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Abstract: Quadrotor drones have rapidly gained interest recently. Numerous studies are underway 
for the commercial use of autonomous drones, and especially the distribution businesses are taking 
serious reviews on drone delivery services. However, there are still many concerns about urban 
drone operations. The risk of failures and accidents makes it difficult to provide drone-based ser-
vices in the real world with ease. There have been many studies that introduced supplementary 
methods to handle drone failures and emergencies. However, we discovered the limitation of the 
existing methods. The majority of approaches were improving PID-based control algorithms which 
is the dominant drone control method. This type of low-level approach lacks situation awareness 
and the ability to handle unexpected situations. This study introduces an event-based control meth-
odology that takes a high-level diagnosing approach that can implement situation awareness via 
time-window. While leaving the low-level controller to involve in operating the drone for most of 
the time in normal situations, our controller operates at a higher level and detects unexpected be-
haviors and abnormal situations of the drone. We tested our method with real-time 3D computer 
simulation environments with Unreal Engine[15] and AirSim[31]. We were able to verify that our 
approach can provide enhanced double safety and better ensure safe drone operations. We hope 
our discovery to possibly contribute to the advance of real-world drone services in the near future. 

Keywords: Safe-drone; Emergency Detection; Time-window; Event-based Control; UAV(Un-
manned Aerial Vehicle)/Quadrotor Drone 

1. Introduction

Drone applications are widely studied in various industrial fields due to the potential
it brings by overcoming the limitation of road transportation. Their ability to view large 
areas at a low cost from altitude provides new viewing aspects and new data acquisition 
ability (or existing data can be sourced at a large scale at a lower cost) to make decisions 
and manage operations more effectively [23]. Moreover, we are currently witnessing the 
potential of supply delivery applications in urban areas. However, civil confidence in ur-
ban drone operations is still questionable as injuries and property damage resulting from 
drone flights over populated areas are not unusual [26]. Numerous statistics r a vast in-
crease in drone-involved incidents especially in urban areas. According to recent research 
in the UK, the number of reported drone-caused incidents increased by 1000% from 2014 
to 2017 [35]. Therefore, commercial and policymaking efforts are turning to contemplate 
this future and how airborne drones may need control in such uses [23]. The current drone 
control technology seems not sufficient to satisfy universal concerns on drone safety. In 
order to meet the rising demands of commercial drone industries, a reliable double-safe 
drone control method is necessary. We saw our proposing method could be a solution to 
this matter. 

2. Background

Many studies argue that the dominating drone control method, PID(Proportional 
Integral Derivative) control offers the simplest and yet most efficient solution to many 
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real-world control problems [3]. However, some reviews point out the limitations of the 
current dominating technology. Smyczynski[33] mentioned that using PID regulators for 
the following platform(AR Drone) was successful only with a movement speed of less 
than 5 km/h. However, to achieve satisfactory results with higher speed, other types of 
regulators should be tested [33]. We considered this issue was due to the feedback archi-
tecture, and the low-level approach it takes. Instability is the disadvantage of feedback. 
When using feedback there is always a risk that the closed-loop system will become un-
stable [5]. 

Recent research has claimed new methods to handle the instability of drone control 
with various approaches. Some of them improved the existing algorithm whereas others 
took a higher-level approach by implementing mission control layers on top of PID con-
trollers. Numerous studies introduced fault-tolerant control mechanisms [14, 17, 22, 27, 
29], and some of them also introduced fault estimating methods [22]. Surely improving 
the PID control with various methods extended the reliability and coverage of the algo-
rithm. However, previous approaches do not take situation awareness into account and 
lack the ability to perceive and respond to situations outside of normal conditions.  

Our novel method takes a strategic-level approach to meet the requirements of mod-
ern drone applications. Not like PID-based control methods, our methodology does not 
involve in the low-level control loop. However, it takes place in the detection and diagno-
sis of abnormal situations and operates as a second-hand safety insurance. This is 
achieved by implementing temporal scoping, checking the interval time spent in maneu-
vering from one location to another. By operating in conjunction with PID-based control 
algorithms, we should be able to provide a much wider range of flight safety insurance 
coverage and maintain the preservation of cutting-edge robust control technology at the 
same time. 

3. Proposed Methodology  

Our proposal is an event-based emergency detection method using the tem-
poral(time) scope as a diagnosis method. The main idea of the time-window is to expect 
the drone to arrive at certain waypoints in a definite time-window [13]. The goal of this is 
to make sure there was no internal, or external failure that affected the mission at any 
means, by assuming that if the drone doesn’t make it in time there is an issue. Many un-
expected emergency conditions could possibly occur during autonomous drone missions, 
which are not easy to detect without strategic control methods. We designed our control 
method to operate in conjunction with existing control methods and handle abnormal sit-
uations whereas the basic functionalities of a drone such as sensing, and controlling are 
done with PID-based low-level control algorithms. 

Time-window is a temporal scope with minimum-acceptance time and maximum 
acceptance time. The individual time values(Tmax-intitial, Tmin-intitial) for each waypoint interval 
should be calculated before flight operations. During the flight, our controller will retrieve 
the current time and the state of the drone. The state of the drone includes information of 
which waypoint interval the drone is passing currently. And by calculating the Tstart(the 
actual time the drone left the last waypoint) and both values of Tmax, Tmin, the drone can 
determine the finalized time-window Twindow. The calculation of the variables and the time-
window is detailed below with definitions and equations(1~4).  

Let Texp-int be the expected interval time from one waypoint to another. 

Let α be the rate of maximum late arrival acceptance, and let β is the rate of  
maximum early arrival acceptance. 
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Then we define the maximum and minimum acceptable interval time as below. 

Tmax-intitial = α * Texp                                                     (1) 

Tmin-initialt = β * Texp                                                     (2) 

Let Tstart the actual time the drone left the previous waypoint. 

Then we define the maximum and minimum acceptable time as below. 

Tmax = Tst ar t  + Tmax- in t it ia l                                                                   (3) 

Tmi n = Tst ar t  + Tmi n - i n t i t ia l                                                                  (4) 

Where Tmin < Twindow < Tmax 

Let Twindow be the range of acceptable time-window for the interval maneuver.  

Texp-int referred from the above equations is a statistic average value of time interval 
from one waypoint to another. It is calculated by a function that takes the distance be-
tween two specific waypoints. In our case, we applied environmental wind in two oppo-
site directions with the amount of maximum wind speed our drone can handle. 

3.1. System Architecture 

 Firstly, in terms of implementing our time-window(temporal scope) to a drone, we 
designed an event-based controller that cooperates with other controllers as shown in 
Fig.1. We assume that the overall drone system includes a group of input sensors, a group 
of actuators, a sensor-based low level control loop, and a mission level controller. By 
adding our event-based controller(decision maker) to the drone system mentioned above, 
we are able to define a safe drone.  

The expected time-window data for each waypoint interval should be pre-defined 
before flight operations and stored in the knowledge base, inside the event-based 
controller. We attempted to illustrate a safe drone system with our event-based controller 
mounted on top of a typical drone system and combining both into a decision-making 
controller. 

The event-based controller will receive processed sensor data such as time and 
location, refined by the existing controller. It will then process the emergency detection 
algorithm using both the delivered sensor data and its pre-defined time-window data, 
stored inside its knowledge base. If needed, the event-based controller can command the 
PID-based controller to proceed with an emergency landing. 
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Figure 1. Proposed safe drone architecture. We mounted our event-based controller on top of low-
level controllers and expanded the decision-making system. Inside the event-based controller, the 
knowledge base stores the time-window data for each waypoint that is used in path traveling drone 
operations. 

3.2. Event-based Control Mechanism 

To explain the time-window mechanism in a logical order, even before the event-
based emergency detection system operates, the integrated low-level sensor-based con-
troller will accept sensor data inputs and perform an internal control loop. After the low-
level controller involvement, the event-based controller would diagnose emergencies 
based on time-window mechanisms as shown in Fig.2.  

If the drone has reached the waypoint, the event-based controller will check if the 
arrival time is in-bound of the pre-designated time-window. However, during the interval, 
the controller would simultaneously check if the Tmax (maximum acceptable time) was 
exceeded. And if the time has exceeded without arriving at the waypoint, it will diagnose 
an emergency and command the drone to perform an emergency landing. Even if the ar-
rival time is earlier than the Tmin (minimum acceptable time), the controller will command 
the drone to perform an emergency landing as well. In other cases where the drone has 
arrived in-bound the time-window, the controller will either allow the drone to proceed 
to the next waypoint or perform the final landing procedure as shown in Fig.3. 

As a result, our event-based controller would be able to detect both early arrivals and 
late arrivals. By restricting the drone’s maneuvering time interval, we expect to provide a 
strict standard for drone controls and further ensure fail-safe missions. 

The theoretically ideal implementation of our event-based controller is to only oper-
ate in a discrete manner based on events, such as waypoint arrivals and time-window 
exceeds. However, for the practicality of the algorithm, we recommend applying way-
points at narrow intervals to increase the diagnosing cycles and improve the calculation 
and control accuracy.  
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Figure 2. Visual illustration of the time-window. ○0 (Tstart) is counted when the drone leaves a 
waypoint and starts to head to another. The controller would calculate Tmin and Tmax for each 
waypoint and check the arrival time on every event. If the drone arrives the waypoint at ○1, it is 
considered a too-early arrival which is an abnormal situation. ○2is the minimum time boundary of a 
normal arrival, whereas ○4 is the maximum time boundary of a normal arrival. If the drone arrives 
at ○3 which is inside the normal boundary, it is considered a normal arrival and the drone would 
proceed to the next gaol. As the drone passes ○4, the time exceeds T max (max time), making the 
controller believe to detect an emergency and proceed with an emergency landing. 

Figure 3. Control flowchart illustrating the control loop implemented in the event-based controller. 
The event-based controller will not accept both early, and late arrivals at each designated waypoint. 
If the drone does not arrive inside the time-window, the event-based controller will consider the 
situation as an emergency.  

4. Case Study 

We attempted to test and verify our proposed method in simulation environments 
to see how well it detects emergency situations. We created a custom 3D simulation envi-
ronment dedicated to test our proposing system using AirSim[31] and Unreal Engine[15]. 
We utilized the physics engine and various built-in functionalities in order to implement 
a full dynamical model of a drone inside our simulator. We attempted to simulate several 
common emergency situations that a drone might encounter in the real world. We con-
sidered several possible events such as collisions (due to deviation and unexpected sud-
den collisions), system failures (motor, blade, electronics, etc..), sensor malfunctions, and 
strong winds. 

In particular, we conducted experiments and studied on three cases: Normal Case, 
Extreme Wind Condition, and Air Collision. We tried to compare the above cases under 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 May 2022                   doi:10.20944/preprints202205.0304.v1

https://doi.org/10.20944/preprints202205.0304.v1


 6 of 11 
 

the terms of the time-window concept. These cases are difficult to detect or respond to 
with existing control methods, so the effectiveness of our proposed control method should 
be shown clearly.  

Regarding the approach of our system, verifying whether a drone is in a normal state 
requires estimating the expected time-window before the actual flight mission. The very 
first step is to define the physical specs of the drone. In our case, we defined the drone as 
a quadcopter with a wheelbase of 1.13 meters, a weight of 3.8kg, a maximum wind-re-
sistant speed of 6.7m/s, and a desired flight speed of 5m/s.  

Next, we defined our mission to be a straight-line path traversal starting from way-
point A and proceeding the mission through alphabetical order as A->b->c->d->e->F. After 
the mission was set, we conducted experiments to configure the equations and variables 
required for time-window calculations. In order to calculate the time-window for each 
waypoint, we attempted to average out the amount of time the drone spends while mov-
ing various distances. After conducting over 1000 trials, we were able to get the data of 
expected acceleration speed and ascent speed. We not only tested cruise, acceleration, and 
de-acceleration conditions but also took various wind conditions in the count. After get-
ting the data, we were able to plot equations for the drone to use during the mission. 

4.1 Normal Case 

 The first case is a normal condition where no emergency event occurs to the drone. 
This case is a control group for future comparison with other cases. Fig.4-a. demonstrates 
the drone’s movement data during a mission in the simulation environment. It is in a form 
of a graph, plotted with sequential 2d locations (x, y) of the drone. As shown below, the 
drone well followed the path and did not detect any type of emergency. Further in Fig.4-
b. we can observe the drone made it within the boundaries of normal arrival time on every 
way-point arrival. Further in Fig.4-c. the actual numerical time data including Tstart, Tmin, 
Tmax, and the actual arrival time Tarrival is displayed.  

Figure 4-a. Drone movement 2D Log on Normal Case. The blue boxed-out area demonstrates the 
safe zone. the results show the drone well managed the mission with no failures and emergencies. 
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Figure 4-b. Time-window check results. The black dots illustrate the actual arrival time for each 
waypoint interval. This case, the drone made it in all normal arrival time-windows. 

 

Figure 4-c. The actual numerical time data including Tstart, Tmin, Tmax, and the actual arrival time Tarrival 

for the normal case. All four Tarrival resulted inside the time-window without any issue. Each start 
time is calculated after the Tarrival data is retrieved and did not consider computational delays.  

 

4.2 Abnormal Case: To-Early (extreme wind) 

The next case is an extreme wind condition. The wind speed in this case is 7.0 m/s, 
which is more than the drone can normally handle. This speed limit is an assumption 
based on the drone spec and a considerable recommendation for real-world applications. 
Fig.5-a. demonstrates how the drone maneuvers during extreme wind conditions. Since 
the wind is heading parallel to the drone’s direction, we can observe the drone is moving 
faster than expected. After a few waypoints, our event-based controller was able to detect 
the emergency. As in Fig.5-b. when the drone misses the time window during the path 
from c to d, the drone will detect a time window out of bounds and call for an emergency 
landing. The red mark points to the moment of detection  

Path Tstart Tmin  Tmax Tarrival 
A to b 0.00s 4.50s 5.50s 5.23s 
b to c 5.23s 9.73s 10.73s 10.26s 
c to d 10.26s 14.76s 15.76s 15.14s 
d to e 
e to F 

15.14s 
19.92s 

19.64s 
24.42s 

20.64s 
25.42s 

19.92s 
24.59s 
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Figure 5-a. Drone movement 2D Log on Abnormal Case: Too Early. The vertical red line marks the 
moment when the drone detects and emergency and proceeds an emergency landing. Due to ex-
treme wind, the drone cannot provide stable operations.   

Figure 5-b. Time-window check results. The drone did not make it in the normal arrival time-win-
dows on the path from c to d. The yellow line at the beginning indicates that extreme wind condi-
tions have been applied from the beginning of the flight. The red line indicates the moment where 
the event-based controller detects and abnormal situation due to early arrival. 

 

Figure 5-c. The actual numerical time data including Tstart, Tmin, Tmax, and the actual arrival time Tarrival 
for the extreme wind case. On path from c to d, the Tarrival resulted outside the time-window. The 
initial call for an emergency landing would have been 13.61s away from the start of the mission. 

4.3 Abnormal Case: Too-Late (air collision) 

The next case is the collision encounter simulation. We made the drone get hit by 
an unknown flying object at waypoint C and examined the control method’s response to 
the incident as shown in Fig.6-a. The drone was not able to arrive at waypoint c, mean-
ing it would either call for an emergency landing or deploy a parachute right after the 
interval time exceeds the max time-window-out of bounds. In Fig.6-b. the moment of the 

Path Tstart Tmin  Tmax Tarrival 
A to b 0.00s 4.50s 5.50s 4.74s 
b to c 4.74s 9.24s 10.24s 9.27s 
c to d 9.27s 13.77s 14.77s 13.61s 
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actual emergency occurrence is marked with a yellow line, whereas the moment of 
emergency detection is marked with a red line.  

Figure 6-a. Drone movement 2D Log on Abnormal Case: Too Late. The vertical red line marks the 
moment when the drone detects and emergency and proceeds an emergency landing. Due to a col-

lision, the drone far exceeds the expected path and this might possibly lead to secondary collisions.   

Figure 6-b. Time-window check results. The drone did not make it in the normal arrival time-win-
dows on the path from b to c. The yellow line after the drone left b, indicates the moment of the 

collision. The red line indicates the moment where the event-based controller detects and abnormal 
situation due to late arrival.  

 

Figure 6-c. The actual numerical time data including Tstart, Tmin, Tmax, and the actual arrival time Tarrival 
for the air collision case. The first interval from A to b came inside the time-window. However, due 
to the collision after waypoint b, the drone struggles to return to its missioned path, and exceeds the 
time-window. This type of emergency is extremely dangerous, yet hard to handle.  

5. Conclusions 

Drone applications are widely studied in various fields. We especially captured the 
potential for urban supply delivery applications. Unfortunately, many raise concerns 

Path Tstart Tmin  Tmax Tarrival 
A to b 0.00s 4.50s 5.50s 5.22s 
b to c - - - - 
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about the reliability and safety of urban drone operations. Numerous studies on low-level 
drone control algorithms extended the capability and stability. Furthermore, recent stud-
ies introduced fault-tolerant control methods and robust fault detecting methods. How-
ever, we saw the demand to further extend the safety level to handle unexpected, abnor-
mal situations that might occur in urban areas. 

The goal of our method was to implement a high-level event-based controller on 
drone emergency detection matters. We proposed a new intelligent control methodology 
focusing on implementing partial situation awareness. This was achieved by introducing 
an approach based on time-window scope. We designed our method to operate in auton-
omous drone waypoint missions, cooperate with existing low-level control methods, and 
ensure double safety.  

We designed a drone simulator and studied several emergency situations a drone 
might encounter in the real world. To calculate the expected interval time between way-
points, we took a statistical approach and applied conditional variables to give a slightly 
lenient range of time-window. In overall terms, our event-based approach was able to 
detect emergency(abnormal) events such as extreme winds and air collisions. It is true 
that in some cases, our approach resulted in slow reaction times. However, by applying 
advanced calibrations for calculating more accurate expected interval time in order to 
fine-tune the time-window with the placement of more narrow waypoint intervals, there 
seems to be more room for improvements.  

We have found that by applying our control method using the time-window concept 
in conjunction with low-level control methods, we could better detect abnormal situations 
than low-level only approaches. This is because our proposal implements an understand-
ing of situation awareness, which is lacked by other sensor-based control methods. 

We hope that implementing our event-based drone emergency detection method in 
conjunction with other conventional sensor-based low-level drone control algorithms 
would further extend the reliability of real-world autonomous drone services. 
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