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1 Abstract: Depth maps produced by LiDAR based approaches are sparse. Even high-end LiDAR
2 sensors produce highly sparse depth maps, which are also noisy around the object boundaries.
s Depth completion is the task of generating a dense depth map from a sparse depth map. While
4 the traditional approaches focus on directly completing this sparsity from the sparse depth maps,
s modern techniques use RGB images as a guidance tool to resolve this problem. Whilst many others
¢ rely on affinity matrices for depth completion. Based on these approaches, we have sub-divided
7 the literature into two major categories; traditional approaches and backbone-based approaches.
s The latter is further sub-divided into two-branch, and spatial propagation approaches. The two-
o branch approaches still have a sub-category named guided-kernel approaches. In this paper, for
10 the first time ever we present a comprehensive survey of depth completion methods. We present
11 anovel taxonomy of depth completion approaches, review and detail different state-of-the art
12 techniques within each category for depth completion of LiDAR data, and provide quantitative
13 results for the approaches on KITTI and NYUv2 depth completion benchmark datasets.

12 Keywords: Depth Completion; Depth Maps; Image-Guidance

15 1. Introduction

16 Depth maps are critical to a variety of computer vision applications such as au-
1z tonomous driving [1-3], robot navigation [4,5], augmented reality [6-8],virtual reality
e [9]. Tasks like object detection, obstacle avoidance [10], 3D scene reconstruction [11-13]
1 require dense depth maps for accurate prediction. Various depth sensors like depth
20 cameras, 3D LiDAR and stereo cameras capture the depth information. Among these,
xz LiDAR sensors provide the most accurate depth information. However, the depth maps
22 generated by these devices are sparsely distributed (1) compared to a medium resolution
2 RGB image (about 5% density [14]). Also, current LiDAR sensors obtain measurements
2a at only 64 scan lines in the vertical direction. This sparsity significantly impacts the
= performance of LiIDAR based applications. Predicting dense depth maps from these
26 sparse ones is critical for both the industry and academia.

27 To resolve the problem of depth completion, many different approaches have been
2s developed. Traditional approaches [15-17] concentrate on retrieving dense depth maps
2 from the sparse ones without the guidance of an image. Uhrig et al. [18] propose
5o a sparsity invariant CNN to deal with sparse data or features. Eldesokey et al. [19]
a1 solve depth completion by generating a full depth as well as a confidence map with
;2 normalized convolution. But, these approaches are limited and lose depth details and
s semantic information without the availability of multi-modal data.
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(a) RGB Image
Figure 1. First Column shows the RGB images from two different scenes, the middle column contains the sparse depth

(b) LiDAR sparse Depth Map (c) Prediction

maps produced from LiDAR. Last column shows the predicted dense depth maps for the corresponding scenes.
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Image guided methods show significant improvement in results compared to the
conventional depth-only techniques. Qiu et al. [20] train a network to predict surface
normal using the color image and depth map and further use the recovered surface
normal to guide depth completion. CSPN [21] refine coarse depth maps with spatial
propagation network using affinity matrices at the end of its Unet [22]. CSPN++ [23]
additionally improves by learning adaptive convolution kernel sizes and the number
of iterations for propagation. However, most of these techniques consider the task as
one-stage learning and use naive fusion approaches resulting in blurred depth maps
with unclear boundaries.

Some works construct a two-branch architecture for handling image and depth
modalities and then perform fusion like FusionNet [24] and DeepLiDAR [20]. FusionNet
extracts local and global features using its two-branch architecture. While, DeepLiDAR
takes multi-modal inputs and performs fusion at a multi-scale level, achieving better
depth completion results. But both these methods require extra datasets to pretrain their
networks.

The content of this paper is organized as follows: Section 2 provides an overview
of the fusion strategies and approaches used in the field of depth completion. Section 3
discusses the common indoor and outdoor dataset used for depth completion. Section 4
introduces the metrics used in the field of depth completion and Section 5 presents the
state-of-the-art methods in each category. Finally, Section 6 provides the conclusion of
this paper.

2. Methodologies

In this section, we will discuss both the approaches to dense depth completion and
multi-modal fusion strategies to fuse the multi-modal (RGB, LiDAR, Semantic maps,
Surface normals) information. Figure 2 shows the approaches to depth completion.
Roughly, the approaches can be divided into two different categories; (1) Traditional
Approaches, which utilize only LiDAR sparse depth maps for dense depth completion,
and (2) Image-guided Methods, which employ guidance images (RGB, semantic maps,
surface normals) to guide the process of depth completion. Image-guided methods are
more successful than traditional approaches. However, image-guided methods require
the employment of fusion strategies to adaptively fuse the information between different
modalities. Therefore, we also discuss multi-modal fusion strategies in this section.

2.1. Traditional Approaches

Traditional approaches can be further classified into single-branch approaches,
since they utilize only one branch to process sparse LiDAR data. Earlier approaches
[16,18,25] based on convolutional neural networks (CNN) utilized only sparse depth
maps to generate dense depth maps. To fill the missing values at invalid regions of
sparse depth maps, many hand-crafted features, kernels, interpolation methods [26-30]
were introduced. However, the structural information of the scene is lost because of
the discontinuity in the depth values. To counter the sparsity of data in sparse depth
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Figure 2. Approaches to Depth Completion problem. Traditional approaches include single-branch
(utilize only LiDAR) methods to depth completion. The image-guided methods (two-branch and
spatial propagation methods) utilize guidance images (RGB, semantic maps, surface normals)
to guide the process of depth completion. The two-branch methods can be further divided into
guided kernel learning methods, which aim to learn useful kernels from one modality and apply
it to other modalities.

maps, Depth-Net [31] performed nearest-neighbor interpolation in the sparse maps
to fill out the holes. Later on, uncertainty-aware CNN'’s [32] proposed probabilistic
normalized convolutions to model the uncertainty in the sparse depth maps. The obvious
drawback of these approaches is that without color or semantic image guidance, the
predicted depth maps lack clear object boundaries, making them unsuitable for real-time
applications.

2.2. Multi-modal Fusion

Multi-modal fusion refers to the approaches and methodologies of fusing sensor
information from two or more different sensors to enhance the understanding of the
environment. In the context of depth completion, it refers to the process of utilizing
information from different modalities including RGB cameras [33,34], surface normal’s
[20], semantic maps [35,36] etc., to guide the process of dense depth completion. The goal
of multi-modal fusion is to leverage different modalities or their feature representations
to produce reliable information on the sparse regions of LIDAR depth maps. Following
sections cover common fusion techniques for depth completion.

2.2.1. Early Fusion

The idea of early fusion is to integrate the separate raw modalities e.g., RGB camera
and LiDAR sensor, into a single unified representation [37]. There exist many methods
to compute the unified representation. However, most common methods include point
pixel projection between RGB image and LiDAR sparse depth map [38], concatenation or
addition of RGB and LiDAR sparse depth map [33,39], etc. The unified representation is
then sent to the AutoEncoder for dense depth completion. The pipeline of early fusion
is depicted in Figure 3.

2.2.2. Sequential Fusion

Sequential fusion is an extension of early fusion. In the first step, it predicts a dense
color depth through an RGB branch consisting of an RGB-only deep neural network. The
color depth is a very noisy estimate of dense depth, but it contains the depth information
around the object boundaries, e.g., cars and trees, which is missing in LiDAR sparse
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Figure 3. Early fusion between RGB image and LiDAR sparse depth. At first, both modalities are fused and then sent to the

Deep Neural Network for dense depth completion.
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Figure 4. Sequential fusion between RGB image and LiDAR sparse depth map. The RGB branch produces color depth,

which along with LiDAR sparse depth map, is sent to depth branch to estimate the final dense depth map.

w0z depth map [33,36,39]. The color depth and LiDAR sparse depth map are sent to the
103 depth branch, which produces the final estimate of the dense depth map. Figure 4 shows
w04 the process of sequential fusion between RGB image and LiDAR sparse depth map.

10s  2.2.3. Late Fusion

106 Unlike early and sequential fusion, the late fusion process both modalities, i.e., RGB
w7 color images and LiDAR sparse depth map, independently and fuse them at the final
10s  stage. The RGB and depth branches consist of RGB-only and depth-only deep neural
10 networks. The RGB branch outputs a dense depth map focused on color information,
10 Whereas the depth branch produces a dense depth map relying more on the LiDAR
m  sparse depth map features [33,36]. The dense depth maps produced by RGB and depth
12 branches are fused to produce the final dense depth map. The final dense depth map
13 combines the strength of both the RGB camera and LiDAR sensor into a single dense
ua depth map. Figure 5 depicts the pipeline of the late fusion for the RGB camera and
us  LiDAR sparse depth map.

us 2.2.4. Deep Fusion

117 Deep fusion refers to the fusion performed at the level of the deep neural network.
us Figure 6 shows the pipeline of the deep fusion between LiDAR sparse depth map and
s RGB image modalities. Similar to late fusion, the pipeline of deep fusion consists of
120 two separate branches for RGB and LiDAR sparse depth modalities. However, in deep
i fusion, instead of applying the fusion at the intermediate output of the two branches,
122 it is performed at the feature level throughout the two branches. The fusion follows
123 the decoder-encoder strategy since the features from the RGB decoder are fused at the
124 encoder of the depth branch at multiple stages. Deep fusion only fuses the decoder
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Figure 5. Late fusion between RGB image and LiDAR sparse depth map. It consists of two separate branches to process

RGB images and LiDAR sparse depth maps. Both of the branches produce dense depth maps, which are fused to produce a

final dense depth map.

features of one modality to another because the decoder contains high-level information,
which is used to guide the other modality during dense depth prediction [33,40].

2.3. Image-gquided Methods

Image-guided techniques refer to the ones that employ guidance images such as
RGB images [33,34], semantic maps [35,36], surface normals [20] and sparse depth map
modalities [18] to guide the process of depth completion. These techniques have shown
much comprehensive results compared to the traditional approaches.

2.3.1. Two-branch Networks

Two-branch methods refer to the ones that employ two branches for handling the
multi-modal information, including RGB images, surface normals, semantic maps and
LiDAR sparse depth maps. Each branch treats a single modality separately and then the
information from the different branches is fused through multi-modal fusion techniques
explained in Section 2.2.

Van Gansbeke, Wouter, et al. [24] propose a two-branch network to extract both
the global and local information to produce accurate and comprehensive depth maps.
They employ a fusion method based on color image guidance to better incorporate the
object information, which significantly improves accuracy. Moreover, confidence masks
are learned for both the local and global branches in an unsupervised manner. These
masks are then used to weight the depth maps to correct the uncertainty in the depth
predictions from both modalities.

DeepLiDAR [20] presents an end-to-end deep learning architecture for accurate
image guided depth completion for outdoor scenes using estimated surface normals [41]
as intermediate representations to enforce geometric constraints. The sparse depth and
image modalities are effectively fused together by the proposed modified two-branch
encoder-decoder network [22]. To resolve the issues specific to outdoor scenes, the
network predicts a confidence mask to handle artefacts in mixed LiDAR signals near
foreground boundaries due to occlusion. Also, it learns attention maps to combine
estimates from the color image and surface normal to improve the depth accuracy,
especially for distant areas.

Similar to DeepLiDAR [20], to resolve the issues in handling sensor noise and
3D geometric constraints, Xu et al. [42] propose a unified two-stage CNN framework.
Firstly, the framework models the geometric constraints between depth and surface
normal [41] in a diffusion module. Secondly, similar to [24] it predicts the confidence
of sparse LIDAR measurements to reduce the propagation of information due to noise.
The surface normals, coarse depth and confidence of LiDAR inputs, predicted by the
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Figure 6. Deep Fusion between RGB image and LiDAR sparse depth map. Each modality is passed from a dedicated branch.

The features from decoder of RGB branch are fused into the encoder of the depth branch. The symbol "F" represents the

fusion operation. Common choices for fusion operation includes addition or concatenation. However, complex fusion

schemes can also be employed. By the guidance of RGB branch, the depth branch produces a final dense depth map.

encoder-decoder backbone [22] are passed to a diffusion refinement module to obtain
the final depth completion results.

Unlike the conventional approaches, which make a point estimate, Yang et al.
[43] present a deep learning system to estimate the posterior distribution of a dense
depth map linked with an image by utilizing sparse range measurements of a LIDAR
depth map. Relations between seen images and corresponding depth maps are used
to complete the map to get a probability over depth for each pixel in the image. A
Conditional Prior Network then combines it with a likelihood term that uses the sparse
measurements.

Ma et al. [15] design a deep regression model to directly learn a mapping from a
sparse depth map and color image (if available) to a dense depth map. Additionally,
they explore a self-supervised training framework for depth completion tasks. The
framework requires only the sparse depth and color image sequences, removing the
need for dense depth labels during training. This approach also performs better than
some of the semi-dense annotation methods.

The standard convolutions fail to model the observed spatial contexts due to sparsity
in depth maps. To fully capture the observed spatial contexts, Zhao et al. [44] propose
graph propagations. Firstly, they construct multiple graphs at different scales from
observed pixels. Then an attention mechanism is applied to the propagation, which
allows modeling of the contextual information adaptively. These graph propagations
are applied to the depth and image modalities to extract the respective representations.
A symmetric gated fusion strategy is proposed to effectively exploit the extracted multi-
modal features by learning adaptive gating weights to preserve the original information
for one modality and absorb complementary information from the other modality.

Li, Ang, et al. [45] propose a multi-scale guided cascade hourglass network [46] to
handle diverse patterns in depth maps efficiently. Unlike the traditional fully convolu-
tional techniques, specialized hourglasses in the cascade network take inputs at different
resolutions to predict depth structures at particular scales. An encoder extracts multi-
scale features from colour images to provide guidance information for specific structures
for all the hourglasses stack. This multi-scale training strategy activates the effect of
cascade stages. Also, the division into sub-modules allows replacing the redundant
network with a combination of simple architectures.

DenseLiDAR [47] propose a novel real-time pseudo-depth guided depth completion
backbone based neural network. They argue that a dense reference depth map is essential
to produce accurate dense predictions. The pseudo-depth map is obtained from simple
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morphological operations and is used to guide the network on three fronts. Firstly, it
predicts a residual structure for the output, making it more stable and accurate. Secondly,
to rectify the sparse input data and lastly, to enforce a 3D dense structural loss for training
the network. Additionally, two new metrics; RMSEgr and RMSEg,, are proposed for
better evaluation of the predicted dense depth maps. The former computes the depth
error on a carefully complemented ground truth, while the latter evaluates the accuracy
on edge areas of the depth map.

Most of the earlier mentioned image guided depth completion methods use sim-
ple concatenation and element wise addition to handle multi-modal fusion. The deep
convolutional encoder-decoder architecture [22] designed by Lee et al. [48] incorporates
a cross-guidance module for multi-modal feature fusion to overcome the lack of repre-
sentation power. The two encoders share the information by exchanging the outputs
with the guidance module of the other encoder, which applies an attention mechanism
to fuse the features. Also, a residual atrous spatial pyramid block (RASP) is proposed to
extract highly significant features. This block applies multiple dilated convolutions [49]
with different dilation rates in parallel.

Similar to Sparsity Invariant Convolution (SI-Conv) proposed by Uhrig et al. [18]
for depth-only completion tasks, Yan et al. [50] propose a novel fusion scheme to ef-
fectively fuse the data from image and depth modalities by exploiting the property of
image guided depth completion task and data. The technique employs three mask aware
operations to process, downscale and fuse the sparse features, where each explicitly con-
siders the distribution of the data and the observation mask of the corresponding feature
map. The presented deep neural network processes the two modalities independently,
followed by a spatial pyramid fusion block to fuse the features under various receptive
fields.

Different to previously discussed approaches which use a typical Convolution
Neural Network (CNN) layer, the approach in [19] introduces a novel normalized
convolutional layer with a much smaller number of parameters for unguided scenes
depth completion on the highly sparse input depth map. It further presents novel
methodologies to compute and propagate convolutional confidences to consequent CNN
layers. A new loss function is also proposed, minimizing the data error while maximizing
the output confidence. The authors also explore several fusion techniques to combine
the multi-modal data and integrate structural information in the proposed framework.
Additionally, unlike [15] the output confidence is used as auxiliary information to
improve the results.

Encouraged by the current approaches in depth completion, which focus on dense
guidance, Schuster, René, et al. [51] propose a Sparse Spatial Guided Propagation
(SSGP), which is the combination of spatially invariant, image dependent convolutional
propagation and sparsity-aware convolution. This propagation technique is used in a
generic cross-domain encoder-decoder architecture with full image guidance at each
stage. The network performs sparse-to-dense interpolation for different problems like
optical flow, scene flow, depth completion etc., achieving better robustness, accuracy
and speed.

FCFR-Net [39] designs a novel end-to-end residual learning framework describing
the problem as a two-stage learning task. The coarse-to-fine residual learning framework
consists of a sparse-to-dense stage and a coarse-to-fine stage. The former interpolates
coarse dense depth map using the CNN framework from [15], while the latter stage
further refines the depth maps. A channel shuffle extraction operation is performed to
fuse the color and depth features at multi-scale feature levels improving the performance
significantly. Also, an energy-based fusion is applied to effectively fuse the features from
the channel shuffle stage.

Inspired by FusionNet [24] and DeepLiDAR [20], Hu, Mu, et al. [33] propose a
two-branch network PENet, consisting of a color dominant branch and a depth dominant
branch. However, the branches are for different purposes and unlike [24] and [20], the


https://doi.org/10.20944/preprints202205.0343.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 May 2022 doi:10.20944/preprints202205.0343.v1

8 of 16

network can be trained from scratch without requiring any additional datasets. The
two branches produce dense depth prediction by exploiting color and depth dominant
information. A geometric convolutional layer [52] is used to encode 3D geometric cues.
Further, a dilated and accelerated implementation of CSPN++ [23] is proposed to make
the refinement more effective and efficient.

Motivated by the popular mechanism of looking and thinking twice in [53], RigNet
[34] employs a repetitive design in the image guided network and depth generation
branch to gradually and sufficiently recover depth values, resolving the issues related
to blurry image guidance and unclear structure in depth. The network consists of a
novel repetitive hourglass network, which extracts legible image features of challenging
environments to provide more precise guidance for depth recovery. It also uses a
repetitive guidance module based on dynamic convolutions [40], including an adaptive
fusion mechanism and an efficient guidance algorithm, which can gradually learn precise
depth representations.

2.3.2. Guided Image Filtering

Guided Image Filtering is considered another variant of two-branch methods. In
the field of depth completion, the idea of guided image filtering refers to the learning
and prediction of the kernels from one modality and applying learned kernels to other
modalities for feature extraction and fusion.

This approach was first introduced by GuideNet [40]. It proposed a novel method
for learning guided kernels from RGB images, applied to depth images to extract fea-
tures. The intuition is to exploit the properties of guided filtering [54] i.e., spatially
variant and content dependent for multi-modal fusion between RGB images and depth
maps. However, this is computationally expensive; therefore, it proposes a convolution
factorization operation to reduce computation and memory consumption.

Inspired by GuideNet [40], another method has been proposed, which aims to learn
steering kernels [55] from RGB images and apply them to sparse depth maps to generate
interpolated depth maps [56]. The interpolated depth maps are then refined by utilizing
a ResNet [57] to generate the final dense depth maps. The whole pipeline can be trained
in an end-to-end manner.

2.3.3. Spatial Propagation Networks (SPN)

The aim of SPN is to learn an affinity matrix to represent the affinities between
the pixels. An affinity matrix can be defined as a matrix containing the estimate of the
likelihood that pixels (i and j) belong together conditioned on image measurements. The
interpretation of the affinity matrix depends on the computer vision task. For instance,
in the case of image segmentation task, the affinity matrix should contain semantic-level
pairwise similarities.

Depth estimation via affinity learned with convolutional spatial propagation net-
work [58] is one the earliest method , which proposed a generic framework for learning
affinity matrix. Instead of manually designing an affinity matrix through similarity
kernels for image segmentation, it learned semantic aware affinity values by utilizing
deep convolutional neural network (CNN)[59]. Furthermore, the learned affinity matrix
is not limited to single computer vision task i.e., image segmentation [60], but it can also
be extended to other vision tasks as well. However, it propagates the affinity matrix in a
serial fashion, making it inefficient for real-time applications.

Convolutional Spatial Propagation Network (CSPN) [21] extended SPN and pre-
sented a convolutional network to learn the affinity matrix for depth completion task. It
argues that for a depth refinement task, affinity values of local neighborhood are much
more important [21]. To learn the affinity values in local neighborhood, it utilized a
deep convolutional neural network and to model long-range context, it uses a recurrent
convolutional operation. However, both SPN and CSPN suffers from the problem of
fixed local neighborhoods. To counter the problem of fixed local neighborhood in CSPN
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and SPN, methods including CSPN++ [23], DSPN [61], NLSPN [11] and DySPN [62]
were introduced.

CSPN++ [23] added a simple block to CSPN architecture to learn two additional
hyper-parameters (1) adaptive convolutional kernel sizes (2) number of iterations for
affinity matrix propagation based on image content. Initially, various configurations for
both adaptive convolutional kernel sizes and number of iterations for affinity matrix
propagation are defined and then during propagation, it learns to predict the correct
configuration on each pixel. This leads to significant improvement in both the runtime
complexity and the accuracy of depth completion.

Unlike CSPN, DSPN [61] utilized deformable convolutional layers [63] to adaptively
generates different receptive field and affinity matrix for each pixel. Later, NLSPN [11]
was introduced, which utilized two-stage strategy for depth completion. In the first stage,
the proposed method takes RGB and LiDAR sparse depth as an input and outputs (1)
non-local neighbors and corresponding affinities of each pixel (2) initial depth estimate (3)
confidence map of depth estimate. Then, in second stage, non-local spatial propagation
is iteratively performed with confidence-incorporated learnable affinity normalization
to generate the final dense depth map. It counters the local affinity problem of CSPN
through non-local spatial propagation.

Recently, DySPN [62] propose that instead of using linear propagation for generat-
ing affinity matrices, non-linear propagation model should be used for propagation. It
dynamically updates the pixel-wise affinity weights by utilizing neighborhood decou-
pling and spatial-sequential fusion. The neighborhood decoupling is performed by
distributing the neighborhood based on the distances between a pixel and its neigh-
borhood and then, recursively generating attention maps based on its propagation
stage. Furthermore, it investigates three variants i.e., distance based, dilated [49] and
deformable convolutions for determining the optimal number of neighbors required
for neighborhood decoupling. Finally, it proposes a diffusion suppression operation to
reduce over smoothing of the predicted dense depth maps.

3. Datasets

Typically, depth completion is applied to two kinds of datasets i.e., outdoor and
indoor datasets. The outdoor datasets consist of driving sequences, whereas indoor
datasets comprise video sequences from a variety of indoor scenes. There exist many such
datasets; however, in this paper, we will discuss two famous datasets and benchmarks
i.e., KITTI Dataset and its Depth Completion Benchmark (outdoor) [64] and NYU Depth
Dataset v2 (indoor) [65], which are used extensively in the field of depth completion
for evaluation. The following sections will discuss both KITTI and NYU-v2 datasets in
detail.

3.1. KITTI Dataset

KITTI dataset [64] is a large outdoor dataset for autonomous vehicles comprising
of driving sequences recorded in Karlsruhe, Germany. The driving vehicle VW Passet
station is equipped with two stereo camera systems, LIDAR Velodyne HDL-64E laser
scanner and an OXTS RT3003 inertial and GPS navigation system. Most of the scenes
are collected in rural areas and on the city’s highways. The dataset has applications in
various computer vision and machine learning research areas, e.g., optical flow, visual
odometry, semantic segmentation, semantic instance segmentation, road segmentation,
single image depth prediction, depth map completion, 2D and 3D object detection, and
object tracking.

3.1.1. KITTI Depth Completion Benchmark

KITTI depth completion [18] benchmark is utilized to evaluate the performance of
our approach against existing state-of-the-art methods. It provides 85K sparse depth
maps with corresponding RGB images for training, 7K for validation, and 1K for test-
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(a) RGB Image
Figure 7. KITTI depth completion benchmark. Part a) shows the aligned RGB images. Part b) depicts the sparse LIDAR

(b) LiDAR sparse Depth Map (c) Ground-truth

depth maps, whereas Part c) represents the dense ground-truth depth maps. Colorization is applied on LiDAR sparse depth

maps and corresponding ground-truth to generate visualizations. The highlighted areas are used to show the sparsity in
KITTI depth completion benchmark.

ing. The sparse depth map in the KITTI depth dataset is generated by using LIiDAR
HDL-64, which provides valid depth values on only 5.9% of all pixels [18,64]. However,
the ground-truth contains valid depth values on 16% of all the pixels. The ground-truth
is generated by accumulating LiDAR and stereo estimation of the scenes [18,64] using
semi-global matching (SGM) [66] approach. Furthermore, the KITTI depth completion
dataset also provides an official validation set consisting of 1K frames. Figure 7 presents
some images from the depth completion benchmark.

3.2. Nyu-v2 Depth Dataset

It consists of RGB and depth images collected from 464 different indoor scenes. It
utilizes a camera to capture RGB data and Microsoft Kinect [67] to record the depth values
of the scene. As a preprocessing step, the missing values in depth maps are colorized
using a colorized scheme [68]. It provides over 400K images for training; however, most
of the methods [33,34,40,44] utilize only a subset for training their approaches. As Kinect
provide dense measurements [67], the sparse depth data is generated by randomly
removing depth data from the depth ground truth. It also provides 654 images for
benchmarking of the results. Figure 8 shows some images from the Nyu-v2 depth
dataset.

4. Evaluation Metrics

Depth completion evaluation measures consist of root mean squared error (RMSE),
mean absolute error (MAE), root mean squared error of inverse depth (iRMSE), mean
absolute error of the inverse depth (iMAE), mean absolute relative error (REL) and
threshold accuracy J. All of the metrics are defined as follows.
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(a) RGB Image (b) Kinect sparse Depth Map (c) Ground-truth
Figure 8. Nyu-v2 depth dataset. Part a) shows the aligned RGB images. Part b) depicts the sparse Kinect depth maps,

which are generated by randomly sampling only 500 points from the ground truth. Part ¢) represents the fully dense
ground-truth depth maps. Colorization is applied on Kinect sparse depth maps and corresponding ground-truth to generate
visualizations.

1 2
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374 Among all of the evaluation metrics, RMSE is chosen to rank the submissions on

s7s  the KITTI and Nyu-v2 Depth online leaderboards.

sze 5. Results

377 This section compares the results from all the state-of-the art approaches reviewed
sze  above. The performance comparison is made both quantitatively and qualitatively. The


https://doi.org/10.20944/preprints202205.0343.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 May 2022 doi:10.20944/preprints202205.0343.v1

12 of 16

quantitative results are reported on the two benchmark datasets for depth completion
i.e. KITTI autonomous driving scenes dataset and the NYUv2 indoor scenes dataset.
The results on the KITTI dataset are evaluated using the four standard metrics; root
mean squared error (RMSE), mean absolute error (MAE), root mean squared error of the
inverse depth (iIRMSE), and mean absolute error of the inverse depth (iMAE) as shown in
Table 1. For the indoor NYUv2 dataset, three metrics are used for evaluation, including
the RMSE, mean absolute relative error (REL) and J;. Table 2 shows the performance
results on the NYUv2 indoor scenes dataset.

Traditional approaches try to directly achieve dense depth maps from sparse depth
maps, which causes discontinuities in depth values and loss of structural information.
Modern image-guided approaches outperform the traditional ones by a fair margin by
using an image as guidance. Spatial propagation methods learn affinity matrices and
propagate these to make depth denser. DySPN [62] is the most successful technique in
this category and uses non-linear propagation resulting in smoother depth maps. Among
the two-branch approaches, RigNet [34] achieves the best results on both the KITTI [64]
and NYUv2 [65] datasets. Lastly, GuideNet [40] is the most noticeable work under
the guided-kernel depth completion category. Overall, we conclude that two-branch
methods show the best results and are currently the state-of-the-art in depth completion.
The proper use of multi-modality data allows for the resolution of blurry guidance in
images and unclear structure in depth. Also, multi-scale fusion techniques employed by
some of the two-branch methods [33,39] prove most successful in extracting discriminate
features and fusing them with sparse depth data.

Table 1. Comparison of State-of-the-art approaches on the KITTI Benchmark test dataset. The methods are ordered by their

RMSE results from worst to best within each category. The best results within each category are mentioned in bold letters.

Category Method RMSE MAE iRMSE iMAE
SSGP [51] 838.00 245.00 - -
DDP [43] 836.00 20540  2.12 0.86
MS-Net[LF]-L2 [19] 829.98 23326  2.60 1.03
S2D [15] 814.73  249.95 2.81 1.21
CrossGuidance [48] 807.42 253.98 2.73 1.33
RSIC [50] 792.80 225.81 242 0.99
Depth-normal [42] 777.05 23517 242 1.13
Two-Branch Networks FusionNet [24] 772.87  215.02 2.19 0.93
MSG-CHN [45] 762.19  220.41 2.30 0.98
DeepLiDAR [20] 758.38 22650  2.56 1.15
DenseLiDAR [47] 75541 214.13 2.25 0.96
ACMNet [44] 74491  206.09 2.08 0.90
FCFR-Net [39] 735.81 217.15 2.20 0.98
PENet [33] 730.08 210.55 2.17 0.94
RigNet [34] 712.66  203.25 2.08 0.90
Guided Image Filtering GuideNet [40] 739.24 218.83 2.25 0.99
CSPN [21] 1019.64 27946  2.93 1.15
DSPN [61] 766.74 22036 247 1.03
Spatial Propagation Networks =~ CSPN++ [23] 743.69 209.28  2.07 0.90
NLSPN [11] 741.68  199.59 1.99 0.84
DySPN [62] 709.12 192.71 1.88 0.82

401

402

403

404

6. Conclusion

In this paper, we present a comprehensive survey of depth completion methods.
We first present a basic hierarchy of depth completion methodologies consisting of
traditional, image-guided, two-branch, spatial propagation networks and guided kernel
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Table 2. Comparison of state-of-the-art approaches on the NYUv2 Benchmark dataset. The methods are ordered by their
RMSE results from worst to best within each category. The best results within each category are mentioned in bold letters.
d; denotes the percentage of predicted pixels whose relative error is less than a threshold i (1.25, 1.25%, and 1.25%).

Category Method RMSE REL 4125 J1p52  J195
S2D [15] 0133 0027 - - -
EncDec-Net[EF] [19] 0123 0017 991 998 100
DeepLiDAR [20] 0115 0022 993 999 100.0
Xu et. al. [42] 0112 0018 995 999 100.0
Two-Branch Networks FCFR-Net [39] 0106 0015 995 999 1000
ACMNet [44] 0105 0015 994 999 100
DenseLiDAR[47] 0105 0015 994 999 100
RigNet [34] 0.090 0013 996 999 100.0
Guided Image Filtering GuideNet [40] 0.142 0.024 988 99.8 100.0
CSPN [21] 0117 0016 992 999 1000
. . CSPN++ [23] 0116 - - ] -
Spatial Propagation Networks 7 g\ 17 0.092 0012 996 999 100.0
DySPN [62] 0.091 0012 996 999 100.0

s0s learning methods. Then, we review the different state-of-the art approaches within each
a6 category of the hierarchy by summarizing their contributions and their approach to re-
a7 solving the prevalent problems of the domain. We further shed light on the most popular
as benchmark datasets among the research fraternity and the corresponding evaluation
a0 Mmetrics reported on each. Finally, to give an overall picture, we present a comparison
a0 Of all the methods on the discussed benchmarks and reported metrics and concisely
s mention their pros and cons.
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