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In this paper, we present the extension of the pressure-based solver designed for the simulation of compressible and/or
incompressible two-phase flows of viscous fluids. The core of the numerical scheme is based on the hybrid Kurganov
— Noele — Petrova/PIMPLE algorithm. The governing equations are discretized in the conservative form and solved
for velocity and pressure, with the density evaluated by an equation of state. The acoustic-conservative interface
discretization technique helps to prevent the unphysical instabilities on the interface. The solver was validated on
various cases in wide range of Mach number, both for single-phase and two-phase flows. The numerical algorithm
was implemented on the basis of the well-known open-source Computational Fluid Dynamics library OpenFOAM in
the solver called interTwoPhaseCentralFoam. The source code and the pack of test cases are available on GitHub:
https://github.com/unicfdlab/hybridCentralSolvers
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I. INTRODUCTION

Compressibility of two-phase flows plays a key role in
many industrial processes. For example, interaction between
liquid metal jets and gas shocks has a significant impact on
sizes of resulting metal granules1,2. Small gaseous inclu-
sions in liquid metals (such as micro-bubbles) yield variation
of acoustic and resonant properties affecting metal casting
production3. The another curious effect is the possibility of
shock appearance in a two-phase mixture when the velocity
of the flow seems to be subsonic for every pure mixture com-
ponent. It is well known that speed of sound changes non-
linearly and non-monotonically with volume fraction of mix-
ture components, which might produce shocks (see4). Also,
phase separation processes that occurs during discharge of su-
percritical fluid into low pressure volume must be taken into
account5,6 in a fluid motion model.

Numerical simulation of such processes involves approx-
imation of complex mathematical models, including com-
pressible sub- and supersonic viscous flow equations coupled
with real-gas equations of state. However, numerical methods
differs significantly depending on flow regime and a range of
dimensionless numbers (such as Re, Ma, We, Fr and others).
This diversity and inconsistency of numerical methods for dif-
ferent flow regimes create an obstacle to multi-physics simu-
lations, especially for problems without dominance of a single
phenomenon (viscosity, inertia, gravity, etc).

For example, the ability of a numerical approach to recover
behaviour of the incompressible flow is important for resolv-
ing hydrodynamic instabilities and transient effects which ap-
pear at small Mach and Reynolds number values (for example,
in fluid-structure interaction problems, where a standard PIM-
PLE (Pressure Implicit with Splitting Operators and Semi-
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Implicit Pressure-Linked Equation) method have shown al-
ready its robustness7). On the other hand, the combination
of the high-speed flow and viscous effects is a fairly common
case in many problems. Therefore, a numerical scheme must
be able to reproduce corresponding terms properly8.

Obviously, the presence of two or several phases amplifies
the complexity of a numerical method due to extension of a
range of characteristic dimensionless numbers.

For the single phase modelling including multicomponent
gases, a pressure-based numerical tool employing the hybrid
approximation of convective fluxes9,10 was developed ear-
lier. The solver has been validated against different phys-
ical conditions11–26 and for the wide range of Mach num-
bers. The next step for the framework development was
the adaptation for simulation of high-speed multicomponent
real-gas flows27,28 in context of consideration of the phase
separation phenomenon. The hybrid numerical framework
was used in research by M. Pfitzner’s group over last sev-
eral years5,6,27,29–31. The works were consolidated in PhD
thesis “Real-Gas Effects and Single-Phase Instabilities dur-
ing Injection, Mixing and Combustion under High-Pressure
Condition”25. It was shown that the numerical approach is
able to predict an appearance of new phases from single fluid
when thermodynamic parameters pass below critical point.
However, the problem of interfacial flow numerical modelling
(including surface tension forces, abrupt change of properties,
etc) within single model remains open.

This paper presents the next step towards generalization of
the pressure-based hybrid framework using the KNP/PIMPLE
or Kurganov — Noelle — Petrova/ PIMPLE9 approach. The
general idea to apply this approach for the two-phase flows
was inspired by works32,33 where it was implemented within
the fractional step method for the prediction of cavitation. To
preserve the consistency for thermodynamic variables and to
ensure the stability of the interface modelling, the hybrid KN-
P/PIMPLE approximation of two-phase flow has been aug-
mented by the following ideas:
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• the monotonicity of primitive variables (the veloc-
ity, the pressure and the temperature) on the inter-
face is preserved by Acoustically Conservative Inter-
face Discretization (ACID) technique developed by F.
Denner34;

• the convective fluxes for each phase are approximated
by original hybrid approximation method10;

• the pressure is recovered after each iteration from the
pressure equation formulated for the gas-liquid mixture;

• the motion of the phase interface is described by the
volume fraction advection equation for liquid phase.

The article is organized as follows. The first section re-
calls the governing equations of the two-phase mixture mo-
tion. The second section contains the key points of numerical
approximation based on the hybrid KNP/PIMPLE approach
and ACID technique. The third section describes the valida-
tion of the described numerical algorithm on the several test
problems. Main conclusions of the work are gathered in the
“closure” section.

II. GOVERNING EQUATIONS

The viscous two-phase fluid is presented as a pure mix-
ture. The motion of the mixture is described by the system of
equations based on the Kapila’s reduced model35,36. Kapila’s
model is used as the hyperbolic part of viscous flow equations,
therefore, all assumptions for original model of Kapila are ap-
plicable to the following governing equations.

The system of equations comprises the mixture continuity
equation:

∂tρ +∇ ·
(

ρU⃗
)
= 0, (1)

the mixture momentum equation:

∂tρU⃗ +∇ ·
(

ρU⃗ ⊗U⃗
)
=−∇p+ρ g⃗+∇ · σ̂ , (2)

the mixture energy equation:

∂tρht +∇ ·
(

ρU⃗ht
)
= ∂t p−∇ · q⃗+∇ ·

(
σ̂ ·U⃗

)
+ρ g⃗ ·U⃗ , (3)

the phase mass conservation equation:

∂tαkρk +∇ ·
(

αkρkU⃗
)
= 0 (4)

and the liquid volume fraction transport equation:

∂tα1 +∇ ·
(

α1U⃗
)
= α1∇ ·U⃗ +K12∇ ·U⃗ . (5)

Here ρ is the mixture density field, U⃗ is the mixture velocity
vector field, p is the mixture pressure field, σ̂ is the mixture
viscous stress tensor field, ht = h + 1/2|U⃗ |2 is the mixture
specific total enthalpy field, h is the mixture thermodynamic
specific enthalpy field, q⃗ is the mixture diffusive heat flux, αk

is the k−th phase volume fraction field, ρk is the k−th phase
thermodynamic density field, K12 is the interface compression
coefficient field, g⃗ is the gravity acceleration, k = 1,2 is the
phase index, 1 corresponds to the liquid phase and 2 corre-
sponds to the gas phase.

The system (1) – (5) is closed with the following relations:

• the perfect gas equation of state for the gas phase: p =
ρ2R/M2T ,

• the perfect fluid equation of state for the liquid phase:
ρ1 = ρ0,1 +

1
R/M1T p,

• the relation for the mixture compression coefficient:
K12 =

α1α2(Z1−Z2)
α1Z1+α2Z2

,

• the Fourier law for the heat flux: q⃗ =−λ∇T ,

• the Newton and Stokes assumptions for the viscous
stress tensor: σ̂ = 2µD̂−µ Î∇ ·U⃗ ,

where D̂ = 1
2

(
∇U⃗ +(∇U⃗)T

)
is the viscous stress tensor, µ =

α1µ1+α2µ2 is the mixture dynamic viscosity, µ1 is the liquid
phase dynamic viscosity, µ2 is the gas phase dynamic viscos-
ity, Î is the identity tensor, λ = α1λ1 +α2λ2 is the mixture
heat conductivity coefficient, λk is the heat conductivity coef-
ficient for k−th phase, M1 and M2 are the molar weights of liq-
uid and gas, respectively, Zk = ρkc2

k is the acoustic impedance
of k−th phase, ck =

√
γkR/MkT is the sonic speed of k−th

phase, γk =Cp,k/Cv,k is the heat capacity ratio of k−th phase,
Cp,k is the constant isobaric heat capacity coefficient of k−th
phase, Cv,k is the constant isochoric heat capacity coefficient
of k−th phase, T is the temperature of mixture, ρ0,1 is the
liquid phase initial density, R is the universal gas constant.

Mixture enthalpy h is calculated as the weighted sum of
phase enthalpies:

h = y1h1 + y2h2,

where yk = αkρk/ρ is the mass fraction of k−th phase, hk =
Cp,kT is the enthalpy of k−th phase.

The sum of all volume fractions should be equal to 1:

α1 +α2 = 1.

III. COMPUTATIONAL METHOD

The system of governing equations (1) – (5) is discretized
by the Finite Volume Method (FVM) with co-located vari-
ables storage on unstructured polyhedral grids25,37,38. The
choice of the discretization method was dictated by its flexible
implementation in the OpenFOAM framework, which gives
the opportunity to extend the numerical model to account for
more sophisticated simulation problems.

The procedure of approximation involves five steps: the ap-
plication of ACID technique to the governing equations, the
finite volume approximation of balance mass-weighted equa-
tions (1, 4), the application of the hybrid KNP/PIMPLE pro-
cedure to formulate convective fluxes for the approximated
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system, the formulation of pressure equation to close the sys-
tem thermodynamically, and the approximation of the liquid
volume fraction transport equation (5).

A. The ACID approach in governing equations

The ACID technique helps to suppress unphysical oscil-
lations near the interface. The approach is the substantially
analogous to the Ghost Fluid Method39,40: the interface be-
tween two phases might be considered as the moving inter-
nal boundary39 which requires appropriate conditions for the
flow fields (temperature, velocity, pressure). Authors of the
original approach34 have proposed to treat cells intersected by
interface in a special way:

• a spatial distribution of the liquid volume fraction is as-
sumed to be uniform within the stencil of the consid-
ered cell (i.e. the cell is surrounded by imaginary cells,
where thermodynamic properties are saved to be origi-
nal, but a mixture composition is equal to the cell one);

• the temporal change of the mixture composition is ne-
glected.

Therefore, convective fluxes become asymmetric in inter-
facial cells. If we consider two adjacent cells where volume
fractions are different, the material flux from the first cell to
the second would differ from the reversed flux value. Ap-
plication of this rule to discretized equations produces rather
complex algebraic expressions.

However, the ACID idea can be applied directly to balance
equations written in the differential form. If we consider the
discrete conditions imposed by ACID onto mixture composi-
tion, they can be summarized as the following finite difference
relations for the liquid volume fraction α1:

δα1

δx

∣∣∣∣
f
= 0,

δα1

δ t
= 0,

where δ

δx | f is the spatial surface normal numerical derivative
at the face f , δ

δ t is the temporal numerical derivative.
If we substitute these expressions into the FVM approxi-

mation for the material derivative of the volume fraction, we
come to the conclusion that ACID technique set these terms to
zero. Therefore, ACID technique introduces into original bal-
ances an approximation error, which is equal to subtraction of
terms with the multiplier ∂tα1 +U⃗ ·∇α1.

Introduction of this correction to the system (1) – (3) pro-
duces the following modified system of equations for the
mass, momentum, and energy balances:

∑
k

αk

(
∂tρk +∇ · j⃗k

)
= 0, (6)

∑
k

αk

(
∂tρkU⃗ +∇ ·

(
j⃗k ⊗U⃗

)
+∇p

)
= ρ g⃗+∇ · σ̂ , (7)

∑
k

αk

(
∂tρkCp,kT +∇ ·

(
j⃗kCp,kT

))
+

+∑
k

αk

(
∂tρkK +∇ ·

(
j⃗kK
)
−∂t p

)
=

=−∇ · q⃗+∇ ·
(

σ̂ ·U⃗
)
+ρ g⃗ ·U⃗ , (8)

where j⃗k = ρkU⃗ denotes the mass flux of k-th phase, K = 1
2U⃗ ·

U⃗ denotes the kinetic energy of the flow.

B. FVM discretization of governing equations

The further FVM approximation of the (6) – (8) system un-
der ACID assumptions is built by summation of phase-wise
discretization of balances weighted with the corresponding
volume fractions. Such approach has a clear benefit: it is pos-
sible to resolve wave propagation in each phase separately,
instead of considering the Riemann problem for the whole
mixture. Therefore, the discrete model of two-phase mixture
motion comprises the FVM approximation for modified bal-
ance equations (6) – (8) and original liquid volume fraction
equation (5):

∑
k

α
n
k

(
ρn

k −ρo
k

∆t
+

1
V ∑

f
φk, f

)
= 0, (9)

∑
k

α
n
k

[
ρn

k U⃗n −ρo
k U⃗o

∆t
+

1
V ∑

f
φk, fU⃗n

f

]
+

1
V ∑

f
p f S⃗ f =

=
1
V ∑

f
S⃗ f · σ̂ f +ρ

ng⃗, (10)

∑
k

α
n
k

[
Cp,k

ρn
k T n −ρo

k T o

∆t
+

1
V ∑

f
φk, fCp,kT n

f

]
+

+∑
k

α
n
k

[
ρn

k Kn −ρo
k Ko

∆t
+

1
V ∑

f
φk, f K f −

pn − po

∆t

]
=

=− 1
V ∑

f
S⃗ f · q⃗ f +

1
V ∑

f
S⃗ f · (σ̂ ·U⃗) f +ρ

ng⃗ ·U⃗ , (11)

αn
1 −αo

1
∆t

+
1
V ∑

f
φV, f α

o
1, f = (K12 +α

o
1 )

1
V ∑

f
φV, f , (12)

where φV, f = S⃗ f ·U⃗ f is the volumetric mixture flux, φk = S⃗ f · j⃗k
is the mass mixture flux, superscripts n and o denote new and
old time levels respectively, subscript f denotes the interpo-
lated value of a quantity to face(s), S⃗ f = n⃗ f |⃗S f | is a face f
surface area multiplied by its normal vector n⃗ f , V is the vol-
ume of cell, ∆t is the time step. If the time level (superscript)
is not specified, the current available instance is used (updated
iteratively).
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The explicit approximation for the discrete mass conserva-
tion equation of k-th phase reads:

ρn
k −ρo

k
∆t

+∑
f

φk, f = 0. (13)

C. Hybrid approximation of fluxes

Convective fluxes φk, f are approximated for each
phase individually using the previously proposed hybrid
approach10,27.

For diffusive fluxes, the normal component of the gradient
is approximated using linear interpolation37,38. For example,
for the heat flux q⃗ could be written:(⃗

n f · q⃗ f
)
≈−λ f

δT
δ n⃗ f

, (14)

where δ/δ n⃗ f is a numerical approximation of a face normal
derivative.

The total contribution to overall mixture balance is calcu-
lated by summing divergences of flux from each phase.

D. Pressure equation

Usage of hybrid flux approximation together with acous-
tically conservative interface discretization has allowed us to
employ the projection-based method PIMPLE25 to construct
an iterative algorithm for solution of discrete system (6) –
(12). The final step of all such algorithms involves solving
of the pressure equation that is derived from continuity, mo-
mentum and other equations (energy and state) to close the
system and “nudge” it to mass conservation.

The pressure equation is derived by standard
procedure10,25,27, therefore, only key points are outlined
here. First, solution to velocity from momentum equation
(10) is represented as the sum of operator H⃗ and pressure
gradient ∇p divided by the diagonal matrix A:

U⃗ =

(
H⃗
A
− 1

A
∇p

)
. (15)

Then expressions for velocity (15) and phase densities (i.e.
equation of state) are substituted to the equation for mixture
density (9) where fluxes φk, f are already approximated using
hybrid KNP9,41 approach.

The resulting equation reads:

∑
k

αk

[
ψn

k pn −ψo
k po

∆t
+

ρn
0,k −ρo

0,k

∆t
+

1
V ∑

f

(
ψk p

H⃗
A

)
f

· S⃗ f+

+
1
V ∑

f

(
ρ0,k

H⃗
A

)
f

· S⃗ f −
1
V ∑

f

(
ρk

1
A

∂ p
∂xi

)
f
· S⃗ f

]
= 0.

(16)

Phase mass fluxes are recovered from the pressure equa-
tion components. After that, the mixing procedure10 is ap-
plied to them in order to switch numerical scheme between
compressible and incompressible formulations. It is neces-
sary to stress that face interpolation of all terms f in (16) is
constructed in accordance with hybrid KNP/PIMPLE approx-
imation procedure10,27,41.

E. Liquid phase volume fraction transport equation

The discrete transport equation (12) for liquid phase
volume fraction is solved using the explicit MULES
approach42,43. This technique guarantees boundedness and
monotonicity of the solution while preserving 2nd order of ap-
proximation for smooth fields.

The flux φV, f = U⃗ · S⃗ f is calculated to obey mixture volu-
metric continuity equation. This equation is derived by sum-
ming phase mass equations (4) normalized by corresponding
density ρk:

∇ ·U⃗ =−∑
k

αk

ρk

dρk

dt
. (17)

Fluxes are calculated using a procedure similar to
PISO/SIMPLE methods:

1. flux φV, f is split into prediction φ ∗
V, f and correction parts

φV, f
′;

2. prediction φ ∗
V, f is calculated using mass flux of liquid:

φ ∗
V, f = φk, f /ρk, f ;

3. correction φV, f
′ is assumed to be proportional to the

gradient of some correction pressure p′: φV, f
′ =

−(A−1∇p′) f · S⃗ f ;

4. discrete Poisson equation is formulated for p′:

V−1
∑

f
φ
∗
V, f −V−1

∑
f

(
A−1

∇p′
)

f · S⃗ f =−∑
k

αk

ρk

δρk

δ t
, (18)

where δρk
δ t is the explicit approximation of material derivative

for ρk calculated from (16).
The final value of φV, f is recovered from the solution of

equation (18).

F. The overall numerical algorithm

The overall solution algorithm contains the following steps.

1. Initialize variables.

2. Compute the next time value: tn+1 = tn +∆t.

3. Store values of variables and fields from the previous
time step.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 May 2022                   doi:10.20944/preprints202205.0412.v1

https://doi.org/10.20944/preprints202205.0412.v1


5

4. Predict the density of every phase individually by solv-
ing the continuity equation for each phase (13) using
values of the mass fluxes from the previous time step.

5. Start the PIMPLE loop:

(a) Update fluid properties which depend on temper-
ature and density (i.e. the compressibility coeffi-
cient ψk, speed of sound Ck, acoustic impedance
Zk, and the stiffness coefficient K12).

(b) Solve the volume fraction transport equation (12),
(18).

(c) Assemble the matrix for the momentum equation
(10) and evaluate operators H(U⃗) and A.

(d) Solve the energy equation (11).
(e) Update compressibility coefficients ψk.
(f) Update speed of sound Ck.
(g) Update Central Weights of the KNP scheme.
(h) Update Central Fields (i.e. mass fluxes).
(i) Solve the pressure equation (16).
(j) Calculate new values of mass fluxes from the pres-

sure equation.
(k) Update value of the blending KNP/PIMPLE

function10.
(l) Find phase densities using a corresponding equa-

tion of state.
(m) Reconstruct velocity with the new pressure gradi-

ent.
(n) Update kinetic energy terms K = 0.5|U⃗ |2 and cal-

culate ∂ p
∂ t contribution to the energy equation (11).

6. Return to the step 2 in case of PIMPLE iterations stop-
ping, otherwise go to the step 4.

Stability of the algorithm depends primarily on convective
terms due to implicit approximation for the diffusive one. For
the convective flow, two stability criteria are used:

• the mixture flux stability criterion:

Com =V−1
∆t ∑

f
|φV, f |< 1, (19)

• the front tracking stability criterion:

Coα =V−1
∆tIα ∑

f
|φV, f |< 0.5, (20)

where Iα is the indicator function which determines a position
of the interface: for example, Iα can be equal to 1 in the region
where α1 ∈ (0.01,0.99) and set to zero elsewhere.

Usually, the characteristic velocity-based CFL (Courant —
Friedrichs — Levy) criterion is used for compressible flows.
In this case, the fully implicit PIMPLE approach is employed
in small Mach number regions. For large Mach number re-
gions, the characteristic CFL number is satisfied automatically
if Com < 1 is preserved. Therefore, using of stability criteria
(19) – (20) is sufficient.

IV. RESULTS OF NUMERICAL TESTS

Numerical tests were run for the following problems to
demonstrate the ability of the proposed computational method
to work in different regimes (compressible/incompressible,
viscous/inviscid, single-phase/two-phase):

• single-phase inviscid 1D Riemann problems:

– Sod’s problem;

– propagation of pressure wave through liquid;

• two-phase inviscid 1D Riemann problems:

– movement of contact discontinuity separating two
phases;

– interaction of high-pressured gas with normal-
pressured liquid;

– interaction of high-pressured liquid with normal-
pressured gas;

• single-phase subsonic laminar flow over a backward
facing step;

• collapse of a water column;

• interaction of high-speed gas flow with a liquid droplet.

The following numerical scheme settings were used for all
tests:

• convective fluxes were approximated using van Leer
Total Variation Diminishing (TVD)44 interpolation
(second order);

• diffusive fluxes were approximated using Gaussian in-
tegration with linear interpolation (central differences,
second order);

• temporal derivatives were approximated using Euler
first order scheme;

• 3 outer PIMPLE iterations were employed at each time
step;

• systems of linear algebraic equations were solved by it-
erative stabilized biconjugate gradient method precon-
ditioned with diagonal LU decomposition;

• time step was dynamically adjusted to keep a specified
CFL number.

All physical parameters and quantities were nondimension-
alized where possible.
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A. 1D Riemann problems

First two 1D single-phase tests help to assess the ability of
the computational method to resolve propagation of waves in
high-speed gas and low-speed liquid flows separately. Spa-
tial and temporal grid convergence were studied. In all sub-
sequent 1D problems, the case setup is similar (Fig. 1): a
channel with constant cross-section area is divided by imper-
meable membrane initially. An initial state in the left part of
the channel is determined by volume fraction of liquid α1,L,
temperature TL, pressure pL and velocity UL; an initial state in
the right part is determined by volume fraction of liquid α1,R,
temperature TR, pressure pR and velocity UR. Right and left
boundaries of the channel (x = 1 and x = 0 respectively) are
placed far enough from the impermeable membrane to prevent
interaction of propagated disturbances with boundary condi-
tions before the end of computations. Boundary conditions
for all fields are set to zero normal derivative. When a calcu-
lation starts, the membrane is removed, and initial disturbance
propagates from the centre to the left and to the right.

1. Gas shock tube

Propagation of discontinuities in 1D channel was studied.
The channel is filled by perfect gas with heat capacity ratio
γ2 = 1.4. Initial values for left and right states of gas are
presented in Table I. Other parameters needed to be speci-
fied in settings were set to match this values: molar mass M2
was assigned a value of 28.9 × 10−3, specific isobaric heat
capacity Cp,2 was assigned a value of 1004.5, viscosity µ2
was set to be zero. Calculations were run till the end time
Tend = 0.002. Numerical scheme convergence was studied by
comparing results for four spatial grid resolutions (500, 1000,
2000 and 5000 cells per channel length) and three CFL num-
bers (Co=0.1, Co=0.2, Co=0.3).

Results are presented in Figs. 5–6.The solution converges
and the numerical dissipation vanishes with decreasing of
time step and with refinement of a spatial grid. The test
demonstrates that single-phase gas dynamics is recovered in
the present approximation; the behaviour of hybrid KNP/PIM-
PLE scheme for pure single-phase solver was studied for this
test in previous work10.

2. Propagation of pressure wave in liquid

Propagation of acoustic wave in low-compressible medium
is demonstrated in this case. Initial conditions are presented
in Table II. Compressibility of liquid ψ1 was set to 1/(R1T ),
where R1 = 6934 to get a particular speed of sound. Molar
mass was chosen equal to M1 = 18×10−3, reference density
was chosen equal to ρ0,1 = 1033, dynamic viscosity was set
to zero. Results of simulations are presented in Figs. 7–8.

Qualitatively, the solution is reproduced in accordance with
corresponding physical processes: shock wave and rarefaction
waves travel away from initial discontinuity with the same

speeds, because the temperature variation is negligible in low-
compressible media. The region between two waves is occu-
pied by constant pressure equal to the average of minimum
and maximum values. Solution converges to an ideal case
with spatial and temporal mesh refinement.

However, it can be seen in Fig. 7 that numerical diffu-
sion for the case of subsonic flow is highly dependent on
the Courant number. This observation demonstrates changes
in the numerical scheme that arise as it switches from KNP
(Co=0.0002) to PIMPLE (Co=0.1) formulations. When the
time step is large enough to allow acoustic waves travelling
more than one cell per time step, an additional diffusion ap-
pears. This diffusion indicates the acoustic solution time av-
eraging. On the other hand, numerical diffusion helps to filter
out numerical oscillations.

3. Moving contact discontinuity

This test verifies the continuous behaviour of pressure, ve-
locity and temperature near the constantly moving contact dis-
continuity which imitates a phase interface. Two neighbour-
ing volumes of gas and liquid move with constant speed in
space and time. Initial conditions for the case are presented in
Table III. Liquid and gas properties were similar to previous
cases IV A 1 and IV A 2. Simulation time Tend is 0.01.

Results of simulations are presented in Fig. 9. Notably,
pressure, velocity and temperature preserve continuity across
the phase interfaces, even during movement.

4. Pressure discharge from gas into liquid

The problem studies an interaction of a gas compression
wave with a liquid column45,46: the high-pressured gas pushes
liquid. Initial conditions are presented in Table IV; liquid and
gas properties are taken identical from the case IV A 3. All
features of compressible flow in this scenario are presented:
the rarefaction wave is going to the left into gas, the compres-
sion wave and the continuous high-speed velocity front are
running to the right (Fig. 10). Mesh convergence is presented
by computations on two meshes (500 and 5000 cells per chan-
nel length).

5. Pressure discharge from liquid into gas

The opposite to IV A 4 situation is studied: the high-
pressured volume of liquid interacts with the gas, creating an
expansion wave in the liquid and a compression wave in the
gas45,46. Initial conditions are presented in Table V, liquid and
gas properties are taken identical from case IV A 3. Due to rel-
atively small velocity in the liquid region (Ma ≈ 0.002), the
numerical solution in this case might demonstrate both com-
pressible and incompressible behaviour. If the time step is
adjusted in accordance with flow velocity, then acoustic Co in
the liquid region exceeds unity and flow is diffused addition-
ally (Fig. 11). When the time step is adjusted to keep acoustic
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Co less than 0.5 in the whole domain, the sharp behaviour of
velocity, pressure, temperature and other associated properties
recovers (Fig. 12).

B. Laminar flow over backward-facing step

Behaviour of the proposed method in the laminar incom-
pressible regime is verified using the problem of flow over
backward facing step47. The computational domain consists
of two straight horizontal channels with constant height. The
short channel of the height h expands abruptly into the long
one of the height H = 2h and the length L (Fig. 2). The length
of the short part is equal to h and the length of the long part
is L = 26h. The flow at the inlet of the channel is laminar
and obeys Poiseuille’s law with a parabolic velocity profile:
Ux(y) =Umax

(
1− y2/h2

)
, where y is measured from the cen-

treline of the small channel. The average velocity value is
Uav = 2/3 Umax.

The length of the separation zone xl behind the backward-
facing step is one of the main parameters characterizing the
flow. When the flow is laminar and two-dimensional, the de-
pendency of xl(Re) is almost linear. The average inlet veloc-
ity was kept constant for all calculations, while the value of
Reynolds number was adjusted by variation of fluids dynamic
viscosity.

The constant horizontal velocity profile is specified on the
left vertical line (inlet). Fixed pressure level is prescribed on
the right vertical line (outlet). Flow is assumed to be single-
phased and isothermal. Horizontal walls and the rear edge of
the step are treated as no-slip impermeable walls. Uniform
spatial grids with 10, 20 and 40 cells per height h were used.
For the last two grids, the difference in the separation zone
length xl was negligible, which proves the grid convergence
of the numerical solution.

The results of the newly developed solver were compared
against simulations performed by the simpleFoam (standard
OpenFOAM ® solver) in Table VI. According to the experi-
mental data47, the flow for Reh = Uavh/ν up to 400 is two-
dimensional and steady. The presented measurements clearly
show the good agreement between experimental data and nu-
merical results for both methods when Reynolds numbers up
to 300. The flow streamlines are presented in Fig. 13.

C. Dam break problem

The ability of the developed solver to model complex gas-
liquid interfacial flows at low Mach number conditions is val-
idated using the dam break problem48. The case setup was
obtained from the numerical study49 (Fig. 3). Since the flow
dynamics is driven mainly by gravity force, this example al-
lows to demonstrate interaction of different momentum equa-
tions terms.

Snapshots of the liquid phase volume fraction are compared
with experimental photos50. Three mesh resolutions were
used to check mesh convergence: 2 cells per h value (cph),
4 cph and 8 cph. Mesh convergence is presented in Fig. 14.

The numerical solution demonstrates the key features similar
to experimental observations: deformation of the column in
early stages, ejection of the liquid sheet, formation of the gas
bubble beneath this sheet when it hits the right wall (Fig. 15).

D. Interaction between liquid droplet and blast wave

Interaction between planar blast wave and liquid two-
dimensional column is studied. The case allows to vali-
date numerical scheme for complex problem, where transient
and spatial processes of high-speed gas-liquid interaction take
place. A sketch of the computational domain is presented in
Fig. 4. The rectangular domain is filled initially with quies-
cent medium at the following parameters:

• T2 = 300K, p2 = 580× 105Pa, α1 = 0 in the ignition
zone;

• T1 = 300K, p2 = 105Pa, α1 = 1 in the droplet zone;

• T1 = 300K, p2 = 105Pa, α1 = 0 elsewhere.

After the start of simulation the disturbance near the ignition
zone start to propagate towards liquid droplet at the speed,
equal to 2.4 velocities of sound at ambient conditions. Pres-
sure magnitude in the ignition zone is adjusted in such a way
to match the prescribed velocity (≈ 823.2m/s).

Experimental results and details of the problem statement
are given in the original paper51. Comparison of numerical
simulation and experimental observations measured by two
sensors51 are presented in Fig. 16; shadow photographs51

and the pictures of numerical simulation are compared in
Fig. 17. Computed data pressure-time series near sensors
were averaged over time and space according to conditions of
experiment51. It can be noted that first stages of shock wave
interaction to droplet have very good agreement with exper-
iment. However, the further time evolution of the process
shows the divergence between model and observation, espe-
cially in the region filled by fluid. These discrepancies might
be related to the emergence of bubbles due to cavitation and
the chosen equation of state for liquid phase (perfect fluid).

V. SUMMARY

The approximation of the compressible two-phase flow
model based on the reduced model of Kapila35 is introduced.
The numerical approximation of the system is built with
the following methods: (a) hybrid Kurganov — Noelle —
Petrova / PIMPLE method for convective fluxes, (b) pressure
equation for ensuring mixture continuity, (c) implicit approx-
imation for viscous fluxes, (d) explicit equation for the liquid
volume fraction coupled with mixture mass fluxes through the
correction equation and (e) acoustically-conservative interface
discretization (ACID) technique for the mass, energy and mo-
mentum balances near the interface. The presented hybrid
approximation of the two-phase system provides several ad-
vantages over other computational techniques, such as pure
implicit pressure–based or explicit Godunov methods:
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• it might be used for flows with surface tension and/or
turbulence closure using conventional numerical tools,
which are usually employed in 2nd order finite volume
programs;

• it uses monotonicity-preserving numerical schemes
(KNP and ACID) for the numerical solution near dis-
continuities;

• it employs the pressure equation for the mixture mass
balance, what usually impacts positively the overall ro-
bustness of a numerical scheme.

The described numerical algorithm was implemented as
the OpenFOAM solver called interTwoPhaseCentralFoam.
The solver was built as an extension of the previously de-
veloped hybrid algorithm for single-phase all Mach num-
ber flows. The source code is available on GitHub:
https://github.com/unicfdlab/hybridCentralSolvers.

The solver was tested against several problems (1D Rie-
mann problems for single-phase and two-phase flows, laminar
incompressible flow over backward facing step, dam break,
interaction of liquid droplet and gas blast wave). Source code
of test cases is also available in the solver repository. Numer-
ical tests have demonstrated the ability of the code to resolve
both compressible and incompressible flows with phase inter-
face adequately. The functionality of the numerical algorithm
for single-phase flows was recovered in regions placed suffi-
ciently far from the interface.
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TABLE I: Initial state for 1D shock tube (case IV A 1)
α1,L TL, pL vL α1,R TR, pR vR

× 10−3 × 10−3

0 3.48 1.0 0 0 2.79 0.1 0

TABLE II: Initial state for propagation of 1D pressure wave
in liquid (case IV A 2)

α1,L TL pL, vL α1,R TR pR, vR
× 106 × 106

1 293 10 0 1 293 1 0

TABLE III: Initial state for 1D moving contact discontinuity
(case IV A 3)

α1,L TL pL, vL α1,R TR pR, vR
×105 ×105

0 300 1 100 0 300 1 100

TABLE IV: Initial state for 1D pressure discharge from gas
into liquid (case IV A 4)

α1,L TL pL, vL α1,R TR pR, vR
× 109 × 105

0 308.2 1 0 0 308.2 1 0

TABLE V: Initial state for 1D pressure discharge from liquid
into gas (case IV A 5)

α1,L TL pL, vL α1,R TR pR, vR
× 106 × 106

1 308.2 10 0 0 308.2 5 0

TABLE VI: Laminar flow over backward-facing step,
measured length of the vortex x1

Re interTwoPhaseCentralFoam,
CFL

Experiment47 simpleFoam10

0.1 0.2 0.3
100 5 5 5 5 4.8
200 8.2 8.2 8.1 8.5 8.1
300 10.3 10.3 10.3 11.3 10.2

a)

b)

FIG. 5: Shock tube problem, solution dependency on the
CFL number: a) density, b) velocity
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a)

b)

FIG. 6: Shock tube problem, mesh convergence for density
field: a) solution in the whole flow domain, b) solution in the

neighbourhood of the contact discontinuity

a)

b)

FIG. 7: Propagation of pressure wave in liquid, solution
dependency on the CFL number: a) pressure, b) velocity
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a)

b)

FIG. 8: Propagation of pressure wave in liquid, mesh
convergence for pressure field: a) solution in the whole flow
domain, b) solution in the neighbourhood of the shock wave

a)

b)

FIG. 9: Moving contact discontinuity: a) pressure and
volume fraction distribution, b) temperature and velocity

distribution
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a)

b)

FIG. 10: Pressure discharge from gas into liquid, mesh
convergence: a) density and volume fraction distributions, b)

pressure and velocity distributions

a)

b)

FIG. 11: Pressure discharge from liquid into gas, mesh
convergence, CFL > 1: a) density and volume fraction

distributions, b) pressure and velocity distributions
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a)

b)

FIG. 12: Pressure discharge from liquid into gas, mesh
convergence, CFL < 0.5: a) density and volume fraction

distributions, b) pressure and velocity distributions

FIG. 13: Streamlines of the laminar flow over a
backward-facing step, Re = 100

FIG. 14: Dam break problem, t = 0.3 s: mesh convergence
(mesh resolution is 2 cph, 4 cph, 8 cph)
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FIG. 15: Dam break problem: comparison between
numerical solution and experimental data for time points 0.1

s, 0.2 s, 0.3 s, 0.4 s, 0.5 s

a)

b)

FIG. 16: Interaction between liquid droplet and shock wave:
comparison of numerical results and experimental data,

sensor data51: a) frontal sensor, b) middle sensor
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FIG. 17: Interaction between liquid droplet and shock wave:
comparison of numerical results and experimental data, Oxy

plane, three time points (8 µs, 18 µs, 26 µs) since the
moment of the impact of shock wave to the droplet
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