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Abstract: Depth maps produced by LiDAR based approaches are sparse. Even high-end LiDAR1

sensors produce highly sparse depth maps, which are also noisy around the object boundaries.2

Depth completion is the task of generating a dense depth map from a sparse depth map. While3

the traditional approaches focus on directly completing this sparsity from the sparse depth maps,4

modern techniques use RGB images as a guidance tool to resolve this problem. Whilst many others5

rely on affinity matrices for depth completion. Based on these approaches, we have sub-divided6

the literature into two major categories; traditional approaches and backbone-based approaches.7

The latter is further sub-divided into two-branch, and spatial propagation approaches. The two-8

branch approaches still have a sub-category named guided-kernel approaches. In this paper, for9

the first time ever we present a comprehensive survey of depth completion methods. We present10

a novel taxonomy of depth completion approaches, review and detail different state-of-the art11

techniques within each category for depth completion of LiDAR data, and provide quantitative12

results for the approaches on KITTI and NYUv2 depth completion benchmark datasets.13

Keywords: Depth Completion; Depth Maps; Image-Guidance14

1. Introduction15

Depth maps are critical to a variety of computer vision applications such as au-16

tonomous driving [1–3], robot navigation [4,5], augmented reality [6–8],virtual reality17

[9]. Tasks like object detection, obstacle avoidance [10], 3D scene reconstruction [11–13]18

require dense depth maps for accurate prediction. Various depth sensors like depth19

cameras, 3D LiDAR and stereo cameras capture the depth information. Among these,20

LiDAR sensors provide the most accurate depth information. However, the depth maps21

generated by these devices are sparsely distributed (1) compared to a medium resolution22

RGB image (about 5% density [14]). Also, current LiDAR sensors obtain measurements23

at only 64 scan lines in the vertical direction. This sparsity significantly impacts the24

performance of LiDAR based applications. Predicting dense depth maps from these25

sparse ones is critical for both the industry and academia.26

To resolve the problem of depth completion, many different approaches have been27

developed. Traditional approaches [15–17] concentrate on retrieving dense depth maps28

from the sparse ones without the guidance of an image. Uhrig et al. [18] propose29

a sparsity invariant CNN to deal with sparse data or features. Eldesokey et al. [19]30

solve depth completion by generating a full depth as well as a confidence map with31

normalized convolution. But, these approaches are limited and lose depth details and32

semantic information without the availability of multi-modal data.33
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(a) RGB Image (b) LiDAR sparse Depth Map (c) Prediction
Figure 1. First Column shows the RGB images from two different scenes, the middle column contains the sparse depth
maps produced from LiDAR. Last column shows the predicted dense depth maps for the corresponding scenes.

Image guided methods show significant improvement in results compared to the34

conventional depth-only techniques. Qiu et al. [20] train a network to predict surface35

normal using the color image and depth map and further use the recovered surface36

normal to guide depth completion. CSPN [21] refine coarse depth maps with spatial37

propagation network using affinity matrices at the end of its Unet [22]. CSPN++ [23]38

additionally improves by learning adaptive convolution kernel sizes and the number39

of iterations for propagation. However, most of these techniques consider the task as40

one-stage learning and use naıve fusion approaches resulting in blurred depth maps41

with unclear boundaries.42

Some works construct a two-branch architecture for handling image and depth43

modalities and then perform fusion like FusionNet [24] and DeepLiDAR [20]. FusionNet44

extracts local and global features using its two-branch architecture. While, DeepLiDAR45

takes multi-modal inputs and performs fusion at a multi-scale level, achieving better46

depth completion results. But both these methods require extra datasets to pretrain their47

networks.48

The content of this paper is organized as follows: Section 2 provides an overview49

of the fusion strategies and approaches used in the field of depth completion. Section 350

discusses the common indoor and outdoor dataset used for depth completion. Section 451

introduces the metrics used in the field of depth completion and Section 5 presents the52

state-of-the-art methods in each category. Finally, Section 6 provides the conclusion of53

this paper.54

2. Methodologies55

In this section, we will discuss both the approaches to dense depth completion and56

multi-modal fusion strategies to fuse the multi-modal (RGB, LiDAR, Semantic maps,57

Surface normals) information. Figure 2 shows the approaches to depth completion.58

Roughly, the approaches can be divided into two different categories; (1) Traditional59

Approaches, which utilize only LiDAR sparse depth maps for dense depth completion,60

and (2) Image-guided Methods, which employ guidance images (RGB, semantic maps,61

surface normals) to guide the process of depth completion. Image-guided methods are62

more successful than traditional approaches. However, image-guided methods require63

the employment of fusion strategies to adaptively fuse the information between different64

modalities. Therefore, we also discuss multi-modal fusion strategies in this section.65

2.1. Traditional Approaches66

Traditional approaches can be further classified into single-branch approaches,67

since they utilize only one branch to process sparse LiDAR data. Earlier approaches68

[16,18,25] based on convolutional neural networks (CNN) utilized only sparse depth69

maps to generate dense depth maps. To fill the missing values at invalid regions of70

sparse depth maps, many hand-crafted features, kernels, interpolation methods [26–30]71

were introduced. However, the structural information of the scene is lost because of72

the discontinuity in the depth values. To counter the sparsity of data in sparse depth73
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Figure 2. Approaches to Depth Completion problem. Traditional approaches include single-branch
(utilize only LiDAR) methods to depth completion. The image-guided methods (two-branch and
spatial propagation methods) utilize guidance images (RGB, semantic maps, surface normals)
to guide the process of depth completion. The two-branch methods can be further divided into
guided kernel learning methods, which aim to learn useful kernels from one modality and apply
it to other modalities.

maps, Depth-Net [31] performed nearest-neighbor interpolation in the sparse maps74

to fill out the holes. Later on, uncertainty-aware CNN’s [32] proposed probabilistic75

normalized convolutions to model the uncertainty in the sparse depth maps. The obvious76

drawback of these approaches is that without color or semantic image guidance, the77

predicted depth maps lack clear object boundaries, making them unsuitable for real-time78

applications.79

2.2. Multi-modal Fusion80

Multi-modal fusion refers to the approaches and methodologies of fusing sensor81

information from two or more different sensors to enhance the understanding of the82

environment. In the context of depth completion, it refers to the process of utilizing83

information from different modalities including RGB cameras [33,34], surface normal’s84

[20], semantic maps [35,36] etc., to guide the process of dense depth completion. The goal85

of multi-modal fusion is to leverage different modalities or their feature representations86

to produce reliable information on the sparse regions of LiDAR depth maps. Following87

sections cover common fusion techniques for depth completion.88

2.2.1. Early Fusion89

The idea of early fusion is to integrate the separate raw modalities e.g., RGB camera90

and LiDAR sensor, into a single unified representation [37]. There exist many methods91

to compute the unified representation. However, most common methods include point92

pixel projection between RGB image and LiDAR sparse depth map [38], concatenation or93

addition of RGB and LiDAR sparse depth map [33,39], etc. The unified representation is94

then sent to the AutoEncoder for dense depth completion. The pipeline of early fusion95

is depicted in Figure 3.96

2.2.2. Sequential Fusion97

Sequential fusion is an extension of early fusion. In the first step, it predicts a dense98

color depth through an RGB branch consisting of an RGB-only deep neural network. The99

color depth is a very noisy estimate of dense depth, but it contains the depth information100

around the object boundaries, e.g., cars and trees, which is missing in LiDAR sparse101
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Figure 3. Early fusion between RGB image and LiDAR sparse depth. At first, both modalities are fused and then sent to the
Deep Neural Network for dense depth completion.

Figure 4. Sequential fusion between RGB image and LiDAR sparse depth map. The RGB branch produces color depth,
which along with LiDAR sparse depth map, is sent to depth branch to estimate the final dense depth map.

depth map [33,36,39]. The color depth and LiDAR sparse depth map are sent to the102

depth branch, which produces the final estimate of the dense depth map. Figure 4 shows103

the process of sequential fusion between RGB image and LiDAR sparse depth map.104

2.2.3. Late Fusion105

Unlike early and sequential fusion, the late fusion process both modalities, i.e., RGB106

color images and LiDAR sparse depth map, independently and fuse them at the final107

stage. The RGB and depth branches consist of RGB-only and depth-only deep neural108

networks. The RGB branch outputs a dense depth map focused on color information,109

whereas the depth branch produces a dense depth map relying more on the LiDAR110

sparse depth map features [33,36]. The dense depth maps produced by RGB and depth111

branches are fused to produce the final dense depth map. The final dense depth map112

combines the strength of both the RGB camera and LiDAR sensor into a single dense113

depth map. Figure 5 depicts the pipeline of the late fusion for the RGB camera and114

LiDAR sparse depth map.115

2.2.4. Deep Fusion116

Deep fusion refers to the fusion performed at the level of the deep neural network.117

Figure 6 shows the pipeline of the deep fusion between LiDAR sparse depth map and118

RGB image modalities. Similar to late fusion, the pipeline of deep fusion consists of119

two separate branches for RGB and LiDAR sparse depth modalities. However, in deep120

fusion, instead of applying the fusion at the intermediate output of the two branches,121

it is performed at the feature level throughout the two branches. The fusion follows122

the decoder-encoder strategy since the features from the RGB decoder are fused at the123

encoder of the depth branch at multiple stages. Deep fusion only fuses the decoder124
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Figure 5. Late fusion between RGB image and LiDAR sparse depth map. It consists of two separate branches to process
RGB images and LiDAR sparse depth maps. Both of the branches produce dense depth maps, which are fused to produce a
final dense depth map.

features of one modality to another because the decoder contains high-level information,125

which is used to guide the other modality during dense depth prediction [33,40].126

2.3. Image-guided Methods127

Image-guided techniques refer to the ones that employ guidance images such as128

RGB images [33,34], semantic maps [35,36], surface normals [20] and sparse depth map129

modalities [18] to guide the process of depth completion. These techniques have shown130

much comprehensive results compared to the traditional approaches.131

2.3.1. Two-branch Networks132

Two-branch methods refer to the ones that employ two branches for handling the133

multi-modal information, including RGB images, surface normals, semantic maps and134

LiDAR sparse depth maps. Each branch treats a single modality separately and then the135

information from the different branches is fused through multi-modal fusion techniques136

explained in Section 2.2.137

Van Gansbeke, Wouter, et al. [24] propose a two-branch network to extract both138

the global and local information to produce accurate and comprehensive depth maps.139

They employ a fusion method based on color image guidance to better incorporate the140

object information, which significantly improves accuracy. Moreover, confidence masks141

are learned for both the local and global branches in an unsupervised manner. These142

masks are then used to weight the depth maps to correct the uncertainty in the depth143

predictions from both modalities.144

DeepLiDAR [20] presents an end-to-end deep learning architecture for accurate145

image guided depth completion for outdoor scenes using estimated surface normals [41]146

as intermediate representations to enforce geometric constraints. The sparse depth and147

image modalities are effectively fused together by the proposed modified two-branch148

encoder-decoder network [22]. To resolve the issues specific to outdoor scenes, the149

network predicts a confidence mask to handle artefacts in mixed LiDAR signals near150

foreground boundaries due to occlusion. Also, it learns attention maps to combine151

estimates from the color image and surface normal to improve the depth accuracy,152

especially for distant areas.153

Similar to DeepLiDAR [20], to resolve the issues in handling sensor noise and154

3D geometric constraints, Xu et al. [42] propose a unified two-stage CNN framework.155

Firstly, the framework models the geometric constraints between depth and surface156

normal [41] in a diffusion module. Secondly, similar to [24] it predicts the confidence157

of sparse LiDAR measurements to reduce the propagation of information due to noise.158

The surface normals, coarse depth and confidence of LiDAR inputs, predicted by the159
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Figure 6. Deep Fusion between RGB image and LiDAR sparse depth map. Each modality is passed from a dedicated branch.
The features from decoder of RGB branch are fused into the encoder of the depth branch. The symbol "F" represents the
fusion operation. Common choices for fusion operation includes addition or concatenation. However, complex fusion
schemes can also be employed. By the guidance of RGB branch, the depth branch produces a final dense depth map.

encoder-decoder backbone [22] are passed to a diffusion refinement module to obtain160

the final depth completion results.161

Unlike the conventional approaches, which make a point estimate, Yang et al.162

[43] present a deep learning system to estimate the posterior distribution of a dense163

depth map linked with an image by utilizing sparse range measurements of a LiDAR164

depth map. Relations between seen images and corresponding depth maps are used165

to complete the map to get a probability over depth for each pixel in the image. A166

Conditional Prior Network then combines it with a likelihood term that uses the sparse167

measurements.168

Ma et al. [15] design a deep regression model to directly learn a mapping from a169

sparse depth map and color image (if available) to a dense depth map. Additionally,170

they explore a self-supervised training framework for depth completion tasks. The171

framework requires only the sparse depth and color image sequences, removing the172

need for dense depth labels during training. This approach also performs better than173

some of the semi-dense annotation methods.174

The standard convolutions fail to model the observed spatial contexts due to sparsity175

in depth maps. To fully capture the observed spatial contexts, Zhao et al. [44] propose176

graph propagations. Firstly, they construct multiple graphs at different scales from177

observed pixels. Then an attention mechanism is applied to the propagation, which178

allows modeling of the contextual information adaptively. These graph propagations179

are applied to the depth and image modalities to extract the respective representations.180

A symmetric gated fusion strategy is proposed to effectively exploit the extracted multi-181

modal features by learning adaptive gating weights to preserve the original information182

for one modality and absorb complementary information from the other modality.183

Li, Ang, et al. [45] propose a multi-scale guided cascade hourglass network [46] to184

handle diverse patterns in depth maps efficiently. Unlike the traditional fully convolu-185

tional techniques, specialized hourglasses in the cascade network take inputs at different186

resolutions to predict depth structures at particular scales. An encoder extracts multi-187

scale features from colour images to provide guidance information for specific structures188

for all the hourglasses stack. This multi-scale training strategy activates the effect of189

cascade stages. Also, the division into sub-modules allows replacing the redundant190

network with a combination of simple architectures.191

DenseLiDAR [47] propose a novel real-time pseudo-depth guided depth completion192

backbone based neural network. They argue that a dense reference depth map is essential193

to produce accurate dense predictions. The pseudo-depth map is obtained from simple194
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morphological operations and is used to guide the network on three fronts. Firstly, it195

predicts a residual structure for the output, making it more stable and accurate. Secondly,196

to rectify the sparse input data and lastly, to enforce a 3D dense structural loss for training197

the network. Additionally, two new metrics; RMSEGT+ and RMSEEdge are proposed for198

better evaluation of the predicted dense depth maps. The former computes the depth199

error on a carefully complemented ground truth, while the latter evaluates the accuracy200

on edge areas of the depth map.201

Most of the earlier mentioned image guided depth completion methods use sim-202

ple concatenation and element wise addition to handle multi-modal fusion. The deep203

convolutional encoder-decoder architecture [22] designed by Lee et al. [48] incorporates204

a cross-guidance module for multi-modal feature fusion to overcome the lack of repre-205

sentation power. The two encoders share the information by exchanging the outputs206

with the guidance module of the other encoder, which applies an attention mechanism207

to fuse the features. Also, a residual atrous spatial pyramid block (RASP) is proposed to208

extract highly significant features. This block applies multiple dilated convolutions [49]209

with different dilation rates in parallel.210

Similar to Sparsity Invariant Convolution (SI-Conv) proposed by Uhrig et al. [18]211

for depth-only completion tasks, Yan et al. [50] propose a novel fusion scheme to ef-212

fectively fuse the data from image and depth modalities by exploiting the property of213

image guided depth completion task and data. The technique employs three mask aware214

operations to process, downscale and fuse the sparse features, where each explicitly con-215

siders the distribution of the data and the observation mask of the corresponding feature216

map. The presented deep neural network processes the two modalities independently,217

followed by a spatial pyramid fusion block to fuse the features under various receptive218

fields.219

Different to previously discussed approaches which use a typical Convolution220

Neural Network (CNN) layer, the approach in [19] introduces a novel normalized221

convolutional layer with a much smaller number of parameters for unguided scenes222

depth completion on the highly sparse input depth map. It further presents novel223

methodologies to compute and propagate convolutional confidences to consequent CNN224

layers. A new loss function is also proposed, minimizing the data error while maximizing225

the output confidence. The authors also explore several fusion techniques to combine226

the multi-modal data and integrate structural information in the proposed framework.227

Additionally, unlike [15] the output confidence is used as auxiliary information to228

improve the results.229

Encouraged by the current approaches in depth completion, which focus on dense230

guidance, Schuster, René, et al. [51] propose a Sparse Spatial Guided Propagation231

(SSGP), which is the combination of spatially invariant, image dependent convolutional232

propagation and sparsity-aware convolution. This propagation technique is used in a233

generic cross-domain encoder-decoder architecture with full image guidance at each234

stage. The network performs sparse-to-dense interpolation for different problems like235

optical flow, scene flow, depth completion etc., achieving better robustness, accuracy236

and speed.237

FCFR-Net [39] designs a novel end-to-end residual learning framework describing238

the problem as a two-stage learning task. The coarse-to-fine residual learning framework239

consists of a sparse-to-dense stage and a coarse-to-fine stage. The former interpolates240

coarse dense depth map using the CNN framework from [15], while the latter stage241

further refines the depth maps. A channel shuffle extraction operation is performed to242

fuse the color and depth features at multi-scale feature levels improving the performance243

significantly. Also, an energy-based fusion is applied to effectively fuse the features from244

the channel shuffle stage.245

Inspired by FusionNet [24] and DeepLiDAR [20], Hu, Mu, et al. [33] propose a246

two-branch network PENet, consisting of a color dominant branch and a depth dominant247

branch. However, the branches are for different purposes and unlike [24] and [20], the248
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network can be trained from scratch without requiring any additional datasets. The249

two branches produce dense depth prediction by exploiting color and depth dominant250

information. A geometric convolutional layer [52] is used to encode 3D geometric cues.251

Further, a dilated and accelerated implementation of CSPN++ [23] is proposed to make252

the refinement more effective and efficient.253

Motivated by the popular mechanism of looking and thinking twice in [53], RigNet254

[34] employs a repetitive design in the image guided network and depth generation255

branch to gradually and sufficiently recover depth values, resolving the issues related256

to blurry image guidance and unclear structure in depth. The network consists of a257

novel repetitive hourglass network, which extracts legible image features of challenging258

environments to provide more precise guidance for depth recovery. It also uses a259

repetitive guidance module based on dynamic convolutions [40], including an adaptive260

fusion mechanism and an efficient guidance algorithm, which can gradually learn precise261

depth representations.262

2.3.2. Guided Image Filtering263

Guided Image Filtering is considered another variant of two-branch methods. In264

the field of depth completion, the idea of guided image filtering refers to the learning265

and prediction of the kernels from one modality and applying learned kernels to other266

modalities for feature extraction and fusion.267

This approach was first introduced by GuideNet [40]. It proposed a novel method268

for learning guided kernels from RGB images, applied to depth images to extract fea-269

tures. The intuition is to exploit the properties of guided filtering [54] i.e., spatially270

variant and content dependent for multi-modal fusion between RGB images and depth271

maps. However, this is computationally expensive; therefore, it proposes a convolution272

factorization operation to reduce computation and memory consumption.273

Inspired by GuideNet [40], another method has been proposed, which aims to learn274

steering kernels [55] from RGB images and apply them to sparse depth maps to generate275

interpolated depth maps [56]. The interpolated depth maps are then refined by utilizing276

a ResNet [57] to generate the final dense depth maps. The whole pipeline can be trained277

in an end-to-end manner.278

2.3.3. Spatial Propagation Networks (SPN)279

The aim of SPN is to learn an affinity matrix to represent the affinities between280

the pixels. An affinity matrix can be defined as a matrix containing the estimate of the281

likelihood that pixels (i and j) belong together conditioned on image measurements. The282

interpretation of the affinity matrix depends on the computer vision task. For instance,283

in the case of image segmentation task, the affinity matrix should contain semantic-level284

pairwise similarities.285

Depth estimation via affinity learned with convolutional spatial propagation net-286

work [58] is one the earliest method , which proposed a generic framework for learning287

affinity matrix. Instead of manually designing an affinity matrix through similarity288

kernels for image segmentation, it learned semantic aware affinity values by utilizing289

deep convolutional neural network (CNN)[59]. Furthermore, the learned affinity matrix290

is not limited to single computer vision task i.e., image segmentation [60], but it can also291

be extended to other vision tasks as well. However, it propagates the affinity matrix in a292

serial fashion, making it inefficient for real-time applications.293

Convolutional Spatial Propagation Network (CSPN) [21] extended SPN and pre-294

sented a convolutional network to learn the affinity matrix for depth completion task. It295

argues that for a depth refinement task, affinity values of local neighborhood are much296

more important [21]. To learn the affinity values in local neighborhood, it utilized a297

deep convolutional neural network and to model long-range context, it uses a recurrent298

convolutional operation. However, both SPN and CSPN suffers from the problem of299

fixed local neighborhoods. To counter the problem of fixed local neighborhood in CSPN300
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and SPN, methods including CSPN++ [23], DSPN [61], NLSPN [11] and DySPN [62]301

were introduced.302

CSPN++ [23] added a simple block to CSPN architecture to learn two additional303

hyper-parameters (1) adaptive convolutional kernel sizes (2) number of iterations for304

affinity matrix propagation based on image content. Initially, various configurations for305

both adaptive convolutional kernel sizes and number of iterations for affinity matrix306

propagation are defined and then during propagation, it learns to predict the correct307

configuration on each pixel. This leads to significant improvement in both the runtime308

complexity and the accuracy of depth completion.309

Unlike CSPN, DSPN [61] utilized deformable convolutional layers [63] to adaptively310

generates different receptive field and affinity matrix for each pixel. Later, NLSPN [11]311

was introduced, which utilized two-stage strategy for depth completion. In the first stage,312

the proposed method takes RGB and LiDAR sparse depth as an input and outputs (1)313

non-local neighbors and corresponding affinities of each pixel (2) initial depth estimate (3)314

confidence map of depth estimate. Then, in second stage, non-local spatial propagation315

is iteratively performed with confidence-incorporated learnable affinity normalization316

to generate the final dense depth map. It counters the local affinity problem of CSPN317

through non-local spatial propagation.318

Recently, DySPN [62] propose that instead of using linear propagation for generat-319

ing affinity matrices, non-linear propagation model should be used for propagation. It320

dynamically updates the pixel-wise affinity weights by utilizing neighborhood decou-321

pling and spatial-sequential fusion. The neighborhood decoupling is performed by322

distributing the neighborhood based on the distances between a pixel and its neigh-323

borhood and then, recursively generating attention maps based on its propagation324

stage. Furthermore, it investigates three variants i.e., distance based, dilated [49] and325

deformable convolutions for determining the optimal number of neighbors required326

for neighborhood decoupling. Finally, it proposes a diffusion suppression operation to327

reduce over smoothing of the predicted dense depth maps.328

3. Datasets329

Typically, depth completion is applied to two kinds of datasets i.e., outdoor and330

indoor datasets. The outdoor datasets consist of driving sequences, whereas indoor331

datasets comprise video sequences from a variety of indoor scenes. There exist many such332

datasets; however, in this paper, we will discuss two famous datasets and benchmarks333

i.e., KITTI Dataset and its Depth Completion Benchmark (outdoor) [64] and NYU Depth334

Dataset v2 (indoor) [65], which are used extensively in the field of depth completion335

for evaluation. The following sections will discuss both KITTI and NYU-v2 datasets in336

detail.337

3.1. KITTI Dataset338

KITTI dataset [64] is a large outdoor dataset for autonomous vehicles comprising339

of driving sequences recorded in Karlsruhe, Germany. The driving vehicle VW Passet340

station is equipped with two stereo camera systems, LiDAR Velodyne HDL-64E laser341

scanner and an OXTS RT3003 inertial and GPS navigation system. Most of the scenes342

are collected in rural areas and on the city’s highways. The dataset has applications in343

various computer vision and machine learning research areas, e.g., optical flow, visual344

odometry, semantic segmentation, semantic instance segmentation, road segmentation,345

single image depth prediction, depth map completion, 2D and 3D object detection, and346

object tracking.347

3.1.1. KITTI Depth Completion Benchmark348

KITTI depth completion [18] benchmark is utilized to evaluate the performance of349

our approach against existing state-of-the-art methods. It provides 85K sparse depth350

maps with corresponding RGB images for training, 7K for validation, and 1K for test-351
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(a) RGB Image (b) LiDAR sparse Depth Map (c) Ground-truth
Figure 7. KITTI depth completion benchmark. Part a) shows the aligned RGB images. Part b) depicts the sparse LiDAR
depth maps, whereas Part c) represents the dense ground-truth depth maps. Colorization is applied on LiDAR sparse depth
maps and corresponding ground-truth to generate visualizations. The highlighted areas are used to show the sparsity in
KITTI depth completion benchmark.

ing. The sparse depth map in the KITTI depth dataset is generated by using LiDAR352

HDL-64, which provides valid depth values on only 5.9% of all pixels [18,64]. However,353

the ground-truth contains valid depth values on 16% of all the pixels. The ground-truth354

is generated by accumulating LiDAR and stereo estimation of the scenes [18,64] using355

semi-global matching (SGM) [66] approach. Furthermore, the KITTI depth completion356

dataset also provides an official validation set consisting of 1K frames. Figure 7 presents357

some images from the depth completion benchmark.358

3.2. Nyu-v2 Depth Dataset359

It consists of RGB and depth images collected from 464 different indoor scenes. It360

utilizes a camera to capture RGB data and Microsoft Kinect [67] to record the depth values361

of the scene. As a preprocessing step, the missing values in depth maps are colorized362

using a colorized scheme [68]. It provides over 400K images for training; however, most363

of the methods [33,34,40,44] utilize only a subset for training their approaches. As Kinect364

provide dense measurements [67], the sparse depth data is generated by randomly365

removing depth data from the depth ground truth. It also provides 654 images for366

benchmarking of the results. Figure 8 shows some images from the Nyu-v2 depth367

dataset.368

4. Evaluation Metrics369

Depth completion evaluation measures consist of root mean squared error (RMSE),370

mean absolute error (MAE), root mean squared error of inverse depth (iRMSE), mean371

absolute error of the inverse depth (iMAE), mean absolute relative error (REL) and372

threshold accuracy δ. All of the metrics are defined as follows.373
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(a) RGB Image (b) Kinect sparse Depth Map (c) Ground-truth
Figure 8. Nyu-v2 depth dataset. Part a) shows the aligned RGB images. Part b) depicts the sparse Kinect depth maps,
which are generated by randomly sampling only 500 points from the ground truth. Part c) represents the fully dense
ground-truth depth maps. Colorization is applied on Kinect sparse depth maps and corresponding ground-truth to generate
visualizations.
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Among all of the evaluation metrics, RMSE is chosen to rank the submissions on374

the KITTI and Nyu-v2 Depth online leaderboards.375

5. Results376

This section compares the results from all the state-of-the art approaches reviewed377

above. The performance comparison is made both quantitatively and qualitatively. The378
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quantitative results are reported on the two benchmark datasets for depth completion379

i.e. KITTI autonomous driving scenes dataset and the NYUv2 indoor scenes dataset.380

The results on the KITTI dataset are evaluated using the four standard metrics; root381

mean squared error (RMSE), mean absolute error (MAE), root mean squared error of the382

inverse depth (iRMSE), and mean absolute error of the inverse depth (iMAE) as shown in383

Table 1. For the indoor NYUv2 dataset, three metrics are used for evaluation, including384

the RMSE, mean absolute relative error (REL) and δi. Table 2 shows the performance385

results on the NYUv2 indoor scenes dataset.386

Traditional approaches try to directly achieve dense depth maps from sparse depth387

maps, which causes discontinuities in depth values and loss of structural information.388

Modern image-guided approaches outperform the traditional ones by a fair margin by389

using an image as guidance. Spatial propagation methods learn affinity matrices and390

propagate these to make depth denser. DySPN [62] is the most successful technique in391

this category and uses non-linear propagation resulting in smoother depth maps. Among392

the two-branch approaches, RigNet [34] achieves the best results on both the KITTI [64]393

and NYUv2 [65] datasets. Lastly, GuideNet [40] is the most noticeable work under394

the guided-kernel depth completion category. Overall, we conclude that two-branch395

methods show the best results and are currently the state-of-the-art in depth completion.396

The proper use of multi-modality data allows for the resolution of blurry guidance in397

images and unclear structure in depth. Also, multi-scale fusion techniques employed by398

some of the two-branch methods [33,39] prove most successful in extracting discriminate399

features and fusing them with sparse depth data.400

Table 1. Comparison of State-of-the-art approaches on the KITTI Benchmark test dataset. The methods are ordered by their
RMSE results from worst to best within each category. The best results within each category are mentioned in bold letters.

Category Method RMSE MAE iRMSE iMAE

Two-Branch Networks

SSGP [51] 838.00 245.00 - -
DDP [43] 836.00 205.40 2.12 0.86
MS-Net[LF]-L2 [19] 829.98 233.26 2.60 1.03
S2D [15] 814.73 249.95 2.81 1.21
CrossGuidance [48] 807.42 253.98 2.73 1.33
RSIC [50] 792.80 225.81 2.42 0.99
Depth-normal [42] 777.05 235.17 2.42 1.13
FusionNet [24] 772.87 215.02 2.19 0.93
MSG-CHN [45] 762.19 220.41 2.30 0.98
DeepLiDAR [20] 758.38 226.50 2.56 1.15
DenseLiDAR [47] 755.41 214.13 2.25 0.96
ACMNet [44] 744.91 206.09 2.08 0.90
FCFR-Net [39] 735.81 217.15 2.20 0.98
PENet [33] 730.08 210.55 2.17 0.94
RigNet [34] 712.66 203.25 2.08 0.90

Guided Image Filtering GuideNet [40] 739.24 218.83 2.25 0.99

Spatial Propagation Networks

CSPN [21] 1019.64 279.46 2.93 1.15
DSPN [61] 766.74 220.36 2.47 1.03
CSPN++ [23] 743.69 209.28 2.07 0.90
NLSPN [11] 741.68 199.59 1.99 0.84
DySPN [62] 709.12 192.71 1.88 0.82

6. Conclusion401

In this paper, we present a comprehensive survey of depth completion methods.402

We first present a basic hierarchy of depth completion methodologies consisting of403

traditional, image-guided, two-branch, spatial propagation networks and guided kernel404
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Table 2. Comparison of state-of-the-art approaches on the NYUv2 Benchmark dataset. The methods are ordered by their
RMSE results from worst to best within each category. The best results within each category are mentioned in bold letters.
δi denotes the percentage of predicted pixels whose relative error is less than a threshold i (1.25, 1.252, and 1.253).

Category Method RMSE REL δ1.25 δ1.252 δ1.253

Two-Branch Networks

S2D [15] 0.133 0.027 - - -
EncDec-Net[EF] [19] 0.123 0.017 99.1 99.8 100
DeepLiDAR [20] 0.115 0.022 99.3 99.9 100.0
Xu et. al. [42] 0.112 0.018 99.5 99.9 100.0
FCFR-Net [39] 0.106 0.015 99.5 99.9 100.0
ACMNet [44] 0.105 0.015 99.4 99.9 100
DenseLiDAR [47] 0.105 0.015 99.4 99.9 100
RigNet [34] 0.090 0.013 99.6 99.9 100.0

Guided Image Filtering GuideNet [40] 0.142 0.024 98.8 99.8 100.0

Spatial Propagation Networks

CSPN [21] 0.117 0.016 99.2 99.9 100.0
CSPN++ [23] 0.116 - - - -
NLSPN [11] 0.092 0.012 99.6 99.9 100.0
DySPN [62] 0.091 0.012 99.6 99.9 100.0

learning methods. Then, we review the different state-of-the art approaches within each405

category of the hierarchy by summarizing their contributions and their approach to re-406

solving the prevalent problems of the domain. We further shed light on the most popular407

benchmark datasets among the research fraternity and the corresponding evaluation408

metrics reported on each. Finally, to give an overall picture, we present a comparison409

of all the methods on the discussed benchmarks and reported metrics and concisely410

mention their pros and cons.411
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