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Abstract: Photovoltaic power generation has high variability and uncertainty because it is affected 

by uncertain factors such as weather conditions. Therefore, probabilistic forecasting is useful for 

optimal operation and risk hedging in power systems with large amounts of photovoltaic power 

generation. However, deterministic forecasting is the mainstay of photovoltaic generation forecast-

ing; there are few studies on probabilistic forecasting and feature selection from weather or time-

oriented features in such forecasting. In this study, prediction intervals were generated by the lower 

upper bound estimation using neural networks with two outputs to make probabilistic predictions. 

The objective was to improve prediction interval coverage probability (PICP), mean prediction in-

terval width (MPIW), and loss, which is the integration of these two metrics, by removing unneces-

sary features through feature selection. When features with high gain were selected by random for-

ests (RF), in the forecast of 14.7-kW PV systems, loss improved by 1.57 kW, PICP by 0.057, and 

MPIW by 0.12 kW on average over two weeks compared to the case where all features were used 

without feature selection. Therefore, the low gain features from RF act as noise in LUBE and reduce 

the prediction accuracy. 

Keywords: Lower upper bound estimation; random forest; feature selection; probabilistic forecast-

ing; photovoltaic generation forecasting 

 

1. Introduction 

Renewable energy sources, including photovoltaic (PV) generation, are being devel-

oped in many countries as the need for clean energy increases [1]. In particular, the num-

ber of PV installations has increased significantly in recent years due to the low cost of the 

modules, no carbon dioxide emissions, and the ease of installing the panels. However, PV 

power generation is highly variable and uncertain as it is affected by weather conditions 

and other uncertain factors. This variability and uncertainty significantly impact the op-

eration of power systems in which large amounts of PV power generation is installed. As 

a countermeasure to this problem, it is thought that the impact on the power systems can 

be mitigated by conducting highly accurate PV power output forecasting, which is then 

considered in the operational plans of thermal power, hydroelectric power, and other 

power sources whose output can be adjusted. 

PV forecasting models can be divided into three main categories: physical models, 

statistical models, and hybrid models [2]. Physical models are constructed using numeri-

cal weather prediction (NWP) and satellite imagery; Miyazaki et al. [3] used optical flow 

to estimate the geographical motion of PV output lump related to the cloud motion. Saint-

Drenan et al. [4] probabilistically predicted PV output from reference PV output derived 

from NWP and meteorological data. The statistical model, including machine learning, is 

a data-driven forecasting model, which constructs a forecast model based on historical 

data. Compared to physical models, statistical models rely solely on measured data and 

require no prior knowledge, making them easy to implement and highly adaptable. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 May 2022                   doi:10.20944/preprints202205.0386.v1

©  2022 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202205.0386.v1
http://creativecommons.org/licenses/by/4.0/


 

 

Therefore, research on predicting PV power output using statistical models, mainly ma-

chine learning, is becoming increasingly popular. In PV forecasting, autoregressive mov-

ing average methods, represented by time series models [5], and machine learning-based 

methods such as neural network (NN) [6], support vector regression (SVR) [7,8] , and long 

short-term memory (LSTM) [9], are used. Hybrid models are methods that improve pre-

diction accuracy by combining statistical models or combining physical and statistical 

models to complement information that cannot be compensated by single models. Ko-

daira et al. [10] constructed an ensemble model of NN, k-means, and LSTM and used par-

ticle swarm optimization to optimize the weights of each predictive model to predict PV 

output. Yang et al. [11] classified training data using self-organizing map and learning 

vector quantization, trained them using SVR, and used phage inference to select the model 

to use on the forecast date to predict PV output. 

Machine learning predictions can be broadly classified into two types: predictions 

based on deterministic point estimates and predictions based on interval estimates that 

account for uncertainty in a probabilistic manner. Compared to deterministic forecasting, 

probabilistic forecasting has more information because it accounts for the error. Therefore, 

probabilistic forecasts are useful for optimal operation and risk hedging in grids with sig-

nificant PV generation. However, in conventional PV forecasting, forecasts are mainly 

based on deterministic point estimates. In probabilistic forecasting, Gaussian process [12] 

and quantile regression [13], quantile regression forests[14] and others have been used to 

forecast PV power generation. Recently, lower upper bound estimation (LUBE) has at-

tracted attention as a more direct method of outputting prediction intervals (PIs) without 

any special assumptions on the distribution [15]. LUBE has been applied in various fields 

of engineering. Khosravi et al. [16] used the LUBE to predict wind power generation, and 

Quan et al. [17] uses LUBE to forecast electrical loads. Ni et al. [18] used LUBE to forecast 

PV generation. 

In machine learning, the features used in the prediction model have a direct impact 

on prediction accuracy. Incorporating unimportant features into the forecast model can 

lead to complex computational processing and reduced forecast accuracy due to learning 

unnecessary noise [19]. In general, weather variables such as temperature and solar radi-

ation are used as features in PV forecasting. De Giorgi et al. [20] evaluated forecasting 

accuracy using NN for (1) a data set consisting of power generation only, (2) a data set 

consisting of power generation and solar radiation, and (3) a data set consisting of (2) plus 

module temperature and ambient temperature, and concluded that (3) was superior based 

on NRMSE, standard deviation, and other evaluation indicators. Zhong et al. [21] evalu-

ated the prediction accuracy of NN, LSTM, etc. in one-hour-ahead forecasting assuming 

11 sets of feature patterns from variables such as solar radiation, precipitation, tempera-

ture, water vapor mixing ratio, sea surface temperature, wind speed, etc. In NN, all mete-

orological variables plus accumulated solar radiation were superior. In LSTM, forecasts 

using features with added variables showed signs of over-learning, and forecasts that in-

cluded only solar radiation and total precipitation as features were superior. 

As mentioned above, in PV forecasting, there have been some studies on feature se-

lection for deterministic forecasts in machine learning, but there are few studies on feature 

selection for probabilistic forecasts. In this study, we used LUBE as a probabilistic forecast 

to generate a day-ahead PIs for a PV power system. The PV power system is in Tokyo, 

Japan, and is rated at 14.7 kW. Data of 14 features, including weather variables, were 

measured at a nearby weather station. The training data are approximately 10 months old, 

and the forecast period is 2 weeks. The objective of this study is to improve prediction 

interval coverage probability (PICP), mean prediction interval width (MPIW), and Loss 

[22] , which integrates and simultaneously evaluates these two metrics, by removing un-

necessary features through feature selection. The contributions of this study are as fol-

lows: 

1) The effects of the 14 variables were evaluated by random forest. Features were se-

lected according to their gains, and PIs were generated by LUBE. 
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2) Features with high gain, mainly contribute to improve the accuracy of PIs. But fea-

tures with low gain rarely contribute or worsen the accuracy of PIs. In particular, low 

gain features reduced prediction accuracy when PV output fluctuations were large. 

 The remainder of the paper is organized as follows: Section 2 describes feature selec-

tion with RF. Section 3 describes LUBE. Section 4 evaluates the accuracy of PIs by LUBE 

based on feature selection by RF. Section 5 concludes the study. 

2. Feature selection using RF 

Because PV power output fluctuates due to weather factors, forecast accuracy varies 

greatly depending on the features used in the forecast model. If features with additional 

variables that are effective in forecasting are used, the forecast accuracy improves; other-

wise, the forecast accuracy deteriorates. It also increases the complexity of the model and 

computational processing. In this study, feature selection was performed by RF, which is 

an ensemble model that is obtained by modeling a forecasting model that repeats binary 

classification on a tree called a "decision tree" for each of multiple samples generated using 

the bootstrap method, and averaging the forecasting accuracy [23]. RF has been proved 

useful in forecasting renewable energy sources such as solar power and wind power, 

which are sensitive to environmental factors [24,25]. The conceptual diagram of feature 

selection by RF is shown in Figure 1 and the following procedure is used [26,27]. 

 

(i). From the training data consisting of n sets of P predictors and corresponding target 

variables, n sets are extracted, allowing for overlap. The extraction is repeated to gen-

erate K bootstrap samples. When generating bootstrap samples, approximately two-

thirds of the training data are extracted at least once from the sample and about one-

third are never extracted. The group of samples that are not extracted is referred to 

as out-of-bag (OOB). 

 

(ii). A decision tree is modeled for each of the K bootstrap samples and the mean square 

error (MSE) is obtained using OOB as test data. MSE���� represents the MSE when 

OOB� is the test data. � is the target variable and the hat symbol represent the pre-

dicted value. 

�������  =  
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(iii). One arbitrary feature from the OOB features is selected, randomly permuted, and the 

MSE is obtained again. This is repeated for all features.  
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where X�  denotes the feature and � = 1,2, … , P , MSE����(����������)  denotes the 

MSE at OOB� when the feature X� is permuted. 

 

(iv). The changes in MSE before and after permuting is obtained and the K results are 

averaged. Normalization is applied so that the sum of the importance of each feature 

is 1. If a feature is important to the accuracy of the forecast, permuting will signifi-

cantly reduce the accuracy of the forecast. For unimportant features, the accuracy of 

the prediction is not affected. 
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Figure 1. Feature selection by RF. 

3. LUBE 

 LUBE is a nonparametric method that directly generates PIs using NNs with two 

outputs corresponding to the upper and lower bounds of the PIs [15]. Traditional methods 

such as the Delta and Bayesian methods are parametric methods that first perform point 

estimation and then generate PIs by assuming a distribution over the data [28,29]. LUBE 

directly generates PIs, which is simple, fast, and without special assumptions about the 

distribution or a large amount of computational work [17]. In LUBE, PIs are evaluated 

using the following three indicators 

3.1. PICP 

PICP is an index that evaluates the percentage of measured values that fall within the 

interval of PIs and is one of the important evaluation indicators. The predicted lower and 

upper PI bounds are y���
, y���

. A vector, �, of length n represents whether each data point 

has been captured by the estimated PIs. 

�� = �
1,  �� y���

≦ �� ≦ y���
   

0, ����
 (5) 

 

We define the total number of data points captured as � . 

� ≔ � ��

�

���

 (6) 

PICP is defined by equation (7). 

���� ≔
c 

n
 (7) 
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3.2. MPIW  

MPIW represents the mean interval width and is an important metric for evaluating 

PIs; even if all measured values are within the interval and PICP is 100%, a too wide MPIW 

implies high uncertainty and is meaningless as a forecast. 

���� ≔
1

c
��y���

− y���
�

�

���

・�� (8) 

3.3. Loss 

The two key metrics, PICP and MPIW, need to be evaluated simultaneously when 

generating PIs using LUBE. However, if the width of PIs is narrowed, PICP is likely to 

decrease because some measured values will drop out of the PIs. In LUBE, the two trade-

off indicators are evaluated simultaneously using Loss [22]. 

���� = ���� + �
�

�(1 − �)
���(0, (1 − �) − ����)� (9) 

where � is the number of data samples and α is a measure of the confidence level of the 

PIs. For example, when α = 0.05, 1-α is 95%. At this time, the qualitative understanding in 

the equation is that if PICP does not exceed 0.95, a penalty is imposed by λ. λ is the pa-

rameter that imposes a penalty and, at the same time, a tuning parameter that relates 

MPIW to PICP. If it exceeds 0.95, Loss is equal to MPIW. In PIs, when PICP is much lower 

than the established confidence level, the PIs can be considered lacking validity [14]. 

Therefore, in determining λ, there is need to adjust PICP and then consider the combina-

tion with MPIW.  

 

Figure 2. LUBE. 
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4. Case study 

For probabilistic forecasting of solar power generation using LUBE, excluding un-

necessary features improves forecasting accuracy, but missing necessary features reduces 

forecasting accuracy. In particular, PV forecasting is difficult when output fluctuation is 

large, and if unnecessary features are included, the forecasting accuracy is likely to be 

even lower. In this case study, we evaluated the importance of each feature for the prob-

abilistic forecasting. We first used RF to evaluate the gain of 14 features, consisting of 

weather and time-oriented features, for forecasting PV power output. Next, PIs were gen-

erated using LUBE with a confidence level of 95%. In LUBE, we used 14 pairs of features 

added in order from variables with the highest gain. The 2-week average prediction accu-

racy of the PIs from each feature was evaluated, and the optimal features were considered. 

We also evaluated the robustness of the predictions by setting the number of simulations 

to 85. Finally, in relation to output fluctuation, we considered each day to evaluate when 

predictions were successful and when they failed, with and without feature selection. 

The PV power plant subject of this study is in Tokyo, Japan, and generates 14.7 kW. 

PV power generation is observed every 30 minutes for 24 hours. In addition to power 

generation data, temperature, precipitation, cloud cover, solar radiation, wind speed, and 

humidity were obtained from nearby meteorological observatories. The corresponding 

year, month, day, and hour were also added to the data set. The time data were expressed 

as a trigonometric function to account for periodicity. For example, the trigonometric rep-

resentation of hour considers 24 hours as one cycle, and daily considers the number of 

days in a month as one cycle. All features were standardized for uniformity of scale. The 

observed data is for the period from August 15, 2013, to June 14, 2014. The feature selection 

by RF used data from August 15, 2013, to May 31, 2014. Training data for PIs generation 

by the LUBE used data from August 15, 2013, to May 16, 2014. Validation data was from 

May 17, 2014, to May 31, 2014, and test data was from June 1, 2014, to June 14, 2014. Add 

data was from June 1, 2014, to the day before the forecast day. Adding the most recent 

data to the training and validation data was expected to improve forecast accuracy. 

4.1 random forest 

Table 1 shows the results of feature selection using RF. The gain for solar radiation is 

0.764, indicating that it is an extremely important feature. The hour sine and hour cosine 

have a combined gain of 0.172, and the annual cosine has a gain of 0.013. The gains for the 

other features are almost zero, indicating that they are of low importance in RF's predic-

tions. 

 

Figure 3. Lower Upper Bound Estimation Method with RF 
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4.2. Prediction Intervals by LUBE  

4.2.1. Evaluation of Prediction Intervals at 2-week average 

Figure 4 shows the correspondence between the number of features and the two-

week average of Loss and Total gain. Features (1) includes only the solar radiation which 

is the highest gain. Features (4) includes solar radiation, hour sine, hour cosine, and an-

nual cosine. Features (14) includes all features. Table 2 shows the statistics of Loss for the 

2-week average of Features (1), (4), and (14). Figure 5 shows a histogram of the results of 

85 simulations of Loss for the 2-week average of Features (1), (4), and (14). To compare 

Loss between different features, we fixed α and λ used for LUBE in equation (9) to 0.05 

and 5.0. 

Figure 4 shows that features with a gain of nearly zero act as noise, reducing the 

accuracy and robustness of the forecast. Features (4) has the smallest Loss, increases there-

after, and at Features (14) has the largest. The distribution of Loss in the box-and-whisker 

diagram is expanding from Features (4) to Features (14). To evaluate the prediction accu-

racy and robustness, we compared Features (14) with Features (1), which includes only 

solar radiation, and Features (4), which has the lowest Loss. In Table 2, Features (14) is 

significantly worse than Features (1) and (4) in all statistics. At the median, Loss is 1.38 

kW greater than Features (1) and 1.57 kW greater than Features (4). In addition, as shown 

by the standard deviations in Table 2 and histograms in Figure 5, the distribution of Fea-

tures (4) is wide, and the prediction accuracy is varied. These results indicate that features 

that are low in gain should be removed because they reduce not only prediction accuracy 

but also robustness.   

 

Figure 4. Number of features, 2-week average Loss, and total gain. 

 

Table 1. Evaluating the importance of features using RF 

feature gain feature gain 

solar radiation 0.7644 atmospheric temperature 0.0065 

hour sine 0.0961 monthly cosine 0.0062 

hour cosine 0.0757 wind speed 0.0057 

annual cosine 0.0130 daily sine 0.0038 

degree of cloudiness 0.0076 daily cosine 0.0037 

annual sine 0.0069 monthly sine 0.0025 

humidity 0.0069 precipitation 0.0003 
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Figure 5. Histograms of 2-week average Loss for Features (1), (4), and (14). 

 

Table 2. Statistics of 2-week average Loss. 
 

Number 

of features 
Min Max Mean Median 

Standard 

deviation 

(1) 2.28  2.37  2.32  2.32  0.0193 

(4) 1.95  2.30  2.13  2.13  0.0861 

(14) 2.65  6.03  3.74  3.70  0.5967 

 

We then similarly evaluated PICP and MPIW. Figure 6 and Figure 7 show the 2-week 

average PICP and MPIW, respectively; Table 3 and Table 4 show the PICP and MPIW 

statistics for Features (1), (4), and (14), respectively; Figure8 and Figure 9 show the histo-

grams for each. 

Figure 6 and Figure 7 show that the features after Features (4) work as noise, because 

the PICP tends to decrease and MPIW tends to increase after Features (4). In Table 3, com-

paring median values, PICP is 0.072 and 0.057 higher for Features (1), and (4), respectively, 

compared to Features (14). In Table 4, MPIW is 0.12 kW narrower for Features (4) than for 

Features (14). However, in Features (1), MPIW is 0.42 kW wider than in Features (14). This 

means that Features (1) is highly uncertain because it contains only one feature. Feature 

(4) is the narrowest MPIW because it contains enough features with high gain. Therefore, 

Features (4) outperforms Features (14) in MPIW and PICP as well. From the standard de-

viations in Table 3 and Table 4 and the histograms in Figure8 and Figure 9, PICP and 

MPIW, as well as Loss, features with low gain reduce the robustness of the prediction. 

Therefore, we can conclude that in PICP and MPIW, as in Loss, the features after Features 

(4) are noise. 
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Figure8.Histograms of 2-week average PICP for Features        

(1),  (4), and (14). 

Figure 9. Histograms of 2-week average MPIW for Features (1), 

(4), and (14). 

 
Table 3. Statistics of 2-week average PICP 

 

Number  

of features 
Min Max. Mean Median 

Standard 

deviation 

(1) 0.907 0.921 0.916 0.917 0.00231 

(4) 0.886 0.916 0.903 0.902 0.00537 

(14) 0.795 0.886 0.845 0.845 0.0160 

 
Table 4. Statistics of 2-week average MPIW 

 

Number  

of features 
Min Max. Mean Median 

Standard 

deviation 

(1) 2.02 2.13 2.07 2.07 0.0151 

(4) 1.47 1.66 1.53 1.53 0.0340 

(14) 1.53 1.78 1.64 1.65 0.0536 

 

 

  

Figure 6. Number of features and 2-week average PICP Figure 7. Number of features and 2-week average MPIW 
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4.2.2. Accuracy evaluation by forecast target date 

To evaluate the relationship between output fluctuation and prediction accuracy ac-

cording to features, we analyze Features (14) which includes all features, Features (1), and 

Features (4) by day, as shown in Table 5. In Table 5, out of 85 simulations, the median of 

Loss and corresponding MPIW and PICP for each day with each Features are shown. In 

Table 5, we evaluated the prediction accuracy using an index named Fluctuation, which 

is the average of output fluctuations at 30-minute intervals over a day. In this study, Fluc-

tuation is defined as indicated in Equation (10). 

����������� =
∑ |�(��) − �(����)|��

���

48
 (10)

where �(��) represents the power output at time ��. Since output power is observed at 30-

minute intervals, there are 48 i in a day. For example, when Fluctuation is 0 kW, the daily 

generation output is constant. In Table 5, the threshold for Fluctuation is 0.5 kW, which is 

the average of the output fluctuations for all days, and days when the output fluctuations 

exceed 0.5 kW are highlighted in gray. On each day, the best PICP, MPIW, and Loss are 

bolded among the Features (1), (4), (14). For example, on June 2, Fluctuation is 0.582 kW, 

Features (1) has the highest PICP of 0.896 and Features (14) has the narrowest MPIW of 

1.40 kW. Features (4) has the lowest Loss at 2.30 kW. Table 6 shows the correlation coeffi-

cients between output fluctuations at 30-minute intervals and PICP, MPIW, and Loss for 

Features (1), (4), (14). 

From Average (Fluctuation>0.5kW) and Average (Fluctuation<0.5kW) in Table 5, and 

strong correlation between Loss and 30-minute output fluctuation for all Features in Table 

6, it is easy to predict when the output fluctuation is small and difficult to predict when it 

is large. When Fluctuation does not exceed 0.5 kW in Table 5, Features (4) is the best for 

prediction. From Average (Fluctuation<0.5kW) in Table 5, PICP, MPIW, Loss over 7 days 

is best for Features (4), and Features (1) is second. When Fluctuation exceeds 0.5 kW, Fea-

tures (1) or Features (4) is suitable for forecasting. As indicated by the strong correlation 

between MPIW and output fluctuation only for Features (1) in Table 6, Features (1) has a 

wide MPIW and high uncertainty on days when Fluctuation is large. However, PIs in 

Features (1) include many real values and have the largest average PICP in Table 5. In 

Table 5 Average (Fluctuation> 0.5kW), Loss is smallest for Features (4), but there are sev-

eral days when it is more than 0.1 below the confidence level; if the PICP is much below 

the confidence level, the PIs are not considered valid, so Features (1) or (4) is appropriate 

for forecasting. Throughout the 14 days, Loss is the smallest for Features (1) on 4 days and 

the smallest for Features (4) on 10 days. For Features (14), Loss is larger than Features (4) 

on all days, especially on days with large Fluctuation. These results show that the low 

gain feature by RF acts as noise and reduces the prediction accuracy, especially on days 

with large Fluctuations. 
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Table 5. Evaluation for selected features 1, 4, and 14 from June 1 to 14. 

    PICP   

  

MPIW (kW) 

  

  

Loss (kW) 

  

Day 
Fluctua-

tion(kW) 
(1) (4) (14) (1) (4) (14) (1) (4) (14) 

1 0.489  0.958  0.979  0.979  2.45  1.55  2.02  2.45  1.55  2.02  

2 0.582  0.896  0.864  0.791  2.50  1.52  1.40  2.81  2.30  4.05  

3 0.505  0.916  0.875  0.831  2.50  1.61  1.58  2.62  2.21  3.07  

4 0.522  0.895  0.853  0.834  2.41  1.49  1.59  2.73  2.49  3.00  

5 0.350  0.979  0.979  0.979  1.74  1.66  2.03  1.74  1.66  2.03  

6 0.193  0.916  0.984  0.911  0.85  1.44  1.61  0.97  1.44  1.77  

7 0.233  0.937  0.984  1.000  1.25  1.46  1.92  1.27  1.46  1.92  

8 0.412  0.894  0.917  0.875  1.64  1.65  1.50  1.96  1.76  2.09  

9 0.968  0.874  0.833  0.765  2.73  1.63  1.47  3.33  3.08  5.07  

10 0.909  0.835  0.849  0.815  2.53  1.63  1.66  3.93  2.70  3.57  

11 0.308  0.957  0.879  0.876  1.43  1.10  1.44  1.43  1.64  2.01  

12 0.271  0.937  0.956  0.958  1.92  1.58  1.76  1.93  1.58  1.76  

13 0.807  0.894  0.808  0.739  2.56  1.36  1.53  2.89  3.50  6.22  

14 0.513  0.937  0.974  0.937  2.43  1.60  1.68  2.45  1.60  1.69  

Average  

(Fluctua-

tion>0.5kW) 

0.687  0.892  0.865  0.816  2.52  1.55  1.56  2.97  2.55  3.81  

Average  

(Fluctua-

tion<0.5kW) 

0.322  0.940  0.954  0.940  1.61  1.49  1.75  1.68  1.58  1.94  

Average  

(All days) 
0.504  0.916  0.910  0.878  2.07  1.52  1.66  2.32  2.07  2.88  

 

 

Table 6. Correlation coefficient with 30-minute output fluctuation for Features (1), (4), (14). 

    PICP     MPIW     Loss   

Number of features (1) (4) (14) (1) (4) (14) (1) (4) (14) 

correlation coefficient -0.726  -0.758  -0.762  0.818  0.258  -0.355  0.932  0.879  0.821  
 

 

4.2.3. Days of maximum and minimum output fluctuation 

Figure 10 (a) shows the PIs for Features (1), (4), and (14) for the day with the lowest 

Fluctuation of 0.193kW in Table 5. Feature (1) is best for June 6. PICP is the largest at 0.984 

for Features (4), and PICP exceeds 0.9 for Features (1) and (14). MPIW and Loss are the 

smallest in Features (1), and Loss is 0.80 kW smaller than Features (14). Therefore, on June 

6, a forecast using Features (1) was appropriate. 

Figure 10 (b) shows the Prediction Intervals for Features (1), (4), and (14) for the day 

with the largest Fluctuation of 0.968kW in Table 5. Feature (1) is the best for June 9 as well. 
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MPIW is the smallest for Features (14), but many real values are missing and PICP is the 

smallest at 0.765. Features (1) has high uncertainty and MPIW is the widest, resulting in 

many measured values being included in PIs, with the largest PICP of 0.874. Loss is the 

smallest in Features (4), about 0.25 kW less than Features (1) and 1.99 kW less than Fea-

tures (14). However, PICP of Features (4) is 0.833, which is more than 0.1 below the confi-

dence level. Therefore, the prediction in Features (1) is suitable. 

5. Conclusions 

The objective of this study was to improve Loss, PICP, and MPIW of PIs using LUBE 

by removing unnecessary features. We considered the change in prediction accuracy by 

incorporating, in order, the features with high gain evaluated by RF into the features used 

for LUBE. In number of features 1, which includes only solar radiation evaluated as the 

most important feature, on days with large output fluctuations, there was high uncer-

tainty and wide MPIW, but high PICP. For number of features 14 without feature selec-

tion, features with gain nearly zero for both Loss, PICP, and MPIW became noise, result-

ing in lower prediction accuracy. In particular, low gain features reduced prediction ac-

curacy when output fluctuations were large. Number of features 4, which includes solar 

radiation, hour sine, hour cosine, and annual cosine, includes enough features to improve 

Loss by 1.57 kW, PICP by 0.057, and MPIW by 0.12 kW, on average, over 2 weeks com-

pared to number of features 14 in the output power forecast on a 14.7-kW PV system. 

However, for any number of features, days with large output fluctuations are found to be 

more than 0.1 below the confidence level. Therefore, the challenge remains to generate PIs 

with PICP close to the confidence level even on days with strong fluctuations.  
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(a)  (b) 

Figure 10. Prediction intervals for Features (1), (4), and (14): (a) June 6, the day with the smallest 

output fluctuation in two weeks.; (b) June 9, the day of the largest output fluctuation in two 

weeks. 
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