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Abstract. Power series expansions are useful in approximation theory and 
mathematical physics. The manuscript presents several types of fractional Tay-
lor expansions of sufficiently smooth fu nctions. This is  achieved by  employing

an incremental regularization procedure to the computation of the derivative.
The series are constructed algorithmically, which allows for its implementation

in computer algebra systems.
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1. Introduction

Power series expansions are useful in approximation theory. Applications of the 
fractional power series originate in the works Puiseux and Riemann. The latter 
demonstrated infinite s eries u sing f ractional R iemann-Liouville i ntegral. Further 
studies are due to Odibat and Shawagfeh [15] and Watanabe [23]. Odibat and 
Shawagfeh derived fractional Taylor series development using repeated applica-
tion of Caputo’s fractional derivative [15]. Lately, the question has gain traction 
with the work Liu et al. who used Kolwankar-Gangal local fractional derivatives 
[14]. Examples of fractional Taylor series are the branch-point series of inverses of 
trigonometric functions.

A fractional Taylor expansion was investigated in the scope of local fractional 
derivatives in the sense of Kolwankar and Gangal [13]. The existence of a local 
fractional Taylor is equivalent to existence of one-sided fractional velocity of the 
primitive function [1, 20, 21]. This fact can be used to sequentially extract coeffi-
cients of higher orders. The objective of the present work is to demonstrate how 
fractional velocities and the related scale velocity differential operators can be used 
to reconstruct the fractional power series of suitable functions.

The approach demonstrated in the present paper differs r adically i n t he sense 
that a fractional Taylor series is computed only by a limiting operation. Presented 
approach can be used to characterize and approximate functions about points for 
which integer-order derivatives diverge. The work has been presented in preliminary 
form at the ICMMAS 2017 conference, Saint Petersburg, July 24 – 28, 2017.

An advantage of the present approach is the use of derivations, which makes 
algorithmic implementations in computer algebra systems much easier. Further-
more, the theory which is developed is rather general which is advantageous for 
unanticipated applications. An interesting result is the external exponent Th. 3,
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which can be used to develop the branch point series of the inverse trigonometric
functions and the Lambert W function.

It should be noted that difference quotients of functions of fractional order could
be traced back to du Bois-Reymond [8] and Faber [9] in their studies of the point-
wise differentiability of functions. While these initial developments followed from
purely mathematical interest, later works were inspired from physical questions
[6]. Cherbit [6] and later on Ben Adda and Cresson [1] introduced the notion of
fractional velocity as the limit of the fractional difference quotient. Subsequent
results can be traced to [2] and [3], which are surveyed in [21].

The manuscript is structured as follows. Section 3 introduces the notion of
F-analytic functions [21]. Section 4 introduces fractional velocities. Section 5 in-
troduces the derivative regularization procedure. Section 6 discusses two types of
applications: Itô-Taylor expansions of compound functions and the general algo-
rithm for computation of power series expansion.

2. General definitions and notational conventions

The word function denotes the mapping f : R 7→ R or in some cases C 7→ C. The
notation f(x) refers to the value of the function at the point x. The term operator
denotes the mapping from one function to another. Conventionally, C 0 denotes
the class of continuous functions, considered in the neighborhood of a point. The
symbol C n – the class of n-times differentiable functions under the same restriction.
Square brackets are used for the arguments of operators, while round brackets are
used for the arguments of functions. Dom[f ] denotes the domain of definition of
the function f(x). BVC[I] will mean that the function f is continuous of bounded
variation (BV) in the interval I. AC[I] will mean that the function f is absolutely
continuous in the interval I.

Definition 1 (Asymptotic O notation). The notation O (xα) is interpreted as the
convention that

lim
x→0

O (xα)

xα
= 0

for α > 0 is the limit of the expression. The notation Ox will be interpreted to
indicate a Cauchy-null sequence in expression x.

Definition 2. Let the parametrized difference operators acting on a function f(x)
be defined in the following way

∆+
ϵ [f ](x) := f(x+ ϵ)− f(x) ,

∆−
ϵ [f ](x) := f(x)− f(x− ϵ) ,

where ϵ > 0. The first one we refer to as forward difference operator, the second
one we refer to as backward difference operator.

3. F-analytic functions as generalizations of the Hölder functions

As a reminder the reader is recalled with the usual definition of Hölder functions.

Definition 3 (Hölder class of order β). We say that f is of (point-wise) Hölder
class H β (x) if for a given x there exist two positive constants C, δ ∈ R that any
y ∈ Dom[f ], such that |x− y| ≤ δ fulfills the inequality |f(x)− f(y)| ≤ C|x− y|β,
where | · | denotes the norm of the argument.
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For simplicity of presentation the reference to the x-variable will be omitted if
clear from the context of the statement.

Remark 1. It will be further assumed that β ≤ 1 unless otherwise stated. The
above definition contrasts with the local Hölder exponent where both points x, y are
left to vary within an interval around the point x0.

Further generalization of this concept is given by introducing the concept of F-
analytic functions. The definition used in the present paper is based on Oldham
and Spanier [16], however, there the fractional exponents were considered to be
only rational-valued for simplicity of the presented arguments.

Definition 4 (F-analytic function, [21]). Consider the countable ordered set E± =
{α1 < α2 < . . .} of positive real constants α. Then F-analytic is a mapping f :
R 7→ C which is defined by the convergent (fractional) power series

f(x) := c0 +
∑

αi∈E±

ci (x± bi)
αi

for some sets of real constants {bi}∞i=0 and {ci}∞i=0. The set E± will be denoted
further as the Hölder spectrum of f (i.e. E±

f ).

In the present treatment f can be restricted to f : R 7→ R.
So-defined, F-analytic functions present an obvious generalization of the real an-

alytic functions C∞. At first glance, such a definition can seem contrived but there
are important commonly-used special functions that exhibit fractional character.
For example the Bessel Jν function is defined as the infinite power series:

Jν(x) =
(x
2

)ν ∞∑
k=0

(−1)k

Γ(ν + k + 1)Γ(k + 1)

(x
2

)2k
so that in this case E± = {2k + ν}∞k=0. Further examples of this kind are the
generalized hypergeometric functions of fractional argument, which cover most of
the special functions of the mathematical physics [11]. Along these lines, the
definition of the Hölder class can be also extended to mixed orders n + α > 1
(α > 0). In such a case, the Hölder class Hn+α (x) designates the class of
functions for which the inequality

|f(x)− f(y)− Pn(x− y)| ≤ C|x− y|n+α ,

holds in the interval [x, y], |x − y| ≤ δ. Pn(.) designates a real-valued polynomial

of degree n ∈ N of the form Pn(z) =
n∑

k=1

akz
k, where P0(z) = 0 and α ∈ (0, 1).

From this definition it can be seen that the usual extension of the Hölder class
definition towards non-integer orders larger that 1 is a specialization of the F-
analytic function definition.

In the subsequent sections of the paper, the class of F-analytic functions will
be characterized in terms of regularized fractional velocities and derivatives and
will incorporate cases where an F-analytic function is not C∞. The main applied
result of the paper will be to exhibit an algorithm for reconstruction of E and the
corresponding coefficients of the expansion. On a second place, some composition
cases for F-analytic functions will be considered.
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4. Fractional variation and fractional velocity of functions

Fractional (fractal) variation operators have been introduced in a previous work
[17] under the following notation:

Definition 5. Let the Fractional Variation operators be defined as

υϵ+
β [f ] (x) :=

∆+
ϵ [f ](x)

ϵβ
=

f(x+ ϵ)− f(x)

ϵβ
, (1)

υϵ−
β [f ] (x) :=

∆−
ϵ [f ](x)

ϵβ
=

f(x)− f(x− ϵ)

ϵβ
(2)

where ϵ > 0 and 0 < β ≤ 1 are real parameters and f(x) is a function.

Definition 6 (Fractional velocities of order β ). Define the forward (resp. back-
ward) fractional velocity of order β ≤ 1 as the limit

υβ
±f (x) := lim

ϵ→0
υϵ±
β [f ] (x) . (3)

A function for which at least one of the velocities υβ
±f (x) exists finitely will be

called β-differentiable at the point x. This can be denoted also by C β.
The set of points where the fractional velocity exists finitely and does not vanish

will be denoted as the set of change:

χβ
±(f) :=

{
x : υβ

±f (x) ̸= 0
}
.

The most important property of fractional for the results of the present paper is
presented below.

Proposition 1 (Fractional Taylor-Lagrange Property). Suppose that x ∈ χβ. Then

f(x± ϵ) = f(x)± υβ
±f (x) ϵβ + O

(
ϵβ
)

(4)

Conversely, if Eq. 4 is valid then either of υβ
±f (x) exists finitely and x ∈ χβ.

The proof is given in [20]. The sign ± refers to alternative cases and not to
logical and.

Non-vanishing values of the fractional velocity lead to fractional Taylor series
approximations of the functions. Together with the next property, this can be used
for extraction of higher-order terms in the fractional Taylor series of the function.

We can make an observation, which will be used throughout the paper: For a
β-differentiable function f at x ∈ χβ

f(x± ϵ)− f(x)∓ υβ
±f (x) ϵβ

ϵβ
= Ox

This follows immediately from the Fractional Taylor-Lagrange property.

Definition 7. Denote by MAC[I] the class of locally monotone and absolutely con-
tinuous functions in the compact interval I.

The definition is introduced to exclude the class of singular functions and also
the functions which oscillate fast in a given intervals (i.e. the nowhere monotone
functions). The term singular function can be traced to Lebesgue and denotes those
non-constant continuous functions of bounded variation f : I → R such that f ′ = 0
almost-everywhere on the interval I of definition. Under this restriction a simple
calculation yields the next result.
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Theorem 1. Suppose that f ∈MAC[x, x± ϵ]. Then

υβ
±f (x) = lim

ϵ→0

ϵ1−β

β
f ′(x± ϵ)

if the right-hand side one-sided limit exists.

Proof. Denote by I = [x, x + ϵ] and assume that ϵ is arbitrary. Denote by DI :=
{f ′(x) = ±∞}

⋂
I the discontinuity set of the derivative and suppose that the

set is non-empty. Since f is MAC in I then f ′ exists a.e. in I by Lebesgue’s
differentiation Theorem and it is continuous wherever it exists. Then by Th. 5 DI

can consist only of isolated points at the boundaries of I. So let us suppose that x
is such a point. Hence, we can take x+ ϵ to be a generic point in the open interval
Dc

I = (x, x+ϵ), such that f ′(x+ϵ) is bounded. Under such conditions, application
of l’Hôpital’s rule [12] leads to

lim
ϵ→0

υϵ+
β [f ] (x) = lim

ϵ→0

∆+
ϵ f (x)

ϵβ
= lim

ϵ→0

f ′(x+ ϵ)

βϵβ−1
= lim

ϵ→0

ϵ1−β

β
f ′(x+ ϵ),

provided the last limit exists.
On the other hand, by the Mean Value Theorem [12] ∆+

ϵ f (x) = ϵf ′(ξ) for some
ξ ∈ Dc

I . Therefore,

υϵ+
β [f ] (x) = ϵ1−βf ′(ξ)

and

Lϵ =

∣∣∣∣ϵ1−β

β
f ′(x+ ϵ)− ϵ1−βf ′(ξ)

∣∣∣∣ = ϵ1−β

∣∣∣∣f ′(x+ ϵ)

β
− f ′(ξ)

∣∣∣∣ ≤ ϵ1−βK

for some K > 0. Therefore, Lϵ is also continuous in ϵ and moreover Lϵ = O
(
ϵ1−β

)
.

Therefore, for a generic point x both limits vanish as ϵ→ 0.
The backward case can be proven in an identical manner by reflexion ϵ 7→ −ϵ. □

Remark 2. A brief remark about the applicability of L’Hop̂otal’s rule is in order.
The simplest statement of the rule works under the assumption that functions in
the numerator and denominator are differentiable everywhere around the point of
interest. This restriction was lifted in [12, Prop. 3] who demonstrated that for a
finite L

lim
x→a

f ′(x)

g′(x)
= L⇒ lim

x→a

f(x)

g(x)
= L

provided that lim
x→a

f(x) = lim
x→a

g(x) = 0 or lim
x→a

f(x) = lim
x→a

g(x) = ±∞. The result

was derived from a generalized, inequality, version of the Mean Value Theorem
proven in the same article. The result is proven under the assumption that g is
increasing locally, that is g′ does not change sign in the neighborhood of the point
a. On the other hand, L’Hop̂otal’s rule can fail to provide the correct value of the
limit for functions for which the zero set accumulates towards a [5]. Therefore, one
needs the hypothesis of local monotonicity in Th. 1.

4.1. Point-wise Hölder exponents.

Definition 8. Consider the continuous function f(x). Define the right point-wise
Hölder exponent βx as

βx := lim sup
ϵ→0

log |∆+
ϵ f (x)|

log ϵ
where as usual ϵ > 0.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 May 2022                   doi:10.20944/preprints202205.0414.v1

https://doi.org/10.20944/preprints202205.0414.v1


6 DIMITER PRODANOV1,2

Proposition 2. Suppose that f is β-differentiable at x and f ∈ MAC[x, x + ϵ].
Then the value of the point-wise Hölder exponent β is given by the limit

β = lim
ϵ→0

ϵf ′(x± ϵ)

∆±
ϵ f (x)

(5)

Proof. We observe that β ≤ 1 by hypothesis. Let I = [x, x + ϵ] and suppose that
x ∈ χβ . By hypothesis f is differentiable in the open interval Io. We evaluate the
limit

Lx = lim
ϵ→0

log |∆+
ϵ f (x)|

log ϵ
.

This has the form∞/∞, which is suggestive for a potential application of L’Hôpital’s
rule. On the other hand, let us evaluate the limit

Mx = lim
ϵ→0

ϵf ′(x+ ϵ)

∆+
ϵ f (x)

According to Th. 1

Mx = β lim
ϵ→0

ϵ1−β

β

f ′(x+ ϵ)
∆+

ϵ f(x)
ϵβ

= β

Therefore, Lx = Mx. □

Remark 3. A left Holder exponent can be defined in analogous way and proven by
reflection arguments. Since equality of forward and backward fractional velocities is
not required one may observe a situation where β+ ̸= β− for some set of points.

5. Derivative regularization

5.1. Fractional order regularization. We extend the fractional velocity nota-
tion for a continuous function f as υ0

+f (x) ≡ 0 since for a continuous function f
lim
ϵ→0

∆+
ϵ [f ](x)] = lim

ϵ→0
∆−

ϵ [f ](x)] = 0.

The composition of variation definition proceeds in two steps:

Definition 9 (Composition of variations). Consider a function f continuous about
the point x. Define the composition of fractal variations as

υα◦β
± f (x) := lim

ϵ→0

∆±
ϵ f (x)− υβ

±f (x) ϵβ

ϵα+β
, (6)

where 0 < α, β ≤ 1.
By induction, for a set of multiple exponents 0 < α1 < α2 < . . . ≤ 1 define the

composition recursively as:

υα1◦...◦αn
± f (x) := lim

ϵ→0

∆±
ϵ [f ](x)−

∑
{αk}

υ
∏k

i ◦αi

± f (x) ϵ
∑k

i αi

ϵ
∑n

i αi
(7)

So-composed fractional velocities will be referred to as regularized velocities,
respectively regularized derivatives for αk = 1.

The basis for further computations will be the equation

υ∆α1◦α1
± f (x) = lim

ϵ→0

∆±
ϵ [f ](x)− υα1

± f (x) ϵα1

ϵα2
, ∆α1 = α2 − α1 (8)
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For a β-differentiable function we can use the composition of variations to reg-
ularize the first derivative with respect to the fractional velocity. This process will
be used to extract the values of the coefficients in the fractional Taylor series.

Definition 10. Suppose that f is β-differentiable function in I = [x, x + ϵ] and
x ∈ χβ. Denote the regularized derivative by

d̄ β±

dx
f(x) := υ1−β◦β

± f (x) . (9)

We will require as before that the forward and backward regularized derivatives be
equal for a uniformly continuous function.

We will use further also a shortened notation d̄ f(x) when the value of β is fixed.

5.2. Mixed order regularization. The regularization procedure can be extended
also towards mixed orders in the following way:

Definition 11. Let us define formal fractional Taylor polynomials for an increasing
sequence αi as:

T+
α,n(x, ϵ) = f(x) +

∑
αi

ciϵ
αi +

n∑
k=1

f (k)(x)

k!
ϵk ,

T−
α,n(x, ϵ) = f(x)−

∑
αi

c⋆i ϵ
αi +

n∑
k=1

f (k)(x)

k!
(−ϵ)k ,

where α denotes the multi-index and ci are arbitrary constants. Then α-regularized
derivatives are defined as

d̄ n+

dxn
f(x) = (n+ 1)! lim

ϵ→0

f(x+ ϵ)− Tα,n(x, ϵ)

ϵn+β
,

d̄ n−

dxn
f(x) = (−1)n(n+ 1)! lim

ϵ→0

T−
α,n(x, ϵ)− f(x− ϵ)

ϵn+β
,

where β = supαi. We will require as usually that the forward and backward regu-
larized derivatives be equal a uniformly continuous function.

Proposition 3. According to Prop. 1 we have ci = υαi
+ f (x) and c⋆i = υαi

− f (x).

The proof follows by induction considering that the sequence {αi} is increasing.
Then according to Prop. 1 a new regularization term is added for every αi.

6. Applications

6.1. Compound differential (Taylor – Itô) rules. The differentiation rule for
compositions of functions can be derived using the regularization of the derivatives.
The statement has been given in [19] without proof. The differentiation rule for
compositions of functions provides a result formally analogous to Itô’s Lemma.

Definition 12 (Fractal co-variation). Define the fractal co-variation as the limit

[wq]±(x) := lim
ϵ→0

(
υϵ±
1/q [w] (x)

)q
.

The notation borrows from the one used in stochastic calculus due to the analogy
of the results.
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Theorem 2 (Generalized Itô –Taylor expansion). Let q ∈ N and q ≥ 2. Suppose
that f(x,w) ∈ C ×C q is a composition with a function w, which is 1/q-differentiable
at x, then

d̄±

dx
f =

∂f

∂x
+

d̄±

dx
w · ∂f

∂w
+

(±1)q−1

Γ(q + 1)
[wq]± · ∂

qf

∂wq
(10)

Proof. The theorem will be proven for q = 2. The other cases follow by the same
arguments taking note of the polarity of the differences.

We will prove first the forward case.

Forward case: By second order Taylor’s expansion we get

f(w(x+ ϵ), x+ ϵ) = f(w, t) +
∂f

∂x
ϵ+

∂f

∂w
∆+

ϵ w (x)+

1

2

∂2f

∂x2
ϵ2 +

∂2f

∂x ∂w
(x)∆+

ϵ w (x) ϵ+
1

2

∂2f

∂w2

(
∆+

ϵ w (x)
)2

+ O
(
ϵ3
)

It follows that two cases have to be considered:

Case 1 (x /∈ χβ). when υ
1/2
+ w (x) = 0 and the ordinary derivative is well-

defined:

∆+
ϵ f (x)

ϵ
=

∂f

∂x
+
∂f

∂w

∆+
ϵ w (x)

ϵ
+
1

2

∂2f

∂x2
ϵ+

∂2f

∂x ∂w
(x)∆+

ϵ w (x)+
1

2

∂2f

∂w2
[w,w]+ϵ +O

(
ϵ2
)

Taking the limit gives the expected result

d f

dx
=

∂f

∂x
+

∂f

∂w

dw

dx
.

Case 2 (x ∈ χβ). when υ
1/2
+ w (x) = K ̸= 0 and the ordinary derivative is

not defined: In this case w(x + ϵ) = w(x) +K
√
ϵ + O (

√
ϵ). We substitute

partially in the Taylor expansion:

f (w(x+ ϵ), x+ ϵ)− f (w, x) =
∂f

∂x
ϵ+

∂f

∂w

(
K
√
ϵ+ O

(√
ϵ
))

+

1

2

∂2f

∂x2
ϵ2 +

∂2f

∂x ∂w
(x)∆+

ϵ w (x) ϵ+
1

2

∂2f

∂w2

(
∆+

ϵ w (x)
)2

+ O
(
ϵ3
)

Let υϵ±
1/2 [w] (x)

2
= [w,w]±ϵ for notational convenience. Then after re-

arrangement we get

f (w(x+ ϵ), x+ ϵ)− f (w, x)− ∂f
∂w (K

√
ϵ+ O (

√
ϵ))

ϵ
=

∂f

∂x
+

1

2

∂2f

∂x2
ϵ+

∂2f

∂x ∂w
(x)∆+

ϵ w (x) +
1

2

∂2f

∂w2
[w,w]+ϵ + O

(
ϵ3
)

But the LHS is the forward regularized derivative of f(w, x). Therefore, we
obtain

d̄+f

dx
=

∂f

∂x
+

1

2

∂2f

∂w2
[w,w]+ (11)

Therefore, we can rewrite the expansion using the uniform notation

d̄+f

dx
=

∂f

∂x
+

∂f

∂w

d̄w

dx
+

1

2

∂2f

∂w2
[w,w]+ (12)
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Backward case: By second order Taylor’s expansion we get

f(w(x− ϵ), x− ϵ) = f(w, x)− ∂f

∂x
ϵ− ∂f

∂w
∆−

ϵ w (x)+

1

2

∂2f

∂x2
ϵ2 +

∂2f

∂x ∂w
(x)∆−

ϵ w (x) ϵ+
1

2

∂2f

∂w2

(
∆+

ϵ w (x)
)2 −O(ϵ3)

The proof technique is completely analogous.
Therefore, we can rewrite the expansion using the uniform notation

d̄−f

dx
=

∂f

∂x
+

∂f

∂w

d̄w

dx
− 1

2

∂2f

∂w2
[w,w]− (13)

For q > 2 the proof proceeds in the same way by Taylor expansion of the second
argument up to order q.

In the expansion for the backward case above we notice that the O(ϵ3) term
has a negative sign, which by reversing polarity in the finite difference ∆−

ϵ f (x)
transforms into positive. Therefore, for q = 3 the sign in front of the fractal co-
variation will be positive. The same reasoning holds for all odd q, while all even q
will have negative polarities. □

Remark 4. The Itô-Taylor expansion can be reformulated in a homogeneous form
considering that formally [x, x] = 0 and [w, x] = 0 because f(x) = x ∈ C 1.

d̄+

dx
f(x,w) =

∂f

∂x
+

∂f

∂w
· d̄

+w

dx
+

1

2

∂2f

∂w2
[w,w]+

d̄−

dx
f(t, w) =

∂f

∂x
+

∂f

∂w
· d̄

−w

dx
− 1

2

∂2f

∂w2
[w,w]−

6.2. Extremal series. In another application let us consider a regular function
F (y) = x, having an extremum at y = a. Let us compute the fractional expansion
of its inverse f(x). For a regular point, the inverse function theorem holds. On the
other hand, at the extremum F ′(y) = 0. Then

∆+
ϵ F (y) = F ′

ydy +
1

2
F ′′
y dy

2 + O
(
dy2
)
= ϵ→ 1

2
F ′′
y dy

2 + O
(
dy2
)
= ϵ.

Therefore,

lim
ϵ→0

1

2
F ′′
y

∆+
ϵ f (a)

2

ϵ
= 1→ [f, f ]+ =

2

F ′′
y (a)

Therefore, it can be claimed that

Theorem 3 (Extremal exponent). Suppose that F (y) has a local inverse y = f(x)
in I = [a, a± ϵ] and is continuous there. Let F (a) be an extremum. Then f(x) has
a point-wise Hölder exponent 1/2 and

υ
1/2
± f (a) = ±

√
2

|F ′′
y (a)|

, [f, f ]+ =
2

F ′′
y (a)

where the sign agrees with the sign of the derivative f ′(x) about a±, respectively.

Example 1. A non-trivial example of the above theorem is the Lambert W function,
which is defined as the solution of the equation [7]

eW±(x)W±(x) = x, y = W±(x)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 May 2022                   doi:10.20944/preprints202205.0414.v1

https://doi.org/10.20944/preprints202205.0414.v1


10 DIMITER PRODANOV1,2

Therefore, for the derivative we have

dy

dx
=

e−y

1 + y
, y ̸= −1 (14)

by the Inverse Function Theorem. However, for x = −e−1 W (x) = −1 and the
function can be expanded in branch-point series. By the proof of Th. 3

ey
(
dy(1 + y) +

y + 2

2
dy2
)
+ O

(
dy2
)
= dx→ ey

2
dy2 + O

(
dy2
)
= dx, y = −1

or F (y) = yey, F ′′
y = (y + 2)ey. Therefore, [y, y] = 2e−y = 2e and

W±(x) = −1±
√
2e(x+ e−1) + O

(√
x+ e−1

)
around the branch point. Calculation of the subsequent coefficients is a substantially
more complicated exercise because the derivatives of W(x) are of mixed exponential-
rational form.

The regularized derivative at the branch point can be calculated from the limit

d̄+

dx
W±(−e−1) = lim

y→−1+

−
√
2yey+1 + 2 + y + 1

yey + e−1
= −2e

3
,

so that

W±(x) = −1±
√
2e(x+ e−1)− 2e

3
(x+ e−1) + O

(
(x+ e−1)

)
around x = −e−1. A plot is presented in Fig. 1.

The last theorem can be generalized for the case of vanishing derivatives up to
order k.

Corollary 1. Suppose that F (y) has a local inverse y = f(x) in I = [a, a± ϵ] and

the first k − 1 partial derivatives F
(k−1)
y vanish at a.

υ
1/k
+ f (a) = ± k

√
k!

|F k
y (a)|

, [fk]+ =
k!

F
(k)
y (a)

(15)

where the sign agrees with the sign of the derivative f ′(x) about a.

Proof. Suppose that F
(j)
y = 0, j ≤ k. Then in a similar way

∆+
ϵ F (y) = F ′

ydy + . . .+
1

k!
F (k)
y dyk + O

(
dyk
)
= ϵ→ 1

k!
F (k)
y dyk + O

(
dyk
)
= ϵ.

Therefore,

lim
ϵ→0

1

k!
F (k)
y

∆+
ϵ f (a)

k

ϵ
= 1→ [fk]+(a) =

k!

F
(k)
y (a)

and

υ
1/k
+ f (a) = ± k

√
k!

|F k
y (a)|

, [fk]+ =
k!

F
(k)
y (a)

where the sign agrees with the sign of the derivative f ′(x) about a+. □
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Figure 1. Lambert W function and its branch point expansion.

6.3. Fractional power series. In the following section we demonstrate a method
for explicit computation of the coefficients of the higher order monomial of an F-
analytic function. One can define two types of scale-dependent differential
operators acting on F -analytic functions.

Definition 13. Define the left (resp. right) scale velocity operators [18]:

Sϵ±β [f ] (x) :=
1

1− {β}
ϵβ

∂

∂ϵ
f(x± ϵ), β ≤ 1 (16)

and their composition rules as

Sϵ±α ◦ Sϵ±β f :=
ϵα

1− {α}
∂

∂ϵ

(
ϵβ

1− {β}
∂

∂ϵ
f(x± ϵ)

)
(17)

Observe that for a MAC function f :

lim
ϵ→0
Sϵ±1−β [f ] (x) = υβ

±f (x)

The proof follows directly from application of Th. 1. The form of the scale velocity
operators facilitates the algebraical manipulations since the image of the function
does not vanish. Therefore, one does not need to specify the set of change χβ .
Furthermore, logarithmic singularities in the derivative can also be accounted for
since

lim
ϵ→0
Sϵ±1 [f ] (x) = lim

ϵ→0
ϵ f ′(x+ ϵ) =

∂

∂(log ϵ)
f(x+ ϵ)

∣∣∣
ϵ=0
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12 DIMITER PRODANOV1,2

Theorem 4 (Fractional Series Approximation Theorem). Suppose that f is F-
analytic in the neighborhood of x, that is in the interval I = [x, x + δ) and choose
ϵ ≤ δ.

Suppose that the Hölder exponent spectrum E is non-lacunar, that is supi αi+1−
αi ≤ 1. Let the fractional Taylor series of f be given as

f(x+ ϵ) =

∞∑
n=0

cnϵ
αn , c0 = f(x)

Then

cn = lim
ϵ→0

(
n−1∏
k=1

◦∆n−k (α)

αn − αk
Sϵ1−∆n−kα

)
f, ∆k (α) = αk − αk−1

where the product is understood as composition and the limit is taken in the end of
the computation.

Proof. For the technique of the proof we denote the equivalence in limit as ∼=.
Denote the fractional Taylor polynomial by

Tk,n(ϵ) :=

n∑
j≥k

cjϵ
αj

and assume that its coefficients cj are indeterminate but its Hölder spectrum is
fixed. We are set to compute the limit

LN =
f(x+ ϵ)− T0,n(ϵ)

ϵαN
∼= Oϵ

By induction for N = 1 by L’Hôpital’s rule

L1
∼=

f ′(x+ ϵ)− c1α1ϵ
α1−1

α1ϵα1−1
= Sϵ±1−α1

[f ] (x)− c1 = Oϵ

Therefore, c1 = lim
ϵ→0
Sϵ+1−α1

[f ] (x). For N > 1 we observe that

LN =
f(x+ ϵ)− Tk,N−1(ϵ)− cN ϵαN

ϵαN
=

f(x+ ϵ)− Tk,N−1(ϵ)

ϵαN
− cN ∼= Oϵ.

By L’Hôpital’s rule
f ′(x+ ϵ)− T ′

1,N−1(ϵ)

αN ϵαN−1
∼= cN .

Therefore the expression can be rearranged as:

cN ∼=
α1

αN

Sϵ1−α1
f(x)− c1 − T2,N−1(ϵ)

ϵαN−α1
, T2,N−1(ϵ) =

N−1∑
k=2

c
(2)
k ϵαk−α1 , c

(2)
k =

ckαk

α1

Denote for convenience a1 = α1/αN . We can apply another L’Hôpital step so that

cN ∼= a1

(
Sϵ1−α1

f(x)
)′ − c

(2)
2 (α2 − α1)ϵ

α2−α1−1 − T3,N−1(ϵ)

(αN − α1)ϵαN−α1−1
=

a2
Sϵ1−∆α1

◦ Sϵ1−α1
f(x)− T3,N−1(ϵ)

ϵαN−α2
, T3,N−1(ϵ) =

N−1∑
k=3

c
(3)
k ϵαk−α1 ,

∆α1 = α2 − α1, c
(3)
k =

c
(2)
k (αk − α1)

∆α1
, a2 = a1

∆α1

αN − α1
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Therefore by reduction.

cN ∼=

(
N−1∏
k=1

◦ ∆N−k (α)

αN − αN−k
Sϵ1−∆N−kα

)
f, ∆k (α) = αk − αk−1

and formally α0 = 0. Therefore, for any N the same result will follow by induction.
□

We can further give some concrete implementations of the algorithm revealed by
the Fractional Series Approximation Theorem.

First, we will consider the case when ∆kα = α. In this case, the following result
holds:

Proposition 4. Suppose that the fractional Taylor polynomials are of the form

T±
α,n(x, ϵ) = f(x) +

n∑
k=1

ck(±1)kϵαk,

where α denotes the multi-index and ci are arbitrary constants. Then the following
expansion holds:

f(x+ ϵ) = f(x) +

n∑
k=1

ckϵ
αk +O (ϵnα) ,

for

ck =
1

k! αk
lim
ϵ→0

k∏
◦
(
ϵ1−α ∂

∂ϵ

)
f(x+ ϵ)

and

f(x− ϵ) = f(x) +

n∑
k=1

ckϵ
αk +O (ϵnα)

for

ck =
(−1)k

k! αk
lim
ϵ→0

k∏
◦
(
ϵ1−α ∂

∂ϵ

)
f(x− ϵ).

Proof. We will establish the relationship to the growth of the function at x ± ϵ,
respectively. The technique of the proof is similar to the previous case.

Obviously for k = 1 holds c1 = υα
+f (x). Then the second coefficient can be

calculated as

lim
ϵ→0

f(x+ ϵ)− f(x)− υα
+f (x) ϵα

ϵm
= lim

ϵ→0

T+
α,n(x, ϵ)− f(x)− υα

+f (x) ϵα

ϵm

= lim
ϵ→0

c1ϵ
2α +O(ϵ2α)

ϵm

= lim
ϵ→0

c1ϵ
2α−m + lim

ϵ→0
O(ϵ2α−m)

Therefore, in order for the RHS to be finite we must have m = 2α. Then for the
LHS we have

lim
ϵ→0

f(x+ ϵ)− f(x)− υα
+f (x) ϵα

ϵ2α
=

1

2α
lim
ϵ→0

f ′(x+ ϵ)− α υα
+f (x) ϵα−1

ϵ2α−1
.

The argument of last limit is then

ϵα−1

ϵ2α−1

(
ϵ1−αf ′(x+ ϵ)− υα

+f (x)
)
=

ϵ1−αf ′(x+ ϵ)− υα
+f (x)

ϵα
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The limit can be evaluated by application of L’Hôpital’s rule and rationalization.

lim
ϵ→0

ϵ1−αf ′(x+ ϵ)− υα
+f (x)

ϵα
=

1

α
lim
ϵ→0

ϵ1−α ∂

∂ϵ

(
ϵ1−αf ′(x+ ϵ)

)
.

Therefore,

c2 =
1

2α2
lim
ϵ→0

ϵ1−α ∂

∂ϵ

(
ϵ1−α ∂

∂ϵ
f(x+ ϵ)

)
,

Therefore by induction

ck =
(±1)k

k! αk
lim
ϵ→0

k∏
◦
(
ϵ1−α ∂

∂ϵ

)
f(x± ϵ)

where the product has to be understood as composition.
□

Remark 5. The same result can be established in a different way. Let us suppose
that

f = F ◦ u, u(x) = xα

Then (
d u(x)

dx

)−1
dF

dx
=

∂F

∂u

and
∂F

∂u
=

x1−α

α

dF

dx

and we can recognize the derivative of u ∼ xα evaluated at x = ϵ. Similar arguments
can be demonstrated to hold for all k ≤ n by induction. Therefore, in the general
case we would have as expected expansion of the function f(x) in Taylor series w.r.t
u(x) = xα followed by substitution. Therefore,

f(x+ ϵ) = f(x) +

n∑
k=1

ckϵ
αk +O (ϵnα) ,

for

ck =
1

k!

∂ k

∂uk
F (u)

and

f(x− ϵ) = f(x) +

n∑
k=1

ckϵ
αk +O (ϵnα) ,

for

ck =
(−1)k

k!

∂ k

∂uk
F (u) .

We have established that in this case the function of interest is a composition of an
analytic function and a power function that is

f = F ◦ u, u(x) = xα.

This was the particular case which was considered by Odibat and Shawagfeh [15].
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Example 2. Consider the function f(x) = cos(x1/3). We will develop the frac-
tional Taylor expansion about x = 0. The first derivative of the function is

f ′(x) = −1

3

sinx
1
3

x
2
3

,

which is undefined for x = 0. According to Th. 5 for α = 1
3 we would have

c1 = − lim
ϵ→0

sin ϵ1/3 = 0

Continuing for other degrees

c2 = −1

2
lim
ϵ→0

cos ϵ1/3 = −1

2

and so on. Therefore, in agreement with the previous proposition we would have

f(x) = 1− 1

2
x

2
3 +

1

24
x

4
3 − 1

720
x2 +

1

40320
x

8
3 + O

(
x8/3

)
Proposition 5 (Mixed order Taylor expansion). Suppose that the fractional Taylor
polynomials are of the form

T+
α,n(x, ϵ) = f(x) +

n∑
k=0

ckϵ
α+k ,

T−
α,n(x, ϵ) = f(x) +

n∑
k=0

ck(−1)kϵα+k ,

Then the following expansions hold:

f(x+ ϵ) = f(x) +

n∑
k=0

ckϵ
α+k +O

(
ϵn+α

)
,

where

ck =
1

k! (k + α)
lim
ϵ→0

(
∂

∂ϵ

)k

ϵ1−αf ′(x+ ϵ)

and

f(x− ϵ) = f(x) +

n∑
k=0

ckϵ
α+k +O

(
ϵn+α

)
,

where

ck =
(−1)k

k! (k + α)
lim
ϵ→0

(
∂

∂ϵ

)k

ϵ1−αf ′(x− ϵ) .

Proof. We will establish the relationship to the growth of the function at x ± ϵ,
respectively. We will look for O (ϵm) equivalence. That is

lim
ϵ→0

f(x+ ϵ)− T+
α,n(x, ϵ)

ϵm
= 0
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Obviously for k = 0 holds c0 = υα
+f (x). Then the second coefficient can be

calculated as

lim
ϵ→0

f(x+ ϵ)− f(x)− υα
+f (x) ϵα

ϵm
= lim

ϵ→0

T+
α,n(x, ϵ)− f(x)− υα

+f (x) ϵα

ϵm

= lim
ϵ→0

c1ϵ
α+1 +O(ϵ2+α)

ϵm

= lim
ϵ→0

c1ϵ
α+1−m + lim

ϵ→0
O(ϵ2+α−m).

Therefore, in order for the RHS to be finite we must have m = 1+α. Then for the
LHS we have

lim
ϵ→0

f(x+ ϵ)− f(x)− υα
+f (x) ϵα

ϵ1+α
=

1

1 + α
lim
ϵ→0

f ′(x+ ϵ)− α υα
+f (x) ϵα−1

ϵα

The limit can be evaluated by application of L’Hôpital’s rule and rationalization.

1

1 + α
lim
ϵ→0

f ′(x+ ϵ)− α υα
+f (x) ϵα−1

ϵα
=

1

1 + α
lim
ϵ→0

ϵf ′(x+ ϵ)− α υα
+f (x) ϵα

ϵ1+α

=
1

1 + α
lim
ϵ→0

ϵ1−αf ′(x+ ϵ)− α υα
+f (x)

ϵ

=
1

1 + α
lim
ϵ→0

∂

∂ ϵ
ϵ1−αf ′(x+ ϵ).

Therefore,

c1 =
1

1 + α
lim
ϵ→0

∂

∂ ϵ
ϵ1−αf ′(x+ ϵ) .

The same procedure can be extended for the general case by induction. For an
arbitrary k ≤ n we will have

ck = lim
ϵ→0

f(x+ ϵ)− T+
α,n(x, ϵ)

ϵk+α
= lim

ϵ→0

f(x+ ϵ)− T+
α,k(x, ϵ)

ϵk+α

Therefore, we would have

1

k + α
lim
ϵ→0

f ′(x+ ϵ)−
(
T+
α,k(x, ϵ)

)′
ϵ

ϵk+α

=
1

k + α
lim
ϵ→0

ϵα−1

(
ϵ1−αf ′(x+ ϵ)−

k∑
j=0

cj(α+ j)ϵα+j−1−(α−1)

)
ϵk+α

1

k + α
lim
ϵ→0

ϵ1−αf ′(x+ ϵ)−
∑

ck(α+ k)ϵk

ϵk+1

By applying k times L’Hôpital’s rule the denominator can be evaluated to give k!
in order to eliminate the Taylor polynomial. Therefore, finally

ck =
1

k! (k + α)
lim
ϵ→0

(
∂

∂ϵ

)k

ϵ1−αf ′(x+ ϵ) .

Applying similar procedure to the backward case would yield

ck =
(−1)k

k! (k + α)
lim
ϵ→0

(
∂

∂ϵ

)k

ϵ1−αf ′(x− ϵ) .

□
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Figure 2. Mixed-order Taylor expansion of arcsin(1− x) about the origin
The plot shows two and four fractional term expansions compared to

arcsin(1− x), respectively.

Example 3. Consider the right fractional velocity of f(x) = arcsin(1 − x) about
x = 0. It is a solution of the differential equation

f ′ +
x2 − 2x

x− 1
f ′′ = 0 (18)

The first derivative of the function is

f ′(x) = − 1√
2 x− x2

,

which is undefined about 0. Therefore, the function does not posses an integer-order
Taylor expansion about 0. On the other hand,

υβ
+f (0) = − 1

β
lim
ϵ→0

ϵβ−
1
2

√
2− ϵ

.

Therefore, for β = 1/2 υβ
+f (0) = −

√
2. The fractional Taylor expansion about 0

then is

f(x) =
π

2
−
√
2
√
x+O(

√
x)

The regularized derivative then is

d̄ f(0) = lim
ϵ→0

arcsin(1− ϵ)− π
2 +
√
2
√
ϵ

ϵ
=

lim
ϵ→0

1√
ϵ

(
1√
2
− 1√

2− ϵ

)
= − lim

ϵ→0

√
ϵ

√
2− ϵ

3 = 0
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Applying Th. 5 gives the following approximation:

f(x) =
π

2
−
√
2
√
x− x

3
2

3 · 2 3
2

− 3 · x 5
2

5 · 2 9
2

− 5 · x 7
2

7 · 2 13
2

− 35 · x 9
2

9 · 2 21
2

+ O
(
x9/2

)
The approximation can be appreciated in Fig. 2. It is also apparent that the result
also follows from Th. 3 since the inverse function f−1(x) = 1 − sin(x) has an
extremum at x = π/2.

7. Mixed order extensions of fractional velocity for lacunar series

The scale differential operator can be extended also for mixed fractional orders
k + β. The operator will be extended as

Sϵk,β
∣∣
k=0

f(x) = Sϵβf(x)
Therefore, the action on the power function must retain the property

Sϵk,1−β x
k+β

∣∣
ϵ=0

= 1

To compute the coefficient we proceed from the n-the order derivative of the power
function f(x) = xp [16] :

Dk+1xp =
Γ(p+ 1)

Γ (p− k)
xp−k−1, p > −1

so that for k = [p] and β = p− k

Sϵk,1−βf(x) :=
Γ(β)

Γ(β + k + 1)
ϵk+1−βf (k+1)(x+ ϵ)

However, this is the composition law for the scale differential operators up to a
multiplicative factor

Sϵk,1−βf(x) =
Γ(β + 1)

Γ(β + k + 1)
Sϵ1−β ◦

k∏
◦ Sϵ0 f(x)

Therefore,

Sϵk,αf(x) =
(1− α)Γ(1− α)

(1− α+ k)Γ(1− α+ k)
Sϵα ◦

k∏
◦ Sϵ0 f(x)

which reduces to Sϵα for k = 0.
Equipped with this operator the main Theorem 4 can be extended to lacunar

series.

7.1. Power Series Computation Algorithm. Based on the result from the pre-
ceding section, the following iterative algorithm can be proposed for the computa-
tion of the series

(1) initialize D1 ← f(x± ϵ), n = 1, T1 = f(x)
(2) compute the Hölder exponent

βn = lim
ϵ→0

ϵ
∂ϵDn

Dn
, n = 1

(3) compute the fractional part αn = βn − k = ⌊βn⌋, where k = [βn] is the
integral part of the number,

(4) compute an = lim
ϵ→0
Sϵk,1−αn

D1

(5) assign Dn+1 ← Dn − anϵ
βn
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(6) assign Tn+1 ← Tn + anϵ
βn

(7) go to item (2)

The algorithm is implemented in the Computer Algebra System Maxima.

Appendix A. Essential properties of fractional velocity

The reader is reminded about the essential properties of fractional velocity[17,
21]. In this section we assume that the functions are BVC in the neighborhood of
the point of interest.

• Product rule

υβ
+[f g] (x) = υβ

+f (x) g(x) + υβ
+g (x) f(x) + [f, g]+β (x)

υβ
−[f g] (x) = υβ

−f (x) g(x) + υβ
−g (x) f(x)− [f, g]−β (x)

• Quotient rule

υβ
+[f/g] (x) =

υβ
+f (x) g(x)− υβ

+g (x) f(x)− [f, g]+β
g2(x)

υβ
−[f/g] (x) =

υβ
−f (x) g(x)− υβ

−g (x) f(x) + [f, g]−β
g2(x)

where

[f, g]±β (x) := lim
ϵ→0

υϵ±
β/2 [fg] (x)

wherever the limit exists finitely.
For compositions of functions

• f β-differentiable and g ∈ C 1

υβ
+f ◦ g (x) = υβ

+f (g) (g′(x))
β

υβ
−f ◦ g (x) = υβ

−f (g) (g′(x))
β

• f ∈ C 1 and g β-differentiable

υβ
+f ◦ g (x) = f ′(g) υβ

+g (x)

υβ
−f ◦ g (x) = f ′(g) υβ

−g (x)

Reflection formula
For f(x) + f(a− x) = b

υβ
+f (x) = υβ

−f (a− x)

Appendix B. Totally disconnected sets

The following definition is given in Bartle (2001)[4, Part 1, Ch. 2]:

Definition 14 (Null sets). A null set Z ⊂ R (or a set of measure 0) is called a
set, such that for every 0 < ϵ < 1 there is a countable collection of sub-intervals
{Ik}∞k=1, such that

Z ⊆
∞⋃
k=1

Ik,

∞∑
k=1

|Ik| ≤ ϵ

where |.| is the interval length. Then we write |Z| = 0.
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Definition 15 (Totally disconnected space). A metric space M is totally discon-
nected if every non-empty connected subset of M is a singleton [24, p. 210]. That
is, for every S ⊂M, S non-empty and connected implies ∃p ∈M with S = {p}.

The next theorem was proven in [22].

Theorem 5 (Null set disconnectedness). Suppose that E is a null set. Then E is
totally disconnected. Conversely, suppose that E is totally disconnected and count-
able. Then E is a null set.

Proof. Forward statement: Suppose that Z ⊂ E is connected and open.
Then there exist 3 numbers x1 < z < x2, such that [x1, x2] ⊂ Z. Then
|[x1, x2]| = x2 − x1 > 0. Therefore, ∃ϵ, such that 0 < ϵ ≤ z − x1 < x2 − x1;
so that ϵ < |Z| ≤ |E|, which is a contradiction. Therefore, x2 = x1 and
hence Z is singleton. Therefore, by induction E is totally disconnected.

Converse statement: The countability requirement in the statement of the
theorem comes from the fact that there are sets that are totally discon-
nected, uncountable and non-null [10]. Since E is totally disconnected for
every z, w ∈ E, trivially, there is a number h, such that [z−h/2, z+h/2]∩
[w − h/2, w + h/2] = ∅. Therefore, there is a collection of such intervals,
{Ik}∞k=1

Ik = [zk − h/2k+1, zk + h/2k+1]

of length |Ik| = 1/2k. Therefore,
∞∑
k=1

|Ik| = h

for any such a number h. Since h can be chosen arbitrarily small the claim
follows.

□
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