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Abstract: For solving the fractional differential equations in computational fluid dynamics (CFD), 

it’s complicated and difficult by the Laplace and Fourier transforms. Based on the Caputo fractional 

derivative, the analytical solutions for unsteady unidirectional flows of a generalized Oldroyd-B 

fluid are deduced by the separation of variables method. Results show that the analytical solutions 

are given easily, and have good university. For some specific parameter values, the well-known 

analytical solutions for the generalized second grade fluid, the generalized Upper-Convected 

Maxwell (UCM) fluid as well as the ordinary Oldroyd-B fluid can be obtained. 
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1. Introduction 

In the past several years, the fractional calculus has already been found quite flexible 

and efficient in the description of the constitutive relations for the viscoelastic fluids. 

Friedrich[1] showed that the fractional Maxwell model is consistent with the law of 

thermodynamic. Fetecau C et al[2] investigated the decay of a potential vortex in a frac-

tional Oldroyd-B fluid. Nonnenmacher[3] and Gockle[4] established the stress relaxation 

modulus of fractional Maxwell and fractional Zener model by employing Fox functions. 

Jaishankar and McKinley[5] revisited the concept of quasi-property and its connection to 

the fractional Maxwell model and successfully simulated Scott-Blair’s experimental data. 

Wang et al[6] studied the unsteady Poiseuille flow of fractional Oldroyd-B viscoelastic 

fluid between two parallel plates by the numerical inversion of Laplace transforms, and 

further validated the wider scope of application for the fractional constitutive equations.  

Among the traditional constitutive models for the viscoelastic fluids, the Oldroyd-B 

model presents a typical constitutive law which does not obey the Newtonian law, and 

such non-Newtonian flow could describe a class of some viscoelastic fluids, such as the 

system coupling fluids and polymers[7]. Furthermore, the Oldroyd-B model contains as 

special cases some of the previous models such as the Maxwell model. Consequently，a 

generalized Oldroyd-B model is established[8] and many papers about the mathematical 

computation and physical analysis for the model have been subsequently published. 

Tong[9] obtained the exact solutions of some unsteady helical flows of Oldroyd-B fluid 

in an annular pipe by using Hankel transform and Laplace transform for fractional cal-

culus. Qi[10] obtained the analytical solutions of Poiseuille flow and Couette flow of 

generalized Oldroyd-B fluid with Riemann-Liouville fractional derivative by using Fou-

rier sine transform and discrete Laplace transform. Zheng et al[11] studied the magne-

tohydrodynamic flow of an incompressible generalized Oldroyd-B fluid due to an infi-
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nite accelerating plate, and obtained the exact solutions by means of Fourier sine and 

Laplace transforms. Ming et al. [12] derives analytical solutions for a class of new mul-

ti-term fractional-order partial differential equations, and considered different situations 

for the unsteady flows of generalized Oldroyd-B fluid and Burgers fluid. Chen et al. [13] 

presented two types of multi-term fractional differential equations in high dimensions, 

which are used to describe the nonlinear relationship between the shear stress and the 

shear rate of generalized Oldroyd-B fluid. Song et al. [14] investigated the mixed initial 

value problem for the incompressible fractionalized Oldroyd-B fluid by utilizing the in-

tegral transforms.  
In the previous studies, the exact solutions for the flows of viscoelastic fluids with 

fractional constitutive model were obtained generally by the Fourier and Laplace trans-

forms, but the method makes the solving process more complicated. In addition, the most 

fractional partial differential equations were established by the Riemann- Liouville frac-

tional derivative[15,16]. The defect of the Riemann-Liouville fractional derivative is that 

its initial conditions are in the form of fractional derivative, which is too difficult to 

demonstrate their physical significance to fulfill the applied value in engineering and 

physics. While another definition, namely the Caputo fractional derivative, demands or-

dinary integer order derivatives on initial conditions, and the initial conditions based on 

the definition are corresponding with that under the classical differential equation theo-

ry[17]. Chen[18] studied analytical solution for the time-fractional telegraph equation by 

the separation of variables method (SVM). Zhang[19] obtained the analytical solution for 

a two-dimensional multi-term time- fractional Oldroyd-B equation on a rectangular do-

main by the SVM, based on the Caputo time-fractional derivative. Consequently, the 

purpose of this paper is to consider the fractional constitutive equation with the Caputo 

fractional derivative, and present the analytical solutions corresponding to the two types 

of unsteady unidirectional flows of a generalized Oldroyd-B fluid between two parallel 

plates. Through some specific parameter values, the analytical solutions for the general-

ized Maxwell fluid, the generalized second grade fluid as well as the ordinary Oldroyd-B 

fluid could be obtained. 

2. Governing equations 

For the unsteady incompressible flow, the governing equations are as follows: 

0=divV                                  (1) 

 =
d

div
dt

V
T                               (2) 

in which V is the velocity field,  is the uniform density of the fluid, and T  is the 

Cauchy stress tensor. 

The Cauchy stress tensor T  for a fractional Oldroyd-B fluid can be described as 

p= − +T I σ
 

The fractional Oldroyd-B constitutive equation [8,20] is written as 

   1 2 1(1 ) (1 )
 

 

 

 
  

 
+ = +

t t
σ A                      (3) 

where pI  denotes the indeterminate spherical stress, σ is the extra stress tensor,  is 

the viscosity, 1 and 2 are respectively the relaxation and retardation times, and

1 20    .  and  are fractional calculus parameters such that 0 1    . 1A  is 

the first Rivlin– Ericksen tensor given by 1 = + T
A L L  with = gradL V . And  
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are fractional differential operators of   and   order with respect to 

t ，respectively , and based on Caputo’s definition is defined as [16]: 
( )
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( ) 1 ( )

( ) ( )



 




  + −


=

  − −
n

t

n

f x f
d

t n t
， 1 −  n n         (5) 

in which ( )  is Gamma function. 

For the unidirectional flows, we consider the velocity and the stress taking the form 

of 

( , )= u y tV i , ( , )= y tσ σ                         (6) 

Where i  is the unit vector along the x-direction of the Cartesian coordinate system, 

u  is velocity component along the x-direction. 

Thus using Eq. (6), the continuity Eq. (1) is satisfied identically and Eq. (3) and (5), 

having in mind the initial condition ( ,0) 0=yσ , yields 0   = = = =xz yy yz zz  and  

1 2(1 ) (1 )( )
 

 

 
   

  
+ = +

  
xy

u

t t y
                  (7) 

2

1 1 2(1 ) 2 2 ( )


  


    

  
+ − = −

  
xx xy

u u

t y y
                 (8) 

where xy is shearing stress. 

In the absence of body forces, the motion equation (2) for the unidirectional flow of 

the generalized Oldroyd-B fluid is written as 




 
= − +

  

xyu p

t x y
                        (9) 

3. Basic concepts and theorem 

Here, we introduce the following definitions and theorem, which are used further in 

this paper. 

Definition 3.1[21]. A real or complex-valued function ( ), 0f x x , is said to be in 

the space ,  C R , if there exists a real number p such that 
1( ) ( )= pf x x f x  

for a function 1( )f x  in [0, ]C . 

Definition 3.2[22]. A function ( ), 0f x x , is said to be in the space 

mC , 

0 {0} =m N N  if and only mf C . 

Definition 3.3[22]. A multivariate Mittag-Leffler function is defined as 

1

1

1

1
( , , ), 1

0 1
10, , 0
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( , , )
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= + + =
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k l l k n i iil l

zk
E z z

l l b a l
         (10) 

in which 0, 0,| | , 1, ,    =i ib a z i n . 

In particularly, if 1n , the multivariate Mittag-Leffler function is reduced to the 

Mittag-Leffler function 

1

1

, 1 1 1

0 1

( ) , , 0,| |
( )



=

=   
 +


k

a b

k

z
E z a b z

b ka
. 

Theorem 3.4[22]. Let 1 0, 1       −  n i i im m , 0 {0} =im N N ,

 i R , 1, ,=i n , the initial value problem 
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where the function ( )g x  is assumed to lie in 1−C  if  N , in 
1

1−C  if  N , and 

the unknown function ( )y x is to be determined in the space 
1−

mC , has the solution 

1

0

( ) ( ) ( ), 0,
−

=

= + 
m

g k k

k
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where 

1
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fulfills the initial conditions 
( ) (0) , , 0, , 1= = −l

k klu k l m . And the function 

1

1( ), , , , 1( ) ( , , )
  

        −−

 − −= n

n nE x E x x . 

The natural numbers , 0, , 1= −kl k m , are determined from the condition 

1

1,

.+

 +




k

k

l

l

m k

m k
 

In the case , 1, , 1 = −im k i m , we set 0=kl , and if 1, 1, , 1 + = −im k i m , 

then =kl n . 

4. Unsteady Poiseuille flow 

Flow of a fluid between two parallel plates which are stationary is set in motion due 

to sudden application of a constant pressure gradient is termed as the plane Poiseuille 

flow. Suppose that the fluid is bounded by two parallel plates at 0=y  and =y d , d  is 

the width between the two parallel plates. And it is initially at rest and the motion starts 

suddenly due to a constant pressure gradient. Through Eq. (7) and Eq. (9), the governing 

equation is  
1 2 2

1 21 2 2
( )

 
 

 
  

+

+

    
+ = + +

    

u u u u
A

t t y t y
                (13) 

The initial and boundary conditions are 

( ,0) ( ,0) 0 0= =  ，tu y u y y d ，                  (14) 

(0, ) ( , ) 0 0= = ，u t u d t t .                      (15) 

where = −  （ ）A p x is the constant pressure gradient that acts on the liquid in the 

x-direction and   = is the kinematical viscosity. 

We solve the corresponding homogeneous equation in Eq. (13) with the boundary 

conditions Eq. (15) by the method of separation of variables firstly. 

If we let ( , ) ( ) ( )=u y t Y y T t and substitute for ( , )u y t in Eq. (13), we obtain an or-

dinary linear differential equation for ( )Y y : 

( ) ( ) 0, (0) ( ) 0 + = = =Y y Y y Y Y d                   (16) 

and a fractional ordinary linear differential equation with the Caputo derivative for 

( )T t : 

1

1 21

( ) ( ) ( )
( )

 
 

 
  

+

+
+ = − −

dT t d T t d T t
T t

dt dt dt
                (17) 

where   is a positive constant. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 June 2022                   doi:10.20944/preprints202206.0041.v1

https://doi.org/10.20944/preprints202206.0041.v1


 

The Sturm–Liouville problem given by Eq. (16) has eigenvalues 
2 2

2
, 1,2,


 = =

n
n

d
 

and corresponding eigenfunctions 

( ) sin 1,2,


= =n

n y
Y y n

d
 

Now we seek a solution of the nonhomogeneous problem in Eq. (13) with the form 

1

( , ) ( )sin


=

= n

n

n y
u y t T t

d
                     (18) 

We assume that the series can be differentiated term by term. And we expand con-

stant term A  in Eq. (13) as a Fourier series by the Eigen functions sin ( )n y d : 

1

sin


=

= n

n

n y
A A

d
                         (19) 

where  

0

2 2
sin (1 ( 1) )




= = − −

d
n

n

n y A
A A dy

d d n
                (20) 

Substituting Eq. (18) and Eq. (19) into Eq. (13) yields 
1

1 1
1 1

2 2

2

1 1 1

( ) ( )
sin sin
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( ) sin ( ) ( ) sin sin
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d T tn n y n n y n y
T t A

d d d d dt d

 

Because of orthogonality of trigonometric function and by equating the coefficients 

of both members, we get 
1

2 2

1 21

( ) ( ) ( )
( ) ( ) ( )

 
 

 

 
   

+

+
+ = − − +n n n

n n

dT t d T t d T tn n
T t A

dt dt d d dt
        (21) 

Through sorting Eq. (21), we obtain  
1

2 22

1

1 1 1 1

( ) ( ) ( )1
( ) ( ) ( )

 

     

   


   

+

+
+ + + =n n n n

n

d T t dT t d T t An n
T t

dt dt d dt d
      (22) 

Based on Eq. (14) and Eq. (16), we gain 

(0) 0, (0) 0= =n nT T                         (23) 

According to Theorem 3.4, the fractional initial value problem (22)-(23) has the 

soltion 

2 1 2 12
( , 1 , 1), 1

0
1 1 1

1
( ) ( , ( ) , ( ) )


    

       

   

  

+ − +

+ − + += − − −
t

n n

n n
T t x E x x x A dx

d d
(24) 

where the multivariate Mittag-Leffler function is given in Definition 3.3. Hence, we get 

the solution of the initial-boundary value problem Eq. (13) in the form 

2 1 2 12
( , 1 , 1), 1

0
1 1 1 1

1
( , ) ( , ( ) , ( ) )

sin


    

       

   

  




+ − +

+ − + +

=

= − − −




t

n

n

n n
u y t x E x x x

d d

n y
A dx

d

(25) 

Inserting the expression for the velocity given by Eq.(25) into Eq. (9), the shearing 

stress is obtained in the following form: 

2 1 2 12
( , 1 , 1), 1

1 1 1 1

1
( , ) ( , ( ) , ( ) )

cos


    

       

   


  







+ − +

+ − + +

=

= − − − −
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n

n

n n
y t t E t t t

d d

dA n y
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 (26) 
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Particularly, we obtain the following limiting cases: 

The first case: For 1 0 = and 0   in Eq. (21), we can get the velocity distribution 

and the shearing stress for a generalized second grade fluid 

2 1 2

(1 ,1),1 2
0

1

( , ) ( ( ) , ( ) ) sin 



  
 


−

−

=

= − −
t

n

n

n n n y
u y t E x x A dx

d d d
           (27) 

2 1 2 1

(1 ,1),1 2

1

( , ) ( ( ) , ( ) ) cos   



  
   




+ − +

−

=

= − − − − n
xy

n

dAn n n y
y t E t t A y

d d n d
  (28) 

Further, if 1 = , we can get the velocity distribution and the shearing stress which are 

identical to the result in Ref.[23]. 

The second case: For 2 0 = and 0   in Eq. (25), we can obtain a similar solution 

to a generalized UCM fluid and the shearing stress 

2 1

( , 1), 1
0

1 1 1

1
( , ) ( , ( ) ) sin  

    

  

 


+

+ +

=

= − −
t

n

n

n n y
u y t x E x x A dx

d d
         (29) 

2 1

( , 1), 1

1 1 1

1
( , ) ( , ( ) ) cos  

    

  
 

  


+

+ +

=

= − − − − n
xy

n

dAn n y
y t t E t t A y

d n d
     (30) 

The third case: For 1 = = , the solution (25) reduces to a similar solution to an 

Oldroyd-B fluid performing the same motion. 

2 2 22
(1,1,2),2

0
1 1 1 1

1
( , ) ( , ( ) , ( ) ) sin



    

  



=

= − − −
t

n

n

n n n y
u y t xE x x x A dx

d d d
    (31) 

The shearing stress reduces to 

2 2 22
(1,1,2),2

1 1 1 1

1
( , ) ( , ( ) , ( ) ) cos

    
 

   



=

= − − − − − n
xy

n

dAn n n y
y t tE t t t A y

d d n d
 (32) 

This section may be divided by subheadings. It should provide a concise and precise 

description of the experimental results, their interpretation, as well as the experimental 

conclusions that can be drawn. 

5. Unsteady Couette flow 

Consider the flow of a generalized Oldroyd-B fluid with fractional derivative be-

tween two parallel plates at 0=y  and =y d  and is initially at rest. Then the fluid 

starts suddenly due to a constant velocity of the upper plate in its own plane, the lower 

plate being always at rest. This flow is termed as the plane Couette flow. The governing 

equation is obtained from Eq. (13) for 0=A  and the initial-boundary conditions are 

( ,0) ( ,0) 0= =tu y u y ,   0  y d ,                     (33) 

(0, ) 0

( , )

=

=

u t

u d t U
,   0t                           (34) 

In order to solve the problem with nonhomogeneous boundary, we firstly transform 

the non- homogeneous boundary into a homogeneous boundary condition. Let 

( , ) ( , ) ( , )= +u y t V y t W y t                          (35) 

where ( , )V y t  is a new unknown function, and 

( , ) =W y t Uy d                               (36) 

satisfies the boundary conditions 

(0, ) 0, ( , )= =W t W d t U  

The function ( , )V y t  then satisfies the problem with homogeneous boundary con-

ditions: 
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，

t

V V V V
y d t

t t y t y

V y Uy d y d

V y y d

V t V d t t

          (37) 

We solve the problem with homogeneous boundary conditions in the same way as be-

fore. Here we only present the final results as 

2 1

1 1

2 1 2 12
( , 1 , 1), 2

1 1 1
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1 ( )
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           ( , ( ) , ( ) )

2( 1)
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(38) 
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2 1 2 12
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1 1 1

( , ) 2( 1)

1
( , ( ) , ( ) )

cos






   

       

 

 

   

  





=

+ − +

+ − + +

−
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n

xy

n

y t
t

U d

n n
E t t t

d d

n y

d

      (39) 

Particularly, we obtain the following special cases: 

The first case: For 1 0 = and 0  in Eq.(37), we can get the velocity distribution and 

the shearing stress for a generalized second grade fluid 

2 2 1 2

(1 ,1),2 2

1

( , )
(1 ( ) ( ( ) , ( ) ))

2( 1)
            sin

 



  
  






−

−

=

= + − − −
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n

n

u y t y n n n
tE t t

U d d d d

n y

n d
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2 1 2

(1 ,1),1 2

1

( , ) 2( 1)
( ( ) , ( ) )cos 



   
  




−

−

=

−
= − −

n
xy

n

y t n n n y
E t t

U d d d d
      (41)  

Further, if 1 = , we can get the velocity distribution and the shearing stress which 

are identical to the result in Ref.[23]. 

The second case: For 2 0 = and 0   in Eq.(37), we can obtain a solution to a gener-

alized UCM fluid 

2 1 2 1

( , 1), 2

1 1 1 1

( , ) 1
(1 ( ) ( , ( ) ))

2( 1)
           sin

  

    

   

  






+ +

+ +

=

= + − − −

−



n

n

u y t y n n
t E t t

U d d d

n y

n d

   (42) 

2 1

( , 1), 1

1 1 1 1

( , ) 2( 1) 1
( , ( ) )cos  

    

    

   


+

+ +

=

−
= − −

n
xy

n

y t n n y
t E t t

U d d d
  (43) 

For 1 = = , the solution (38) and (39) reduces to a similar solution or an Oldroyd-B 

fluid performing the same motion.  
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2 2 2 2 22
(1,1,2),3

1 1 1 1 1

( , ) 1
(1 ( ) ( , ( ) , ( ) ))

2( 1)
          sin

    

   







=

= + − −

−



n

n

u y t y n n n
t E t t t

U d d d d

n y
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    (44) 

2 2 22
(1,1,2),2

1 1 1 1 1

( , ) 2( 1) 1
( , ( ) , ( ) )cos

     

    



=

−
= − − −

n
xy

n

y t t n n n y
E t t t

U d d d d
  (45) 

6. Conclusion 

For the Poiseuille and Couette flows, the corresponding analytical solutions about 

the velocity and the shearing stress with a generalized Oldroyd-B model are obtained by 

using the separation of variables method. Results show that the SVM simplifies the solu-

tion procedure without regard to the Laplace and Fourier transforms, and some solutions 

are identical to those in the previous papers. Furthermore, some well-known solutions 

the generalized second grade fluid, the generalized Maxwell fluid as well as the ordinary 

Oldroyd-B fluid can also be obtained as the limiting cases of the presented results. 
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