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Abstract: One of the solutions of the Einstein equations, called McVittie solution, signifying a black
hole embedded by the dynamic spacetime is studied. In the stationary spacetime the Mcvittie
metric becomes the Schwarzschild-de Sitter metric (SdS). The geodesic of a freely falling test particle
towards the black hole is examined in the SdS spacetime. It is found that unlike Schwarzschild case
the potential of such particle becomes maximum at a point where it eventually stops to follow an
unstable circular motion and then resumes its motion towards black hole center. It is shown that an
observer or system of particles is spaghettified near the black hole singularity in the SdS spacetime.
The dynamic of the universe in the framework of McVittie metric, being a generalized time dependent
SdS solution, is represented in terms of that point, called stationary or turning point. The motion
of the stationary point is studied in various regimes of the expanding universe and the possible
outcomes are discussed in brief.
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1. Introduction

Finding solutions to Einstein’s field equations that describes a physically viable system has always
been challenging. One of the main reasons for it is the highly non-linear nature of these equations.
Describing the dynamics of objects like compact stars require interior solutions of Einstein’s field
equations, as well as for finding black hole solutions, physically acceptable solutions for black holes
are essential. If we look into the history of Einstein’s theory of general relativity (GR), there are
two exact solutions obtained that have been studied in various contexts for several years. One is
the Schwarzschild solution that can describe the nature of the gravitational field residing outside a
chargeless spherical mass with rotational velocity and cosmological constant taken to be zero. For
several years this solution was vastly used to theoretically probe the nature of spacetime outside
compact stars and black holes. But, the problem was that this solution doesn’t take into account
the expanding nature of the universe in the background with the existence of mass. However, the
other exact solution named Friedmann Robertson Walker Lemaìtre (FRWL) metric [1,2] assumes the
spatial component of the metric to be time-dependent and the space to be isotropic and homogeneous.
Faraoni [3] and Jacques [4] took the effects of the expanding universe and the cosmological impact of
this expansion on the local system. For gravitationally bound systems, they also studied the nature
of local attraction and analyzed black holes embedded in the spherical cosmological background in
the framework of general relativity. Using a time-dependent spacetime, Arakida [5] analyzed the
dominant effects that come from the cosmological expansion.
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Before coming to the methodology applied in this paper for studying a black hole embedded by
the dynamic spacetime, let us briefly shed light on some different approaches that black holes have
been studied. With the rapid strides made by gravitational wave astronomy, the way we understand
black holes have been revolutionized [6]. But, in order to interpret the gravitational wave signals, we
must be adept with efficient theoretical models to predict the waveforms observed. These theoretical
models are obtained by solving Einstein’s field equations, which is a very difficult task as discussed
earlier. Moreover, for the upgraded detectors, the existing models or methodologies might not be
efficient enough [7]. In recent times, some researchers have thought of unique ideas to come up with
efficient theoretical models which can match up with the evolving observational techniques. One such
way is the high-energy physics approach. In high-energy physics, most of the processes are considered
as some form of scattering. Here, the two black holes are treated as quantum particles that interact with
each other by exchanging gravitons, just like electron interactions happen via photon exchange. In this
light, Damour and his collaborators [8–10] made remarkable progress using this scattering analogy.
In their recent work, it was shown that there can be a computational shortcut to treat the generic
scattering problem by taking a limiting value, where one black hole is way heavier than the other. One
great advantage of this method is to combine all possible interactions and come up with extremely
accurate results and several research groups are playing with this idea and combining several other
techniques of quantum field theory in order to calculate the gravitational scattering amplitude between
the socalled “black hole particles”. Some recent works in this regard to study scattering black holes
can be found in the following Refs. [8–13].

Another methodology, which is one of the most general ways to analyze the black holes embedded
in the expanding universe is using the McVitte metric. In the current work, we’ll focus on using this
methodology. In the year 1933 McVittie found a class of solutions [14,15] whose physical descriptions
are still going on. With a time dependent model McVittie proposed a spherical symmetric metric
describing a central massive object embedded in an expanding spacetime. Essentially both the
Schwarzschild [16] as well as spatially flat FRW [1] solutions are incorporated in that metric. McVittie’s
work was remarkable in the sense of exploring the cosmological effects in terms of expansion on local
system. The researchers and scientists have studied [17–24] the McVittie solution under the back-drop
of massive object in an expanding universe. A generalized McVittie metric has also been taken into
account and studied by some authors [25–27]. In 2018 Nolan [28] studied the particle and photon orbits
in McVittie spacetime. That is the motivation of the present article, but slightly a different manner to
study the freely falling body towards the central mass. In the Schwarzschild spacetime if a body is
thrown towards the black hole then it continues to follow the geodesic of free fall and ultimately gets
destroyed by the tidal effect near the singularity.

Now the question may arise if such motion of a body is studied carefully in the framework
of McVittie spacetime, then whether it will follow the same path as that of the Schwarzschild case,
and if not then what will be that new feature in the motion? If such free fall is considered both in
stationary and dynamical scenario then what will be the possible picture? We have discussed the
possible answers to these queries in the present investigation. Our scheme is as follows: In Section 2
such analysis is carried out for the stationary metric (Schwarzschild-de Sitter), while in Section 3 the
McVittie spacetime is studied how it shapes the dynamic of the universe, especially how it can handle
the singularity especially in the late stages, that is in the phantom energy regime.

2. McVittie metric in stationary spacetime

If the McVittie metric under the stationary spacetime is studied in a particular regime, say in
the present age of the evolution of universe, it is sufficient to study Schwarzschild de Sitter (SdS)
metric [29] in which a positive cosmological constant is taken into account. Its global structure have
been studied by a number of authors [30–36]. Podolsky [37] analyzed the structure of extreme SdS
spacetime in details. In the McVittie scenario the study is manifested by the focus on spacetime
originated from a black hole; whereas in the SdS the stationary as well as static solution of Einstein

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 June 2022                   doi:10.20944/preprints202206.0052.v1

https://doi.org/10.20944/preprints202206.0052.v1


3 of 16

equation in vacuum is taken into account. Although their physical perspective may be slightly different,
but their mathematical structure is exactly same and therefore, there is no harm to consider the SdS
metric in the present scenario.

2.1. Path of the test particle

The path of a test particle in Schwarzschild spacetime is widely discussed. Now the question may
arise whether there any change is observed if such particle is considered in SdS spacetime. Without
carrying out any analysis it may safely be predicted that for the planetary motion such difference, if
exists, is not much significant. But when a massive test particle is assumed to fall freely towards a
black hole, then there may be a significant difference between the results obtained in SdS spacetime
compared to that of Schwarzschild. It is to be explored in more details.

The said SdS metric is given as follows:

ds2 = −(1 − 2m
r

− H2r2)dt2 + (1 − 2m
r

− H2r2)−1dr2 + r2(dθ2 + sin2 θdϕ2). (1)

Here H the Hubble parameter, is considered to be independent of time since the study is carried
out in a specific age, may be the present universe. One may now study the geodesic of a test particle
falling freely towards the center of the black hole. That is just equivalent to the path of a particle
without any angular momentum in the SdS spacetime. Now, with a non-zero angular momentum, say
l, in the plane θ = π

2 the expressions of ṫ and ϕ̇ can be obtained as

ṫ =
e

(1 − 2m
r − H2r2)

, ϕ̇ =
l

r2 , (2)

where e represents energy of the test particle per unit of its mass. Such energy may be negative, but
must be conserved. Imposing the timelike constraint on the geodesic it is found that

ṙ2 − 2m
r

+
l2

r2 − 2ml2

r3 − H2(r2 + l2) = −2|E | = e2 − 1. (3)

If the particle is considered under the free fall then the angular momentum vanishes and one may
find the change of r coordinate relative to the proper time as

ṙ = −
(

2m
r

+ H2r2 − 2|E |
) 1

2
. (4)

The negative sign is taken since the particle moves towards the center of the black hole.
The above expression may also be re-expressed in the following manner

1
2

ṙ2 + V(r) = −|E|, (5)

where
V(r) = −m

r
− H2r2. (6)

Equation (6) represents the potential of the particle depending on the areal coordinate r. It is to
be noted carefully that in absence of angular momentum under the free fall of a particle towards a
massive celestial body (may or may not be a black hole) there is no difference between Newtonian and
potential and the same in the framework of Schwarzschild solution. As a result once a particle begins
to fall towards the center of black hole, in both Newtonian as well as Schwarzschild frames, it falls
uninterruptedly. In the SdS the story is quite different due to the presence of an extra −H2rr term in
the expression of potential. It is going to be explored how such extra term affects the dynamic of test
particle in the apparently stationary spacetime.
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It is evident from Eq. (6) that for SdS the potential V(r), at infinity, behaves quite differently
compared to that in Newtonian or Schwarzschild case, where the potential tends to vanish at infinity.
In the present scenario the potential, both at large r and near the singularity at r = 0, becomes infinitely
large with the negative value. When the test particle starts from large r (but not from infinity) and goes
towards the black hole then, with decreasing r, the potential increases (or in other words its absolute
value decreases) and at r = rmax (say) the potential attains its maximum value, still in the negative
regime. This picture is well observed in the Fig. 1 where a comparison between the potential term in
the SdS and normal Schwarzschild spacetime is carried out. Clearly such figure indicates the above
phenomenon.

Figure 1. The change of potential V(r) with the radial coordinate r, both for Schwarzschild (light
curve) and SdS (dark curve) metric. The comparison shows that unlike Schwarzschild spacetime
the potential term in SdS spacetime is extremely large (with negative value) for r tending to infinity,
becomes maximum at some finite r and then coincides with the curve in Schwarzschild spacetime for
small r.

Equating dV
dr = 0 such maximum point is found as

r = rmax =
m
H2 . (7)

By calculating d2V
dr2 it can easily be verified that r = rmax is the maximum point and thus unstable.

It signifies that the magnitude of the potential becomes minimum at that point. Therefore, according to
Eq. (5) the particle must retard and stop somewhere in the mid way. If r = r0 denotes the point where
the particle comes to rest, then from Eqs. (5) and (6) one may obtain

rṙ = H2(r − r0)(r − r1)(r − r2), (8)

where

r1,2 =
r0

2

(
−1 ±

√
1 + 8

r3
max

r3
0

)
. (9)

The negative root r2 of the equation ṙ = 0 should not be taken into account because of being
unphysical. Now, the following two cases may be considered for further studies.

Case I: rmax < r0.
That shows r1 < r0 in Eq. (9). Now, the equation indicates ṙ2 > 0 outside the open interval (r1, r0), but
inside the interval ṙ2 < 0. Such unphysical condition leads to the fact that rmax < r0 cannot hold.
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Case II: rmax < r0.
With the similar argument of Case I one may show the unphysical situation in terms of ṙ2 < 0 inside
0 < r0 < r1, which indicates that the condition rmax > r0 is also a wrong one.

Both the above cases conditions indicate that rmax must coincides with r0. In other words, the
point of turning is same as that where the potential of the test particle attains the maximum value.
With one step ahead it can be said that the particle rushing towards the center of black hole stops at
the point r = r0 with maximum potential (or minimum |V(r)|) and then starts to revolve round the
black hole in a unstable circular orbit. The orbit is unstable since the particle stays on the maximum
potential. Subsequently the particle starts to move again towards the black hole singularity. Next, it is
to calculate the position of the apparent horizons relevant to the SdS spacetime.

2.2. Apparent horizons and the stationary or turning point r0

In the framework of SdS metric one may find the Kretschmann scalar as RαβγδRαβγδ = 48M2

r6 +

24H4 and therefore, the singularity at r = 0 is also present as that in Schwarzschild spacetime. To
locate the position of the apparent horizon it is necessary to solve the equation 1 − 2m

r − H2r2 = 0,
which is nothing but a third degree algebraic equation expressed as

r3 − r
H2 +

2m
H2 = 0. (10)

In the previous subsection it has been obtained that rmax = r0. Using the result of Eq. (7) the
discriminant of the above cubic equation can be expressed as

△ = r6
0

[
1 −

( r0

3m

)3
]

. (11)

The nature of the solution to the cubic equation (10) is decided by the sign of △; whereas the sign
of △ depends on the relation between r0 and 3m. Under the circumstances three different cases are
discussed below.

Case I: r0 > 3m.
It shows the sign of △ is always positive. That implies the cubic equation has two distinct positive and
one negative real roots as follows:

r =
2r

3
2
0√

3m
cos α

=
r

3
2
0√
m

[
sin α − cos α√

3

]

= −
r

3
2
0√
m

[
sin α +

cos α√
3

]
, (12)

where α = 1
3 arccos[−( 3m

r0
)

3
2 ]. The negative root must be ignored due to its unphysical nature.

Two positive roots are to be considered as the point of discussion. Out of those the 2r
3
2
0√

3m
cos α

is identified as the apparent horizon or event horizon of the SdS black hole. On the other hand,

r
3
2
0√
m [sin α − cos α√

3
] represents the cosmological horizon. These two horizons are well separated if and

only if r0 ≫ 3m, that is, the point of turning is well ahead of 3m. It is important to note that the black
hole horizon depends on the Hubble parameter H.
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Case II: r0 = 3m.
It leads to △ = 0 and there will be a positive real double root along with a negative one. Those can be
obtained as

r = r0 (double)

= −2r0, (13)

which essentially indicates that not only the black hole horizon and the cosmological horizon become
same, but the point of turning (which is also the stationary point in terms of the potential) also does
coincide with those two horizons. It is known that the coincidence of two horizons corresponds to the
extreme Nariai solution [38]. Since the point of turning lies on the black hole horizon the test particle
is supposed to revolve along that horizon. That is quite peculiar because no timelike particle moves
along a null surface. Therefore, the situation rc = 3m should not be a feasible one.

Case III: r0 < 3m.
Here △ becomes negative and hence the cubic equation has three unphysical (one negative and two
complex) roots. Therefore, such condition may be dropped. It is worth mentioning that Faraoni et
al. [23]. pointed out there would be a possibility of naked singularity associated to that case, but that is
beyond the scope of discussion of the present article.

The Fig. 2 represents the Penrose diagram of the maximal SdS spacetime containing both the
black hole horizon rBH as well as cosmological horizon represented by rCH . Now, it is required to
locate the stationary point r0, where the particle stops and follows unstable circular path.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 June 2022                   doi:10.20944/preprints202206.0052.v1

https://doi.org/10.20944/preprints202206.0052.v1


7 of 16

II 

III 

IV I 

II II 

I IV 

III III 

r = 0 

r = 0 r = 0 

r = 0 

r = ꝏ 

r = ꝏ 

rBH 

rBH 

rBH 

rBH 

rCH 

rCH 
rCH 

rCH rBH 

rBH 

rBH 

rBH 

Figure 2. Penrose diagram for Schwarzschild-de Sitter (SdS) spacetime.

To find it the condition V(r) = 2E is imposed and it is straight forward to solve another third
degree algebraic equation given hereunder

r3 − 2 | E | r
H2 +

2m
H2 = 0. (14)

It has already been shown that the solution of the equation has a positive double root r0 and a
negative root. Such type of roots exist only when the discriminant of the cubic equation (14) vanishes
and the following condition is satisfied:

2|E |r0

3m
= 1. (15)

The energy condition |E | < 1
2 ( or e2 > 0) ensures the restriction r0 > 3m, which is necessary for

the existence of two distinct horizons. To obtain a condition that the stationary point r = r0 is situated

well ahead the black hole horizon one may compare both of the points r = r0 and r = rBH =
2r

3
2
0√

3m
cos α

under the condition r0 > 3m. It is presumed that the point of turning r0 must lie outside the horizon of
the black hole as it is relevant only in the said outside region.
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Under the circumstances one may find r0 to be larger than rBH subject to the following restriction:

α ≥ arccos

[
1
2

(
3m
r0

) 1
2
]

(16)

The factor 3m
r0

determines how the angle α is close to π
2 . With the restriction given by the equation

(16) the cosmological horizon r = rCH =
r

3
2
0√
m (sin α − cos α

sqrt3 ) ≈
r

3
2
0√
m must be larger than the stationary

point. On the nutshell one may infer the following:

rBH < r0 < rCH (17)

When r0 = 3m all three points coincide and as a result not only black hole horizon coincides with
cosmological horizon, but the particle circulates along it. It contradicts the timelike nature of the test
particle. Later it will be shown that when two horizons coincide, the tidal effect near the black hole
singularity disappears.

2.3. Tidal effect in the Schwarzschild de-Sitter spacetime

The generation of tidal effect is inevitable when the gravitational field becomes highly
non-homogeneous. To calculate such tidal phenomenon one must consider a system of test particles
falling freely towards black hole singularity. It has been observed from the previous Sub-section that
unlike the ordinary Schwarzschild case here the freely falling system gets halted after some time and
executes circular motion round SdS black hole in a quite unstable manner, although soon the stability
is broken and it continues to maintain its movement in the earlier direction. In the freely falling frame
under the current scenario the tidal equations take the form as follows:

d2ξ r̂

dτ2 =
2m + H2r3

r3 ξ r̂, (18)

d2ξ l̂

dτ2 = −m − H2r3

r3 ξ l̂ , (19)

where l̂ = θ̂, ϕ̂.

If the space inside the black hole is taken to be empty, or more precisely, inside the movement
of the system is restricted only in the empty portion then the above pair of equations may also hold
therein. The special interest is focused on the study of those equations in a small neighbourhood of the
singularity. If somebody consider the change of the deviation vector relative to the arial coordinate r,
instead of the proper time τ, the Eqs. (18) and (19) become(

2 +
r3

r3
0
− 3m

r0

)
d2ξ r̂

dr2 − 1
r2

(
1 − r3

r3
0
− 3m

2r0

)
dξ r̂

dr
− 1

r3

(
2 +

r3

r3
0

)
ξ r̂ = 0, (20)

(
2 +

r3

r3
0
− 3m

r0

)
d2ξ l̂

dr2 − 1
r2

(
1 − r3

r3
0
− 3m

2r0

)
dξ l̂

dr
− 1

r3

(
1 − r3

r3
0

)
ξ l̂ = 0. (21)

Since the tidal effect plays a significant role near the black hole singularity the current study
should be focused therein. In the neighborhood of singularity at r = 0 one may simply omit the third
order terms r3

r3
0

present in the expressions of the above equations as the stationary point r = r0 lies

sufficiently outside the black hole. Then the set of equations may be simplified to form a couple of
Cauchy-Riemann equations that are easily solvable subject to the suitable initial conditions. Such
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initial conditions must be introduced carefully. It may be assumed that the system of particles is not
supposed experience the tidal effect right from the beginning of its motion. The point at which the
tidal effect in all three spatial directions begins may be denoted as r = b. At that initial point the terms
dξ r̂

dr and dξ l̂

dr must vanish, whereas tidal deviation vectors ξ r̂(b) and ξ r̂(b) are non-vanishing. Here Eqs.

(20) and (21) may be solved subject to those initial conditions in addition to the approximation r3

r3
0
≪ 1.

Under such framework Eqs. (20) and (21) can be solved analytically to obtain the solutions given
as follows:

ξ r̂ =

5κ1 + 3
10κ1

(
b
r

) 5κ1−3
4

+
5κ1 − 3

10κ1

( r
b

) 5κ1+3
4

 ξ r̂(b), (22)

where

κ1 =

√√√√1 − ( 3
5 )

2 3m
r0

1 − 3m
r0

> 1

and

ξ l̂ =

[
3 + κ2

2κ2

( r
b

) 3−κ2
2κ2 − 3 − κ2

2κ2

( r
b

) 3+κ2
2κ2

]
ξ l̂(b) f or

3m
r0

<
1
9

= sec
[

arctan
(

3
κ2

)
− κ2

4
ln b
]

cos
[

κ2

4
ln
( r

b

)
+ arctan

(
3
κ2

)]
ξ l̂(b), f or

3m
r0

>
1
9

(23)

where

κ2 =

√√√√1 − 32 3m
r0

1 − 3m
r0

f or
3m
r0

<
1
9

=

√√√√32 3m
r0

− 1

1 − 3m
r0

f or
3m
r0

>
1
9

. (24)

The above solutions indicate when r is sufficiently close to zero the ξ r̂ diverges, but ξ l̂ diminishes
to zero. The second part ξ l̂ , for 3m

r0
< 1

9 , contains a term cos[ κ2
4 ln( r

b ) + arctan( 3
κ2
)], which remains

finite except at r = 0. Therefore, such term does not disturb ξ l̂ to be diminishing near the singularity as
long as the system does not reach at r = 0. That is the famous spaghettification effect in which length
of an object becomes infinitely large and the width gets crunched, jut like a spaghetti. In other words
an observer will be torn apart by the tidal effect near the singularity.

If r0 is very close to 3m, implying two horizons and the stationary point tend to coincide, then it is
observed from both of Eqs. (20) and (21) that

2 +
r3

r3
0
− 3m

r0
≈ 0. (25)

That makes ξ r̂ = ξ l̂ = 0 signifying the vanishing tidal effect at the vicinity of singularity.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 June 2022                   doi:10.20944/preprints202206.0052.v1

https://doi.org/10.20944/preprints202206.0052.v1


10 of 16

3. Exploring McVittie spacetime

3.1. McVittie as a generalization of SdS spacetime

McVittie metric is taken into consideration for the expanding spacetime embedding a central
massive body, likely to be a black hole. In such dynamical scenario the isotropic form of the McVittie
metric is given by

ds2 = −
(1 − m(t)

2r )2

(1 + m(t)
2r )2

dt2 + a2(t)
(

1 +
m(t)

2r

)4

(dr2 + r2dΩ2), (26)

where m(t) represents the variable mass of the centralized massive body depending on time in cosmic
scale. The no accretion condition of such massive object results G1

0 = 0 ⇒ ṁ
m + ȧ

a = 0.
Integrating one may find m(t) = m

a(t) , where m, the integration constant, may be interpreted as

the central mass. Using a transformation R = a(t)r(1 + m(t)
2r )2 the metric (25) takes the form as given

below:
ds2 = −(1 − 2m

R
− H2R2)dt2 +

1
1 − 2m

R
dR2 − 2HR√

1 − 2m
R

dtdR + R2dΩ2. (27)

That metric is very useful in many calculations involving McVittie spacetime. For the present
purpose, to eliminate the cross term from the metric, one may introduce a new time coordinate defined
as dT = 1

F (dt + βdR), where F is a integrating factor. With a choice of β = HR√
1− 2m

R (1− 2m
R −H2R2)

the cross

term is eliminated and the metric becomes ds2 = −(1 − 2m
R − H2R2)F2dT2 + (1 − 2m

R − H2R2)−1dR2 +

R2dΩ2.
In the present article McVittie metric is simply considered as a minimal generalization of SdS

metric in which H depends on time. Therefore, out of a class of McVittie metrics characterized by F
only one with F = 1 is taken into account for the present purpose. Now, replacing R by r and T by t
the metric in (26) can be expressed as

ds2 = −(1 − 2m
r

− H2r2)dt2 + (1 − 2m
r

− H2r2)−1dr2, (28)

where it is assumed θ = π
2 , θ̇ = 0 and ϕ̇ = 0. The above metric exactly looks like the SdS metric,

but to be remembered that the Hubble parameter H, in the dynamical spacetime, must depend on
the time, obviously in the cosmic scale. As in the static case the horizon is obtained by equating
1 − 2m

r − H2r2 = 0. It gives

r =
2r

3
2
0√

3m
cos ψ = rBH

=
r

3
2
0√
m

[
sin ψ − cos ψ√

3

]
= rCH , (29)

with the restriction ψ ≥ arccos[− 1
2 (

3m
r0
)

3
2 ]. Here essentially the turning or stationary point r0 = ( m

H2 )
3
2 ,

depends on time. Under the backdrop of dynamical spacetime the following three cases may be
considered.

Case I:
In the cosmic time scale when t > t∗, as in the present universe, the condition r0 > 3m ensures the
distinct horizons rBH and rCH remain far apart, and get separated by the stationary point r0.
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Case II:
When t = t∗, the condition r0 = 3m implies rBH and rCH coincide and there exist a single horizon on
which r0 is located. That has already been established in the previous section that there is no tidal
effect on any system of timelike test particles at that point.

Case III:
Before the instant t∗, i.e., when t < t∗ the condition r0 < 3m holds and it makes all three roots of the
equation 1 − 2m

r − H2r2 = 0 unphysical. In that case no apparent horizon is formed and there exists a
naked singularity.

However, the present article restricts the discussion only in the t > t∗ regime.

3.2. Energy density and stationary point

In order to generalize the SdS spacetime from static to dynamic the McVittie metric, given in
Eq. (27), depends on time coordinate. Therefore, no timelike Killing vector exists here. Taking the
Lagrangian LM = 1

2 gµν
dxµ

dτ
dxν

dτ one may calculate and find the following terms:

∂LM
∂tτ

= −(1 − 2m
r

− H2r2)tτ , (30)

∂LM
∂t

= Hr2Ḣt2
τ +

Hr2Ḣ
(1 − 2m

r − H2r2)2
r2

τ . (31)

In the above equations tτ and rτ represent the derivatives of time and radial coordinates
respectively with respect to the proper time τ, whereas Ḣ stands as the derivative of Hubble parameter
relative to coordinate time t. In analogy with the static spacetime one may simply take ∂LM

∂tτ
= e(t)

which determines tτ as
tτ = − e

1 − 2m
r − H2r2

. (32)

Here e is considered to be the function of t only, not the function of r. With the aid of timelike
nature of the geodesic one may now establish

e2 − r2
τ = 1 − 2m

r
− H2r2. (33)

The Euler Lagrangian equation, along with the relations (29) to (32) may find a relation between
energy density e and the stationary or turning point r0 as follows:

ė =
3m
2

r2

r2
0

e2 + r2
τ

e(e2 − r2
τ)

ṙ0. (34)

To establish the above equation the relation between H and r0 has been recalled and the derivative
of H has been expressed in that of r0, i.e., HḢ = − 3m

r4
0

ṙ0. It is worth noting that the radial coordinate r

does not change with time, but r0 does. Now, the following two cases are significant in the current
scenario.

Case I:
On the black hole horizon as well as cosmological horizon one may show in the equation (33) if e = rτ

then ė → ∞. In other words the rate of energy density becomes infinite on both the horizons.
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Case II:
One may be interested how the energy density changes with the movement of the turning point r0.
The ė may be evaluated at r = r0 (where rτ vanishes) and the following relation can be obtained:

r0 =
3m

r0d(e2
d − e2)

r0d, (35)

where r0d represents the turning point in static SdS spacetime and ed is the corresponding energy
density. Here Eq. (34) shows a relation between energy density and the turning point in the dynamical
spacetime.

3.3. Equation of state, dark energy and singularity

The relation between pressure p and the density ρ, termed as equation of state, plays a significant
role in different cosmological regimes. Such relation in the framework of McVittie spacetime has
already been carried out analytically under the backdrop of isotropic metric. Using generalized SdS
form of McVittie metric, given by Eq. (27) the equation of state may be expressed as

p = ρ

−1 − 2Ḣ
3H2

1√
1 − 2m

r

 , (36)

in analogy with p = wρ, where w is equation of state parameter or barotropic index. The Hubble
parameter denotes the expansion of the present universe. The relation between H and r0 makes the
relation (35) into the same in terms of r0 and ṙ0 as given below:

p = ρ

[
−1 + ṙ0

√
r0

m(1 − 2m
r )

]
. (37)

An important point to be noted that since both the horizons are proportional to r
3
2
0 both of them

must move along with the point r0, which indicates the dynamic nature of the spacetime. The equation
(36) is very important in the sense that the dynamic term ṙ0 may signify the equation of state parameter
in different regimes. Under the scenario the following cases signifying different era of the universe are
discussed hereunder.

Case I:
In the matter dominated and radiation era the equation of state becomes p = 0 and p = ρ

3 respectively.
Imposing that condition in the equation (36) it is found

r
3
2
0 = r

3
2
0I − κ

√
m
(

1 − 2m
r

)
t (38)

with

κ =
3
2

(matter dominated era)

= 2 (radiation era),

where r0I represents the value of r0 at the beginning of the regime (matter dominated or radiation).
Here an interesting phenomenon may be worth noting. At the radial point r = 2m the factor within
the square root in Eq. (37) vanishes. It signifies that r0 stays at the fixed value r0I from the beginning of
that era if observed from the point r = 2m. Therefore, it is inferred that no expansion of spacetime is
observed in both matter dominated and radiation era if the observer stays at r = 2m, although it is not
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guaranteed that the said point lies outside the black hole.

Case II:
The study of dark energy era in McVittie universe has also brought the interests to researchers [39]. If
in the equation (36) it is found that ṙ0 > 0, then w must be greater than −1 and it indicates the regime
is dark energy dominated as in the present universe. Therefore, it may be said that the dark energy
dominated era arises when the stationary point moves away of the black hole, or in other words,
when the r0 is shifted towards the cosmological horizon. It is to be noted that both the horizons move
simultaneously in the same direction as that of r0. If the motion of r0 comes to rest, i.e., ṙ0 for an instant
or for an interval of time, it is found from Eq. (37) p = −ρ, which points towards an ideal dark energy
era with dust free universe.

Case III:
The scenario becomes more interesting when ṙ0 < 0, or in other words the turning point is shifted
to move towards the black hole horizon. It is then clearly implied from equation (36) that w < −1,
which is nothing but a phantom energy regime. Exploring the McVittie metric in the phantom energy
background [40] has already been carried out. To examine the possible singularity predicted in the
phantom age it is to be verified whether r = 2m is located inside or outside the black hole horizon rBH .
In order to fix its location the following restrictions can be obtained from the expression of rBH , given
by Eq. (28).

1
3 (

3m
r0
)

3
2 < cos ψ < 1

2 (
3m
r0
)

1
2 rBH > 2m

cos ψ < 1
3 (

3m
r0
)

3
2 rBH < 2m (39)

The condition rBH > 2m implies the point r = 2m is covered by the black hole horizon. But for
rBH < 2m the turning point r0 moves towards rBH and it is quite inevitable that it coincides with 2m
and at that instant, say t = tc the |p| → ∞, while both ρ and a remain finite. In the phantom energy
regime that situation is termed as ‘sudden rip’. Such kind of singularity may be avoided only when
r = 2m lies inside the black hole horizon, that is when the angle ψ is more than arccos[ 1

3 (
3m
r0
)

3
2 ].

4. Discussion

In this article the McVittie metric is analyzed in the stationary as well as dynamical spacetime. In
the stationary spacetime such metric is identified as SdS one, which exhibits a remarkably difference to
that compared to the Schwarzschild metric. In the Schwarzschild spacetime a system of test particles
or an observer falling freely towards a black hole must follows an undisturbed motion along the
radial direction until and unless gets spaghettified by the tidal force near singularity. In contrast to
that picture a freely falling body towards the center of a black hole in the SdS spacetime must get
slow down and starts orbiting the said black hole in an unstable circular orbit, then again resumes its
motion towards singularity. It has been established that such turning point r0, where the radial velocity
vanishes, is also the stationary point where the potential having negative value becomes maximum
(and therefore unstable). If r0 > 3m, not only the black hole horizon and cosmological horizon remains
separated, but such turning or stationary point lies in between the two horizons.

The whole analysis of SdS as well as dynamical McVittie spacetime is carried out in terms of
that point r0(t), instead of the Hubble parameter H(t). It is worth noting that in the present age
r0, as the Hubble parameter H, may be considered to be constant. In the ordinary Schwarzschild
black hole it is well established that a freely falling observer towards the black hole fails to reach the
spacelike singularity, because near that location it is torn apart by the tidal effect and thus the fate
of the said observer is uniquely determined. In the field theoretic language it has been shown that
the Schwarzschild spacetime is inextendible as C0 metric in the larger spacetime and thus the ‘strong
cosmic censorship conjecture’ is restored. In the Sub-section 2.3 the tidal effect near black hole in the
SdS spacetime is calculated to show that the observer would be spaghettified by the tidal force near
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the singularity; which is the same inference that can be drawn in case of Schwarzschild black hole.
One minor generalization is the expression arising in the angular component of deviation vector for a
special case. Physically such term is not quite relevant as it cannot alter the spaghettification effect.

In analyzing the dynamical scenario the Hubble parameter characterizing the expanding universe
is replaced by the stationary or turning point r0 whose motion is studied in different perspectives. In
such analytical study an important point be noted in the matter and radiation dominated era is that
the universe seems to be stationary if observed from the location r = 2m, if lies outside the black hole
horizon i.e., if 2m > rBH . It is a remarkable feature in the sense that the homogeneity may be broken,
at least at the said point in these regimes. Such violation of homogeneity is restored if the point r = 2m
lies inside the black hole horizon at those stages. The most important aspect of the current analysis
arises in the dark and phantom energy regime. It is shown that r0 moves away of the black hole
horizon in the dark energy era, while moves back towards it in the phantom era. It may apparently
give a notion that the universe expands in the dark energy era, but in the phantom era it contracts.
That may not be true. In the dark energy age the universe not only expands, but it also accelerates.
Such phenomenon is characterized by the relation ṙCH > ṙ0 > ṙBH > 0. If the universe enters into
the phantom energy regime, which is predicted by some observations [41,42], r0 reverses its direction,
while rBH continues to move in the same direction. As a result the expansion of the universe still
continues, but in some sense, non-uniformly. It is also shown that if r < 2m, the universe encounters
‘sudden rip’ singularity [43,44].

Lastly, the present model is able to fine tune the vacuum energy density as small as possible. The
key relation behind such fine tuning is r0 > 3m, which is inevitable for the black hole and cosmological
horizons to be kept far apart. In the present universe, which is dominated by the dark energy, one may
consider H2 ≈ 8πρΛ

3 , where ρΛ represents the vacuum energy density. It imposes a restriction on that
vacuum energy density in terms of black hole mass as ρΛm2 < 1

72π . If the mass of black hole becomes
very high then the value of ρΛ may be considerably low to obey the present experimental value.
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