes and each class includes
K support samples. We use 15 query samples per class in an episode for both training and testing.
We randomly sample 2000 episodes from the testing set when testing. The average accuracy and the
corresponding 95% confidence interval are reported over the 2000 episodes.

Implementation details We use Pytorch to implement all our experiments on one NVIDIA RTX-
3080 GPU. The ResNet-12 [16] network is used as our embedding module. The input images size is
84 x 84 for minilmageNet and tieredImageNet, and 32 x 32 for CIFAR-FS. Horizontal flip, random
crop, and random erasing are adopted as data augmentation during training. We use SGD as the
optimizer. Each batch contains 8 episodes. For minilmageNet, CIFAR-FS, and CUB-200-2011, the
model is trained for 90 epochs, with each epoch consisting of 1200 episodes, and the initial learning
rate is 0.1 and decreased to 0.006, 0.0012, and 0.00024 at 60, 70, and 80 epochs, respectively. For
tieredImageNet, the model is trained for 80 epochs, with each epoch consisting of 13980 episodes,
and the initial learning rate is set to 0.1 with a decay factor of 0.1 at every 20 epochs. We set the
temperature hyperparameter [20] to 2 for CUB-200-2011 and 5 otherwise, and we set the weight
hyperparameter () in the overall loss function to 0.25, 0.5, and 1.5 for ImageNet derivatives, CIFAR-
FS, and CUB-200-2011 respectively. We set U=5 and V=5 in our experiment. We cross-validate all
hyperparameters in the validation sets and fix them afterward in all experiments.

Comparison with state-of-the-art methods Table 1 shows the comparison between our method
and existing few-shot methodsﬂ on minilmageNet, tieredlmageNet, CIFAR-FS, and CUB-200-2011.
All results in Table 1 except our work are directly adopted from their papers. "-" indicates the results
are not available in their papers. Many existing methods extract features of support and query samples
independently, making the features focus on the non-target objects. To avoid the issue, CAN [18],
RENet [20], and our method highlights the target object regions and gets more discriminative features
instead. Compared to CAN and RENet, our method achieves higher accuracies.

4.2 Ablation Study

We show the effectiveness of each component of the network by empirical results and compare the
time cost in this subsection. In [18] and [20], a series of experiments in their ablation study has
already been completed. Following them, we experiment on minilmageNet in this subsection. We
show the effectiveness of CAA and compare the performances of CAA and CSA. We firstly introduce
a baseline to be used for comparison. If we remove SCR, CCA, and CSA/CAA, the model almost
become the prototypical network [46] with ResNet-12 [16] as the backbone, and the only difference
is a global classifier. Therefore, we create a variant named R12-proto by removing SCR, CCA, and
CSA/CAA. In R12-proto, the features from the embedding module are directly fed to the nearest
neighbor and global classifier, and the model is trained with the joint of global and nearest neighbor
classification loss. The comparison between all variants are shown in Table 2. Time cost is shown in
Table 3.

Influence of SCR, CCA, and CSA/CAA By comparing RENet+CSA/CAA and R12-proto, we
observe consistent improvements on both 1-shot and 5-shot scenarios as shown in Table 2. The reason
is that when using SCR, CCA, and CSA/CAA, our model can highlight the relevant regions and extract
more discriminative features. The performance gap shows that (1) conventionally independently
extracted features tend to focus on the non-target regions and produce inaccurate similarities. (2)
SCR, CCA, and CSA/CAA can help to highlight target regions and reduce such inaccuracy. As shown
in Table 2, RENet+CSA/CAA outperforms R12-proto consistently, which further demonstrates the
effectiveness of the attention mechanism.

"We re-implement the prototypical network with ResNet-12 as the backbone in Table 1.
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Table 1: Performance comparison in terms of accuracy (%) with 95% confidence intervals on 5-way
classification on (a) minilmageNet and tieredImageNet and (b) CIFAR-FS and CUB-200-2011.

(a) Results on minilmageNet and tieredlmageNet datasets.

minilmageNet tieredImageNet
Model Backbone 1-shot 5-shot 1-shot 5-shot
MAML [10] ConvNet 4870 £0.84 5531 +£0.73 | 51.67 = 1.81 7030 £ 1.75
cosine classifier [8] ResNet-12 | 5543 £0.81 77.18 £0.61 | 61.49 091 82.37 £0.67
MTL [47] ResNet-12 | 61.20 £1.80 75.50 &£ 0.80 - -
TADAM [36] ResNet-12 | 58.50 £0.30 76.70 £ 0.30 - -
PPA [39] WRN-28-10 | 59.60 £ 0.41 73.74+£0.19 | 65.65+£0.92 83.40 £ 0.65
wDAE-GNN [15] WRN-28-10 | 61.07 £0.15 76.75+0.11 | 68.18 £0.16 83.09 £ 0.12
SimpleShot [51]] ResNet-18 | 62.85 £0.20 80.02 +0.14 - -
TPN ResNet-12 59.46 75.65 5991 £0.94 7330+ 0.75
RFS-simple ResNet-12 | 62.02 £0.63 79.64 £0.44 | 69.74 £0.72 84.41 £ 0.55
LEO [44] WRN-28-10 | 61.76 £0.08 77.59 £0.12 | 66.33 £0.05 81.44 £ 0.09
MetaOpt [22] ResNet-12 | 62.64 £0.62 78.63 £0.46 | 6599 £0.72 81.56 £ 0.53
adaNet [33] ResNet-12 | 56.88 £0.62 71.94 £ 0.57 - -
DC [26] ResNet-18 | 62.53 £0.19 79.77 £ 0.19 - -
Shot-Free [41]] ResNet-12 59.04 77.64 63.52 82.59
S2M2 [30] ResNet-34 | 63.74 £0.18 79.45£0.12 - -
MN [50] ConvNet 43.44 £0.77 60.60 £ 0.71 - -
MN [50] ResNet-12 | 63.08 £0.80 75.99 £ 0.60 | 68.50 +0.92 80.60 £ 0.71
RN [48] ConvNet 5044 £0.82 6532+0.70 | 54.48 £0.93 71.32£0.78
PN [46] ConvNet 4942 £0.78 68.20 £ 0.66 | 53.31 = 0.89 72.69 £0.74
PN [46] ResNet-12 | 60.26 £0.49 73.65 £ 0.37 | 64.56 £0.56 76.78 £ 0.43
NegMargin ResNet-12 | 63.85 £0.81 81.57 £ 0.56 - -
CT™M ResNet-18 | 64.12 £0.82 80.51 £0.13 | 68.41 £0.39 84.28 +1.73
FEAT [56] ResNet-12 | 66.78 £0.20 82.05+£0.14 | 70.80 £0.23 84.79 £0.16
DeepEMD [58] ResNet-12 | 6591 £0.82 8241 +0.56 | 71.16 = 0.87 86.03 £ 0.58
CAN [18] ResNet-12 | 63.85 £0.48 79.44 +£0.34 | 69.89 £0.51 84.23 £0.37
CAN+T [18] ResNet-12 | 67.19 £0.55 80.64 £0.35 | 73.21 £0.58 84.93 £0.38
RENet [20] ResNet-12 | 67.60 £0.44 82.58 £0.30 | 71.61 £0.51 85.28 £0.35
RENet+CSA (ours) | ResNet-12 | 73.18 £0.51 84.20+£0.31 | 75.58 £0.57 85.74 £0.39
RENet+CAA (ours) | ResNet-12 | 73.61 =0.51 84.43 +0.30 | 76.71 + 0.55 86.38 + 0.35

(b) Results on CIFAR-FS and CUB-200-2011 datasets.

CIFAR-FS CUB-200-2011
Model Backbone 1-shot 5-shot 1-shot 5-shot

MAML [10] ConvNet 589+ 19 715+ 1.0 - -
MAML [10] ResNet-34 - - 67.28 +1.08 83.47 +£0.59
cosine classifier [8] ResNet-12 - - 67.30 £ 0.86 84.75 £ 0.60

cosine classifier [8] ResNet-34 | 60.39 + 0.28 72.85 + 0.65 - -

MetaOpt [22] ResNet-12 72.6 £0.7 843 +0.5 - -

Shot-Free [41] ResNet-12 69.2 84.7 - -

RFS-simple [49] ResNet-12 71.5+£0.8 86.0 £ 0.5 - -
NegMargin [27] ResNet-18 - - 72.66 £ 0.85 89.40+0.43
S2M2 [30] ResNet-34 | 62.77 £0.23 75775+ 0.13 | 72.92 + 0.83 86.55 4 0.61

Boosting WRN-28-10 | 73.6 0.3 86.0 0.2 - -
FEAT [56] ResNet-12 - - 73.27 £0.22 85.77 £0.14
MN [50] ResNet-12 - - 71.87 £0.85 85.08 +0.57

RN [48] ConvNet 550+ 1.0 69.3 +0.8 - -
RN [48] ResNet-34 - - 66.20 =0.99 82.30 +0.58
PN [46] ResNet-12 | 70.21 £0.52 80.60 £ 0.40 | 66.09 +0.92 82.50 + 0.58
DeepEMD [58] ResNet-12 - - 75.65 £ 0.83 88.69 £+ 0.50

CAN [18] ResNet-12 | 71.65 £ 0.50 83.72 +£0.38 - -

CAN+T [18] ResNet-12 | 76.61 = 0.56 84.37 £ 0.38 - -
RENet [20] ResNet-12 | 7451 2046 86.60 +£0.32 | 79.49 £0.44 91.11 +0.24
RENet+CSA (ours) | ResNet-12 | 80.02 = 0.51 87.63 0.33 | 85.89 £ 0.45 92.03 4+ 0.25
RENet+CAA (ours) | ResNet-12 | 80.40 & 0.50 87.76 + 0.33 | 86.63 = 0.44 92.88 4 0.22
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Table 2: Ablation study on minilmageNet with performance comparison in terms of accuracy (%).

Variant 5-way 1-shot | 5-way 5-shot
R12-proto 66.36 75.65
without CSA/CAA 72.81 83.84
unscaled 72.91 84.06
with CSA 73.18 84.20
with CAA 73.61 84.43

Table 3: Time cost on four datasets. All models are implemented in PyTorch and tested on Nvidia

RTX-3080.
Time Model minilmageNet | tieredlmageNet | CIFAR-FS | CUB-200-2011

RENet Sh4l m 48h05m 5h43m 1h 08 m

training | RENet+CSA 5h52m 48h45m 5h55m 1h10m
RENet+CAA 6h 16 m 49h17m 6h20m 1h15m

RENet 2mO06s 2m10s 2m07s 2m03s

inference | RENet+CSA 2mO08s 2mlls 2m09s 2m04s
RENet+CAA 2m12s 2m15s 2ml4s 2mO08s

Influence of CSA and CAA To verify the effectiveness of CSA and CAA, we test another variant
without the modules. We remove the component of CSA/CAA. That is, after we get the feature maps
Y, and Y, from CCA, the features are fed to the nearest neighbor and global classifier, and the model
is trained with the joint of global and nearest neighbor classification loss. As shown in Table 2, both
the network with CSA and the network with CAA outperform the variant model. The improvement
indicates that CSA and CAA can help to highlight target regions more effectively compared to the
model without CSA/CAA.

Influence of PCA  Using PCA achieves higher accuracies for our model compared to other methods
mentioned in Section 3.3. We compare the performances of the unscaled version, CSA, and CAA in
Table 2. As described in Section 3.3, the unscaled version is the variant whose scaling factor is fixed
to 0.5. As shown in Table 2, CAA achieves the highest accuracy, and we conclude that the alignment
of the target objects in the support and the query images benefits classification.

Speed comparison We compare the training time and inference time of RENet, RENet+CSA, and
RENet+CAA in Table 3. As can be seen, the training time of RENet+CSA is slightly longer than
RENet, and the training time of RENet+CAA is slightly longer than RENet+CSA but not by much.
The inference time of RENet+CSA is longer than RENet, and the training time of RENet+CAA is
longer than RENet+CSA, but the differences are so slim that they are practically insignificant.

5 Conclusion

This work improves RENet for few-shot classification by introducing two cross attention modules,
CSA and CAA, which model the semantic relevance between the support and the query features.
Specifically, CSA scales different feature maps to make them better matched, and CAA adopts
the principal component analysis to further align features from different images. As a result, the
proposed modules focus on more relevant regions by considering both the support and the query
images rather than only the latter ones. Empirically, RENet with both CSA and CAA outperformed
state-of-the-art methods on minilmageNet, tieredlmageNet, CIFAR-FS, and CUB-200-2011, four
widely used datasets for few-shot learning, in terms of accuracy. The ablation study further verified
that the improvements are achieved owing to the proposed modules.

Our work indicated that in few-show learning information contained in those few support samples
should be exploited as much as possible, and the cross attention is one such way to do it. Although
such techniques may require slightly longer training time, we believe that it is worthwhile especially
in the scenarios where labeled data are valuable and few.
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Table 4: Results of the inductive inference on minilmageNet in terms of accuracy (%).
Variant | 5-way 1-shot | 5-way 5-shot
inductive 69.41 83.30

A Appendix

Influence of the transductive inference The transductive inference greatly improves our model
compared to the inductive inference especially in 1-shot where the problem described in Section 3.4
is more serious. To be fair, we adopt the inductive inference with our model and compare with other
methods. As shown in Table 1 and Table 4, our model with the inductive inference still outperforms
other methods, although the margins between them are not that much compared to the transductive
inference.
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