
Article

Towards Sustainable Aluminium Processing: Autonomous
Quality Control Using Business Analytics

Kgothatso Matlala 1,†,‡ , Amit Kumar Mishra 1,†,‡ and Deepak Puthal2,†

1 Affiliation 1; Electrical Engineering Department, University of Cape Town
2 Affiliation 2; Khalifa University

* Correspondence: kgothatso@excite-data.tech, akmishra@ieee.org; Tel.: +27-21-460-9333

† Observatory Road, Observatory, Cape Town, South Africa

‡ These authors contributed equally to this work.

Abstract: This paper presents work done as part of a transformation effort towards a greener and 1

more sustainable Aluminium manufacturing plant. The effort includes reducing the carbon footprint 2

by minimising waste and increasing operational efficiency. The contribution of this work includes the 3

reduction of waste through the implementation of autonomous, real-time quality measurement and 4

classification at an Aluminium casthouse. Data is collected from the MV20/20 which uses ultrasound 5

pulses to detect molten Aluminium inclusions, which degrade the quality of the metal and cause 6

subsequent metal waste. The sensor measures cleanliness, inclusion counts and distributions from 20 7

- 160 microns. The contribution of this work is in the development of business analytics to implement 8

condition-based monitoring through anomaly detection, and to classify inclusion types for samples 9

that failed. For anomaly detection, multivariate K-Means and DBSCAN algorithms are compared as 10

they have been proven to work in a wide range of datasets. For classification, a two-stage classifier is 11

implemented. The first stage classifies the success or failure of the sample, while the second stage 12

classifies the inclusion responsible for the failed sample. The algorithms considered include logistic 13

regression, support vector machine, multi-layer perceptron and radial basis function network. The 14

multi-layer perceptron offers the best performance using k-fold cross-validation, and is further tuned 15

using grid search to explore the possibility of an even better performance. The results reveal that the 16

model has achieved a global maximum in performance. Recommendations include the integration of 17

additional sensor systems and the improvements in quality assurance practices. 18

Keywords: MV20/20; PoDFA; LiMCA; Business Analytics; anomaly detection; statistical process 19

control; K-Means; DBSCAN; multi-layer perceptron; activation fucntion; inclusion; confusion matrix. 20

1. Introduction 21

1.1. Background on Aluminium Casting 22

A typical Aluminium casthouse consists of a sequence of machine centers that perform 23

dedicated tasks on the product. Raw, recycled metal is fed into a melting furnace, where it 24

is molten and initial cleaning takes place after large impurities are scraped from the surface 25

of the cast. The cast is then transferred to a holding furnace, where it is held further to 26

allow heavy inclusions to sink to the bottom while the lighter ones rise to the surface. The 27

surface inclusions are scraped off. The metal is then flown through a launder, where a filter, 28

degasser and metal rod are placed to trap smaller inclusions and other impurities [1,2]. 29

The metal is finally cast into several billets ready for downstream processing. Each billet 30

typically weighs over 10 tons. 31
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1.2. Background on Aluminium Cleanliness Measurement Systems 32

To date, several prevalent analytical techniques exist, that are used to characterise metal quality during production. 33

The PoDFA (porous disk filtration apparatus) is a technique for collecting inclusions inside a fine porosity filter 34

disk. The molten Aluminium is extracted from the cast and poured into a heated crucible. Once cooled, the sample 35

is placed under a microscope for metallographic analysis. The PoDFA technique has its strength in its ability to 36

accurately identify inclusions [3,4]. 37

The LiMCA method provides electrical measurements, in which samples are measured every minute. The samples 38

are based on the electrical resistivity of the metal sample, which is directly related to the metal cleanliness [5,6]. A 39

sample of about 30g is sucked into a tube, where the electrical resistivity of the metal causes a differential in the 40

current produced by two metallic rods. This differential current is directly proportional to the cleanliness of the metal. 41

The LiMCA method has its limitation in the size and frequency of samples that it collects. 42

The MV20/20 system provides more real-time measurements by measuring 10 samples per second. This is achieved 43

by the usage of ultrasound, where a pulse is transmitted in the metal and the return signal is measured. The MV20/20 44

measures cleanliness, particle size distributions and a count of inclusions [7,8]. This dataset provides a basis for our 45

study, as it allows for a more comprehensive analysis of metal quality. 46

1.3. Objective 47

The objective of this study is to implement an autonomous quality control system which realises real-time measure- 48

ments, alerts on metal cleanliness anomalies and classifies the inclusion types responsible for the deviation in quality. 49

For this, business analytics, namely descriptive, diagnostic and predictive analytics, is implemented as a proven 50

method for improving business performance [11–13]. 51

Business analytics is an increasingly important process to how organisations make data-driven decisions. It is a 52

set of processes that involve extracting useful insights from data so as to optimise business performance using an 53

empirical approach [46–48]. The business analytics process is divided into four components: 54

1. Descriptive analytics. This entails analysis of historical data to understand the nature of the business process. 55

Typical outputs are statistical explanations of the data, trend analyses and other descriptive plots. 56

2. Diagnostic analytics. This entails analysis of historical data to understand the relationships between events 57

(cause and effect). Typical outputs include correlation plots. 58

3. Predictive analytics. This includes the use of historical data to predict future events. Typical outputs include 59

future points with associated mean squared errors for regression, and a confusion matrix for classification. 60

4. Prescriptive analytics. This is the determination of the best future scenario based on historical and current 61

trends. Typical outputs include prescriptions of the best cofniguration of the business process, or specific actions 62

in order to improve current performance or prevent predicted losses. 63

For this work, the applicable components used are descriptive, diagnostic and predictive analytics. The prescriptive 64

analytics component is not applicable as it relies on an existing predictive framework coupled with domain expertise 65

and other available inputs to make relevant prescriptions. 66

1.4. Problem Statement 67

The casthouse expressed interest in improving the quality control aspect of the casthouse production process. The 68

main problems needing addressing within the scope of this work are: 69

• P1 - Reduce process waste caused by inclusions, particularly when they cause downstream quality related 70

challenges like metal tearing and customer complaints. 71

• P2 - Improve time-to-reaction for anomalous situations, when the metal quality is substantially low. 72
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• P3 - Improve the capability for root cause analysis by identifying the inclusions responsible for low quality. 73

The positive outcomes for improved quality control include increased customer satisfaction, reduced downtime 74

which improves the likelihood of meeting and exceeding production targets, and a reduced carbon footprint as a 75

result of waste reduction. 76

1.5. Solution Requirements 77

Based on the listed business objectives and the availability of the MV20/20 system for real-time measurements, the 78

problem can be described as: 79

• R1 - Develop anomaly detection for the improvement of time-to-reaction. This has considerable loss reductions 80

in time and processing effort. This satisfies P2. 81

• R2 - Develop an algorithm to determine whether a cast is a pass or fail. This partially satisfies P1 and P3. 82

• R3 - Develop a per-cast algorithm to determine the responsible inclusion type. This partially satisfies P1 and P3. 83

1.6. Hypotheses 84

The following hypotheses are aimed at addressing each of the requirements of the work: 85

• H1 The calculation and plotting of the mean, standard deviation, min, max and variance will provide basic 86

statistical analysis. The plotting of univariate distributions and a multivariate correlation plot will provide a 87

comprehensive understanding on the nature of the dataset. 88

• H2 This hypothesis is broken down into two parts: 89

– H2a Univariate statistical process control charts. These charts trend the real-time data and bound it within 90

upper and lower control limits based on 1.5σ from the mean. An event is considered an anomaly when a 91

point lies outside the control limits. 92

– H2b Multivariate control chart. This chart shows a plot of the multivariate data decomposed into a 2D 93

latent space and bounded by a 95% confidence interval ellipse. An event is considered an anomaly when a 94

point lies outside the ellipse. 95

• H3 The development of a machine learning model like a logistic regressor, support vector machine, or neural 96

network with optimised hyperparameter tuning using 10-fold repeated cross-validation can achieve the business 97

target metrics for a classifier. 98

1.7. Constraints 99

• C1 - The dataset available for this work is a small dataset with 378 observations from 13 numerical features. It 100

takes time to collect each tagged observation, and the business is intent or realising a solution within objective 101

time frame. 102

• C2 - The solution is budget constrained and must be implemented using open-source technologies. 103

1.8. Success Criteria 104

A summary of the success metrics for the primary classifier is given in the following table: 105
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Performance Metric Target 95% CI
Accuracy 0.95 0.9 - 1
Precision 0.95 0.86 - 0.95

Sensitivity 0.9 0.86 - 0.95
Specificity 0.9 0.86 - 0.95

Table 1. Success metrics for sample result target respondent

For the secondary classifier, which classifies the responsible inclusion type in the event of a failed sample, the 106

following metrics are to be met: 107

Performance Metric Target 95% CI
Accuracy 0.95 0.9 - 1
Precision 0.95 0.9 - 1

Sensitivity 0.8 0.76 - 0.84
Specificity 0.8 0.76 - 0.84

Table 2. Success metrics for inclusion type target respondent

The sensitivity and specificity are lower than for the primary classifier. This is because it would be more difficult to 108

identify a single inclusion type in cases where there is more than one inclusion type present in the metal. Also, the 109

classification of inclusions provides a benefit of faster root cause analysis, and is not directly linked to client-facing 110

metrics. 111

1.9. Rationale 112

The South African government has been increasingly urging manufacturing plants to contribute towards a national 113

program to improve sustainability and reduce the country’s carbon footprint. Some of the goals of the program 114

include reduction of waste, consumed energy and runaway greenhouse gasses. As a result, the Aluminium casthouse 115

has embarked on the implementation of technologies that positively contribute towards this goal. 116

The availability of data from the MV20/20 sensor therefore presented the opportunity to implement quality control 117

through the use of modern analytics methods. The implementation of descriptive, diagnostic and predictive analytics 118

is deemed by the casthouse as a good starting point towards making the plant more efficient and eventually more 119

sustainable. 120

1.10. Outline 121

The remainder of this document contains the literature review, methodology applied, the experiments performed, 122

the results and recommendations for future work. 123

2. Literature Review 124

The application of modern data analytics techniques including machine learning within the context of cast metal 125

quality is relatively recent. This is mainly because most measurement techniques for cast metal rely on extraction for 126

offline processing. This therefore limits the potential for analytics based on sensor-generated data. 127

M. Torabi Rad, A. Viardin, G. J. Schmitz, and M. Apel presented the modeling of the alloy solidification process 128

using a theory-trained deep neural network [9]. The data is trained on simulated data points generated by simulated 129

points based on theoretical mathematical models. Trained models can then predict solidification temperature, for 130
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example, based on input points. The novelty of the solution is in it being the first of its kind. While the solution can 131

identify quality defects during casting, it is limited to only considering the macro-scale quality problem, and not 132

defect trapped deep in the alloy. 133

In [10], a non-destructive testing method using X-ray is used to collect training data. Ellipsoidal synthetic defects are 134

modelled and added into the training data, and a deep convolutional neural network is trained to detect and classify 135

them. The solution works well, but would require substantial capital investment in industrial X-ray systems. 136

According to [45], South Africa is among the highest producers of carbon dioxide emissions from the Aluminium 137

industry. In addition, the state-of-the-art technologies developed have been mainly focused on the improvement of 138

the casting process. The quality improvements have been on developing better filtration systems and casting recipes. 139

The novelty of this proposed work is in the fact that it will be the first application of business analytics (descriptive, 140

diagnostic, predictive analytics) in the control of metal quality so as to minimise downstream processing of defective 141

metal. Each downstream process cumulatively adds to the waste in energy and gas usage, thus contributing to the 142

increased emissions. A faster detection of defective metal can prevent this downstream processing, which is the 143

justification for this work. 144

3. Methodology 145

An analysis of the dataset indicates that the data is ready for ingestion and processing. This is based on the fact that 146

the data is available in .csv format, which is ready for ingestion by many analytics tools. This therefore places the 147

primary focus of the work on analysis of the data to extract insights for diagnostic and predictive knowledge. For 148

this, the data analytics process is followed. 149

3.1. Data Exploration 150

The data exploration involves ingestion, standardisation, visualization and statistical analysis of the data in order 151

to gain insight into the nature of the dataset. Once data is ingested, it is wrangled, which involves checking for 152

missing and inconsistent values. Finally, plots are generated to visualize the behavioral patterns of the dataset. This 153

encompasses the descriptive analytics step of the analytics process [11]. 154

3.2. Univariate Statistical Process Control 155

Univariate statistical process control (SPC) is an industrial framework for statistically determining the control limits 156

for target parameters [12]. The charts implemented in this study include individual, run and moving range. These 157

metrics are important for determining the time-series trend, impulsiveness and individual behavior of critical control 158

variables [13]. 159

3.3. Multivariate Clustering 160

Multivariate clustering is a technique for decomposing multivariate data into a smaller, more intuitive dataset that 161

can be used to gain insights into the behavior of data [14]. Two techniques are considered for multivariate clustering, 162

which have been shown to adequately cluster and provide tunability for most cases [15,16]. These techniques 163

include K-Means and DBSCAN. The K-Means method uses principal components analysis and clusters using the 164

Hartigan-Wong, Lloyd and MacQueen algorithms respectively. The DBSCAN algorithm is based on varying the 165

values of ϵ to achieve an optimal configuration of clusters. 166

3.4. Classification 167

The classification involves using the sample result and inclusion type variables as target respondents respectively. 168

For both of them, four algorithms are compared, namely logistic regression, support vector machines, multilayer 169
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perceptron and the radial basis function network. These models are among the most widely used and supported in 170

industrial applications, mainly for their success in classification problems [17,18]. 171

4. Experiments 172

4.1. Data Exploration 173

A summary of the input data is shown in the following table: 174

field type count distinct_count min mean max stddev range
Cleanliness uint 378 47 50 55.17 62 2.22 12

Filtered_Mass float 378 43 1.00 1.15 1.31 0.09 0.31
Inclusion_Count uint 378 97 1 24.58 73 19.67 72
Inclusion_Type factor 378 3

LPS_120_140 __m uint 378 20 0 0.88 19 2.40 19
LPS_140_160 __m uint 378 11 0 0.19 3 0.96 13
LPS_20_30 __m uint 378 22 0 8.87 17 3.19 15
LPS_30_40 __m uint 378 51 0 17 50 10.65 39
LPS_40_50 __m uint 378 42 0 4.64 22 6.22 31
LPS_50_60 __m uint 378 64 0 1.81 16 3.92 49
LPS_60_90 __m uint 378 22 0 1.13 13 3.63 15

LPS_90_120 __m uint 378 47 0 0.56 18 5.55 39
LPS _160 __m uint 378 1 0 0 0 0 0

MV_Grade uint 378 56 49 59.49 72 4.26 23
Mean_LPS ___m uint 378 95 27 48.55 111 21.00 84

No Signal uint 378 111 10 56.12 96 23.41 86
PSP1000M uint 378 111 4 43.88 90 23.41 86

Peak LPS ___m uint 378 87 32 73.23 152 38.22 120
Sample_Result factor 378 2

Table 3. Input data summary

The dataset has 19 features. Of the features, 17 are numeric and 2 are categorical (inclusion type and sample result). 175

One feature, namely LPS_160__m, is constant and is therefore discarded from the dataset. In addition, the features 176

Mean_LPS ___m and Peak LPS ___m are derived features which are calculated and not directly measured from the 177

system. They are also therefore discarded from the dataset. 178

The features "Inclusion_Count", "No Signal" and "PSP1000M" have the highest ranges and consequently the highest 179

standard deviations. This means that, in order to ensure that they do not diminish the contributions of other features 180

to the overall variance of the dataset, standardisation could be necessary to scale them to unit variance. 181

In order to decompose the multivariate relationships of the features, a scatterplot matrix is shown in the following 182

figure. The following scatterplot matrix shows the correlations between the features, coloured by the sample result 183

categorical respondent: 184
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Figure 1. Scatterplot matrix of numerical features coloured by sample result

The scatterplots show linear relationships between the cleanliness, MV grade and the LPS 50 - 60µm features. This is 185

consistent with the fact that the MV grade is an estimate of the cleanliness without attenuation, and that the number 186

of particles in the metal is inversely proportional to the cleanliness of the metal. The inclusion count and no signal 187

features show no strong correlations to the other features. The “passed” category of the sample result shows a linear 188

separation with all the features, except for some overlaps with the “failed” result around the centers. This is an 189

indication that the cleanliness of the metal might have a strong influence on the result of the sample. 190

4.2. Anomaly Detection 191

The statistical process control framework establishes upper and lower control limits for variables [12,19]. These limits 192

can be used to form triggers for anomalous events in production. Four variables are treated as the control variables: 193

1. Cleanliness index. The cleanliness index indicates the cleanliness of the cast. 194

2. The largest particle size count for particles between 120 and 140µm (LPS 140 - 160). 195

3. The largest particle size count for particles between 140 and 160 µm (LPS 140 - 160). These two LPS variables 196

represent the biggest sized inclusions, which are the most harmful to metal quality. 197

4. The inclusion count. This gives an indication of the abundance of inclusions, which can indicate when an 198

anomalous injection of inclusions becomes present in the metal. 199

Univariate Statistical Process Control 200

The run charts for the control variables are given in the following grid plot: 201
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(a) Cleanliness (b) LPS 120 - 140

(c) LPS 140 - 160 (d) Inclusion Count

Figure 2. Run charts for control variables

As can be seen, the run charts show the time series progression of the datasets and the center lines. 202

The individual charts for the control variables are shown in the following grid plot: 203
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(a) Cleanliness (b) LPS 120 - 140

(c) LPS 140 - 160 (d) Inclusion Count

Figure 3. Individual charts for control variables

The individual charts show points outside control limits for the LPS control variables. This is an indication of points 204

where the values were higher than 1.5 standard deviations from the center line [12]. They are correctly flagged as 205

anomalies, and in a production environment, would prompt appropriate action and a decision for the quality of the 206

cast. In order to ensure that the system is not flooded with anomalies, however, the casthouse could start off with a 207

more conservative approach and widen the control limits, which can later be tightened as the process itself improves. 208

The moving range charts for the control variables are shown in the following grid plot: 209
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(a) Cleanliness (b) LPS 120 - 140

(c) LPS 140 - 160 (d) Inclusion Count

Figure 4. Moving range charts for important features

The range chart also indicates anomalous events for the LPS variables, including the one point for the cleanliness. 210

This indicates that there are jumps in the average values of the control variables, and they can be likely attributed to 211

certain causal events that are not part of normal operations. 212

Multivariate Clustering 213

It is worth mentioning that the confidence interval for the anomaly detection clusters, which is the anomaly threshold, 214

can be configured based on domain knowledge. This is because the equipment tolerances, maintenance regimes and 215

other factors all affect the frequency and distance of anomalies from the cluster centers. It is therefore necessary to 216

perform a live evaluation of the best threshold distance based on the data statistics at the time. For this work, a 95% 217

confidence interval is used, which corresponds to 2 standard deviations from the cluster center. 218

The k-means algorithm is a distance-based algorithm for clustering points [16].There exist three variants of the 219

k-means algorithm, namely the Hartigan-Wong, Lloyd and MacQueen. These algorithms are compared in the 220

following figure: 221
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(a) Hartigan-Wong (b) Lloyd (c) MacQueen

Figure 5. K-means cluster with two centroids

The following observations are made with respect to the k-means clusters: 222

1. The variance accounted for by the clusters is 77.2%. This is deemed adequate to represent the variance of the 223

data, as it accounts for over two thirds of the variance. 224

2. There exist substantial spatial overlaps in the clusters. This can be seen on the number of points within the 225

overlapping region. 226

3. Most of the data is concentrated between the two clusters. This indicates that the overlapping region represents 227

good process performance. 228

4. The outliers constitute a minority of the data and could potentially indicate a process drift. 229

The k-means method is therefore considered adequate to be used as an anomaly detection technique, in which 230

outliers can be flagged as anomalies. It is also noted that the three algorithms provided the same performance. 231

The DBSCAN algorithm is a density-based algorithm for clustering [20]. It is applied to assess its clustering capability. 232

The following figure shows the clustering when a small value of ε is applied. The minimum number of points, which 233

is needed by the algorithm, is set at 10. The clusters are show in the following figure for different values of ε: 234

(a) ε = 5 (b) ε = 10 (c) ε = 15

Figure 6. DBSCAN clusters for different center distances
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The clusters show a gradual improvement, until a saturation point, when the distance has covered all points in 235

the cluster at ε = 15. At this distance, the algorithm still recognises a substantial number of points within the 95% 236

confidence interval ellipse as outliers. This is because it is a density-based algorithm [20]. 237

4.3. Supervised Learning Classification 238

For supervised learning, the aim is to achieve classification by teaching algorithms using labelled datasets. The labels 239

used in this study are the two categorical variables, namely sample result and inclusion count. The classification 240

metrics used to assess model performance are accuracy, precision, sensitivity and specificity [21]. 241

Due to the dataset being small, it is split 80/20 between training and testing. The training dataset is also cross- 242

validated using 10-fold cross-validation so as to optimise the ability of the model to generalise over the data [30]. 243

4.3.1. Logistic Regression 244

Logistic regression uses the logit function to perform a regression, and the output is treated as a categorical outcome 245

[22]. The repeated cross-validation loss curve for the model is given in the following figure for the sample result 246

target respondent: 247

Figure 7. Sample Result target respondent cross-validation model training for different values of α

The curve shows a steady increase in log-loss as alpha increases, peaking around α = 0.9. The optimal value of alpha 248

is therefore 0, where the training loss is at its lowest. 249

The repeated cross-validation loss curve for the model is given in the following figure for the inclusion type target 250

respondent: 251
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Figure 8. Inclusion type target respondent accuracy model training for different values of α

The curve shows that the training loss is at its minimum when α = 0. This is therefore the optimal hyperparameter 252

used to build the final model. 253

4.3.2. Support Vector Machine 254

The support vector machine has four main configurations, which are discussed below [23,24]: 255

Linear The first parameter to optimise is the linear cost function, which is common among all the variants of the 256

SVM model. In order to find the optimum cost coefficient, a linear variant of the activation function is used, 257

and the cost function is incremented. 258

Polynomial The polynomial degree is another variant of the SVM that uses a polynomial function to separate the 259

hyperspace. The degree of the polynomial is the hyperparameter to be optimised. 260

RBF The Gamma coefficient for the radial basis function optimises the radius of influence and therefore the sensitivity 261

of the model to training data. 262

Kernel The kernel SVM uses a kernel function to search for the optimal hyperspace. In order to compare the 263

kernel functions, the optimal hyperparameters are set for each kernel function respectively, and the training 264

performances of the kernel functions are compared. 265

The following figures show the hyperparameter plots respectively as they are swept from zero for the sample result 266

target: 267
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(a) Cost function (b) Polynomial degree

(c) RBF Gamma (d) Kernel function

Figure 9. SVM hyperparameters

The training results reveal the following: 268

• The optimal cost function is determined to be 0.1 as the loss of the model is minimal at that value. This value is 269

therefore used for all the variants of the SVM. 270

• The log-loss curves show that the degree of 3 is the optimal degree for the polynomial variant of the SVM model. 271

This is because it has the lowest loss at a corresponding gamma value of 0.3. These are therefore the selected 272

hyperparameters for the polynomial variant. 273

• The best performance for gamma is at 0.01, where the lowest log-loss is achieved. This is therefore used to train 274

the final model. 275
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• The loss functions for the different kernels show little difference in performance. The polynomial kernel appears 276

to provide the best loss, followed by the RBF kernel. The differences are negligent, which indicates training 277

convergence. This implies that the polynomial and RBF kernel functions can be used with negligible difference 278

in performance. The RBF kernel, however, is more computationally expensive, and therefore the polynomial 279

kernel is used in the final model. 280

The following figures show the hyperparameter plots respectively as they are swept from zero for the inclusion type 281

target: 282

(a) Cost function (b) Polynomial degree

(c) RBF Gamma (d) Kernel function

Figure 10. SVM hyperparameters

The following observations are made: 283
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• The log-loss function sharply decreases down to a minimum of 0.395, where the cost function is 0.9. This is 284

therefore the value used for training the SVM. 285

• The curves show that for higher degrees of the polynomial, the loss increases after a sharp drop at γ = 0.1. The 286

first degree is the only order to maintain a decrease in the loss function for increasing values of gamma. The 287

lowest loss is achieved at a value of γ = 1, where the loss is 0.4. 288

• From the curve, it can be seen that the loss function takes a sharp drop before slowly increasing. The optimal 289

value of gamma is therefore where the loss makes a turning point, which is 0.27. 290

• The RBF has proven to be the optimal kernel function for fitting the data, as it offers the best overall performance 291

in relation to the loss function. The linear and polynomial functions have comparable performance. The RBF is 292

therefore the preferred kernel for building the final model. 293

4.3.3. Multi-Layer Perceptron 294

The multi-layer perceptron is an feed-forward artificial neural network. It is the most basic form of the neural 295

network, where the number of neurons, the number of layers and the activation functions can be tuned [25–28]. 296

As a start, the model is trained with one hidden layer. The number of neurons and the activation function are 297

optimised using cross-validation. Four of the most widely used activation functions are considered for this study, so 298

as to select an optimal function. These are [26–29]: 299

1. Rectified Linear Unit (ReLU). The ReLU is the most popular activation function in neural networks. The ReLU 300

function is the preferred starting point as it retains x for all positive values of x. This gives a safe performance 301

regarding diminishing gradients and exploding gradients as it is non-saturating and it offers an accelerated 302

gradient descent towards a minimum value of the loss function 303

2. Maxout. The maxout activation function is a generalisation of the ReLU and leaky ReLU activation functions in 304

that it selects the maximum value of the input. The main advantage of maxout functions is that with at least 305

two maxout units, they can approximate any function. They have also been proven to perform well for most 306

applications. 307

3. Linear. The linear function maps the output to the input. While for positive values of x the linear function 308

shares the advantages of the ReLU function, its major drawback is that it does not support backpropagation. 309

This is because the derivative of the function is a constant value (1) which has no relationship to the input. 310

4. Sigmoid. The sigmoid function is an inverse of the exponential decay function. It casts any input to a value 311

between 0 and 1. This makes it ideal for cases where inputs might be unevenly weighted, as the input 312

contributions will not differ by much. This also means that the sigmoid can be used to predict probabilities, as 313

probabilities only exist between 0 and 1. 314

The model loss functions are presented in the following figure for the sample result target: 315
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Figure 11. Sample result target respondent multi-layer perceptron training performance for one hidden layer. The activation
function and number of neurons are the optimised parameters

It is difficult to tell from the model which of the combinations yields the best training performance. The maxout 316

function with 8 neurons, however, appears to have the lowest training loss towards the last epoch [29]. The table 317

below summarises the respective model configurations in order of increasing log-loss. As there are 4× 6 = 24 models 318

built from cross-validation, only the top 5 are presented. 319

Model Hidden layers Neurons Activation function Log-loss
Multi-layer perceptron 1 8 Maxout 0.2293
Multi-layer perceptron 1 9 Maxout 0.2425
Multi-layer perceptron 1 9 ReLU 0.259
Multi-layer perceptron 1 10 ReLU 0.2617
Multi-layer perceptron 1 7 Maxout 0.2667

Table 4. Sample result target respondent multi-layer perceptron training performance for one hidden layer

It is evident that the maxout activation function is dominating the performance, followed by the ReLU function. The 320

optimal number of neurons for the first hidden layer is 8, as it presents the lowest training loss. The model might be 321

overfitting in cases where n > 8. The addition of a second hidden layer, while keeping the units of the first hidden 322

layer at the optimal value of 8, is presented in the following table: 323
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Model Hidden layers Neurons Activation function Log-loss
Multi-layer perceptron 2 [8, 6] Maxout 0.1356
Multi-layer perceptron 2 [8, 8] Maxout 0.1622
Multi-layer perceptron 2 [8, 9] Maxout 0.1973
Multi-layer perceptron 2 [8, 5] Maxout 0.2038
Multi-layer perceptron 2 [8, 3] Maxout 0.2203

Table 5. Sample result target respondent multi-layer perceptron training performance for two hidden layers

The table indicates that an additional hidden layer improves training performance. The best configuration involves 324

the second hidden layer with 6 neurons. Since this is a significant improvement from the training performance of the 325

model with one hidden layer, this configuration is the preferred one for building the final model. 326

The model training performance for one hidden unit is shown in the following figure for the inclusion type: 327

Figure 12. Inclusion type target respondent multi-layer perceptron training performance for one hidden layer. The activation
function and number of neurons are the optimised parameters

The model configurations indicate comparable training loss performances, also indicating a convergence condition. 328

The following table shows the model configurations ordered by increasing log-loss: 329

Model Hidden layers Neurons Activation function Log-loss
Multi-layer perceptron 1 7 Maxout 0.16
Multi-layer perceptron 1 9 Tanh 0.1707
Multi-layer perceptron 1 9 Maxout 0.1809
Multi-layer perceptron 1 8 Maxout 0.1818
Multi-layer perceptron 1 10 Tanh 0.1898

Table 6. Sample result target respondent multi-layer perceptron training performance for one hidden layer
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The maxout activation function dominates the performance for the single hidden layer configuration of the model, 330

followed by the tanh function. It is therefore the optimal activation function used in building the final model. 331

The second hidden layer is added to the configuration, and the training results are shown in the following table: 332

Model Hidden layers Neurons Activation function Log-loss
Multi-layer perceptron 2 [8, 3] Maxout 0.1236
Multi-layer perceptron 2 [8, 8] Maxout 0.1666
Multi-layer perceptron 2 [8, 9] Maxout 0.1872
Multi-layer perceptron 2 [8, 5] Maxout 0.1894
Multi-layer perceptron 2 [8, 10] Maxout 0.2

Table 7. Inclusion type target respondent multi-layer perceptron training performance for two hidden layers

The performance for the configuration with the second hidden layer shows only a slight improvement from the 333

configuration with a single hidden layer. This means that the configuration with a single hidden layer can be used 334

without compromising too much training loss [30]. 335

4.3.4. Radial Basis Function Network 336

Radial basis function networks are a specialisation of neural networks with a radial basis function as the activation 337

function. They have been shown to have success in many cases where the boundary conditions are more complex 338

[32–34,36]. The negative threshold tuning by means of repeated cross-validation is shown in the following figure for 339

the sample result target: 340
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Figure 13. Sample result target respondent RBF training performance

The loss curve shows a dip at 0.8 and a sharp incline. The optimal threshold is therefore 0.8. 341

The negative threshold tuning by means of repeated cross-validation is shown in the following figure for the inclusion 342

type target: 343
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Figure 14. Inclusion type target respondent RBF training performance

The log-loss function has its minimum at a threshold of 0.2, before it steadily increases. The optimal threshold used is 344

therefore 0.2. 345

5. Results 346

In this section, the models are tested on the test data split from the training data. The test data consists of 126 347

observations and constitutes 25% of the total data. 348

The test results are presented in the form of a confusion matrix, which quantifies how well the model performs on 349

unknown data. 350

Within the context of unsupervised learning, tests data does not exist as all the data is unlabelled. This therefore means 351

that unsupervised learning models have to be applied with domain knowledge in order to ensure the anomalies 352

represent real life anomalies. 353

5.1. Supervised Learning Classification 354

The following table shows a side-by-side comparison of the models for the sample result target: 355
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Metric Logistic Regression Support Vector Machine Multi-layer Perceptron RBF Network
Accuracy 0.91 0.95 0.95 0.92
Precision 0.95 0.93 0.96 0.95

Sensitivity 0.92 1 0.98 0.93
Specificity 0.9 0.85 0.9 0.9

ROC 0.91 0.88 0.91 0.91
Kappa 0.8 0.89 0.89 0.82

Table 8. Model performance comparisons for sample result target respondent

The following figure shows the comparison between the models: 356

Figure 15. Model performance comparisons for the sample result target respondent

• The logistic regression model has performed satisfactorily as it satisfied the metrics except for accuracy, where it 357

achieved 0.4% below the target. This is within the 95% confidence interval, so it is considered a success. 358

• The SVM model gave a better overall performance than the logistic regression model. It achieved a higher score 359

for each of the performance metrics, with a perfect score for sensitivity. It is therefore regarded a success. 360

• The MLP model has so far shown the best performance as it has exceeded all the target scores. 361

• The RBF network model has also exceeded all target scores, although its performance is slightly below that of 362

the MLP. 363

The models have all shown the capability to generalise well over the training data [31]. This can be seen in the fact 364

that the confusion matrices have shown good scores in testing performance over data that the models have not seen 365

before. The logistic regression model, while the worst performing from the four, is still within the 95% tolerance of 366

the target metrics. The MLP, SVM and RBF network models all performed well. The MLP gave the best performance, 367

and is therefore recommended as the model to use. This is because the costs associated with each false alarm or 368

miss are high within the context of an Aluminium manufacturing factory. Each loss can potentially cost the business 369

hundreds of thousands of Rands. 370
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For the multiclass problem, the metric scores are presented per class, so as to assess the performance of the model 371

over individual classes in addition to the overall performance. 372

The following table shows a side-by-side comparison of the models: 373

Metric Logistic Regression Support Vector Machine Multi-layer Perceptron RBF Network
Accuracy 0.69 0.82 0.92 0.77
Precision 0.48 0.75 0.9 0.68

Sensitivity 0.57 0.75 0.89 0.69
Specificity 0.8 0.88 0.95 0.84

Kappa 0.4 0.62 0.84 0.53
Table 9. Model performance comparisons for sample result target respondent

The following figure shows the comparison between the models: 374

Figure 16. Model performance comparisons for the sample result target respondent

• The results show that the logistic regression model has scored below the target overall, except for specificity. 375

Even for specificity, the per-class scores show that it achieved 0.63 for the SPINEL inclusion type, which is below 376

target by 0.13. The best scores achieved are for FeO, which are also below target. This makes sense as the value 377

of α = 0 reduces the model to a constant logit function which is insensitive to the input. 378

• The SVM performance is better than the performance of the logistic regression model, with all the overall scores 379

higher for the SVM than the logistic regression model. The model, however, did not meet all targets. The model 380

scored above target only for the specificity class. The scores for accuracy, precision and sensitivity are not as 381

far below target as for the logistic regression model. The value of kappa also indicates that there is substantial 382

value in the model agreement with the dataset, as opposed to a completely random guess of the data [35]. The 383

model, however, is considered inadequate as it does not satisfy the target metrics. 384

• The MLP is once again showing the best performance so far, with targets for precision, sensitivity and specificity 385

met. The accuracy is slightly below target, but is still within the tolerance. The sensitivity and specificity have 386
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been well exceeded, as the model especially gave few erroneous predictions for the SPINEL class. The MLP 387

model is therefore considered a success. 388

• The RBF network model performance is worse than that of the MLP model for all the metrics. This implies that 389

the application of radial basis functions as activation functions for the classification of inclusions gives a worse 390

performance than applying maxout functions, which are used in the MLP. 391

The problem of generalising over the inclusion types has proven to be much more difficult to solve than predicting 392

the outcome of the metal quality. This might be attributed to the following: 393

• The attenuation caused by the different inclusions is similar from an ultrasonic point of view. 394

• The inclusion sizes and counts for the different classes are similar and not easily separable. This could be due to 395

the filter that the metal passes through just before the casting stage. 396

• The results of the metallographic analysis used to classify the inclusions are not entirely reliable due to operator 397

error. 398

The MLP can therefore be considered as it provides the best results, and subsequent tuning of the model can improve 399

performance. 400

5.2. Performance Optimisation 401

The previous subsection has shown that all the models are capable of providing good predictions over the sample 402

result target respondent. The same cannot be said for the inclusion classification problem, as the prediction scores for 403

the models were largely below target. In order to improve the model, hyperparameter tuning is considered with 404

even more parameters. 405

5.2.1. Hyperparameter Tuning 406

The best performing model, namely the MLP, is tuned further in this section with the intention of assessing whether 407

an improvement in performance can be achieved. In order to achieve this, more tuning parameters are iterated over 408

using repeated cross-validation [37]. It should be noted that the tuning of more hyperparameters does not guarantee 409

an improved performance, but it is worth exploring for the potential improvement. The parameters are given in the 410

following table: 411

Parameter Value
model_id multi-layer perceptron

number of hidden layers 1 (universal approximation)
number of neurons 8 - 10 (8 optimal, change for reference)

loss function categorical crossentropy
activation function (hidden layer) maxout
activation function (output layer) softmax

epsilon 0 - 1 (selection randomness probability)
l1 0 - 0.2 (Lasso regularisation)
l2 0 - 0.2 (Ridge regularisation)

rho 0.9 - 1 (gradient descent term)
Table 10. Multi-layer perceptron model hyperparameters

The additional parameters from the table include: 412

• epsilon, which changes the selection randomness probability for the learning gradient. A large value of ε would 413

mean that the learning diverges, while a small value would mean the the learning converges too slowly. 414
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• L1, which is the Lasso regularisation parameter. It ensures that the model is penalised for learning loss so as to 415

minimise the effect of some weights [38]. A high value of L1 would see more weights being set to zero. 416

• L2, which is the Ridge regularisation parameter. It also penalises the cost function, but never sets the weights to 417

zero [38]. 418

• rho, which is the learning rate decay factor. It is responsible for ensuring that the gradient descent is smooth 419

[39,40]. Higher values of ρ tend to give better smoothing results. 420

5.2.2. Hyperparameter Search 421

There are three most widely used methods for finding optimal configurations of the model hyperparameters, namely 422

grid search , random search and genetic algorithm (evolution) [41]. 423

Grid Search - The grid search method entails an exhaustive sweep through the hyperparameter grid space in order 424

to find the point that offers the lowest training loss [42]. This method is relatively expensive and could take a long 425

time for big datasets. It does, however, guarantee a global maximum. 426

Random Search - Another optimization method is random search, which performs random combinations of 427

hyperparameters in order to find an optimal combination [43]. The random search method is not guaranteed 428

to produce optimal results as it samples a subspace of the hyperparameter grid, and might therefore not find the 429

global maximum. 430

Genetic Algorithm (Evolution - The genetic algorithm simulates evolution by natural selection in that it selects for 431

the hyperparameter values that provide better results, and selects against those that don’t. Those that are selected for 432

are used in the next round, which is the next point on the search grid [44]. The genetic algorithm eventually converges 433

at an optimal point on the grid, although this might take time and the point might not be a global maximum. 434

For this work, the grid search method is used as it guarantees the best results. The dataset is also small and therefore 435

can be iterable within reasonable time. The grid search produced 187 500 models based on the given hyperparameters. 436

The results revealed the following points: 437

• The number of hidden layers does not significantly improve the performance of the model beyond neurons. It is 438

therefore confirmed that keeping the number of neurons at 8 and applying the law of universal approximation 439

(one hidden layer) is sufficient for achieving an optimal model. 440

• The regularisation parameters l1 and l2 do not have a significant effect on the training performance of the model. 441

This can be seen in the grid search plot, where their values are closely related with respect to the loss function of 442

the model. 443

• The gradient descent term ρ has an inversely proportional relationship with the training loss of the model. It 444

can therefore be set at its highest value in order to achieve the lowest training loss. 445

• The selection randomness probability ε has an inversely proportional relationship with the training loss of the 446

model. It can therefore be set at its highest value in order to achieve the lowest training loss. 447

The following table shows a summary for the parameters for the top 5 models based on the lowest training log-loss: 448

ε hidden l1 l2 ρ logloss
1e-8 8 0 0.05 0.99 0.15622
1e-8 10 0 0.1 0.98 0.15838
3e-9 8 0.05 0 0.99 0.16224
4e-9 8 0 0.05 0.99 0.16750
8e-9 10 0.15 0 0.99 0.17360

Table 11. Grid search model log-loss performance
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Based on the table, it can be seen that the training performance of the model does not improve much as the 449

hyperparameters are changed. It should also be noted that the training performance of the model is comparable to 450

that of the multi-layer perceptron prior to the employment of a grid search. 451

5.2.3. Final Model Results 452

The model is built based on the best parameters, and tested on the test data. The following confusion matrix shows 453

the performance of the model: 454

(a) Confusion matrix

Prd\Act FeO MgO SPINEL
FeO 45 2 0
MgO 5 24 0

SPINEL 0 11 39

(b) Metric scores

Metric Target 95% CI FeO MgO SPINEL Overall
Accuracy 0.95 0.9 - 1 0.94 0.86 0.91 0.86
Precision 0.9 0.86 - 0.95 0.96 0.83 0.78 0.86

Sensitivity 0.8 0.76 - 0.84 0.9 0.65 1 0.85
Specificity 0.8 0.76 - 0.84 0.97 0.94 0.87 0.93

Kappa 0.7 0.67 - 0.74 0.78

Table 12. MLP model performance after grid search

6. Discussion 455

Based on the confusion matrix and metric scores shown in the table, the following observations are made: 456

1. The model after grid search is not much better than the model before grid search. This is most likely an 457

implication of the model having reached its learning potential. 458

2. The MgO inclusion has the worst performance. The metrics are below target except for specificity. This implies 459

that the model is not able to generalise well over this inclusion type. 460

3. The SPINEL inclusion type is within the target limits except for the precision metric. For the other metrics, it 461

has exceeded targets. 462

4. The FeO inclusion type has the best performance and has exceeded the targets for all metrics. 463

The model does not therefore generalise well over the inclusion types. A plot of the model’s decision boundaries is 464

shown in the following figure: 465
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Figure 17. Model decision analysis grouped by inclusion type

As can be seen from the figure, there is substantial overlap between the SPINEL and MgO inclusion types. It is 466

therefore unlikely that the model can separate the two classes sufficiently for it to reach all the performance metrics. 467

7. Conclusions 468

7.1. Summary of Work Done 469

An opportunity has been identified in an Aluminium manufacturing plant to improve quality control by means of a 470

pulsed ultrasound system. This system is capable of performing real-time measurements on molten metal, which 471

reveal the cleanliness of the metal. In order to automate the process of accepting the metal as clean, unsupervised 472

and supervised learning approaches are applied. 473

The unsupervised component of this project focuses on anomaly detection for real-time alerting of operators 474

and relevant personnel. This is achieved by exploring dimensionality reduction techniques including principal 475

components analysis, K-means and DBSCAN clusters. A 95% confidence interval ellipse is drawn around the cluster 476

as a means of identifying potential and would-be outliers. 477

The supervised learning component involves the development of a two-stage classifier. The first stage determines 478

whether the metal quality is adequate for production. The second stage determines the dominant inclusion responsible 479

for the quality deterioration. Four models are trained, namely logistic regression, support vector machine, multi-layer 480

perceptron and a radial basis function network. While the inclusion type classifier gave a boundary performance on 481

accuracy and precision, the values are within the 95% tolerance range. The project is therefore considered a success. 482

7.2. Recommendations for Future Work 483

During casting, the metal forms a thin oxidisation layer on the surface, which is an indication of the presence of 484

some inclusions at the top of the metal. A vision system can be employed to analyse the texture, colour and other 485
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visual properties of the metal in order to provide more insights relating to the nature of inclusions, the intensity of 486

the inclusions and the effects of different casting parameters on the texture of the metal. 487

The attenuation levels of inclusions compared to pure Aluminium could produce different infrared signatures, which 488

could be measured and analysed using Fourier Transforms. This is because different elements possess different 489

reflectance and attenuation properties at different wavelengths. Classifiers can then be built to determine the types 490

and intensities of inclusions based on the spectral properties of the measurements. 491
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