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Abstract: False positives on multiparametric (mp)-MRI result in a large number of unnecessary bi-

opsies in men with clinically insignificant diseases. This study investigates whether quantitative 

diffusion MRI can improve differentiation between false positives, true positives and normal tis-

sue. Twenty-three patients underwent mp-MRI and Vascular, Extracellular and Restricted Diffu-

sion for Cytometry in Tumours (VERDICT)-MRI, followed by transperineal biopsy. The patients 

were categorised into two groups following biopsy: (1) significant cancer - true positive (2) atro-

phy/inflammation/high-grade prostatic intraepithelial neoplasia (PIN) - false positive. The clinical 

apparent diffusion coefficient (ADC) values of the lesions were obtained, and the intravoxel inco-

herent motion (IVIM), diffusion kurtosis imaging (DKI) and VERDICT models were fitted using a 

deep learning approach. Significant differences (p < 0.05) between true positive and false positive 

lesions were found in ADC, IVIM perfusion fraction (f) and diffusivity (D), DKI diffusivity (DK) and 

kurtosis (K) and VERDICT intracellular volume fraction (fIC), extracellular-extravascular vol-ume 

fraction (fEES) and diffusivity (dEES) values. Significant differences between false positives and normal 

tissue were only found for the VERDICT fIC. These results demonstrate that model-based diffusion 

MRI could reduce the number of unnecessary biopsies due to false positive prostate lesions and 

shows promising sensitivity to benign diseases that mimic cancer. 
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1. Introduction 

Multiparametric MRI (mp-MRI) has recently been introduced as a standard part of 

the prostate cancer (PCa) clinical diagnosis pathway [1] – it consists of T1 and T2-weighted 

images, diffusion-weighted (DW) images and dynamic contrast-enhanced (DCE) imag-

ing. This technique has high sensitivity (90%) but moderate specificity (50%), translating 

to a high rate of false positive cases [2]. This results in 1 in 2 men undergoing mp-MRI 

having unnecessary uncomfortable biopsies and risking the associated side effects for be-

nign conditions or clinically insignificant cancer [3]. This is a significant issue as 75% of 

suspected cancer patients have abnormal mp-MRI findings and the number of people con-

sidered for MRI and biopsy each year is set to increase, therefore reducing the number of 
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unnecessary negative biopsies is an important clinical problem [4]. Benign pathologies 

such as atrophy, inflammation, and high-grade prostatic intraepithelial neoplasia (PIN) 

are examples of diseases that cause these false positive results [5]. This is due to the 

changes these diseases cause to the microstructure, similar to cancer. For example, atro-

phy is characterised by shrinkage of prostate tissue due to the reduction in cytoplasm 

prostatic acinar cells and has been associated with prostatic inflammation (swelling of the 

prostate gland) [6]. High-grade PIN represents the pre-invasive end of the range of cellu-

lar proliferations within the lining of prostatic ducts and acini and is considered the most 

likely precursor of prostatic carcinoma [7]. It is critical to discriminate these cases from 

cancer to avoid unnecessary procedures, however it is also important to distinguish these 

diseases from normal tissue and identify correctly the type of the disease [8]. Some of the 

benign diseases can present with symptoms similar to PCa such as difficult or frequent 

urination and pain, requiring treatment of their own [9]. Identifying a unique noninvasive 

signature for such diseases can lead to early and informed treatments.  

DW-MRI is an integral component of mp-MRI due to the unique insight it provides 

into tissue microstructure. Changes in histological features such as the cellular density, 

size, shape and arrangement produce contrast in DW-MR images as they all affect tissue-

water mobility. Most studies using DW-MRI have focused on calculating the apparent 

diffusion coefficient (ADC) to distinguish between tumour regions and healthy tissue 

[10,11]. Typically, ADC values are lower in prostate tumours than in the surrounding tis-

sue, reflecting the highly cellular environment constraining the water mobility. However, 

the simultaneous dependence of the ADC on a multitude of histological features limits its 

biological specificity [12], reducing its ability to distinguish cancer from similar diseases 

such as high-grade PIN and hyperplasia, which often appear as false positive cases [13,14]. 

More sophisticated models have been proposed to improve the sensitivity and specificity 

of DW-MRI for cancer diagnosis such as the intravoxel incoherent motion (IVIM) model 

that separates the pure water diffusion in tissue from the microcirculation of water in ca-

pillaries [15]. It has been used to study various cancer types such as breast [16], prostate 

[17] and pancreatic [18] tumours, showing improvement in data description over ADC. 

Another method that has shown greater sensitivity for discrimination of benign and can-

cerous prostate tissue in comparison to ADC is using diffusion kurtosis imaging (DKI) 

[19,20]; this technique quantifies the Gaussian and non-Gaussian components of water 

diffusion in biological tissues [21]. 

In an attempt to increase biological specificity, multicompartment microstructure 

models have also been proposed for imaging the prostate. One of the first multicompart-

ment methods for cancer imaging is the Vascular, Extracellular and Restricted Diffusion 

for Cytometry in Tumours (VERDICT) MRI, which is a non-invasive imaging technique 

for quantifying microstructural features of tumours in vivo. It consists of a specific imag-

ing protocol, as well as a model for the DW-MRI signal [22]. VERDICT allows for estima-

tion of specific tissue properties such as cell size and packing density. It has been success-

ful in delineating benign from cancerous lesions [23], and preliminary results from the 

clinical trial INNOVATE [24] reveal that the VERDICT intracellular volume fraction can 

discriminate between Gleason 3+3 and 3+4 lesions, unlike ADC [25].  

This study uses different DW-MRI techniques to investigate quantitative differences 

between clinically significant cancer, false positive biopsy results and healthy tissue. The 

aims are i) to discriminate false positives from cancer and ii) to discriminate false positives 

from normal tissue in an attempt to identify potential diffusion signatures of benign dis-

eases that mimic cancer. We analyse a total of 23 patients that underwent mp-MRI fol-

lowed by VERDICT-MRI. We fit the diffusion models to the VERDICT-MRI data and ob-

tain the ADC from the mp-MRI. The model fitting procedure uses deep neural networks 

(DNNs) for ultra-fast and robust parameter estimation [26]. We compare parameter esti-

mates between both false positives and clinically significant cancer and normal tissue and 

false positives using statistical tests. We investigate the diagnostic accuracy of different 

parameters using receiver operating characteristic (ROC) curves and analyse the correla-
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tion between VERDICT parameters and those from the simpler models. This work demon-

strates that diffusion MRI models can differentiate between false positives and true can-

cer, and that VERDICT has the further sensitivity to discriminate false positives from nor-

mal tissue. 

2. Materials and Methods 

Patient Cohort 

The study was performed with local ethics committee approval embedded within 

the INNOVATE clinical trial [24]. The trial is registered with ClinicalTrials.gov identifier 

NCT02689271. Twenty-three men (median age: 68 years, age range: 57-74 years) were re-

cruited and provided informed written consent. The inclusion criteria were as follows: 

• suspected PCa 

undergoing active surveillance for known PCa. 

                                          Exclusion criteria included: 

• inability to have a MRI scan, or presence of an artefact that would reduce quality 

of MRI 

• previous hormonal/radiation therapy or surgical treatment for PCa 

• biopsy within 6 months prior to the scan. 

All patients underwent mp-MRI in line with international guidelines [27] on a 3T 

scanner, supplemented by VERDICT-MRI. The clinical dynamic contrast enhanced (DCE) 

part of mp-MRI was performed last after VERDICT DW-MRI. After clinical mp-MRI and 

VERDICT MRI indicated suspected PCa, all patients underwent targeted transperineal 

template biopsy of their index lesion, defined as the highest scoring lesion identified on 

mp-MRI with Likert scores (3-5) [28]. Specialist genitourinary pathologists evaluated his-

tological specimens stained with haematoxylin and eosin from the biopsy cores. Patients 

who had a biopsy with diagnoses of atrophy, inflammation, and high-grade PIN (or com-

binations of these) or clinically significant PCa were retrospectively selected. Table 1 pre-

sents the clinical and pathological information of the patients.  

Table 1. Clinical and pathological information of 23 patients included in the study (12 with no/clin-

ically insignificant cancer and 11 with clinically significant cancer). The median age and PSA/PSAD 

results for each cohort are presented, along with the biopsy results/Gleason scores. The false positive 

patient cohort had combinations of the three disease types considered.  

 

 No/clinically insignificant cancer Clinically significant cancer 

Age (median) 66 69 

PSA (median) 6.61 10.92 

PSAD (median) 0.112 0.226 

Biopsy Result Atrophy: 9 3+3: 1 

 Inflammation: 10 3+4: 4 

 High-grade PIN: 4 4+3: 4 

  4+4: 1 

  4+5: 1 

 

Image Acquisition 

Mp-MRI 

All participants underwent mp-MRI with a 3T MRI system (Achieva; Philips, Best, 

the Netherlands) as part of their standard clinical care. A spasmolytic agent (Buscopan, 
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Boehringer Ingelheim, Ingelheim am Rhein, Germany; 0.2 mg/kg, up to 20 mg) was ad-

ministered intravenously before imaging to reduce bowel peristalsis. Imaging parameters 

for the diffusion-weighted echo-planar imaging sequences were as follows: repetition 

time 2753 ms, echo time 80 ms; field of view, 220 x 220 mm; section thickness, 5 mm; no 

intersection gap; acquisition matrix, 168 x 169; b-values, 0, 150, 500, and 1000 s/mm2; and 

six signals acquired per b-value for signal averaging. The total imaging time for the clini-

cal diffusion-weighted sequences was 5 minutes 16 seconds. ADC maps were calculated 

by using all b-values except b = 0 to reduce perfusion effects [29] and were calculated with 

the Camino Diffusion MRI toolkit [30].  

 

VERDICT-MRI 

VERDICT-MRI was performed before dynamic contrast material–enhanced imaging 

on the same 3T unit as the clinical mp-MRI acquisition. A PGSE sequence was used at five 

combinations of b-value (in s/mm2), gradient duration, separation, echo time TE and rep-

etition time TR (in ms), in three orthogonal directions using a cardiac coil. For each com-

bination, a separate b = 0 image was acquired. Sequences used an echo-planar readout, 

and imaging parameters were as follows: repetition time 2482–3945 ms/echo time 50–90 

ms; field of view, 220 x 220 mm; voxel size, 1.3 x 1.3 x 5 mm; no intersection gap; acquisi-

tion matrix, 176 x 176; b-values, 90, 500, 1500, 2000, and 3000 s/mm2; and six signals ac-

quired per b-value (except for b = 90 s/mm2, for which four signals were acquired) for 

signal averaging. The total imaging time was 12 minutes 25 seconds [31]. 

 

Image Analysis 

ROIs 

Patients were biopsied depending on their mp-MRI score as reported by two board-

certified experienced uroradiologists (reporting more than 2,000 prostate MR scans per 

year). The regions of interest (ROI) were targeted drawn by a board-certified study radi-

ologist (S.Singh) using a pictorial report made by the uroradiologist and confirmed as 

cancerous or non-cancerous retrospectively by transperineal biopsy. The ROIs were cho-

sen to be as large as possible while having minimal contamination from surrounding tis-

sue. It was concluded that 12 of the patients had benign pathologies such as atrophy, in-

flammation or high-grade PIN, whilst the remaining 11 had cancerous prostate lesions. 

After a review of the biopsy result confirmed the absence of tumour on the contralateral 

side of the peripheral zone for the 11 patients with PCa, ROIs were located for each patient 

in an area of benign tissue to be used for comparison. 

 

DW-MRI Data Pre-processing 

The pre-processing pipeline included denoising of the raw DW-MRI using MP-PCA 

[32] as implemented within MrTrix3 [33] ‘dwidenoise’, and then correction for Gibbs ring-

ing [34] with custom code in MATLAB (The Mathworks Inc., Natick, Massachusetts, 

USA). In an effort to reduce possible artefacts caused by patient movement during scan-

ning and eddy current distortions, we applied mutual-information rigid and affine regis-

tration using custom code in MATLAB [35]. 

 

Mathematical Models 

The ADC model is a simple mono-exponential characterising the diffusion signal de-

cay as a function of the b-value. It assumes an isotropic Gaussian distribution of water 

molecule displacements and has one parameter to be estimated; the ADC, d. The normal-

ised signal is given by 

𝑆 = 𝑒−𝑏𝑑 
The IVIM model is a bi-exponential with the assumption that the diffusion signal is 

made up of two non-exchanging compartments of water molecules (one fast and one 

slow), each following an ADC model. There are three parameters to be estimated; f, the 
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volume fraction associated with the fast (‘vascular’) component, D*, the diffusivity of the 

‘fast’ component and D, the diffusivity of the slow (‘cellular’) component (36). The nor-

malised signal is given by 

𝑆 = 𝑓𝑒−𝑏(𝐷+𝐷∗) + (1 − 𝑓)𝑒−𝑏𝐷 
The mean signal DKI model relaxes the assumption in the ADC model of Gaussian 

water dispersion. There are two parameters to be estimated; DK and K. The diffusivity 

parameter DK is similar to the ADC parameter d, whilst the kurtosis parameter K quanti-

fies the degree of deviation of the dispersion pattern from a Gaussian distribution (37). 

The normalised signal is 

𝑆 = 𝑒−𝑏𝐷𝐾+
1
6
𝑏2𝐷𝐾

2𝐾 
The VERDICT model for prostate is the sum of three parametric models, each de-

scribing the diffusion magnetic resonance signal in a separate population of water from 

one of the three components: 

• signal S1 comes from intracellular water trapped within cells (including epithe-

lium) 

• signal S2 comes from extracellular-extravascular water adjacent to, but outside cells 

and blood vessels (including stroma and lumen) 

• signal S3 comes from water in blood undergoing microcirculation in the capillary 

network. 

It is assumed that there is no water exchange between the three tissue compartments. 

The total signal for the multi-compartment VERDICT model is: 

𝑆 = ∑
𝑖=1

3

𝑓𝑖𝑆𝑖 

where fi is the proportion of signal with no diffusion weighting (b = 0) from water 

molecules in population i, where i = IC, VASC or EES, 0 ≤ 𝑓𝑖 ≤ 1, ∑
𝑖=1

3

𝑓
𝑖
= 1 . This results in 

𝑆 = 𝑓𝑉𝐴𝑆𝐶𝑆𝑉𝐴𝑆𝐶(𝑑𝑉𝐴𝑆𝐶 , 𝑏) + 𝑓𝐼𝐶𝑆𝐼𝐶(𝑑𝐼𝐶 , 𝑅, 𝑏) + 𝑓𝐸𝐸𝑆𝑆𝐸𝐸𝑆(𝑑𝐸𝐸𝑆, 𝑏) 
where 𝑓

𝑉𝐴𝑆𝐶
+ 𝑓

𝐼𝐶
+ 𝑓

𝐸𝐸𝑆
= 1. 

The VERDICT model used in this work [38] represents the intracellular component 

as spheres of radius R and intra-sphere diffusivity fixed at dIC = m2/ms, the extracellular-

extravascular component as Gaussian isotropic diffusion with effective diffusivity dEES 

(Ball) and the vascular component as randomly oriented sticks with intra-stick diffusivity 

fixed at dVASC = m2/ms (AstroSticks). In total, there are four model parameters that are 

estimated by fitting Eq. 5 to DW-MRI data: fEES, fIC, R and dEES. The vascular signal fraction, 

fVASC, is computed as 1 - fIC - fEES and a cellularity index is computed as fIC/R3. Several pre-

vious studies [23,31] investigated the validity of the assumptions made in this model un-

der the experimental conditions of the optimised DW-MRI acquisition for VERDICT in 

prostate. 

 

Model Fitting 

The IVIM, DKI and VERDICT models were fitted to the DW-MRI data using the sig-

nal averaged across three gradient directions. To obtain ultra-fast and robust parameter 

estimation, we performed the fitting using a DNN known as a multi-layer perceptron, 

implemented using the ‘MLPregressor’ in Python scikit-learn 0.23 

(https://scikitlearn.org/stable/). The input of the DNN is a vector of DW-MRI signals for 

each combination of b, TE and TR (a total of 10 in this specific case). The DNN consists of 

three fully connected hidden layers with 150 neurons, each characterised by a linear ma-

trix operation followed by an element-wise rectified linear unit function (ReLU), and a 

final regression layer with the number of output neurons equal to the number of tissue 

parameters to be estimated (i.e. four for the VERDICT models used here). We generate 

100,000 synthetic DW-MRI signals for training the DNN using the signal equations above 

with different values for the model parameters randomly chosen between biophysically 

plausible intervals: f = [0.01, 0.99], D = [0.5, 3] m2/ms and D* = [0.5, 3] m2/ms for IVIM, 

DK = [0.5, 3] m2/ms and K = [0.01, 2.99] for DKI and fEES = [0.01, 0.99], fIC = [0.01, 0.99], R = 
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[0.01, 15] m and dEES = [0.5, 3] m2/ms for VERDICT. We also add Rician noise corre-

sponding to SNR=35 to consider the effect of experimental noise [26,35,39].  

 

Statistical Analysis 

The performance of each parameter for differentiating between the three tissue types 

was evaluated via a Wilcoxon signed-rank test (preceded by a Shapiro-Wilk test for nor-

mality). This was performed using the scipy.stats package [40], and p < 0.05 was taken to 

indicate significance. The data is presented using boxplots, allowing for visualisation of 

the median, interquartile range and any outliers. ROC curves were plotted for all models 

to compare sensitivity and specificity, and the area under the curve (AUC) was calculated 

from these to compare the parameters' utility for tissue type discrimination. We also in-

vestigated the correlation between the VERDICT parameters and those from the DKI and 

IVIM models via the r2-value.  

3. Results 

The aim of the first experiment was to analyse differences in parameter estimates in 

false positive and true positive lesions from the different models. In Fig. 1 we see compar-

isons between parameter estimates from the ADC, IVIM, DKI and VERDICT models in 

these two tissue types. All models provided discrimination between false positives and 

true positives: ADC d with p = 0.04 (Wilcoxon signed-rank test), IVIM f with p = 0.02 and 

D with p = 0.01, DKI DK with p = 0.0009 and K with p = 0.001 and VERDICT fIC with p = 

0.01, fEES with p = 0.02 and dEES with p = 0.0009. d, f, D, DK, fEES and dEES are all lower in 

cancerous lesions than in false positives, while K and fIC values are higher in false positive 

lesions. The next experiment analysed differences in parameter estimates between false 

positive lesions and normal tissue – these are also presented in the boxplots in Fig. 1. The 

only parameter that shows statistically significant differences between false positives and 

normal tissue is the VERDICT fIC (p = 0.02), with normal tissue having lower values than 

false positives. 
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Figure 1. Boxplots showing the parameter estimates obtained using the ADC, DKI, IVIM and VER-

DICT models. We observe significant differences between true and false positives in the ADC d (p = 

0.04), IVIM D (p = 0.01) and f (p = 0.02), DKI DK (p = 0.0009) and K (p = 0.001) and VERDICT fIC (p = 

0.01), fEES (p = 0.02) and dEES (p = 0.0009). d, DK, D, f, fEES and dEES are all lower in true positives than 

false positives while K and fIC are higher. We also find statistically significant differences between 

false positives and normal tissue for the VERDICT fIC (p = 0.02), with higher values in false positive 

lesions than in normal tissue. Outliers are indicated by a circle. 

Next, we analysed the parameter maps obtained using the different models, focusing 

on those parameters with statistically significant differences between true positive and 

false positive lesions. Figure 2 illustrates parametric maps for two example patients: a 70-

year-old with a false positive lesion in the left anterior prostate (atrophy and mild focal 

chronic inflammation) and a 72-year-old with a Gleason score 4+3 tumour in the right 

posterior peripheral zone (PZ). The parameter maps firstly show clear differences in the 

data between the true cancer ROIs and the surrounding tissue, improving lesion conspicu-

ity over the mp-MRI images. They also demonstrate that the true positive lesions are more 

noticeably different from the surrounding healthy tissue than the false positive lesions. 

We observe that the fIC and K are higher in lesions than the surrounding tissue, whilst for 

all the other parameters the values are lower in the lesions than in the surrounding tissue. 

The VERDICT fIC, fEES and dEES strongly highlight the true positive tumour in comparison 

to the surrounding benign tissue, showing a clearer difference compared to the other 
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models. The VERDICT fIC map also significantly highlights the false positive lesion, which 

is not evident in the other parametric maps. 

Figure 2. Parametric maps obtained using the IVIM, DKI and VERDICT models in a 70-year-old 

patient with a false positive lesion and a 72-year-old patient with a true positive lesion. Only the 

parameters which successfully differentiated between the two lesion types have been included, as 

well as the clinical ADC maps. We observe that the VERDICT maps highlight the true positive lesion 

most conspicuously, and the VERDICT fIC also distinguishes the false positive lesion from the sur-

rounding tissue. 

Following this, we investigate the diagnostic accuracy of the different parameters 

using ROC curves – we compare the performance of all parameters that can successfully 

discriminate between true and false positive lesions. Figure 3 presents discrimination be-

tween normal tissue and false positives on the left and between false positives and true 

positives on the right. We observe that the largest AUC value for discrimination between 

true positives and false positives is found for the DKI DK (0.9028), closely followed by the 

VERDICT dEES (0.8750). For the discrimination between false positives and normal tissue, 

the largest AUC is found for the VERDICT fIC (0.7778) – all other parameters show low 

diagnostic accuracy for this task.  
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Figure 3. ROC curves for ADC, DKI, IVIM and VERDICT parameters – those on the left are for 

discriminating true (TP) and false positives (FP) and those on the right are for discriminating false 

positives and normal tissue (NT). We observe the largest AUC for discrimination between true and 

false positives is achieved by the DKI DK (AUC = 0.9028), closely followed by the VERDICT dEES 

(AUC = 0.8750). The largest AUC for discrimination between false positives and normal tissue is 

achieved by the VERDICT fIC (AUC = 0.7778). 

The final experiment investigates the correlations between the VERDICT fIC, R, fEES, 

fVASC, IVIM D, f, D* and DKI DK, K for each voxel within the ROIs of all patients – the 

strongest correlations are presented in Fig. 4. The colour coding distinguishes individual 

patients, with the cancer ROIs shown as circles whilst the benign ROIs are shown as 

crosses. We observe similar trends for DK and D - strong negative correlation with fIC and 

positive correlation with fEES and dEES. K shows strong positive correlation with fIC and 

negative correlation with fEES and dEES. Finally, D* shows negative correlation with fEES and 

positive correlation with fVASC.  
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Figure 4. Scatter plots showing the correlation between VERDICT parameters and the DKI and IVIM 

parameters. For DK and D, we observe strong negative correlation with fIC and positive correlation 

with fEES and dEES. K shows strong positive correlation with fIC and negative correlation with fEES and 

dEES. Finally, D* shows negative correlation with fEES and positive correlation with fVASC. 

4. Discussion 

Benign prostate pathologies such as atrophy, inflammation and high-grade PIN can 

cause false positives on mp-MRI by having signal characteristics that mimic PCa. We 

aimed to firstly differentiate false positives from true cases of PCa, and then to discrimi-

nate false positives from normal tissue using various diffusion MRI models. We analysed 

the clinical ADC and then fitted the IVIM, DKI and VERDICT models to the acquired DW-

MRI from 23 patients using a deep learning approach. We then compared the parameter 

estimates of each of the models between tissue types using statistical tests to draw con-

clusions about the diagnostic utility of the different models for characterising false posi-

tive cases of PCa.  

All diffusion models can discriminate false positives from true positives. The strong-

est statistical significance is observed for the DKI DK and the VERDICT dEES (p = 0.0009), 

followed by the DKI K (p = 0.001), VERDICT fIC and IVIM D (p = 0.01), VERDICT fEES and 

IVIM f (p = 0.02) and ADC d (p = 0.04). The DK, dEES, D, fEES, f and d are lower in true cancer 

than in false positives, whilst K and fIC are higher. This reflects the reduced diffusivity and 

larger deviations from Gaussian dispersion due to the increased cellularity in prostate 

carcinoma than in non-cancer diseases [41]. No significant differences were found in IVIM 

D*, VERDICT fVASC, R or Cellularity. The best diagnostic performance was found for DK 

(AUC = 0.9028), closely followed by the VERDICT dEES (AUC = 0.8750), and the parametric 

maps obtained using VERDICT emphasise the true positive lesion in comparison to the 

surrounding tissue most clearly. Our finding of significantly decreased ADC values in 

true positives agree with work by Stavrinides et al., who concluded that ADC could pre-

dict clinically-significant PCa in biopsy-naive men with indeterminate lesions [42]. Fa-

laschi et al. similarly found lower ADC ratio in tumours than false positives, however 

they could not draw any firm conclusions about the usefulness of ADC ratio in detecting 

cancer [43]. These results demonstrate that quantitative diffusion MRI has the potential to 
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reduce the number of unnecessary biopsies occurring in men with clinically insignificant 

disease.  

Only the VERDICT fIC could discriminate false positives from normal tissue. Signifi-

cantly higher values of fIC were found in false positives (p = 0.02), which agrees with his-

tological findings of increased cellularity in the false positive disease types in comparison 

to healthy tissue [44]. The diagnostic accuracy of fIC (AUC = 0.7778) is the highest of all 

parameters, and the fIC parameter map also highlights the false positive lesion signifi-

cantly. We did not find any significant differences in ADC values, potentially due to its 

limited biological specificity. Neither Falaschi et al. or Stavrinides et al. considered com-

parisons between these tissue types, nor did they investigate any other mathematical or 

biophysical models in their study. None of the IVIM or DKI parameters could perform 

this discrimination successfully either. For IVIM, this could be due to the fact it does not 

account for cellular geometry and compartmentalisation, leading to unreliable estimates 

of both diffusion components [14,45-47]. In the case of DKI, the model lacks specificity in 

a similar way to ADC, as it does not acknowledge the underlying microstructural features 

of the tissue [41]. These findings demonstrate the increased diagnostic accuracy of VER-

DICT, indicating its potential to identify unique diffusion signatures of diseases that 

mimic PCa. 

This study demonstrates the utility of various diffusion MRI models for tackling the 

specific diagnostic obstacle of false positive cases of PCa. All diffusion models (ADC, 

IVIM, DKI and VERDICT) were able to discriminate false positives from true positives, 

however only VERDICT revealed significant differences between false positives and nor-

mal tissue. The VERDICT parameters also allow for inferences to be made about micro-

structural differences between tissue types, as shown by the correlation analysis. We ob-

serve strong negative correlation of DK and D with fIC, but positive correlation with fEES. 

This is expected as diffusivities tend to decrease as the proportion of water trapped in 

cells increases. The DKI K showed strong positive correlation with fIC and negative corre-

lation with fEES, which is also expected due to larger deviations from Gaussian dispersion 

as the proportion of water trapped in cells decreases. These observations emphasise VER-

DICT’s improved biological specificity over simpler diffusion models, highlighting its 

utility in clinical practice to discriminate false positives.   

The main limitation of this work is the number of participants – a larger patient co-

hort would allow us to improve the significance level of the results obtained, as well as 

potentially allowing for the identification of unique diffusion signatures for the different 

benign pathologies. However, we still achieve statistical significance for all the diffusion 

models. Also, this analysis was performed on retrospective data with an acquisition pro-

tocol optimised for VERDICT, which may mean that the choice of b-values was not opti-

mal for IVIM and DKI parameter estimation. Furthermore, the range of benign patholo-

gies in our study was limited to atrophy, inflammation and high-grade PIN, but the in-

clusion of others such as benign prostatic hyperplasia may allow for more comprehensive 

benign disease characterisation. Future work will increase the size of the patient cohort, 

encompassing a wider range of prostatic diseases. 

 

5. Conclusions 

In this work, we demonstrate that quantitative diffusion MRI (ADC, IVIM, DKI and 

VERDICT) can successfully discriminate false positive prostate lesions from cancerous tu-

mours, showing potential to avoid unnecessary biopsies. The best diagnostic accuracy for 

discriminating false positives and true positives was observed for the DKI DK, closely fol-

lowed by the VERDICT dEES. Among the different diffusion models only VERDICT was 

able to also differentiate false positive lesions from normal prostate tissue, correctly iden-

tifying benign diseases that mimic cancer.  
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